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Magnetic moments of low-lying states in tin isotopes within the nucleon-pair approximation
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The magnetic moments of the first excited 2+ state in even-even nuclei 102–130Sn and the low-lying yrast states
in odd-mass nuclei 101–109,123–131Sn are calculated within the framework of the nucleon-pair approximation (NPA)
of the shell model, by using the standard multipole-multipole interaction. Our calculations agree reasonably
well with available experimental data. The g(2+

1 ) values, as well as the contributions from their spin and orbital
angular momentum components, are evaluated in terms of the small NPA subspace spanned by S and D nucleon
pairs. The magnetic moment is suggested to be a sensitive probe of the nuclear wave function in this region.
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I. INTRODUCTION

Magnetic moments of low-lying states provide relevant
information on the detailed single-particle configurations
contributing to the nuclear wave function, particularly for
semimagic nuclei around closed shells [1–9]. The tin isotopes
provide us with one of the longest chains of semimagic nuclei
currently accessible to nuclear structure studies [10–13]. In
recent years, the magnetic moments of the first excited 2+
state [denoted by μ(2+

1 ), or alternatively its g factor denoted
by g(2+

1 )] of tin isotopes with even neutron numbers have been
of experimental interest [2–6]. Among these experiments, the
g(2+

1 ) values of the stable isotopes 112–124Sn were studied by
using transient field techniques [2–4]. Approaching towards
the doubly magic 100Sn and 132Sn, the nuclei are radioac-
tive and the corresponding experimental magnetic moments
have been not available until the 2012–2013 experiments of
126,128Sn in Refs. [5,6]. The general trend of measured g(2+

1 )
values in 112–126Sn runs from positive values for the lighter
isotopes to negative values for the heavier ones. However,
there are noticeable differences in magnitudes for a few g(2+

1 )
values obtained in different experiments.

A number of theoretical studies have been carried out to
analyze g(2+

1 ) values in tin isotopes [3–6,14–18]. The quasi-
particle random phase approximation (QRPA) calculations
[15] on 114–132Sn predicted g(2+

1 ) values of ∼−0.06μN for
114–124Sn and ∼+0.18μN for 128Sn. Relativistic quasiparticle
random phase approximation (RQRPA) calculations [16] on
100–132Sn predicted a gradual decrease in g(2+

1 ) with the
increase of mass number, i.e., positive values for 102–126Sn
(from ∼+0.4μN at A = 102 to ∼+0.03μN at A = 126) and
negative values for 128,130Sn (∼−0.16μN at A = 130). As
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pointed out in Refs. [3,6], the difference between the g(2+
1 )

predictions for these two models stems from the fact that
the RQRPA calculation has a relatively large proton orbital
contribution to the total wave function. Shell-model (SM)
calculations have also been carried out for tin isotopes. Here
we mention the studies of 116–124Sn in Ref. [3], 112–124Sn in
Ref. [4], 124,126Sn in Ref. [5], and 124–130Sn in Refs. [6,17].
The SM calculation of Ref. [4] on 112–124Sn, where 100Sn
was the inert core, described well the overall experimental
trend of g(2+

1 ) values from positive for the lighter isotopes
to negative for the heavier isotopes. The SM calculations
of Refs. [5,6,17] predicted practically constant and negative
g(2+

1 ) values (∼−0.12μN ) for 124–130Sn.
The purpose of this paper is to apply the nucleon-pair

approximation (NPA) [19] of the shell model to evaluate the
magnetic moments of low-lying states for both even-even
and odd-mass tin isotopes. The validity of this framework
has been studied in many cases, e.g., single-j and many-j
shells, semimagic and open-shell nuclei, phenomenological
and effective interactions, etc., see Ref. [20] for a recent review.
In recent years, the NPA has been successfully applied to study
the low-lying states of even-even, odd-A, and odd-odd nuclei
with A ∼ 80 [21], 100 [22], 130 [23], and 210 [24]. In this
model, the dimension of the collective nucleon-pair subspace
is small, thus providing a simple and illuminating picture of
the structure of the nuclei under investigation. As we will show
below, the magnetic moment is very sensitive to the details of
the wave function, as it happens quite often that only small
components contribute to the corresponding matrix elements.
Therefore magnetic moments provide a very powerful tool to
test different models. In this work we will evaluate magnetic
moments in the tin region and explore the role played by the
leading NPA configurations.

