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Relativistic mean field plus exact pairing approach to open shell nuclei
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Background: Pairing correlations play a critical role in determining numerous properties of open shell nuclei.
Traditionally, they are included in a mean field description of atomic nuclei through the approximate Bardeen-
Cooper-Schrieffer or Hartree-Fock-Bogoliubov formalism.
Purpose: We propose a new hybrid “relativistic mean field plus pairing” approach in which pairing is treated
exactly so the number of particles is conserved. To verify the reliability of the formalism, we apply it to the study
of both ground-state properties and isoscalar monopole excitations of the tin isotopes.
Methods: Accurately calibrated relativistic mean field models supplemented by an exact treatment of pairing
correlations are used to compute ground-state observables along the isotopic chain in tin. In turn, ground-state
densities are used as input to the calculation of giant monopole resonances through a constrained-relativistic
approach.
Results: We compute a variety of ground-state observables sensitive to pairing correlations as well as the evolution
of giant monopole energies along the isotopic chain in tin. Whereas ground-state properties are consistent with
experiment, we find that pairing correlations have a minor effect on the giant monopole energies.
Conclusions: A new mean field plus pairing approach is introduced to compute properties of open shell nuclei.
The formalism provides an efficient and powerful alternative to the computation of both ground-state properties
and monopole energies of open shell nuclei. We find ground-state properties to be well reproduced in this
approach. However, as many have concluded before us, we find that pairing correlations are unlikely to provide
an answer to the question, “Why is tin so soft?”
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I. INTRODUCTION

Since the early days of nuclear physics, there has been
ample experimental evidence in support of nuclear pairing in
atomic nuclei [1,2]. Indeed, already in 1950 Maria Goeppert
Mayer suggested that an even (odd) number of identical
nucleons occupying the same single-particle orbit of angular
momentum j will couple to a total angular momentum of
J = 0 (J = j ) [1]. One remarkable consequence of such
an assumption is that all even-even nuclei are predicted
(and so far observed) to have a ground state with a total
angular momentum of J = 0 and a ground-state energy
that is significantly lower relative to that of its odd-nucleon
neighbors.

Pairing correlations involve the binding of identical nucle-
ons moving in time-reversed orbits around the Fermi surface.
In general, the imprint of pairing correlations is observed
in a variety of nuclear properties, such as binding energies,
one-nucleon separation energies, single-particle occupancies,
excitation spectra, level densities, moments of inertia, and
low-lying collective modes, among others [3]. In recent years,
the focus of nuclear structure has shifted from the valley of
stability to the boundaries of the nuclear landscape. Indeed, it
is now possible to both synthesize and probe the structure of
exotic nuclei, particularly neutron-rich and neutron-deficient
nuclei [4,5]. Moreover, the ongoing quest for superheavy
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elements continues. This quest involves a sustained effort
on both their synthesis and theoretical predictions of novel
shell structures and new magic numbers [6,7]. It is widely
recognized that pairing correlations play a critical role along
these new frontiers.

Theoretical treatments on nuclear pairing can be classified
into two groups: one approximate and the other exact. The ap-
proximate approaches followed the seminal work of Bardeen,
Cooper, and Schrieffer (BCS) [8] on superconductivity in
condensed-matter physics that were extended shortly after
to the nuclear domain by Bohr et al. [9], Belyaev [10], and
Migdal [11]. Since then, methods combining a Hartree-Fock
formalism with BCS theory (HF + BCS) have been developed
and widely implemented [12,13]. Although quite successful
for macroscopic systems, BCS theory suffers from two main
disadvantages when applied to finite nuclei. First, the BCS
formalism does not conserve number of particles. This is
not a serious issue for macroscopic systems containing 1023

particles, but it certainly becomes relevant for small systems
like atomic nuclei. Second, for nuclei whose single-particle-
energy spacing around the Fermi surface is greater than the
typical pairing strength, the BCS formalism generates trivial
solutions. These drawbacks complicate the identification of
weakly bound nuclei near the drip line, as the whole concept
of drip line becomes unclear when the exact number of
particles is unknown. A more sophisticated approach that
incorporates pairing correlations in a mean field framework
is the Hartree-Fock-Bogoliubov (HFB) formalism [14]. In
the HFB approach the (short-range) particle-particle channel
associated with pairing correlations is treated on equal footing
as the (long-range) particle-hole channel associated with the

0556-2813/2014/89(1)/014321(11) 014321-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.89.014321


WEI-CHIA CHEN, J. PIEKAREWICZ, AND A. VOLYA PHYSICAL REVIEW C 89, 014321 (2014)

conventional HF description [15]. This technique has been
successfully applied to stable and weakly bound nuclei in
both the nonrelativistic [4,16,17] and relativistic domains
[18–21]. However, the violation of particle number remains
an important drawback of the HFB formalism. To overcome
such difficulty, a complicated prescription, either approximate
or exact, is often invoked to project out the state containing
the desired number of particles [22–24]. Unfortunately, such
a prescription along with many other ideas have been met
with limited success. Meanwhile, a variety of new approaches
aimed to solve the pairing problem exactly were proposed,
primarily by Richardson [25–27]; see also Ref. [28] and
references contained therein. For example, in the Richard-
son method the large-scale diagonalization of a many-body
Hamiltonian in a truncated Hilbert space is reduced to a set
of coupled algebraic equations with a dimension equal to the
number of valence particles. Moreover, exact solutions to a
generalized pairing problem using sophisticated mathematical
tools, such as an infinite-dimensional algebra [29], have also
been obtained. However, due to their intrinsic complexity these
formal methods, although exact, are difficult to implement
in realistic situations. Perhaps the most promising method to
solve the pairing problem exactly is the one based on quasispin
symmetry, first discovered by Racah in the 1940s [30,31]. By
exploiting the underlying quasispin symmetry, it is possible
to express the general pairing Hamiltonian in terms of
quasispin operators that are far easier to cope with and
manipulate [32,33]. The formalism was pushed one step
further in Ref. [34] by transforming from the quasispin scheme
into the seniority scheme, where the physical picture becomes
clearer and the simplicity and practicality of the method
were explicitly demonstrated. Further, it was suggested that
a selfconsistent approach based on the combination of a mean
field plus exact pairing formalism represents a promising
alternative to large-scale diagonalization [35]. It is precisely
the goal of the present contribution to implement and examine
the power of this promising alternative.

