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Background: The equation of state (EoS) of nucleonic matter is central for the understanding of bulk nuclear
properties, the physics of neutron star crusts, and the energy release in supernova explosions. Because nuclear
matter exhibits a finely tuned saturation point, its EoS also constrains nuclear interactions.
Purpose: This work presents coupled-cluster calculations of infinite nucleonic matter using modern interactions
from chiral effective field theory (EFT). It assesses the role of correlations beyond particle-particle and hole-hole
ladders, and the role of three-nucleon forces (3NFs) in nuclear matter calculations with chiral interactions.
Methods: This work employs the optimized nucleon-nucleon (NN ) potential NNLOopt at next-to-next-to leading
order, and presents coupled-cluster computations of the EoS for symmetric nuclear matter and neutron matter.
The coupled-cluster method employs up to selected triples clusters and the single-particle space consists of a
momentum-space lattice. We compare our results with benchmark calculations and control finite-size effects and
shell oscillations via twist-averaged boundary conditions.
Results: We provide several benchmarks to validate the formalism and show that our results exhibit a good
convergence toward the thermodynamic limit. Our calculations agree well with recent coupled-cluster results
based on a partial wave expansion and particle-particle and hole-hole ladders. For neutron matter at low densities,
and for simple potential models, our calculations agree with results from quantum Monte Carlo computations.
While neutron matter with interactions from chiral EFT is perturbative, symmetric nuclear matter requires
nonperturbative approaches. Correlations beyond the standard particle-particle ladder approximation yield non-
negligible contributions. The saturation point of symmetric nuclear matter is sensitive to the employed 3NFs and
the employed regularization scheme. 3NFs with nonlocal cutoffs exhibit a considerably improved convergence
than their local cousins. We are unable to find values for the parameters of the short-range part of the local 3NF
that simultaneously yield acceptable values for the saturation point in symmetric nuclear matter and the binding
energies of light nuclei.
Conclusions: Coupled-cluster calculations with nuclear interactions from chiral EFT yield nonperturbative
results for the EoS of nucleonic matter. Finite-size effects and effects of truncations can be controlled. For the
optimization of chiral forces, it might be useful to include the saturation point of symmetric nuclear matter.
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I. INTRODUCTION

Bulk nucleonic matter is interesting for several reasons.
The equation of state (EoS) of neutron matter, for instance,
determines properties of supernova explosions [1], and of
neutron stars [2–7], and it links the latter to neutron radii in
atomic nuclei [8–10] and symmetry energy [11,12]. Likewise,
the compressibility of nuclear matter is probed in giant dipole
excitations [13], and the symmetry energy of nuclear matter is
related to the difference between proton and neutron radii in
atomic nuclei [14–16]. The saturation point of nuclear matter
determines bulk properties of atomic nuclei, and is therefore
an important constraint for nuclear energy-density functionals
and mass models (see, e.g., Refs. [17,18]).

The determination and our understanding of the EoS for
nuclear matter is intimately linked with our capability to solve
the nuclear many-body problem. Here, correlations beyond

the mean field play an important role. Theoretical studies of
nuclear matter and the pertinent EoS span back to the very
early days of nuclear many-body physics. Early computations
are nicely described in the 1967 review by Day [19].
These early calculations were performed using Brueckner-
Bethe-Goldstone theory [20,21]; see Refs. [3,22,23] for
recent reviews and developments. In these calculations,
mainly particle-particle correlations were summed to
infinite order. Other correlations were often included in a
perturbative way. Coupled-cluster calculations of nuclear
matter were performed already during the late 1970s and early
1980s [24,25]. In recent years, there has been a considerable
algorithmic development of first-principle methods for
solving the nuclear many-body problem. A systematic
inclusion of other correlations in a nonperturbative way are
nowadays accounted for in Monte Carlo methods [26–30],
self-consistent Green’s function approaches [23,31–34],
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nuclear density functional theory [16,18], and coupled-cluster
theory [35,36].

Similar progress has been made in the derivation of nuclear
forces based on chiral effective field theory (EFT) [37,38].
Nuclear Hamiltonians from chiral EFT are now used routinely
in nucleonic matter calculations, with the three-nucleon
forces (3NFs) [39,40] being front and center of many
studies [34,41–48]. We note finally that there are also
approaches to nucleonic matter based on lattice quantum
chromodynamics [49].

In this work we study the EoS of nucleonic matter, using
modern NN interactions and 3NFs from chiral EFT, and an
implementation of the coupled-cluster method [50,51] that
has become a standard in quantum chemistry [52,53]. We
employ a Cartesian momentum space basis with periodic
boundary conditions, similar to the recent coupled-cluster
based calculations of the electron gas [54,55]. Our calcu-
lations are based on coupled cluster with doubles (CCD)
approximation [56–58]. This is the lowest-order truncation for
closed-shell systems in a momentum-space basis, and we will
also explore the role of selected triples clusters. We employ a
recent parametrization [36] of the NN force from chiral EFT
at next-to-next-to-leading order, with inclusion of the 3NF that
enters at the same chiral order.

The recent work by Baardsen et al. [35] used coupled-
cluster theory in the thermodynamic limit, formulated in the
relative center-of-mass frame using a partial-wave expansion,
to compute the EoS of nuclear matter using modern NN chiral
interactions. Baardsen et al. [35] summed particle-particle and
hole-hole ladders to infinite order (CCDladd), while neglecting
particle-hole and other nonlinear terms that enter in the CCD
approximation. In this work we include all terms that enter at
the CCD cluster truncation level, and we can therefore assess
the role of these correlations by comparing to the method
developed in [35]. Further, the current implementation of CCD
in the laboratory frame using PBC facilitates the inclusion of
3NFs considerably, and we also study effects of selected triples
excitations to the EoS.