The paper is organized as follows. In Sec. II a brief
introduction to the NPA, including the form of Hamiltonian,
its parameters, the construction of nucleon-pair subspace, and
the evaluation of transition operators, is given. In Sec. III
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we present our calculations on the magnetic moments of the
first excited 2+ state in even-even nuclei 102–130Sn, and the
low-lying yrast states in odd-mass nuclei 101–109,123–131Sn. A
summary and conclusion are given in Sec. IV.

II. THEORETICAL FRAMEWORK

For medium-heavy nuclei the dimension of the shell model
configuration space is prohibitively large, and one has to
resort to various truncation schemes, e.g., the interacting
boson model [25], the broken pair approximation [26], the
fermion dynamical symmetry model [27], as well as the NPA
[19]. In the NPA one diagonalizes the SM Hamiltonian in a
truncated nucleon-pair subspace. If all possible nucleon pairs
are considered, the results provided by the NPA coincide with
those of the full shell model calculation [28].

In the NPA a collective pair with angular momentum r and
projection M is defined as [19]

A
(r)†
M =

∑
jj ′

y(jj ′r)(C†
j × C

†
j ′ )

(r)
M ,

where C
†
j is the single-particle creation operator in the j

orbit. r = 0,2 corresponds to S and D pairs, respectively. The
numbers y(jj ′r) are the so-called structure coefficients of the
nucleon pair with spin r .

The NPA Hamiltonian is chosen to have the form

H =
∑

j

εjC
†
jCj + G0P (0)† · P (0)

+G2P (2)† · P (2) + κQ · Q,

where εj is the single-particle energy, G0, G2, and κ are the
two-body interaction strengths corresponding to monopole,
quadrupole pairing, and quadrupole-quadrupole interactions
between valence neutrons. The pairing and quadrupole opera-
tors are defined as follows:

P (0)† =
∑

j

√
2j + 1

2
(C†

j × C
†
j )(0)

0 ,

P (2)† =
∑
jj ′

q(jj ′)(C†
j × C

†
j ′)

(2)
M ,

Q =
∑
jj ′

q(jj ′)(C†
j × C̃j ′)(2)

M ,

where q(jj ′) = (−)j−1/2√
20π

ĵ ĵ ′C20
j1/2,j ′−1/2〈nl|r2|nl′〉 and

C20
j1/2,j ′−1/2 is the Clebsch-Gordan coefficient.

The single-particle energies and two-body interaction
parameters corresponding to the neutron excitations in our
calculations are shown in Table I. The nuclei with mass number
A < 116 are treated in terms of valence neutron particles,
and those with A ≥ 116 in terms of valence neutron holes, as
in Ref. [22]. In Table I the neutron single-particle energies
g7/2 and d5/2 are taken from the experimental excitation
energies of 101Sn [29]. There are no experimental data for
the remaining orbitals, and we take those single-particle
energies from a previous shell model calculation [30]. The
neutron hole single-particle energies are also extracted from
the corresponding experimental excitation energies of 131Sn

TABLE I. Single-particle (s.p.) energies εj (in MeV) and two-
body interaction parameters G0, G2, κ . The unit of G0 is MeV; the
units of G2 and κ are MeV/r4

0 , r2
0 = 1.012A1/3 fm2. All two-body

interaction parameters are negative, and we remove the minus sign
here for short.

Nucleus εs1/2 εd3/2 εd5/2 εg7/2 εh11/2 G0 G2 κ

A < 116 1.550 1.660 0.172 0.000 3.550 0.180 0.018 0.039
A ≥ 116 0.332 0.000 1.655 2.434 0.065 0.131 0.010 0.012

[31]. The two strengths G0 of the monopole interactions in
Table I are the same as in previous calculations in these nuclear
regions [22]. The remaining four parameters corresponding
to the quadrupole interactions, i.e., the values of G2 and κ ,
are obtained by adjusting the experimental excited energies
and electromagnetic properties of low-lying states. For the
odd-mass nuclei, we assume the same parameters as their
even-even core.