In this work we introduce a new hybrid approach to study
the properties of open shell nuclei. The approach is based
on the combination of an accurately calibrated relativistic
mean field (RMF) model and an exact treatment of pairing
correlations. In the RMF theory the underlying nucleon-
nucleon (NN) interaction is mediated by various “mesons” of
different spin, parity, and isospin [36–38]. With ever increasing
sophistication, the RMF theory has been extremely successful
in describing ground-state properties of even-even nuclei all
throughout the nuclear chart [39,40]. Pairing correlations have
been incorporated into the RMF approach by adopting either
a BCS or HFB formalism; see Refs. [18,19] and references
contained therein. However, these approaches inevitably suffer
from the aforementioned difficulties related to the violation
of particle number. To circumvent this problem we propose
the exact pairing (EP) approach of Ref. [34] to address
the physics of open shell nuclei. The combination of RMF
plus EP (RMF + EP) is both natural and straightforward to
implement. Indeed, single-particle energies generated from
the RMF approximation are the only input required by the EP
algorithm to predict the occupancies of the valence orbitals. In
turn, these new (fractional) occupancies modify the resulting

single-particle spectrum—which is then fed back into the EP
algorithm. This process continues until self-consistency is
achieved. This combination of shell-model-like configuration
interaction and relativistic mean field techniques is similar to
many previously used methods, such as a combination of a
Woods-Saxon potential and pairing [41], the shell-model-like
approach (SLAP) developed in Ref. [42] with a particle-
number-conserving technique for pairing correlations [43],
and an exact diagonalization of the pairing part of interaction
combined with a Skyrme density functional as in Ref. [35].
A large body of work with similar techniques applied in
various physical situations can also be found in Ref. [44]
and references contained therein. However, given that the
main focus of this contribution is to examine the impact
of pairing correlations on the structure and dynamics of
semi-magic spherical nuclei, additional effects associated with
deformation, Coriolis terms, and time-reversal symmetry in
the noninertial rotating frame will be avoided altogether.
Moreover, as we demonstrate later, the quasispin symmetry
discussed in Sec. II B provides a substantial numerical advan-
tage in this spherically symmetric limit.

We illustrate the power and utility of this combined
RMF + EP approach by computing ground-state properties
and giant-monopole energies for the tin isotopes. With an
assumed closed shell structure for both 100Sn and 132Sn, the
tin isotopes serve as a good arena for examining pairing
correlations. In particular, we examine a few ground-state
observables that highlight the critical role of pairing correla-
tions, such as the odd-even staggering in the neutron separation
energy. However, we are particularly interested in examining
the impact (if any) of pairing correlations on the softening of
the isoscalar giant monopole resonance (GMR). The GMR,
also known as the nuclear breathing mode, is a radial density
oscillation that provides a unique access to the experimentally
inaccessible incompressibility of neutron-rich matter—a fun-
damental property of the equation of state. The distribution of
isoscalar monopole strength has been traditionally measured
using inelastic α scattering at very small angles [45]. Indeed,
the distribution of monopole strength has been measured in
90Zr, 116Sn, 144Sm, and 208Pb [46–49] and, with the possible
exception of 116Sn, is accurately reproduced by mean field plus
random-phase-approximation (RPA) calculations. However,
more recent experimental studies of GMR energies along the
isotopic chains in both tin [50,51] and cadmium [52] have
revealed that the softening observed in 116Sn is endemic to
both isotopic chains [53,54]. A popular explanation behind
this anomaly is the critical role that pairing correlations play
in the physics of these superfluid nuclei [55–59]. Although
the conclusions have been mixed and seem to depend on
the character of the pairing force, it appears that pairing
correlations are unlikely to provide a definite answer to the
question, “Why is tin so soft?” Here too we address this critical
question within the context of the RMF + EP approach. In
particular, we apply the RMF + EP approximation to calculate
the relevant ground-state properties required to compute
the centroid energies of the tin isotopes from the recently
implemented constrained-RMF approach [60]. We conclude,
as many have done before us, that pairing correlations have a
minor effect on the GMR energies of the tin isotopes.
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The manuscript has been organized as follows. In Sec. II
we outline separately the RMF and EP approaches. Although
the description and implementation of both of these techniques
have been discussed in detail elsewhere [see Refs. 34,61, and
references contained therein], a brief review is provided in
an effort to keep the manuscript self-contained. In particular,
Sec. II puts special emphasis on the implementation of the
EP approach on top of an RMF approximation. In Sec. III we
display results obtained with the newly developed RMF + EP
approach for some selective sets of ground-state observables
and GMR energies along the isotopic chain in tin. Finally, we
offer our conclusions in Sec. IV.

II. FORMALISM

In this section we briefly outline the formalism required
to compute ground-state properties and GMR energies in
an RMF + EP approach. We start by reviewing the general
features of the RMF theory and then proceed to a discussion of
the exact pairing approach and how to merge them together. We
finish this section by describing how the RMF + EP framework
may serve as input to the constrained-RMF approach to
compute GMR energies.