This paper is organized as follows. In the next section
we present the coupled-cluster formalism for infinite matter
that includes 3NFs and perturbative triples corrections. The
calculations are performed in Cartesian coordinates with
a discrete momentum basis and twisted periodic boundary
conditions [59–61]. This avoids the tedious partial-wave
expansion of the nuclear forces, and it eases considerably the
numerical evaluation of 3NFs. Averaging over twisted periodic
boundary conditions minimizes finite-size effects and provides
us with a good convergence towards the thermodynamic
limit. Section II also presents computational results for finite-
size effects and a few benchmark calculations. Our results
for symmetric nuclear matter and pure neutron matter are
presented in Sec. III. Concluding remarks are given in Sec. IV.

II. METHOD

In this section we present the coupled-cluster formalism
for infinite matter. We discuss the inclusion and treatment
of NN forces and 3NFs from chiral effective field theory
(EFT), correlations up to three-particle–three-hole excitations

and finite-size effects. Several benchmark calculations give us
confidence in the validity of our approach.

A. Interaction and model space

Our Hamiltonian is

H = Tkin + VNN + V3NF.

Here, Tkin denotes the kinetic energy, and VNN and V3NF denote
the translationally invariant NN interaction and 3NF. The
NN interaction and 3NF are from chiral effective field the-
ory [37,38] at next-to-next-to-leading order (NNLO). We em-
ploy the parametrization NNLOopt for the NN interaction [36],
and the local 3NF [62]. This 3NF has a local regulator, i.e.,
the cutoff is in the momentum transfer, and thereby differs
from implementations of the 3NF [40] that employ the cutoff
in the relative Jacobi momenta. We note that the numerical
implementation of the 3NF in the discrete momentum basis is
much simpler than in the harmonic oscillator basis commonly
used for finite nuclei, because essentially no transformation of
matrix elements is necessary. Nevertheless, the sheer number
of matrix elements (and associated function calls) of the 3NF
is huge, and this is computationally still a limiting factor.

For the model space, we choose a cubic lattice in momentum
space with (2nmax + 1)3 momentum points. The spin (spin-
isospin) degeneracy of each momentum point is gs = 2 (gs =
4) for pure neutron matter (nuclear matter). Thus, filling of
the lattice yields shell closures for “Fermi spheres” with gsn
fermions, and n = 1,7,19,27,33,57, . . .. We note that one
could also use noncubic lattices. Any periodic lattice permits
one to implement momentum conservation exactly. For fixed
particle number A = gsn and density ρ = gsk

3
F /(6π2) (or

Fermi momentum kF ), one computes the volume of the cubic
box V = L3 = A/ρ, and the box length L that determines the
lattice spacing �k = 2π/L. We note that the computed results
exhibit a dependence on the shell closure n. However, Sec. II D
shows that shell effects and finite-size effects can be mitigated
and controlled, and that the dependence on the parameter n
becomes very small.

The second parameter of our lattice is nmax. We note that
nmax�k is the momentum cutoff of our single-particle basis.
One has to increase nmax until the computed results (e.g.,
the energy per nucleon) is practically independent of this
parameter. For the results reported below we find that nmax = 4
is sufficient.

B. Coupled-cluster theory for infinite systems

In this section we present the coupled-cluster equations
for nucleonic matter. Our calculations of nucleonic matter
are based on the recently optimized chiral nucleon-nucleon
interaction at NNLOopt [36] with the 3NF at the same chiral
order. The low-energy constants (LECs) of the 3NF were
determined by fitting the constants cE and cD to reproduce
the experimental half-life and binding energy of the triton.
The optimized 3NF LECs are cE = −0.389 and cD = −0.39.
With these values the 4He binding energy is −28.47 MeV [63].
We employ single-particle states

| �p,sz,tz〉 ≡ |k〉,
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with momentum �p, spin projection sz and isospin projection
tz. Discrete values of the momentum variable �p = ��k result
from periodic boundary conditions in a cubic box with length
L, that is

kni
= 2πni

L
, ni = 0,±1, . . . ± nmax, i = x,y,z.

In this basis, the nuclear Hamiltonian with nucleon-nucleon
and three-nucleon interactions is

H =
∑
pq

〈kp|Tkin|kq〉a†
paq

+ 1

4

∑
pqrs

〈kpkq |VNN|krks〉a†
pa†

qasar

+ 1

36

∑
pqrstu

〈kpkqkr |V3NF|ksktku〉a†
pa†

qa
†
r auatas . (1)

The kinetic energy is diagonal in the discrete momentum basis
〈kp|Tkin|kq〉 = �

2

2m
�k2
pδpq . The operators a

†
p and ap create and

annihilate a nucleon in state |kp〉, respectively.
The discrete momentum basis allows us to respect trans-

lational invariance of the NN potential and the 3NFs.
Momentum is conserved, meaning that the two- and three-body
matrix elements of the Hamiltonian (1) vanish unless

�kp + �kq = �kr + �ks,

and
�kp + �kq + �kr = �ks + �kt + �ku.

Note also that the chiral nucleon-nucleon and three-nucleon
interactions conserve the total isospin projection, but not the
total spin projection.

In single-reference coupled-cluster theory the correlated
wave-function is written in the form

|�〉 = eT |�0〉.
Here |�0〉 = ∏A

i=1 a
†
i |0〉 is a product state and serves as the

reference. The cluster operator T is a linear combination
of n-particle–n-hole (np-nh) excitation operators, i.e., T =
T1 + T2 + · · · + Tn. In the discretized momentum basis the
reference state is the closed shell Fermi vacuum, and is
obtained by filling the A states with the lowest kinetic energy.
We limit ourselves to spin saturated reference state, meaning
that each momentum orbital of the reference state is doubly
occupied. In this case the nuclear interaction does not induce
1p-1h excitations of the reference state, and we have T1 = 0.
Thus, the cluster operator becomes

T = 1

4

∑
ijab

〈kakb|t |kikj 〉a†
aa

†
bajai + · · · .