The magnetic dipole moment is given by

μ(β,J ) = CJJ
JJ,10〈β,J ||glνLν + gsνSν ||β,J 〉,

where |β,J 〉 is the eigenfunction carrying angular momentum
J and the symbol β represents all quantum numbers other
than J . glν and gsν are, respectively, the effective orbital and
spin gyromagnetic ratios. The value of gsν is taken to be
−3.826 × 0.7μN , where the number 0.7 is the conventional
quenching factor. The effective orbital gyromagnetic ratio is
glν = 0.09μN for A < 116 and 0.015μN for A ≥ 116, which
are optimized by a χ2 fitting of experimental data. In the
present calculation we choose the experimental g factors of
112,114Sn in Ref. [4], 122Sn in Ref. [2], and 124,126,128Sn in
Ref. [6]. It is relevant to point out that gyromagnetic ratios we
use here for A ≥ 116 are similar to the ones adopted in Ref.
[32], where it is pointed out that these parameters take into
account core polarization as well as meson-exchange current
effects. The g factor is defined by μ/J .

The total orbital angular momentum operator Lν and total
spin Sν can be identified with collective dipole operators as
follows:

Lν = Q1
lν =

∑
jj ′

ql(jj
′1)(C†

j × C̃j ′)(1),

Sν = Q1
sν =

∑
jj ′

qs(jj
′1)(C†

j × C̃j ′)(1),

with

ql(jj
′1) = (−1)l+1/2+j ′

√
l(l + 1)

3
ĵ ĵ ′ l̂

{
j j ′ 1
l l 1/2

}
,

qs(jj
′1) = (−1)l+1/2+j 1√

2
ĵ ĵ ′

{
j j ′ 1

1/2 1/2 l

}
.

Here l = l′ because the Lν and Sν operators cannot change
the orbital angular momentum. Here we take the Rose
convention for the reduced matrix element 〈j ||glνLν +
gsνSν ||j ′〉. For our purpose it is important to mention that
〈j ||glνLν + gsνSν ||j ′〉 does not vanish only between the same
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single-particle sates (j = j ′) or spin-orbit partners (j = l ∓
1/2 → j ′ = l ± 1/2) [33]. Therefore within the model space
to be considered in this paper, the cases j = j ′ or j = d5/2,
j ′ = d3/2 (or vice versa) provide nonvanishing values to the
matrix element. This is the reason why the magnetic moment
is an excellent probe of the wave function. We will come back
to this in the next section.

Because we focus on the g(2+
1 ) values, our subspace is

constructed by S and D nucleon pairs of neutron particles
(or neutron holes) with respect to the doubly closed shell
nucleus 100Sn and 132Sn. As in Ref. [24], we obtain the structure
coefficients in even-even nuclei 102–114Sn and 118–130Sn based
on a variational procedure as follows. For S pairs, we
diagonalize the Hamiltonian H in the noncollective space
(S†

j )N |0〉, with j running over all single-particle levels. Our
structure coefficients are determined by using the χ2-fitting
procedure, such that the state (S†)N |0〉 has the maximum
overlap with the ground state. For D pairs, we diagonalize
the same H in the (S†)N−1D

†
j1,j2

|0〉 space, corresponding to
(j1j2)2+ , with j1, j2 running over all single-particle levels
(j1 ≤ j2), and S represents the collective S pair calculated
above. The structure coefficients of collective D pairs are
determined based on the energetically lowest eigenstate. Such
a variational procedure would require a prohibitively long
computing time in the case of 116Sn. Therefore we use in
this nucleus the very simple BCS approach to determine our
S pairs. This is reasonable since these pairs are just pairing
(monopole) excitations. The D pairs of 116Sn are obtained
by using the commutator D† = 1

2 [Q,S†] [26]. The structure

coefficients of odd-mass nuclei are taken to be the same as
those of their even-even core.

III. CALCULATIONS AND DISCUSSIONS

In this section we present the calculated magnetic dipole
moments, corresponding to the first 2+ states of even-even
nuclei 102–130Sn and a few low-lying states of odd-mass nuclei
101–109,123–131Sn.