A. Relativistic mean field theory

In the RMF theory a nucleus is described in terms of protons
and neutrons interacting through the exchange of “mesons” of
various spins, parities, and isospins. The interactions among
the particles can be described by an effective Lagrangian
density given as follows [36–38,62,63]:

Lint = ψ̄

[
gsφ −

(
gvVμ + gρ

2
τ · bμ + e

2
(1 + τ3)Aμ

)
γ μ

]
ψ

− κ

3!
(gsφ)3 − λ

4!
(gsφ)4 + ζ

4!
g4

v(VμV μ)2

+�v
(
g2

ρ bμ · bμ
)(

g2
vVνV

ν
)
, (1)

where ψ represents the isodoublet nucleon field, Aμ is the
photon field, and φ, Vμ, and bμ are the isoscalar-scalar
σ -, isoscalar-vector ω-, and isovector-vector ρ-meson fields,
respectively. The conventional Yukawa couplings between
nucleons and mesons appear in the first line of Eq. (1). In
the original Walecka model [62] it was sufficient to include
the two isoscalar mesons to account for the saturation of
symmetric nuclear matter at the mean field level. Later on,
the model was extended by Horowitz and Serot [64,65] to
include the isovector ρ meson and the photon. This formulation
was successful in reproducing some ground-state properties
with an accuracy that rivaled some of the most sophisticated
nonrelativistic formulations of the time. However, in order to

further improve the standing of the model, it was necessary
to include nonlinear self and mixed interactions between
the mesons; these nonlinear meson interactions are given in
the second line of Eq. (1). For example, the introduction
of the scalar self-interaction (κ and λ) by Boguta and
Bodmer [66] reduces the incompressibility coefficient of
symmetric nuclear matter from the unreasonably large value
predicted by the Walecka model [36,62] to one that is
consistent with measurements of the distribution of isoscalar
monopole strength in medium to heavy nuclei. Moreover,
Mueller and Serot [37] found it possible to build models with
different values for the quartic ω-meson coupling (ζ ) that
reproduced the same nuclear properties at normal densities
(such as the incompressibility coefficient) but that produced
maximum neutron-star masses that differ by almost one solar
mass. Hence, ζ can be used to efficiently tune the maximum
neutron star mass [67,68]. Finally, the density dependence of
the symmetry energy, which has important implications from
nuclear structure to astrophysics, is governed by the ω-ρ mixed
interaction (�v) [63,69]. RMF parameters for the two models
employed in this work—FSUGold (or “FSU” for short) [61]
and NL3 [39]—are given in Table I.

In the relativistic mean field limit, the meson fields
satisfy (classical) nonlinear Klein-Gordon equations—with
the relevant baryon densities acting as source terms. In turn,
these meson fields provide the (scalar and vector) mean field
potentials for the nucleons. Solution of the Dirac equation
provide single-particle energies and wave functions, which
are then used to construct the appropriate one-body densities
that act as sources for the meson fields. This procedure is then
repeated until self-consistency is achieved. In particular, the
outcome from such a self-consistent procedure are a variety of
ground-state properties, such as the spectrum of Dirac orbitals
and density profiles. For a detailed description of the formalism
and implementation of the RMF approach we refer the reader
to Ref. [70]. We note, however, that the only inputs required
for the implementation of the exact pairing approach are the
single-particle energies of the valence orbitals.

B. Exact solution of the pairing problem

The RMF theory has been enormously successful in
computing ground-state properties and collective excitations
of even-even nuclei throughout the nuclear chart [39,40]. In
addition, pairing correlations for the description of open shell
nuclei are now routinely incorporated into the relativistic
formalism via either a BCS or HFB approximation [see
Ref. 19, and references contained therein]. However, it is
the main purpose of this work to explore an alternative
approach in which the pairing problem is solved exactly [34].
In particular—and in stark contrast to the BCS and HFB

TABLE I. Parameter sets for the two accurately calibrated relativistic mean field models used in the text: FSUGold [61] and NL3 [39]. The
parameter κ and the meson masses ms, mv, and mρ are all given in MeV. The nucleon mass has been fixed at M = 939 MeV in both models.

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ �v

FSU 491.500 782.500 763.000 112.1996 204.5469 138.4701 1.4203 +0.023762 0.06 0.030
NL3 508.194 782.501 763.000 104.3871 165.5854 79.6000 3.8599 −0.015905 0.00 0.000
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approximations—particle number is exactly conserved in this
formulation.

The general pairing Hamiltonian employed in this
manuscript is given by the following expression:

H =
∑
jm

εja
†
jmajm − 1

4

∑
jj ′

Gjj ′
∑
mm′

a
†
jmã

†
jmãj ′m′aj ′m′ , (2)

where εj is a set of RMF single-particle energies, and Gjj ′ are
pairing energies (for j = j ′) and pair-transfer matrix elements
(for j �=j ′). Note that in order to avoid double counting, the
monopole contribution to the energy will need to be removed,
as will be shown below. Nucleon creation and annihilation
operators into a single-particle orbit labeled by quantum
numbers j and m are described by a

†
jm and ajm, respectively.

Finally, ãjm is a time-reversed operator defined as

ãjm = (−1)j−maj−m. (3)

The pairing problem with the above Hamiltonian can be
solved exactly by introducing quasispin operators for each
individual single-particle orbital [71,72]. In particular, the
pairing Hamiltonian may be rewritten in terms of the quasispin
operators as

H =
∑

j

εj�j + 2
∑

j

εjL
z
j −

∑
jj ′

Gjj ′L+
j L−

j ′ , (4)

where �j = (2j + 1)/2 represents the pair degeneracy of the
j orbital and the three quasispin operators associated with such
an orbital are defined as follows:

L−
j = 1

2

∑
m

ãjmajm

= 1

2

√
2j + 1

∑
m

〈jm,j, − m|00〉aj−majm, (5a)

L+
j = 1

2

∑
m

a
†
jmã

†
jm

= 1

2

√
2j + 1

∑
m

〈jm,j, − m|00〉a†
jma

†
j−m, (5b)

Lz
j = 1

2

∑
m

(
a
†
jmajm − 1

2

)
= 1

2
(Nj − �j ). (5c)