Here and in what follows, indices i,j,k,l (a,b,c,d) label
occupied (unoccupied) states. Truncating T at the 2p-2h exci-
tation level (T ≈ T2) gives the coupled-cluster doubles (CCD)
approximation. The CCD energy and amplitude equations can
be written in compact form

ECCD = E0 + 〈�0|HN |�0〉, (2)

0 = 〈
�ab

ij

∣∣HN |�0〉. (3)

Here

E0 = 〈�0|H |�0〉
=

∑
i

〈ki |f |ki〉 + 1

2

∑
i,j

〈kikj |v|kikj 〉

+1

6

∑
ijk

〈kikj kk|w|kikj kk〉 (4)

is the vacuum expectation value (which in the case of no 1p-1h
corresponds to the Hartree-Fock energy), |�ab

ij 〉 is a 2p-2h

excitation of the reference state, and HN ≡ e−T HNeT is the
similarity transformation of the normal-ordered Hamiltonian:

HN =
∑
pq

〈kp|f |kq〉 : a†
paq :

+ 1

4

∑
pqrs

〈kpkq |v|krks〉 : a†
pa†

qasar :

+ 1

36

∑
pqrstu

〈kpkqkr |w|ksktku〉 : a†
pa†

qa
†
r auatas :. (5)

Here : a
†
p · · · ap′ · · · : is the normal ordered string of operators

with respect to the reference state. The normal-ordered one-
body operator is given in terms of the Fock matrix elements

〈kp|f |kq〉 = 〈kp|t |kq〉 +
∑

i

〈kpki |VNN |kqki〉

+1

2

∑
ij

〈kpkikj |V3NF|kqkikj 〉. (6)

The normal-ordered two-body operator has matrix elements

〈kpkq |v|krks〉 = 〈kpkq |VNN |krks〉
+

∑
i

〈kpkqki |V3NF|kikrks〉. (7)

Finally, the normal-ordered three-body operator w has
matrix elements

〈kpkqkr |w|ksktku〉 = 〈kpkqkr |V3NF|ksktku〉. (8)

In most of this work, we will neglect all elements of w
when solving the CCD equations. In this normal-ordered two-
body approximation, the 3NF enters in the vacuum expectation
value (4), the Fock matrix (6), and the normal-ordered two-
body operator (7), but the three-body operator w that changes
the orbitals of all three nucleons is neglected.

We note that coupled-cluster theory with full inclusion of
3NFs was worked out in the singles and doubles approximation
(CCSD) [64], and very recently with triples corrections
included [65].
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For an efficient numerical implementation one writes the CCD equations (3) in a factorized (quasilinear) form,

0 = 〈kakb|v|kikj 〉+ P (ab)
∑

c

〈kb|χ |kc〉〈kakc|t |kikj 〉− P (ij )
∑

k

〈kk|χ |kj 〉〈kakb|t |kikk〉+ 1

2

∑
cd

〈kakb|χ |kckd〉〈kckd |t |kikj 〉

+ 1

2

∑
kl

〈kakb|t |kkkl〉〈kkkl|χ |kikj 〉 + P (ij )P (ab)
∑
kc

〈kakc|t |kikk〉〈kkkb|χ |kckj 〉

+ 1

2
P (ij )

∑
cdk

〈kakkkb|w|kikckd〉〈kckd |t |kkkj 〉 − 1

2
P (ab)

∑
ckl

〈kakkkl|w|kikckj 〉〈kckb|t |kkkl〉. (9)

Here, P (pq) ≡ 1 − Ppq is an antisymmetrization operator, and we employed the intermediates

〈kb|χ |kc〉 = 〈kb|f |kc〉 − 1

2

∑
kld

〈kbkd |t |kkkl〉〈kkkl|v|kckd〉 + 1

4

∑
edkl

〈kkklkb|w|kekdkc〉〈kekd |t |kkkl〉, (10)

〈kk|χ |kj 〉 = 〈kk|f |kj 〉 + 1

2

∑
kcd

〈kkkl|v|kckd〉〈kckd |t |kj kl〉 + 1

4

∑
cdln

〈klknkk|w|kckdkj 〉〈kckd |t |klkn〉, (11)

〈kkkl|χ |kikj 〉 = 〈kkkl|v|kikj 〉 + 1

2

∑
cd

〈kkkl|v|kckd〉〈kckd |t |kikj 〉 + 1

2
P (ij )

∑
cdn

〈knkkkl|w|kckdkj 〉〈kckd |t |knki〉, (12)

〈kkkb|χ |kckj 〉 = 〈kkkb|v|kckj 〉 +
∑
ld

〈kkkl|v|kckd〉〈kckd |t |klkj 〉 − 1

2

∑
dln

〈klkkkn|w|kdkj kc〉〈kdkb|t |klkn〉

+ 1

2

∑
del

〈klkkkb|w|kdkekc〉〈kdke|t |klkj 〉, (13)

〈kakb|χ |kckd〉 = 〈kakb|v|kckd〉 − 1

2
P (ab)

∑
ekl

〈kkklkb|w|kekckd〉〈keka|t |kkkl〉. (14)

In Eqs. (9)–(14) the numerically expensive sums that
involve products of two-body operators can all be implemented
efficiently as matrix-matrix multiplications. The momentum
conservation reduces the computational cost of the CCD
equations to non

3
u, where no (nu) is the number of occu-

pied (unoccupied) momentum states. This is a considerable
reduction in computational cycles as compared to the normal
cost of the CCD equations which is n2

on
4
u [52], and similar to

the reduction of computational cost achieved in the angular
momentum coupled scheme [66,67].

The coupled-cluster equations (9) are solved numerically
by iteration and yield the matrix elements of T2. The CCD
energy (2) is given in algebraic form by

ECCD = E0 + 1

4

∑
ijab

〈kikj |v|kakb〉〈kakb|t |kikj 〉.

Below, we will also employ an approximation (denoted
as CCDladd) that only uses the particle-particle and hole-hole
ladders in the CCD equations, i.e.,

0 = 〈kakb|v|kikj 〉
+P (ab)

∑
c

〈kb|f |kc〉〈kakc|t |kikj 〉

−P (ij )
∑

k

〈kk|f |kj 〉〈kakb|t |kikk〉

+1

2

∑
cd

〈kakb|v|kckd〉〈kckd |t |kikj 〉

+1

2

∑
kl

〈kakb|t |kkkl〉〈kkkl|v|kikj 〉 . (15)

The CCDladd approximation was used in Ref. [35] within
coupled-cluster theory, and a similar approximation was also
employed in other computations of nucleonic matter, see, e.g.,
Refs. [42,43].