Our calculated g(2+
1 ) values in even-even tin isotopes are

shown in Fig. 1. Experimental data are those reported by Hass
[2], East [3], Walker [4], Kumbartzki [5], and Allmond [6].
Our results are denoted by blue squares. Results of other
theoretical works (QRPA [15], RQRPA [16], SM 2011 [4],
and SM 2013 [6]) are also presented for comparison. It is seen
that our calculated results agree well with the corresponding
experimental values, except for 118Sn and 128Sn, but even here
the disagreement is not very remarkable. One has to point out
that the experimental errors are big and that in 112Sn different
experiments provide different g(2+

1 ) values. In this particular
case our calculation agrees better with the value reported in
Ref. [4], as seen in the figure.

The S and D pairs play a dominant role in the building
up of the 2+

1 states. In our case, we found that more than
90% of the contributions to the g(2+

1 ) values originate from
the |(S†)N−1D†〉 configuration. To understand the structure of
these states, we analyze the partial contribution of the 2+

1 con-
figurations to the g factor as follows. We diagonalize the same
H in the (S†)N−1D

†
j1,j2

|0〉 subspace, with j1, j2 running over all

FIG. 1. (Color online) The g(2+
1 ) values (in unit of μN ) of even-even tin isotopes. Experimental data include Hass 1980 [2], East 2008 [3],

Walker 2011 [4], Kumbartzki 2012 [5], and Allmond 2013 [6]. Our results are shown as squares in blue. Results of other theoretical works
(QRPA 2002, RQRPA 2007, SM 2011, and SM 2013) are taken from Refs. [15], [16], [4], and [6], respectively.
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FIG. 2. (Color online) All possible nonvanishing components g(j1j2,2+; j3j4,2+) [in Eq. (1)] corresponding to g(2+
1 ) values (in unit of

μN ) as a function of A in tin isotopes. The values of the nondiagonal amplitudes, i.e., with [(j1,j2) �= (j3,j4)], are given in blue. Notice that
in this case the different states are always in the combination (j1 = d3/2, j3 = d5/2) or (j2 = d3/2, j4 = d5/2). The diagonal amplitudes, i.e.,
[(j1,j2) = (j3,j4)], are also given.

single-particle orbits that couple to 2+. The eigenfunction of
the 2+

1 state is given by |2+
1 〉 = ∑

j1j2
Xj1j2 |(S†)N−1D

†
j1,j2

|0〉.
And the g(2+

1 ) value is expressed as

g(2+
1 ) = C22

22,10

2
〈2+

1 ||glνLν + gsνSν ||2+
1 〉

=
∑

j1j2,j3j4

〈0|(S†)N−1D
†
j1,j2

||M||(S†)N−1D
†
j3,j4

|0〉

=
∑

j1j2,j3j4

g(j1j2,2
+; j3j4,2

+), (1)

with

M = C22
22,10

2

[
Xj1j2 (glνLν + gsνSν)Xj3j4

]
.

According to the above discussion in relation to the
matrix element 〈j ||glνLν + gsνSν ||j ′〉, the component
g(j1j2,2+; j3j4,2+) vanishes unless j1 = j3, j2 = j4 or j1 =
d3/2, j3 = d5/2, j2 = j4, or j2 = d3/2, j4 = d5/2, j1 = j3. As a
result, only the 13 contributions to g(2+

1 ) shown in Fig. 2(a)
for A < 116 and (b) for A > 116 are nonvanishing.

One notices that the main contributions are provided in
large part from the most relevant single-particle valence
states: the shells g7/2, d5/2 for A < 116 and d3/2, h11/2 for
A > 116. Thus in light isotopes of Fig. 2(a), up to A = 108,
the largest contributions are from (g7/2g7/2)(g7/2g7/2) and
(d5/2d5/2)(d5/2d5/2), as expected according to the location of
the shells g7/2 and d5/2 in the spectrum of Table I. But it is not
straightforward that the contribution from (d5/2g7/2)(d5/2g7/2)
(green line with crosses) would be very small. What is also
unexpected is that the nondiagonal contributions (the blue lines
in the figure), all of which involve the high-lying shell d3/2 and

even the shell s1/2, should have such important influence. As
the number of neutrons increases, high-lying shells become
important. Thus for A ≥ 110 the contributions of the shells
d3/2 and s1/2 are gradually increasing. But also here it is to
be noted the unexpected large contribution corresponding to
(d3/2d5/2)(d5/2d5/2).