From the above definition it is readily apparent that the
operator L+

j (L−
j ) creates (destroys) a nucleon pair of total

angular momentum J = 0. Moreover, as the name indicates,
the quasispin operators satisfy an SU(2) algebra with canonical
commutation relations. That is,

[L+
j ,L−

j ′ ] = 2δjj ′Lz
j and

[
Lz

j ,L
±
j ′
] = ±δjj ′L±

j . (6)

An enormous advantage of introducing the concept of qua-
sispin is that one can bring to bear the full power of the angular-
momentum algebra into the problem [32,33]. Moreover, one
can map the quasispin basis into the more intuitive “seniority”
basis that is determined by the seniority quantum number sj

and the partial occupancy Nj of each orbital. Note that the
seniority sj of each level j represents the number of unpaired
particles in such orbital. Given that the pairing Hamiltonian can

only transfer pairs of particles, the seniority quantum number
of each level is conserved. By the same token, the partial
occupancy Nj of each orbital is not conserved. However, in
contrast to the BCS and HFB formalism, the total number
of particles is exactly conserved in this approach. This is
one of the major advantages of the EP approach, as the
exact conservation of the total number of particles avoids
any reliance on complicated projection prescriptions. Finally,
as the mapping between the seniority and quasispin bases is
straightforward [30,72], one can evaluate matrix element of the
Hamiltonian in the seniority basis by first transforming into the
quasispin basis and then using the well known properties of
the raising and lowering operators [34]. An overview of the
exact-pairing approach and its applications may be found in
Ref. [73]. In addition, a simple illustration of the EP method
is given in the Appendix.

C. Relativistic mean field plus exact pairing formalism

Having briefly outlined the RMF theory and the EP method,
we now use 116Sn nucleus to illustrate the implementation
of the combined RMF + EP approach. Since the tin isotopes
have a closed proton shell, we regard the 100Sn nucleus as an
inert core and then limit the treatment to neutron-neutron (nn)
pairing in the valence shell. In the particular case of 116Sn,
there are 16 valence neutrons residing in a shell consisting
of 5 closely spaced orbitals (1g7/2, 2d5/2, 2d3/2, 3s1/2, and
1h11/2) that can accommodate up to a maximum of 32 neutrons.
For an RMF calculation without pairing correlations, these
16 neutrons fill up the 1g7/2, 2d5/2, and (half of the) 2d3/2

orbitals; the other two orbitals remain completely empty. Such
a prescription seems rather unnatural given that the energy
difference between filled and empty orbitals is comparable
to the strength of the pairing interaction. In order to remedy
this situation, we invoke pairing correlations to redistribute
the valence particles among the 5 orbitals. To do so, we
solve the pairing problem exactly using the energy spectrum
(εj ) generated by the RMF model as input to the pairing
Hamiltonian. The Hilbert space for the EP problem is obtained
by computing all possible ways to distribute the 8 neutron
pairs among these 5 orbitals. This results in 110 different
configurations which serve as the basis for the pairing Hamil-
tonian. We note that even though 116Sn resides in the middle
of the shell, the computational demands required to solve
the EP problem exactly—namely, diagonalizing a 110×110
matrix—are very modest. Given that the pairing strengths in
the G-matrix approach of Ref. [74] have been constrained by
experiment, the only inputs required to compute all matrix
elements of the pairing Hamiltonian are the single-particle
energies predicted by the RMF model [34]. Diagonalizing the
pairing Hamiltonian mixes all 110 configurations and results
in a correlated lowest-energy state that is expressed as a linear
combination of all these configurations. In particular, this
leads to the fractional occupancy 〈Nj 〉 of each orbital in the
valence shell; this represents one of the hallmarks of pairing
correlations. However, in contrast to other approaches to the
pairing problem, in the EP formalism the total number of
particles is exactly conserved: N ≡∑

j 〈Nj 〉. Having obtained
these new fractional occupancies, the RMF problem is solved
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again, but now with updated baryon densities. These baryon
densities generate new meson fields, new mean field potentials,
and ultimately a new single-particle spectrum. The updated
single-particle spectrum εj now serves as the new input to
the EP problem which in turn generates a new set of partial
occupancies. This iterative procedure is repeated until all
fractional occupancies 〈Nj 〉 and single-particle energies εj

have converged. We note that the RMF + EP approach is
self-consistent and particle number is conserved at every step
in the iterative procedure.

Once the calculation has converged, one must then compute
the pairing correlation energy. The correlation energy is
obtained by subtracting from the ground-state energy of the
pairing Hamiltonian E0 the “naive” single-particle contri-
bution. In this way the correlation energy accounts for the
extra binding energy gained due to pairing. However, given
that the diagonal pairing strengths Gjj —corresponding to the
monopole part of EP problem—have already been included
in the RMF calculation, one must also remove the monopole
energy to avoid double counting. This yields the following
form for the correlation energy [34]:

Ecorr = E0 −
∑

j

εj 〈Nj 〉 +
∑

j

Gjj

2�j − 1

〈Nj 〉(〈Nj 〉 − 1)

2
.

(7)
Ultimately, the correlation energy is added to the correspond-
ing RMF prediction and this is the nuclear binding energy that
will be reported in Sec. III. Given that our calculations will
focus on the tin isotopes, we adopt pairing strengths from the
G-matrix calculation of Holt et al. [74]. Note that the values
of relevance to neutron-neutron pairing have been listed in
Table I of Ref. [73] and are also displayed for completeness
in Table II. It has been shown that shell-model calculations
with these pairing strengths yield an accurate spectroscopy
for the tin isotopes in the A = 120–130 region; specifically,
properties related to pairing correlations, such as the odd-even
mass difference, the position of the first 2+ state [2], as well
as pairing vibrational 0+ states [73] are all well reproduced.
In general, the matrix elements of the pairing Hamiltonian
are basis dependent and should be made consistent with the
adopted mean field basis. Moreover, renormalization of the
matrix elements is often required to account for the limitations
of the chosen configuration space [2,44]. Nevertheless, for the
results presented in this work such renormalization effects are
small.