Let us also discuss the inclusion of three-body clusters.
When going beyond the CCD approximation and considering
triples excitations, one might question whether the residual
three-body part w can safely be neglected. After all, three-
body forces directly induce excitations of three-body clusters.
Below we will include the residual part w when considering
contributions from triples excitations to the correlation energy,
and study the accuracy of the normal-ordered two-body
approximation in the presence of triples excitations in neutron
and symmetric nuclear matter. Very recently, Binder et al.
employed chiral interactions softened via the similarity renor-
malization group transformation [68,69], studied the effect of
triples corrections in the presence of 3NFs in nuclei such as
16O and 40Ca, and found it to be small [65].

The full inclusion of triples in the presence of three-
body forces is demanding and computationally expensive.
Some effects of triples can be included in the CCD(T)
approximation [70] that we extend to 3NFs. In CCD(T) the

014319-4



COUPLED-CLUSTER CALCULATIONS OF NUCLEONIC MATTER PHYSICAL REVIEW C 89, 014319 (2014)

triples excitation amplitude is approximated as

tabc
ijk ≡ 〈kakbkc|t |kikj kk〉

≈ 〈
�abb

ijk

∣∣(v + w)(1 + T̂2)|�0〉/εijk
abc. (16)

Here

ε
ijk
abc ≡ f i

i + f
j
j + f k

k − f a
a − f b

b − f c
c . (17)

The CCD(T) correction to the energy is

�ECCD(T) = 1

36

∑
ijkabc

∣∣tabc
ijk

∣∣2/
ε

ijk
abc. (18)

Employing the triples amplitude (16) with the inclusion of
w yields the energy correction �ECCD(T). We also consider the
following approximations. Neglecting the residual three-body
part w yields the normal-ordered two-body approximation
to the CCD(T) energy correction, denoted as �ECCD(T:w=0).
Omitting the term wT2 in Eq. (16) gives the energy correction
�ECCD(T:wT2=0). Note that the numerically expensive term wT2

in Eq. (16) consist of three distinct diagrams in which one sums
over pp, hh, and ph intermediate states, respectively. Below we
will investigate the contributions of these three diagrams to the
CCD(T) energy correction in neutron and symmetric nuclear
matter.

C. Ladder approximation in a partial-wave basis

In Ref. [35], the ladder approximation of the coupled-
cluster equations for nuclear matter is presented in an al-
ternative formulation. Historically, the equations for nuclear
matter, for example in the hole-line approximation [71], have
often been expressed explicitly in a partial-wave basis [72–74].
Similarly, in the method presented in Ref. [35], the ladder
approximation is formulated in a partial-wave basis, assuming
that the thermodynamic limit is reached and therefore using
integrals over relative and center-of-mass momenta. In the
partial-wave expanded equations, the Pauli exclusion operators
are treated exactly, using a technique introduced for the
Brueckner-Hartree-Fock approximation by Suzuki et al. [74].
Apart from the truncation in partial waves, the only approxi-
mation in this method is in the single-particle potentials, where
an angular-average approximation was used for the laboratory
momentum argument [35,75].

D. Finite-size effects

We would like to quantify the error due to finite-size
effects and the accuracy of our coupled-cluster calculations
of neutron and nuclear matter. Using periodic boundary
conditions (PBC) one could increase the number of particles
in the box until convergence to the thermodynamic limit is
reached. However, due to variations of the shell effects at
different closed shell configurations, there is no guarantee that
increasing the number of particles will lead to a systematic and
smooth convergence to the thermodynamic limit. Furthermore,
the computational cost of many-body methods such as the
AFDMC and coupled-cluster methods increases rapidly with
increasing particle number, and one would therefore like to
employ a method that controls finite-size effects already for

modest particle numbers. This can be achieved with averaging
over phases of Bloch waves that correspond to different
boundary conditions [59–61].

Consider a free particle in a box of size L subject to twisted
boundary condition, that is, the wave function with momentum
k fulfills the condition for so-called Bloch waves, namely,
ψk(x + L) = eiθψk(x). By averaging over the twist angle θ ,
shell effects can be eliminated for free Fermi systems [59],
and they are much suppressed for interacting systems [60,61].
In this way, one obtains a much more systematic and smooth
convergence towards the thermodynamic limit. The twisted
boundary conditions are defined by

kni
= (2πni + θi)

L
, ni = 0,±1, . . . ± nmax, i = x,y,z,

with the twist angle θ ∈ [0,π ] for systems with time-reversal
invariance [61]. This amounts to letting the particles pick up
a complex phase when they wrap around the boundary of the
cubic box. By integrating or averaging over a finite number
of twists in each x,y,z direction we obtain the twist-averaged
boundary conditions (TABC). In our implementation of TABC
we integrate over the twist angles θ using a finite number of
Gauss-Legendre quadrature points in [0,π ]. Note that θ = 0
(θ = π ) corresponds to (anti)periodic boundary conditions.

In order to quantify the finite-size effects using PBC
and TABC we compute the kinetic and potential energy
contribution to the Hartree-Fock energy for several closed
shell configurations ranging from tens to several hundreds
of nucleons, and compare with the thermodynamic limit for
these quantities. In Fig. 1 we show the relative error of the
kinetic energy in pure neutron matter for the Fermi momentum
kF = 1.6795 fm−1 computed using standard PBC and TABC.
We used 10 Gauss-Legendre points for the twist angle θi of the
i = x,y,z direction in the integration interval [0,π ]. Clearly,
we obtain a much faster and smoother convergence to the
thermodynamic limit using TABC. Generally we get about an
order of magnitude reduction in the relative error when using

10 100 1000
A

10
-5

10
-4

10
-3

10
-2

10
-1

1-
T

N
/T

in
f

T
kin

 (TABC10) 
T

kin
 (PBC)

Neutron Matter: k
f
 = 1.6795fm

-1

FIG. 1. (Color online) Relative finite-size corrections for the
kinetic energy in pure neutron matter at the Fermi momentum kF =
1.6795 fm−1 vs the neutron number A. TABC10 are twist-averaged
boundary conditions with 10 Gauss-Legendre points in each spatial
direction.