For A > 116 one expects that, according to the single-
particle energies of Table I, the most important shells would
be d3/2, h11/2, and s1/2 (in that order). And indeed one
sees in Fig. 2(b) that the largest contributions are from
(d3/2d3/2)(d3/2d3/2) and (h11/2h11/2)(h11/2h11/2).

To analyze farther the structure of g(2+
1 ) values we present

in Fig. 3 the partial sum of all diagonal and nondiagonal
contributions. One sees in this figure that the global trend of
g(2+

1 ) values is determined by the diagonal elements. Another
important feature here is that close to A = 114 and A = 130
both contributions are about the same and small. However,
the corresponding partial contributions, seen in Fig. 2, are
large but out of phase. In the particular case that we analyze
here, the states 2+

1 in tin isotopes are classical examples of
“collective” (or vibrational) excitations from the viewpoint of
E2 electromagnetic transition probes. That is, in the evaluation
of the B(E2; 0+

1 → 2+
1 ) [denoted by B(E2 ↑)] transition

matrix elements all wave function components contribute with
the same phase and, therefore, the precision to which those
components are evaluated are not crucial. In the corresponding
calculation of g(2+

1 ) values the components contribute out of
phase and one may thus get large errors if those components
are not precisely evaluated.

So far we have discussed the general trend of g factors. We
will now analyze in more detail the most important features
resulting from a comparison between the experimental and
theoretical results. One of these outstanding features is the
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FIG. 3. (Color online) Diagonal and nondiagonal elements con-
tributions to total g(2+

1 ) values (in units of μN ) of even-even tin
isotopes in (a) A < 116 and (b) A > 116.

measured magnetic moment in the nucleus 112Sn, which is the
lightest tin isotope for which such measurement has so far been
performed. According to Ref. [2] it is g(2+

1 ) = +0.37(13)μN .
But a more recent measurement [4] provided a very different
result for this quantity, i.e., g(2+

1 ) =+0.104(35)μN [4]. In
this reference it was suggested that the configurations g2

7/2 and
d5/2g7/2 should contribute significantly to the building up of the
state 2+

1 because the empirical g factor corresponding to these
configurations is gemp ≈ +0.2μN , which is consistent with the

experimental positive value. However our calculation, which
fits very well the experimental value given in this reference,
shows [Fig. 2(a) at A = 112] that all partial contributions
cancel out, except (d3/2,d5/2)(d5/2,d5/2), for which the g
factor is g(2+

1 ) ∼ +0.13μN . That is, neither g2
7/2 nor d5/2g7/2

contribute by themselves to the g factor. It is seen that the
configuration g2

7/2 carries the small and positive g factor of
∼+0.06μN . The contribution of the configuration d5/2g7/2 is
included in the diagonal element (5/2,7/2)(5/2,7/2) and in
the nondiagonal one (3/2,7/2)(5/2,7/2). Their g factors are
nearly zero and ∼−0.07μN , as seen in the figure.

In our calculations, the g factor of 114Sn is similar to
that of 112Sn. One sees in Fig. 2(a) that in this case many
configurations contribute with similar magnitude, but different
signs, resulting in the final value of g(2+

1 ) ∼ +0.09μN (see
also Fig. 3).

Crossing the nucleus 116Sn, the observed g(2+
1 ) value

decreases from a positive to a negative value, as seen in
Fig. 1. It is suggested that the d3/2s1/2 configuration, with
its empirical g factor of ∼−0.11μN , should be important in
the state 116Sn(2+

1 ). This may explain the negative value of the
g factor [3,4]. However, Fig. 2(b) shows that for nuclei from
118Sn to 122Sn the reason of the negative value of the magnetic
moment is due to the dominance of the shell h11/2.