TABLE II. Pairing strengths Gjj ′ = Gj ′j (in MeV) for the model
space of the tin isotopes (A = 100 to A = 132) [73] as determined
from the G-matrix calculation of Holt et al. [74].

Orbital 1g7/2 2d5/2 2d3/2 3s1/2 1h11/2

1g7/2 0.2463 0.1649 0.1833 0.1460 0.2338
2d5/2 0.2354 0.3697 0.1995 0.2250
2d3/2 0.2032 0.2485 0.1761
3s1/2 0.7244 0.1741
1h11/2 0.1767

D. Constrained relativistic mean field theory

One of the central goals of the present paper is to
investigate the effect of pairing correlations on the GMR
energies of the tin isotopes. To do so we implement the newly
developed constrained-RMF (CRMF) approach introduced in
Ref. [60]. Although the constrained approach is unable to
provide the full distribution of monopole strength, it is both
accurate and efficient in estimating GMR energies. Indeed, the
CRMF formalism that builds on the time-tested nonrelativistic
formulation has been shown to provide an extremely favorable
comparison against the predictions of a full relativistic RPA
approach [60].

The constrained GMR energy is defined in terms of two
moments of the distribution of strength:

Econ =
√

m1

m−1
, (8)

where moments of the isoscalar distribution of monopole (E0)
strength R(ω; E0) are given by

mn(E0) ≡
∫ ∞

0
ωnR(ω; E0) dω. (9)

Note that we distinguish here the constrained energy from the
corresponding centroid energy that is customarily defined as
Ecen = m1/m0. In particular, assuming a simple Lorentzian
distribution of strength one obtains

Ecen(RPA) = ω0 and Econ(RPA) =
√

ω2
0 + �2/4, (10)

where ω0 is the resonance energy and � the full width at half
maximum.

The great virtue of the constrained approach is that both
of the moments involved in Econ may be directly computed
from ground-state observables. In particular, using Thouless’s
theorem one may compute the m1 moment (also known as the
energy weighted sum) by evaluating a suitably defined double
commutator [45]. This procedure yields

m1(E0) ≡
∫ ∞

0
ωR(ω; E0) dω = 2�

2

M
A〈r2〉

= 2�
2

M

∫
r2ρ(r) d3r, (11)

where M is the nucleon mass and ρ(r) the ground-state baryon
density. Similarly, by invoking the “dielectric theorem” the
m−1 moment may be written as follows [15]:

m−1(E0) ≡
∫ ∞

0
ω−1R(ω; E0) dω

= −1

2

[
d

dη

∫
r2ρ(r; η) d3r

]
η=0

. (12)

Here ρ(r; η) is a slightly perturbed ground-state density
obtained from solving the RMF equations by adding a
constrained one-body term Vcon(r) = ηr2 to the repulsive
vector interaction [60]. Such a constrained term “squeezes”
the nucleus, making it more compact, thereby mimicking
the characteristic radial density oscillation of the GMR.
Clearly, the constrained approach is significantly faster than
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FIG. 1. (Color online) Odd-even staggering of the one-neutron separation energy (left panel) and binding energy per nucleon (right panel)
along the isotopic chain in tin as predicted by the FSUGold [61] and NL3 [39] models—supplemented with an exact treatment of pairing
correlations. Experimental results are from Ref. [76].

the RPA (or quasiparticle RPA) as the required moments of
the distribution are calculated directly from suitably modified
ground-state properties, rather than from the full distribution of
monopole strength. To study the impact of pairing correlations
on the GMR energies of the tin isotopes, ground-state densities
will be computed in the combined RMF + EP formalism, as
we describe in the above section.

III. RESULTS

To demonstrate the applicability and utility of the combined
RMF + EP approach we now display calculations for the
isotopic chain in tin, from A = 100 to A = 132. As mentioned
earlier, we regard the doubly magic 100Sn nucleus as an inert
core and then concentrate on the impact of nn pairing on the
N �32 neutrons in the valence shell. The RMF models listed
in Table I are fairly successful in reproducing ground-state
properties (such as binding energies and charge radii) of a
variety of nuclei throughout the nuclear chart. However, their
predictions for some bulk properties of nuclear matter and
neutron-star observables differ considerably. For example, the
incompressibility coefficient of symmetric nuclear matter is
predicted by FSUGold to be K0 = 230 MeV whereas NL3
suggests K0 = 271 MeV. Moreover, the slope of the symmetry
energy L—which controls the softening of the GMR energy
along an isotopic chain [53,54,75]—is also significantly
different: L = 61 MeV for FSUGold and L = 118 MeV for
NL3. Thus, these two models—one soft and one stiff—provide
an adequate representative set for the illustration of the method.

On the left-hand panel of Fig. 1 we show one of the classical
signatures of pairing correlations: the odd-even staggering of
the neutron separation energy along the isotopic chain in tin;
experimental data are from the compilation given in Ref. [76].
Note that for odd-A nuclei the unpaired neutron is placed
in the single-particle orbital that reproduces the experimental
angular momentum and parity of the ground state [76]. In the
case of even-A nuclei all neutrons are paired. This odd-even