014319-5



G. HAGEN et al. PHYSICAL REVIEW C 89, 014319 (2014)

10 100 1000
A

10
-4

10
-3

10
-2

10
-1

1-
V

N
/V

in
f

V
HF

 (NNLO
opt

 - TABC10)

V
HF

 (Minnesota - TABC10)

5.06A
-1.56

Neutron Matter: k
f
 = 1.6795fm

-1

FIG. 2. (Color online) Relative finite-size corrections for the
Hartree-Fock energy of the NNLOopt (full line) and Minnesota
(dashed line) potentials in pure neutron matter at the Fermi mo-
mentum kF = 1.6795 fm−1 vs the neutron number A. TABC10 are
twist-averaged boundary conditions with 10 Gauss-Legendre points
in each spatial direction. The dashed-dotter line shows a power law
fit to the NNLOopt results.

TABC as compared to PBC. Finite size effects are particularly
small for PBC and N = 66 neutrons. This was also seen in
AFDMC calculations [27].

Figure 2 shows the relative error of the potential energy
to the Hartree-Fock energy in pure neutron matter for the
Fermi momentum kF = 1.6795 fm−1 computed with TABC.
We compute the potential energy from NNLOopt and from the
Minnesota potential. We see that the finite-size effects in the
potential energy are comparable to the finite-size effects in the
kinetic energy shown in Fig. 1. We note that finite-size effects
vanish as the power law A−1.56 in the neutron number A.

Finally, we would also like to assess the finite-size effects
in symmetric nuclear matter. In Fig. 3 we show the relative
error of the potential energy to the Hartree-Fock energy in
symmetric nuclear matter for the Fermi momentum kF =
1.6 fm−1 computed using PBC and TABC. We consider the
Hartree-Fock potential energy contribution from the nucleon-
nucleon interaction NNLOopt and the 3NF at order NNLO
separately. In particular it is seen that the relative error in the
potential energy contribution from the 3NF is about an order
of magnitude smaller than the relative error coming from the
nucleon-nucleon interaction alone using both PBC and TABC.
In the case of symmetric nuclear matter there is no systematic
convergence trend using PBC, and for 132 nucleons the relative
error for PBC is around ∼4%, while using TABC the error is
reduced to ∼1%. It is interesting to note that finite size effects
for NNLOopt with TABC decrease as A−1.59 with increasing
nucleon number A. This exponent is similar to the exponent
found in neutron matter (see Fig. 2).

Coupled-cluster calculations of nucleonic matter using
TABC are very expensive. Using 10 twist angles in each
direction requires 103 coupled-cluster calculations, although
symmetry considerations can reduce this number considerably.
In Ref. [61] it was shown that one can find a specific choice of
twist angles (known as special points), in which the Hartree-
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FIG. 3. (Color online) Relative finite-size corrections for the
Hartree-Fock energy of the NN potential NNLOopt and the 3NF
potential in symmetric nuclear matter at the Fermi momentum
kF = 1.6 fm−1 vs the nucleon number A. PBC: periodic boundary
conditions. TABC10 and TABC3 are twist-averaged boundary condi-
tions with 10 and 3 Gauss-Legendre points in each spatial direction,
respectively.

Fock energy exactly corresponds to the Hartree-Fock energy
in the thermodynamic limit. In the following we compute these
special points for neutron and nuclear matter using both NN
interactions and 3NFs, and compare with calculations using
PBC and TABC.

E. Benchmarks

It is interesting to compare the results for various bound-
ary conditions with the infinite matter results by Baardsen
et al. [35]. Figure 4 shows the CCDladd results for neutron
matter computed with the nucleon-nucleon potential NNLOopt.
In a finite system, the neutron number N = 66 is very close to
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FIG. 4. (Color online) Energy per particle of neutron matter for
NNLOopt computed in the CCDlad approximation with periodic
boundary conditions (circles), twist-averaged boundary conditions
(squares), and for infinite matter (diamonds). The latter results are
from Ref. [36]. The calculations used A = 66 neutrons and nmax = 4.
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FIG. 5. (Color online) Energy per particle of symmetric nuclear
matter for NNLOopt computed in the CCD approximation with
periodic boundary conditions (diamonds), twist-averaged boundary
conditions (squares), and with a special point and twisted boundary
conditions (circles). The calculations used A = 132 nucleons and
nmax = 4.

the infinite matter results for both periodic and twist-averaged
boundary conditions.

For symmetric nuclear matter, the CCD results are more
sensitive to the choice of the boundary conditions, with results
shown in Fig. 5. At higher Fermi momenta (kF > 1.6 fm−1),
the energy per nucleon for periodic boundary conditions differs
by ∼0.5 MeV from the result obtained with twist-averaged
boundary conditions. A calculation with a special point in the
twist is very close to the twist-averaged results. However, for
Fermi momenta kF < 1.6 fm−1, the difference between the
PBC and TABC is less than 200 keV per nucleon.

Figure 6 compares nuclear matter results calculated in
the ladder approximation with the CCladd of Ref. [35]. The
latter were obtained by taking the thermodynamic limit in the
relative and center-of mass frame and by summing over partial
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FIG. 6. (Color online) Energy per particle of symmetric nuclear
matter for NNLOopt computed in the CCDladd approximation in the
thermodynamic limit using partial-wave expansion (triangles) (partly
adapted from Ref. [35]), with twist averaged boundary conditions
(squares), and with a special point and twisted boundary conditions
(circles). The calculations used A = 132 nucleons and nmax = 4.
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FIG. 7. (Color online) Energy per particle of neutron matter,
computed with the Minnesota potential. Diamonds: AFDMC, circles:
CCD, squares: CCD limited to pp and hh ladders.

waves. The summation over intermediate particle-particle and
hole-hole configurations is performed with an exact Pauli
operator, while the single-particle energies are computed using
an angle-averaging procedure, see Ref. [35] for further details.
For these results, the angle-average approximation, together
with a truncation in the number of partial waves included,
represent the sources of possible errors in the thermodynamic
limit. It is therefore very satisfactory that the results from
different methods are close to each other.