In the heavier nuclei, up to 130Sn, it is the interplay between
the shells h11/2 and d3/2 which determines the g factor. But
there is a very important exception to this trend, and it is the
positive and rather large measured g factor in 118Sn [2,3]. One
sees in Fig. 1 that the predictions of the QRPA [15], the SM [4],
and this work are all negative in this case. However the RQRPA
calculations [16] agree well with the experiment because of a
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FIG. 4. (Color online) Excitation energy E2+
1

(in MeV), B(E2; 0+
1 → 2+

1 ) [denoted by B(E2 ↑)] value (in e2b2) and g(2+
1 ) value (in μN )

in the nucleus 128Sn as a function of the two-body interaction strengths G0, G2, and κ as well as the relative single-particle energy εd3/2 − εh11/2

(in MeV). In each case all parameters, except the variable considered, are as in Table I. Experimental data are taken from: E2+
1

[31], B(E2 ↑)

[34], and g(2+
1 ) [6]. The value of the effective charge is −0.95e [22].
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FIG. 5. (Color online) Same as Fig. 2 but for the nucleus 128Sn
as a function of εd3/2 − εh11/2 (in MeV).

relatively large proton contribution to the total wave function.
From Fig. 2(b) one sees that for heavier isotopes the shell d3/2,
with a positive g factor, becomes relevant. This is also pointed
out in Refs. [3,4]. We have performed calculations by varying
the two-body interactions to improve our result in this nucleus.
But the calculated negative g factor is found to be very robust.
Therefore further investigation for this state is necessary both
experimentally and theoretically.

In 128Sn our g factor is outside the experimental error.
We tried to improve this situation, while keeping all other
experimental quantities in agreement with the corresponding
data, by varying the parameters that define the dynamics of our
calculations within reasonable limits. For this we calculated in
the nucleus 128Sn the corresponding g(2+

1 ) value as well as the
excitation energy E2+

1
and the B(E2 ↑) value as a function of

the strength of the interactions, i.e., G0, G2, and κ , and also of
the energy difference εd3/2 − εh11/2 . The rest of the parameters
in Table I were kept unchanged. The results are shown in
Fig. 4, with experimental data taken from E2+

1
[31], B(E2 ↑)

[34], and g(2+
1 ) [6]. One sees in this figure that the calculated

and experimental values of the energy E2+
1

and of the B(E2 ↑)
strength coincide just for the interaction parameters given in
Table I. However, there is not any value of these parameters that
provides a reasonable g factor. Only when the relative position
of the shells εd3/2 and εh11/2 (which in Table I is εd3/2 − εh11/2 =
−0.065 MeV) is changed by about 0.4 MeV does one get the
experimental g factor, which is g(2+

1 ) = (−)0.23(6)μN (with
its sign not well established) [6]. It is also remarkable that
the values of E2+

1
and B(E2 ↑) are practically independent

of the difference εd3/2 − εh11/2 . It has to be mentioned that
large-scale shell-model calculations [6,17] reported the value
g(2+

1 ) ∼ −0.11μN by using εd3/2 − εh11/2 = −0.07 MeV (see
Fig. 1).

In Fig. 5, we present the partial contribution to the g factor
of all possible configurations as a function of εd3/2 − εh11/2

in 128Sn. The remarkable feature in this figure is that as

εd3/2 − εh11/2 approaches the value of 0.4 MeV, for which the
theoretical g factor fits the corresponding experimental value,
the contribution of the shell d3/2 becomes negligible. As a
result of this the shell h11/2 becomes overwhelmingly dominant
and the g factor becomes relatively large and negative, as
required in Fig. 1. This suggests that the single-particle state
εd3/2 should lie higher than the state εh11/2 in this case.

To analyze this further we present in Fig. 6 the calculated
E2+

1
, B(E2 ↑), and g(2+

1 ) values as a function of the energy
difference εd3/2 − εh11/2 for 130,128,126,124Sn. It is seen that the
values of E2+

1
and B(E2 ↑) are also independent of the

difference εd3/2 − εh11/2 for 130,126,124Sn, the same as that for
128Sn. However the g factor is less sensitive to εd3/2 − εh11/2

as valence neutron-holes increase, with the quickest change
occurring in 130Sn. Therefore, if the single-particle state εd3/2

lies higher than the state εh11/2 , our g factors of 128–124Sn will
agree well with the experiment, but the calculated result of
130Sn will now be negative (∼−0.2μN ). Future measurements
with improved precision in 128Sn, as well as the experimental
g(2+