difference gives rise to the characteristic staggering observed
in the one-neutron separation energy. That is, in the case of
an even-A nucleus, one must provide the energy necessary
to break a pair before the neutron can be excited into the
continuum. In contrast, for odd-A nuclei there is no additional
cost associated with breaking a pair. Figure 1 suggests that
the energy required to break a pair is about 3 MeV, which
is the typical strength associated with the residual interaction.
Moreover, it can be seen that for the stable A = 112–124 nuclei
the results are in good agreement with experiment. However,
deviations of about 1MeV seem to emerge at the two ends of the
isotopic chain. We would like to point out that the ground-state
spin of some of those unstable odd-A nuclei is uncertain. In
addition, if the neutron 1g9/2 orbital (which so far has been
assumed inert) is incorporated into the pairing calculation, the
discrepancies in the light isotopes are expected to disappear.
Similarly, we expect that the predictions for the heavier
isotopes will improve as one includes higher neutron orbitals.
On the right-hand panel of Fig. 1 we display the binding
energy per nucleon along the isotopic chain. Many of the same
features already evident in the one-neutron separation energy
are also manifest in this observable. However, in this case
we also display the predictions from the RMF models without
pairing correlations. As expected—and in sharp contrast to the
experimental data—the predicted A dependence is smooth and
devoid of the “zigzag” structure. Naturally, pairing correlations
tend to increase the binding energy relative to the pure RMF
predictions. However, in some special situations—such as that
of an unpaired particle or hole—this may not be the case due
to the placement of the unpaired nucleon; see for example
the cases of 101Sn, 103Sn, and 131Sn in Fig. 1(b). Indeed,
for the RMF + EP predictions, the placement of the unpaired
nucleon is set by the experimentally known spin and parity
of the ground state. In contrast, in the RMF approach all
single-particle levels are filled sequentially in accordance to
the Pauli exclusion principle; this fact may occasionally give
rise to unconventional behavior.

014321-6



RELATIVISTIC MEAN FIELD PLUS EXACT PAIRING . . . PHYSICAL REVIEW C 89, 014321 (2014)

TABLE III. Single-particle occupancies 〈Nj 〉 of the orbitals in the valence shell for the stable even-even Sn isotopes. Results are presented
for FSUGold [61] and (separated by a “/”) for NL3 [39].

112Sn 114Sn 116Sn 118Sn 120Sn 122Sn 124Sn

1g7/2 7.80/7.58 7.89/7.80 7.88/7.80 7.89/7.81 7.92/7.84 7.91/7.85 7.92/7.87
2d5/2 3.64/3.72 5.46/5.42 5.54/5.49 5.66/5.58 5.79/5.68 5.79/5.72 5.81/5.77
2d3/2 0.28/0.32 0.33/0.36 1.24/1.30 2.31/2.24 3.42/3.01 3.52/3.30 3.62/3.50
3s1/2 0.08/0.09 0.11/0.12 0.86/0.72 1.38/1.15 1.77/1.52 1.81/1.66 1.84/1.76
1h11/2 0.20/0.29 0.21/0.30 0.47/0.70 0.76/1.21 1.11/1.96 2.97/3.46 4.80/5.11

Another critical signature of pairing correlations is the
fractional occupancy of the single-particle orbits. Thus, the
predicted fractional occupancies 〈Nj 〉 for the five neutron
orbitals forming the valence space are displayed in Table III
for all stable, even-A tin isotopes. Predictions are presented
for FSUGold and (separated by a “/”) for NL3. As shown
in the table, pairing correlations can modify the occupancies
by as much as one neutron relative to the naive mean field
expectations. In particular, such changes may have a significant
impact on the novel “bubble” structure and concomitant
quenching of the spin-orbit splitting of low-j orbitals [77–80].
Indeed, in Fig. 2 we exhibit the ground-state neutron density
of 118Sn as predicted by both RMF models with and without
the inclusion of pairing correlations. In the extreme mean
field limit, 118Sn consists of filled 1g7/2, 2d5/2, and 2d3/2

orbitals. In particular, the absence of 3s1/2 neutrons yields
the bubble structure (manifested as a central depression) in
the neutron density. In turn, such a central depression leads
to a modification of the spin-orbit potential that results in a
quenching of the spin-orbit splitting between the 2p3/2 and
2p1/2 proton orbitals: 0.85 MeV for FSUGold and 0.77 MeV
for NL3. However, the 3s1/2 orbital lies within ∼0.5 MeV
of the 2d3/2 orbital, so the mixing induced by the pairing

0 2 4 6 8
r(fm)
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0.04

0.06

0.08

0.1

n(
fm

-3
)

FSU(4.71fm)
NL3(4.76fm)
FSU+EP(4.71fm)
NL3+EP(4.76fm)

118Sn

FIG. 2. (Color online) Neutron density of 118Sn as predicted by
the FSUGold [61] and NL3 [39] models. Predictions are displayed
with (solid lines) and without (dashed lines) pairing correlations.
Quantities enclosed in parenthesis represent the model predictions
for the neutron root-mean-square radius.

interaction is very efficient (see Table III). Indeed, with
more than one neutron transferred to the 3s1/2 orbital, the
bubble structure of 118Sn disappears entirely. Moreover, the
2p3/2-2p1/2 spin-orbit splitting increases by more than 50%
to 1.33 MeV for both FSUGold and NL3. Note, however,
that the occupancy of the 3s1/2 orbital in both 112Sn and 114Sn
remains small so their bubble structure is preserved—although
not as pronounced as in the case of 118Sn.

We finish this section by addressing the role of
pairing correlations in explaining the softness of the tin
isotopes [50,51]. The study of pairing correlation on the
GMR energies of the tin isotopes dates back to the work
of Civitarese et al. [81] in the early 1990s. By employing a
quasiparticle-RPA formalism, the authors reported a small
shift of about 100 to 150 keV in the monopole energies due to
pairing correlations. Recently, the role of pairing correlations
has been revisited as a possible mechanism to soften the GMR
energies of these superfluid nuclei [55–59]. Thus, it seems
natural to examine this critical issue within the context of the
RMF + EP approach introduced here.