Let us also consider a simple potential model and bench-
mark the results of our coupled-cluster calculations against
virtually exact results from the auxiliary field diffusion Monte
Carlo (AFDMC) method [76]. The Minnesota potential [77] is
a semirealistic nucleon-nucleon interaction that can be solved
accurately with AFDMC. It depends only on the relative
momenta and spin, but lacks spin-orbit or tensor contributions.
The matrix elements of this potential are real numbers. For the
benchmark we employ periodic boundary conditions, A = 66
neutrons, and nmax = 6.

Figure 7 compares the energy per neutron of our lattice
CCD results (circles), and our CCDladd in the thermodynamic
limit, see Ref. [35], to the AFDMC benchmark. Overall, the
agreement is good between all methods. As expected, the CCD
results are more accurate than the CCDladd approximation.

Finally, we turn to 3NFs. The inclusion of 3NFs—even
in the normal-ordered approximation—is still numerically
expensive due to the large number of required matrix elements.
We also study different approximations for 3NFs, and compare
the results for symmetric nuclear matter when 3NFs only
enter in the normal-ordered approximation as zero-body,
one-body, or up to two-body forces. Figure 8 clearly shows
that normal-ordered two-body forces are relevant.

III. RESULTS FOR CHIRAL INTERACTIONS

In this section, we present our results for coupled-cluster
computations of neutron matter and symmetric nuclear matter.
As shown in the previous section, the finite size effects
(and the differences between PBC and TABC) are small for
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FIG. 8. (Color online) Energy per particle of symmetric nuclear
matter computed in the CCD approximation with NNLOopt + 3NF
(cE = −0.389, cD = −0.39). The 3NF is included in the zero-body
(black dashed-dotted line), one-body (red dashed line), and in the
two-body (blue solid line) normal-ordered approximations. The
calculations used A = 132 nucleons and nmax = 4.

A = 66 neutrons and A = 132 nucleons when calculating
neutron matter and symmetric nuclear matter, respectively.
For this reason, many of the expensive calculations involving
3NFs are only performed with PBC at these specific particle
numbers.

A. Neutron matter

Figure 9 shows the energy per neutron as a function of
density based on NN interactions alone and compares various
many-body methods. The employed NN interaction NNLOopt

is perturbative in neutron matter, with second-order many-
body perturbation theory (MBPT2), CCD and CCDladd giving

FIG. 9. (Color online) Energy per particle in neutron matter with
NNLOopt (NN only). The black dashed line is Hartree-Fock (HF),
the green dashed-dotted line is second-order many-body perturbation
theory (MBPT2), the blue dashed line is coupled-cluster doubles
ladder approximation (CCDladd), and the red solid line is coupled-
cluster doubles (CCD). The calculations used A = 66 neutrons,
nmax = 4, and TABC3.
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FIG. 10. (Color online) Energy per particle in neutron matter
with NNLOopt (NN only) and with inclusion of 3NF computed in
the CCD and CCD(T) approximations. The 3NF LECs are given
by cE = −0.389 and cD = −0.39. The calculations used A = 66
neutrons, nmax = 4, and PBC and TABC. The QMC results are from
Refs. [28,30].

similar results that differ by less than 1 MeV per neutron at
nuclear saturation density.

Figure 10 shows the effect of 3NFs in CCD calculations of
the EoS for neutron matter. We consider several approxima-
tions involving 3NFs, and it is seen that they yield very similar
results. We note that three-nucleon forces act repulsively. The
results for neutron matter reported here are consistent with the
recent calculations of Krueger et al. [46], and our results for
the EoS fall within their NNLO uncertainty band. The CCD
calculation that includes the normal-ordered 3NFs is shown as
diamonds. Triples corrections that are limited to the inclusion
of up to two-body terms from the normal-ordered 3NF are
shown as circles, while triples corrections that include also the
residual 3NF are shown as squares. For neutron matter, the
effects of triples are small and account for about 0.3 MeV per
neutron at high densities, and the residual 3NFs contribute
little to the triples corrections. At very low densities, the
coupled-cluster results are in agreement with results from
quantum Monte Carlo (QMC) calculations [27,28,30,78]. In
this low-density regime the physics is dominated by the large
scattering length, and the EoS becomes independent of the
short-ranged parts of the nuclear interaction.

B. Nuclear matter

In this subsection we perform coupled-cluster calculations
of symmetric nuclear matter using chiral NN and 3NF
interactions at NNLO. Figure 11 shows the energy per
nucleon in symmetric nuclear matter for a wide range of
densities computed in MBPT2, the CCDladd, and in the CCD
approximation with the NN potential NNLOopt. In these
calculations we used A = 132 nucleons, nmax = 4, and TABC
based on 33 angles. We observe that the saturation point is
at a too-large density, and we get a considerable overbinding.
These results for NNLOopt are in good agreement with the
recent self-consistent Green’s function (SCGF) calculations
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FIG. 11. (Color online) Energy per particle in symmetric nuclear
matter with NNLOopt (NN only) computed in the MBPT2 (triangles
with green dashed-dotted line), CCDladd (circles with blue dashed
line), and CCD (squares with solid red line) approximations. The
calculations used 132 nucleons, nmax = 4, and TABC3. Diamonds
are results from self-consistent Green’s function (SCGF) at the finite
temperature T = 5 MeV, taken from Ref. [34].

of nuclear matter [34], and the CCDladd calculations of
Ref. [35]. The difference between MBPT2 and CCD is about
2 MeV below saturation energy and about three times as large
as for neutron matter. The difference between the CCDladd

approximation and the full CCD calculations is around 1 MeV
per nucleon around saturation density. We can conclude
that—in contrast to neutron matter—for nuclear matter and
the NNLOopt interaction (which is rather soft), nonlinear terms
in the T2 amplitude and particle-hole excitations yield non-
negligible contributions. These results indicate that nuclear
matter for the NNLOopt chiral interaction is not perturbative.
We note also that the coupled-cluster calculations are difficult
to converge for Fermi momenta smaller than about 0.8 fm−1.
This is presumably due to the clustering of nuclear matter at
low densities [79]. We also note that the results shown Fig. 11
at high densities are beyond the presumed valididy of the
underlying EFT.