1 ) data in 130Sn, are highly desirable to clarify the physics
of the 2+

1 states in even-even tin isotopes.
In Fig. 7, we present the spin and orbital angular momentum

contributions to the total g factor. One sees in this figure that
the overall trend of g factors as a function of A is mainly
determined by the spin contribution. This is also pointed out
in the RQRPA calculation [16]. The orbital contribution is
practically constant for the case A < 116 and negligible for
A > 116. It is important to stress that the constant value of the
orbital contribution in light tin isotopes is very important to
obtain good agreement between theory and experiment in these
nuclei, as seen in Fig. 1. It is also interesting to notice that the
spin contribution approaching A = 114 vanishes and therefore
the g factors of 112Sn and 114Sn are practically due to the
corresponding orbital part. For heavy tin isotopes the situation
is the opposite. Here it is the spin contribution that determines
the g factor.

In Table II we present the calculated magnetic moments μ
corresponding to yrast states in odd-mass tin isotopes. These
are 5/2+

1 , 7/2+
1 in 101–109Sn, and 3/2+

1 , 11/2−
1 in 123–131Sn.

Experimental data [36] and shell-model calculations [37] are
also listed for comparison. One sees in this table that our results
agree well with the existing experimental data as well as with
the SM calculated results.

The 11/2−
1 state is simple and its μ value remains constant

as a function of A. For the states 5/2+
1 , 7/2+

1 , and 3/2+
1 the

μ values decrease slightly with increasing valence neutron
number. This indicates that the wave functions of these states
change slowly as A increases, as expected in this typical
BCS region. This can also be readily understood within the
NPA, since the dominant NPA configurations corresponding
to the 5/2+

1 , 7/2+
1 states in 101–109Sn, and to the states 3/2+

1 ,
11/2−

1 in 123–131Sn are |(d5/2)SN 〉, |(g7/2)SN 〉, |(d3/2)SN 〉,
and |(h11/2)SN 〉, respectively. Therefore these states are de-
termined by the unpaired neutron, which provides a nearly
constant value of μ.

One also sees in Table II that the experimental values of
μ(3/2+

1 ) and μ(11/2−
1 ) in nuclei 123−131Sn increase slightly

with valence neutron hole number, in contrast to the predictions
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FIG. 6. (Color online) Same as Fig. 4 but for the nuclei 130,128,126,124Sn as a function of εd3/2 − εh11/2 (in MeV). Experimental data are taken
from: E2+

1
[31], B(E2 ↑) [34,35], and g(2+

1 ) [6].

of the NPA and the SM. However, this difference is small com-
pared to the overall good agreement between the theoretical
results and experiments as already pointed out in Ref. [6]. It
is interesting to point out that our calculated μ(3/2+

1 ) values
increase slightly with the energy difference εd3/2 − εh11/2 .

The spin of the ground and first excited states in 103Sn [31]
are 5/2+

1 and 7/2+
1 , respectively. These spins are reversed with

respect to those in 101Sn [29]. It was suggested in Ref. [37] that
the J = 6 two-body matrix elements 〈0g2

7/2|V |0g2
7/2〉J=6 and

〈0g7/21d5/2|V |0g7/21d5/2〉J=6 contribute to most of the spin

102 106 110 114
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0.1
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)

 

 

orbital
spin
total
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FIG. 7. (Color online) Spin and orbital contributions to total
g(2+

1 ) values (in units of μN ) of even-even tin isotopes in (a) A < 116
and (b) A > 116.

inversion in 103Sn. We analyzed within the NPA the impact of
these two matrix elements upon the spin inversion and the μ
values. We found that they indeed play a dominant role in the
spin inversion in 103Sn, but have little effect on μ(5/2+

1 ) and
μ(7/2+

1 ).

TABLE II. The magnetic moments μ (in unit of μN ) in odd-mass
tin isotopes. Experimental data and shell-model results are taken from
Refs. [36] and [37], respectively.

J π NPA SM Expt.