To investigate the effect of pairing correlations on
the monopole energies we invoke the newly developed
constrained-RMF approach introduced in Ref. [60]. As already
alluded in Sec. II D, the convenience of the constrained
approach stems from the accurate and efficient estimation of
GMR energies without the need to generate the full distribution
of monopole strength. Indeed, as indicated in Eqs. (11)
and (12), GMR energies may be computed directly from the
mean-square radius of the ground-state distribution. Recently,
excellent results were obtained as the CRMF approach was
compared against the predictions from a relativistic RPA
calculation [60]. To examine the impact of pairing correlations
on the GMR energies, the ground-state densities that serve as
the input for the constrained approach will now be calculated
using the RMF + EP formalism. A first glance at Fig. 2 may
suggest that pairing correlations could have a dramatic effect
on the GMR energies. However, upon closer inspection one
realizes that it is the mean-square radius of the ground-state
density that is of relevance to the GMR energies. Hence, the
r4 weighting of the density, namely,

〈r2〉 = 4π

A

∫
r4ρ(r) dr, (13)

washes out the dramatic effect observed in the central density.
Indeed, we find no modification to the mean-square radius
from pairing correlations; the root-mean-square radius of the
neutron density of 118Sn is displayed in Fig. 2. We note that
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FIG. 3. (Color online) Giant monopole energies in the even-
even Sn isotopes with and without pairing correlations compared
against the experimental results of Li et al. [50]. Predictions
from both FSUGold [61] and NL3 [39]—with and without pairing
correlations—overestimate the experimental data.

this behavior is not exclusive to 118Sn as no significant change
in the neutron radius of the tin isotopes was found in this work.

GMR energies for the whole isotopic chain in tin—from
A = 100 to A = 132—are displayed in Fig. 3 alongside the
experimental results for the stable even-A isotopes [50].
As the number of neutrons increases, the GMR energy
decreases monotonically. In this regard two points are worth
emphasizing: (a) the value of the centroid energy in 112Sn and
(b) the softening of the mode as a function of A. First, given that
the neutron excess in 112Sn is small, the value of its centroid
energy is mostly sensitive to the incompressibility coefficient
of symmetric nuclear matter. This is clearly reflected in the
model predictions; recall that K0 = 230 MeV for FSUGold
and K0 = 271 MeV for NL3. However, even the significantly
softer FSUGold model overestimates the centroid energy in
112Sn by about 0.3 MeV. Second, the experiment suggests a
very rapid softening that is not reproduced by either of the
models. Note that the falloff with A is largely controlled by
the slope of the symmetry energy L [54]. Thus, whereas the
falloff predicted by NL3 may indeed be slightly faster than
that of FSUGold, it is clearly nowhere as fast as required
by the experiment. Thus, although we have gone beyond a
mean field plus RPA description, Fig. 3 indicates that the
impact of pairing correlations on the GMR energies is fairly
small—especially in the case of FSUGold. Indeed, the largest
correction due to pairing is about 275 keV for NL3 and
about 125 keV for FSUGold. Given that in the constrained
approach the GMR energy is driven by the mean-square radius
of the density distribution, it hardly comes as a surprise that
pairing correlations play a minor role. Moreover, although both
RMF models have been accurately calibrated, NL3 predicts a
valence spectrum that is in general more compressed than
the one predicted by FSUGold. Thus, pairing correlations are
more quenched in FSUGold than in NL3. In addition, from
102Sn to 114Sn the valence neutrons reside in the 1g7/2 and

2d5/2 orbitals—which are relatively well separated from the
2d3/2, 3s1/2, and 1h11/2 orbitals. Thus, pairing correlations
play a minor role in populating the three higher orbitals
(see Table III). However, once the higher orbitals start to
be populated, pairing correlations become very efficient at
redistributing nn -pairs, especially among the quasidegenerate
2d3/2 and 3s1/2 orbitals. This is particularly true in the middle
of the shell, namely, from 116Sn to 120Sn. After that the
effect from pairing correlations weakens because transitions
to the partially occupied 1h11/2 orbital become Pauli blocked.
Note that contrary to the predictions of Ref. [56]—where
constrained HFB calculations using Skyrme functionals and a
zero-range surface pairing force were performed—we do not
observe a rapid stiffening of the mode (in the form of a promi-
nent peak) as one reaches the doubly-magic nucleus 132Sn.

IV. CONCLUSIONS

In this work we introduced a novel hybrid approach to
compute the properties of open shell nuclei. The method con-
sists of a relativistic mean field approximation supplemented
with an exact treatment of pairing correlations. One of the
major advantages of the exact treatment is that it conserves the
number of particles. This avoids any reliance on complicated
prescriptions that must be used to project out the correct
number of particles. Moreover, the EP approach works well
even for nuclei with typical single-particle-energy spacings
greater than the pairing strengths—a limit in which both
BCS and HFB tend to fail. Finally, the combined RMF + EP
approach is simple to implement. One starts by computing
the single-particle spectrum using a traditional mean field
approach. Once the valence shell is identified, then one
passes the relevant single-particle energies to the exact pairing
routine—which redistributes pairs among the valence orbitals.
The newly obtained fractional occupancies then generate a
new set of baryon densities that ultimately yield an updated
single-particle spectrum. This updated spectrum now serves as
input to the exact pairing routine and the procedure is repeated
until self-consistency is achieved.

The utility and applicability of the RMF + EP approach
was demonstrated using the long chain of tin isotopes as an
example. Predictions for both ground-state properties and
GMR energies were compared against experimental results.
In the case of ground-state properties, results were presented
for the characteristic odd-even staggering of the one-neutron
separation energy and binding energies across the full isotopic
chain: from 100Sn to 132Sn. We find that our predictions
compare very favorably against the experimental results. In
addition, we presented results for the single-particle occu-
pancies of the relevant neutron orbitals and investigated their
impact on the alleged nuclear bubble structure. In particular,
we concluded that the bubble structure observed in the “mean
field” neutron density of 118Sn is completely eliminated with
the inclusion of pairing correlations. However, we find that
the bubble structure of both 112Sn and 114Sn, although not as
pronounced as in the case of 118Sn, is still maintained.