Let us turn to 3NFs. Figure 12 shows the energy per nucleon
in symmetric nuclear matter for a wide range of densities
computed with MBPT2, CCD, and the CCD(T) approxima-
tion. The CCD calculations included the 3NF in the normal-
ordered two-body approximation. The CCD(T) calculations
were performed with 3NFs in the normal-ordered two-body
approximation [CCD(T+3NFNO2b)], and going beyond the
normal-ordered two-body approximation by including the
leading-order residual 3NF contribution to the perturbative
estimate for the T3 amplitude [CCD(T+3NFNO3b)]. In these
calculations we used A = 132 nucleons with PBC and nmax =
4. For the densities we consider here, the difference between
PBC and TABC is small.

In contrast to calculations of neutron matter, the
contribution from the perturbative triples corrections is sizable
in nuclear matter, and about 1 MeV per nucleon in the range of
densities shown when including the 3NF in the normal-ordered
two-body approximation. Furthermore, we find that the contri-
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FIG. 12. (Color online) Energy per particle in symmetric nuclear
matter with NNLOopt and 3NF computed in the MBPT2 (squares with
green dashed-dotted line), CCD (circles with blue dashed line), and
CCD(T) with 3NF in the normal-ordered two-body approximation
(diamonds with solid red line), and including the residual 3NF in
leading order (triangles with dotted black line). The 3NF LECs are
given by cE = −0.389 and cD = −0.39. The calculations used 132
nucleons, nmax = 4, and PBC.

bution of the residual 3NF to the CCD(T) energy is significant
around saturation density, indicating that the normal-ordered
two-body approximation for the 3NF might not be sufficient in
symmetric nuclear matter. We checked that the contribution of
the residual 3NF to the CCD amplitude equations is negligible,
and therefore it might be sufficient to include the full 3NF
in the perturbative triples amplitude. In order to check the
accuracy of the perturbative triples approximation [CCD(T)]
in nuclear matter we also performed non-perturbative,
iterative CCDT-1 (see Refs. [80,81]) calculations for A = 28
and nmax = 3 at two different densities kF = 1.3 fm−1

and kF = 1.6 fm−1. We found that the difference between
CCD(T) and CCDT-1 in this range of densities is at most 0.1
MeV per nucleon. Therefore, we conclude that the CCD(T)
approximation is accurate for the NN potential NNLOopt and
chiral 3NFs in symmetric nuclear matter.

C. Scheme dependence of three-nucleon forces

In this subsection, we try to further illuminate the role of
3NFs in nucleonic matter. We study different regularization
schemes, and compute the energy per particle in pure neutron
matter and symmetric nuclear matter. The 3NF employed in
the previous subsections exhibits a cutoff of � = 500 MeV.
This cutoff is in the momentum transfer, and therefore local
in position space [62]. This choice of regulator for the 3NF
is different from the regularization scheme that is used in the
nucleon-nucleon sector, and from other regularizations of the
3NF that exhibit cutoffs on Jacobi momenta [40]. We note that
regulators that cut off initial and final Jacobi momenta lead to
nonlocal interactions. Here, the cutoff function is

fR( �p,�q) = exp

[
−

(
4p2 + 3q2

4�2

)n]
,
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FIG. 13. (Color online) Energy per particle in pure neutron mat-
ter with NNLOopt and 3NF computed in the CCD(T) approximation
including 3NFs in the normal ordered two-body approximation and
including the residual 3NF in the CCD(T: wT2 = 0) approximation.
For the 3NF we used a local regulator with cutoffs � = 400 and
� = 500 MeV. The 3NF LECs are given by cE = −0.389 and
cD = −0.39 for the � = 500 MeV local regulator, while for the
� = 400 MeV local regulator we used cE = −0.27 and cD = −0.39
with cE adjusted to the 4He binding energy. For the nonlocal regulator
with � = 500 MeV cutoff we used cE = −0.791 and cD = −2
adjusted to the triton and 3He binding energies. The calculations
used 66 neutrons, nmax = 4, and PBC.

with �p = (�k1 − �k2)/2 and q = [�k3 − (�k1 − �k2)/2](2/3). This
regulator reduces to the regulator used in the NN sector for
�q = 0. In the NN potential NNLOopt we use n = 3, while for
the local regulator of the 3NF defined in Ref. [62] we use n = 2
in the exponential. In what follows, we compare the NNLOopt

interaction with a 3NF that also uses a local regulator but a
lower cutoff of � = 400 MeV, and with a 3NF that employs
a nonlocal regulator and a cutoff � = 500 MeV in relative
Jacobi momenta.

Figure 13 shows the energy per particle in pure neutron
matter computed in the CCD(T) approximation. Here we
included 3NFs in the normal ordered two-body approximation,
and in the CCD(T: wT2 = 0) approximation. For the latter,
we went beyond the normal ordered two-body approximation
and included the residual three-body term w that enters at
first order in the triples equation for T3. In neutron matter the
contribution from the residual 3NF w to the energy per particle
is small. This indicates that the normal-ordered two-body
approximation works very well. In the EoS calculation with the
local regulator and the lower cutoff � = 400 MeV we adjusted
the LECs of the three-body contact term to cE = −0.27 and
kept cD unchanged. Then, the binding energies of the triton
and the nuclei 3,4He are close to the experimental values. For
the nonlocal regulator with cutoff � = 500 and power n = 2
in the exponential, the LECs cE = −0.791 and cD = −2
reproduce the triton and 3He binding energies. In pure neutron
matter the contributions from the 3NF contact terms with the
LECs cE and cD vanish for a nonlocal regulator, and the
contribution to the EoS depends only on the pion-nucleon
couplings c1 and c3 of the long-range two-pion exchange term
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FIG. 14. (Color online) Same caption as in Fig. 13, except that
the energy per particle is for symmetric nuclear matter. The calcula-
tions used 132 nucleons, nmax = 4, and PBC.

of the 3NF [42]. However, for a local regulator the 3NF contact
terms do not vanish in neutron matter [29]. The results for the
EoS for pure neutron matter show a regulator dependence at
densities beyond ρ = 0.08 fm−3. The band obtained from the
different 3NF regulators are within the corresponding band for
neutron matter obtained in Ref. [46].