101Sn 5/2+
1 −1.158 −

7/2+
1 +1.393 −

103Sn 5/2+
1 −1.151 −1.299

7/2+
1 +1.392 +1.014

105Sn 5/2+
1 −1.141 −1.206

7/2+
1 +1.388 +0.993

107Sn 5/2+
1 −1.118 −1.114

7/2+
1 +1.379 +0.942

109Sn 5/2+
1 −1.084 −1.024 −1.079(6)

7/2+
1 +1.365 +0.924

123Sn 3/2+
1 +0.796 +0.703

11/2−
1 −1.264 −1.298 −1.3700(9)

125Sn 3/2+
1 +0.801 +0.750 +0.764(3)

11/2−
1 −1.264 −1.306 −1.348(6)

127Sn 3/2+
1 +0.808 +0.774 +0.757(4)

11/2−
1 −1.264 −1.319 −1.329(7)

129Sn 3/2+
1 +0.817 +0.789 +0.754(6)

11/2−
1 −1.264 −1.335 −1.297(5)

131Sn 3/2+
1 +0.831 +0.804 +0.747(4)

11/2−
1 −1.264 −1.339 −1.276(5)
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Besides the states in Table II, the 1/2+
1 states in 101–109Sn

and 123–131Sn are also found to be very simple within the
NPA. Their dominant configuration in all those isotopes
is |(s1/2)SN 〉. Our calculated μ values of this state are
−1.339, −1.125,−1.332, −1.073, −0.891μN for 101−109Sn
and −1.245, −1.268, −1.292, −1.316, −1.339μN for
123−131Sn, respectively.

IV. SUMMARY

In this paper we have calculated the magnetic moments
of low-lying states for both even-even and odd-mass tin
isotopes by using the SD-pair approximation (NPA) of the
nuclear shell model. For the Hamiltonian we employed a
monopole and quadrupole pairing plus quadrupole-quadrupole
interaction with optimized parameters. On the one hand, the
NPA approach generally well reproduces experimental data,
and on the other hand, due to the very small subspace spanned
by the NPA basis, the calculations can be performed in a rather
straightforward fashion, thus allowing one to easily understand
the physics behind the results.

We considered the region A < 116 independently of the
one for A ≥ 116, as seen in Table I. In the first case the
lowest lying g7/2 and d5/2 shells are nearly degenerate. In
the same fashion the lowest lying h11/2 and d3/2 shells are
nearly degenerate in the second case. Not surprisingly, we
found that near A = 100 the g(2+

1 ) values are practically
determined by the g7/2 and d5/2 shells, but already starting at
A = 108 the rather high-lying d3/2 shell becomes important.
Instead, in the A > 116 case the h11/2 shell is important all
through, but already at A = 122 the d3/2 shell starts to have
relevance. In both regions there is a strong cancelation among
the contributions of different shells, which makes the magnetic
moment a powerful tool to probe the corresponding wave
function.

Experimentally one sees a strong transition in the g factors
of the 2+

1 state when crossing the nucleus 116Sn. For A <
116 the g factors are positive while for A ≥ 116 they are
negative. This is a result of the influence of the h11/2 shell,

which carries a negative magnetic moment. Interestingly, we
found that this shell has a too strong preponderance in our
calculation, especially at the end of the shell, approaching the
isotope 128Sn, where the experimental g factor is too negative.
We concluded that this feature indicates that the h11/2 shell is
located too high in the set of single-particle states in Table I. We
arrived at this conclusion by evaluating the energies E2+

1
and

the values of B(E2 ↑), besides the g(2+
1 ) values, as a function

of different Hamiltonian parameters for 130,128,126,124Sn.
We investigated also the spin and orbital angular momentum

contributions to the g(2+
1 ) value and found that its overall trend

with A is mostly determined by the spin contribution. The
orbital part is practically constant in the region A < 116, but
its value is fundamental to explain the experimental g factor.
In the region A > 116 the orbital contribution is negligible
and all g factors are given by the spin contribution. But also
here when approaching the closed shell, at A = 130, the spin
contribution disappears and as a results the g factor is nearly
zero. As mentioned above, we found that this distinct feature
is due to a too strong influence of the h11/2 shell.

Our calculated magnetic moments μ corresponding to the
5/2+

1 and 7/2+
1 states in 101–109Sn as well as the 3/2+

1 and
11/2−

1 states in 123–131Sn are found to be determined by the
unpaired nucleon in these odd neutron isotopes.
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