We also investigated the role of pairing correlations on the
possible softening of the GMR energies in the tin isotopes. To
do so, we adopted the recently developed constrained-RMF
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framework that has been shown to accurately reproduce
GMR energies obtained with the more sophisticated RPA
approach. The great merit of the constrained approach is that
GMR energies can be accurately and efficiently computed
from the mean-square radius of the ground-state density
distribution. Thus, in this work we investigated the role of
pairing correlations by supplying the CRMF approach with
densities computed in the RMF + EP framework. As has been
extensively documented, models that reproduce the GMR
energies in both 90Zr and 208Pb overestimate the corresponding
monopole energies along the isotopic chain in tin. Given that
pairing correlations have been proposed as a possible solution
to the softening of these superfluid nuclei, GMR energies along
the isotopic chain in tin—from 100Sn to 132Sn—were computed
using the combined RMF + EP formalism. We concluded, as
many have done before us, that pairing correlations provide (if
at all) a very mild softening of the mode. Within the constrained
approach the explanation for this behavior is rather simple.
Whereas pairing correlations modify the ground-state density
distribution, most of these modifications are limited to the
nuclear interior. Given that the constrained energy is driven by
the mean-square radius of the density distribution—which is
largely insensitive to the nuclear interior—pairing correlations
play a minor role in the softening of the mode. Thus, we
conclude that pairing correlations cannot be the explanation
behind the question, “Why is tin so soft?”

In summary, we have introduced a novel RMF + EP
approach to compute ground-state properties and collective
excitations of open shell nuclei. The approach is elegant
and straightforward, and its implementation fast and reliable.
Moreover, particle-number conservation is strictly maintained,
so the approach is not hindered by complicated projection pre-
scriptions required in other formulations. We are confident that
the combined RMF + EP approach introduced here provides
a simple and powerful framework for the exploration of the
limits of nuclear existence, such as in the study of superheavy
nuclei and of nuclei near the drip lines.

ACKNOWLEDGMENTS

This work was supported in part by the United States
Department of Energy under Grants No. DE-FG05-
92ER40750 and No. DE-SC0009883.

APPENDIX: TOY MODEL OF THE EXACT PAIRING
ALGORITHM

To illustrate how the exact pairing algorithm is implemented
we present here a toy model consisting of four neutrons
residing in two single-particle orbitals, such as 2d3/2 (label
1) and 3s1/2 (label 2). This example may reflect the simplified
situation in which 114Sn may be assumed as an inert core
and one is interested in studying the structure of 118Sn—
particularly the occupancy of the quasi-degenerate 2d3/2 and
3s1/2 orbitals. Assuming that all four neutrons are paired, i.e.,
both orbitals have seniority zero, there are only two allowed
configurations:

|a〉 = |N1 = 4,N2 = 0〉 and |b〉 = |N1 = 2,N2 = 2〉.
(A1)

Matrix elements of the pairing Hamiltonian in the seniority
basis are now obtained from the general expressions derived
in Ref. [34]. For example, the diagonal matrix elements of the
pairing Hamiltonian are given by

〈N1,N2|H |N1,N2〉 =
2∑

j=1

[
εjNj − Gjj

4
Nj (2�j − Nj + 2)

]
,

(A2)
where εj are single-particle energies, Gjj are (diagonal)
pairing strengths, and �j is the pair degeneracy of orbital
j ; �1 = 2 and �2 = 1. Similarly, the off-diagonal matrix
elements are given by

〈N1 + 2,N2 − 2|H |N1,N2〉
= −G12

4

√
N2(2�2 − N2 + 2)(2�1 − N1)(N1+2), (A3)

where now G12 is the pair-transfer strength. By assuming a
constant pairing strength Gjj ′ ≡g (with g>0) the 2×2 pairing
Hamiltonian takes the following simple form:

H =
(

4ε1 − 2g −√
2g

−√
2g 2ε1 + 2ε2 − 3g

)

= E1 +
( −ε −√

2g

−√
2g ε

)
, (A4)

where we have introduced the following definitions (with �≡
ε2 − ε1):

E ≡ 4ε1 + � − 5
2g and ε ≡ � − 1

2g. (A5)

Diagonalizing the pairing Hamiltonian yields the following
value for the ground-state energy and for its corresponding
eigenstate:

E0 = E − ξ ≡ E −
√

ε2 + 2g2, (A6a)

|E0〉 =
√

ξ + ε

2ξ
|N1 = 4,N2 = 0〉

+
√

ξ − ε

2ξ
|N1 = 2,N2 = 2〉. (A6b)

In a mean field calculation without pairing correlations, the
four neutrons would occupy the lowest 2d3/2 orbital with the
lowest energy being equal to E0 = 4ε1. Pairing correlations
reduce the ground-state energy at the expense of redistributing

TABLE IV. Ground-state energy of the pairing Hamiltonian and
corresponding single-particle occupancies for different values of
�/g.

�/g (E0 − 4ε1)/g 〈N1〉 〈N2〉
1/2 −3.414 3.000 1.000
1 −3.000 3.333 0.667
2 −2.562 3.728 0.272
4 −2.275 3.927 0.073
8 −2.132 3.983 0.017
16 −2.064 3.996 0.004
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the four neutrons among the two valence orbitals. In this way
the average occupancy of the two orbitals becomes

〈N1〉 = 3 + ε

ξ
and 〈N2〉 = 1 − ε

ξ
. (A7)

Note that the fractional occupancies of the single-particle
orbits depend exclusively on the ratio of �/g. In Table IV

we list (properly scaled) ground-state energies as well as
fractional occupancies for the two valence orbitals. At values of
�/g
1 the ground state is well correlated and the occupancy
of the lowest orbital gets significantly depleted. In contrast, for
�/g�1, the single-particle gap is significantly larger than the
pairing strength and the occupancy of the lowest state returns
to its mean field value of 4.
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