Figure 14 shows the corresponding plot for the energy
per particle in symmetric nuclear matter. Here the results
for the local regulator with a cutoff � = 500 MeV exhibit
a considerable enhancement of the contribution from the
residual 3NF w to the energy per particle at densities above
the saturation densities. The sizeable triples contribution of
the residual 3NF w questions the usually observed hierarchy
of the coupled-cluster approximation. The results from the
lower cutoff � = 400 MeV are much more satisfactory in
the sense that the contribution from the residual three-body
part w to the binding energy per particle is considerably
smaller, and at the order of 0.5 MeV or less for the densities
considered. Likewise, the results obtained with the non-local
regulator at the cutoff 500 MeV are also satisfactory in the
sense that the contribution from the residual 3NF w is at
most 1 MeV to the energy per particle at densities beyond the
saturation point. One might speculate whether this problematic
feature of the local regulator with a cutoff 500 MeV is related
to the large cutoff dependence found in finite nuclei using
this regulator [69]. Naively one would expect that regulator
dependencies are higher-order corrections in an EFT. The
large scheme dependencies observed in Fig. 14 might therefore
suggest that the cutoff � = 500 MeV is too close to the EFT
breakdown scale.

For local and nonlocal regulators we considerably un-
derbind nuclear matter. The saturation density for the local
regulators is too high, while for the nonlocal regulator the
saturation density is closer to the empirical value. We tried
to adjust the LECs cE and cD such that an acceptable result
could be obtained simultaneously for the saturation point in
symmetric nuclear matter and the triton binding energy. For the
nonlocal regulator the result is shown in Fig. 15. The blue band
shows the region where the triton binding energy is reproduced
within 5%. The red band shows the region where the saturation
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FIG. 15. (Color online) The blue band shows the region where
the triton binding energy is reproduced within 5% of the experimental
value. The red band shows the region where the saturation fermi
momentum in symmetric nuclear matter is reproduced within 5% of
its empirical value, and the green band shows the region where the
energy per nucleon is within 5% of the empirical value.

Fermi momentum is within 5% of its empirical value, and the
green band shows the region where the energy per nucleon
is within 5% of the empirical value. The nuclear matter
calculations were obtained from MBPT2 calculations using 28
nucleons, and we accounted for about 1 MeV per nucleon in
missing correlations energy, and about 0.5 MeV per nucleon
due to finite size effects. It thus seems that a simultaneous
reproduction of saturation in light nuclei and infinite matter is
not possible without adjusting other LECs. As an example we
considered the point cE = 0.3 and cD = −2.0. This yields the
saturation point kF ≈ 1.4 fm−1 and E/A ≈ 15.5 MeV, while
the triton binding energy is −13.53 MeV.

We would like to understand better the role that different
regulators and cutoffs play for the chiral 3NF. Unfortunately, it
is difficult to visualize 3NFs in momentum space [82,83]. We
therefore compute the MBPT2 contribution of the residual
3NF w and cut off the involved momentum integrations
at a single-particle momentum kcut. Figure 16 shows the
fractional contribution of the MBPT2 energy correction of
the residual 3NF as a function of kcut at the Fermi momentum
kF = 1.3 fm−1. The chiral cutoff of � = 500 MeV is also
shown as a dashed line for comparison. We see that for the local
cutoff � = 500 MeV most contributions to the MBPT2 result
are from high single-particle momenta that are well above the
nominal chiral cutoff. The situation is improved for the local
regulator with lower cutoff � = 400 MeV and even more so
for the nonlocal regulator with cutoff � = 500 MeV. For a
discussion of different cutoff schemes and convergence issues
in calculations of the homogeneous electron gas see Ref. [54].

Let us finally note that issues with 3NFs also arose in other
calculations. Lovato et al. [29] pointed out that the equivalence
of different chiral 3NF contact terms [40] is spoiled by local
regulators. Roth et al. [84] used SRG evolution to soften the
chiral NN interaction of Ref. [85] combined with the local
3NF of Ref. [62], and found that the results in medium-mass
nuclei depend considerably on the SRG evolution scale. This
dependence is reduced for a cutoff � = 400 MeV in the local
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FIG. 16. (Color online) Cutoff dependent fraction of the residual
3NF contribution to the MBPT2 energy per particle in symmetric
nuclear matter for different regulators. Results are shown for the
local regulator with � = 500 MeV (diamonds), the local regulator
with � = 400 MeV (squares), and for the non-local regulator with
� = 500 MeV (circles). Calculations used 132 nucleons, nmax = 4,
and PBC.

3NF [69]. Clearly, more studies of chiral 3NFs are necessary
to fully understand regularization scheme dependences.

IV. SUMMARY

We have performed coupled-cluster calculations of nu-
cleonic matter with interactions from chiral EFT at NNLO.
The single-particle states consist of a discrete lattice in
momentum space, and the implementation of twist-averaged
boundary conditions mitigates shell oscillations and finite-size
effects. Our benchmark calculations agree well with other well
established methods. We find that neutron matter is pertur-
bative, while symmetric nuclear matter is not perturbative,
with significant contributions beyond perturbation theory and
particle ladders.

For the employed NN potential NNLOopt and 3NFs,
the neutron matter results fall within the error estimates of
previous calculations for chiral interactions, with 3NFs acting
repulsively. For nuclear matter, the empirical saturation could
not be reproduced, and the results are very sensitive to the
employed regulator (local vs nonlocal) and cutoff. At larger
chiral cutoffs, the nonlocal regulator is preferred over the local
one because it corresponds closer to the cutoff generated by
the finite single-particle basis. It seems that the variation of
the 3NF contact terms alone is insufficient to achieve both an
acceptable saturation point of nuclear matter and an acceptable
binding of light nuclei.
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