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The 4
��H bound state and the S-wave hypertriton( 3

�H)-� scattering in spin singlet and triplet channels below
the hypertriton breakup momentum scale are studied in halo/cluster effective field theory at leading order by
treating the 4

��H system as a three-cluster (�-�-deuteron) system. In the spin singlet channel, the amplitude is
insensitive to the cutoff parameter �c introduced in the integral equation, and we find that there is no bound
state. In this case, the scattering length of the hypertriton-� scattering is found to be a0 = 16.0 ± 3.0 fm. In the
spin triplet channel, however, the amplitude obtained by the coupled integral equations is sensitive to �c, and we
introduce the three-body contact interaction g1(�c). After phenomenologically fixing g1(�c), we find that the
correlation between the two-� separation energy B�� from the 4

��H bound state and the scattering length a��

of the S-wave �-� scattering is significantly sensitive to the value of �c.
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I. INTRODUCTION

Light double-� hypernuclei are exotic few-body systems
that provide opportunities to investigate the flavor SU(3)
structure of baryon-baryon interactions in the strangeness S =
−2 channel [1–3]. They are also expected to have a key role in
resolving the long-standing puzzle of the existence of the H
dibaryon [4], which has attracted recent interest triggered by
lattice QCD simulations [5,6]. Since the seminal experiments
on double-� hypernuclei of Refs. [7,8], however, there are
only a few reports on the observation of double-� hypernuclei
and, as a result, our understanding of these systems is still
very poor. In the KEK-E373 experiment the �� interaction
energy1 inside 6

��He is measured as �B�� � 1.0 MeV, which
suggests a weakly attractive �� interaction [9]. In addition,
the formation of another double-� hypernucleus, 4

��H, is con-
jectured in the BNL-AGS E906 experiment [10]. Theoretically,
although the first Faddeev-Yakubovsky calculation showed a
negative result [11], subsequent theoretical studies [12–15]
predicted the possibility of the 4

��H bound state based on
the phenomenological �� potentials which can describe the
bound state of 6

��He.
Since the stability of double-� hypernuclei depends on the

�� interaction, more accurate information on this interaction
is strongly required. Recently, the scattering length a�� of
S-wave �� scattering is deduced from the 12C(K−,K+��X)
reaction [16], which leads to a�� = −1.2 ± 0.6 fm [17], and
the data for the Au+Au collisions at the Relativistic Heavy
Ion Collider [18] are analyzed to obtain a�� � −1.25 fm in
Ref. [19]. These values are consistent with those extracted
from the leading order calculations for the S = −2 baryon-
baryon interactions in chiral effective theory [2] and in the
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1The �� interaction energy �B�� is defined as �B��( A

��Z) =
B��( A

��Z) − 2B�(A−1
�Z), where B�� and B� are binding energies of

the corresponding nuclei.

Nijmengen ESC04d phenomenological potential model [20].
On the other hand, other phenomenological potential model
predictions are scattered in values from −0.27 fm to −3.804 fm
even though such models could explain the existence of
the 6

��He bound state. The present situation is summarized,
for example, in Table I of Ref. [17]. This may imply that
the parameter space of potential models would be too large
to determine unambiguously the parameter values from the
currently available experimental data. In such a situation,
it would be worth studying the structure of hypernuclei by
employing a very low energy effective field theory (EFT)
which has a low separation scale, a well defined expansion
scheme, and a few parameters to determine.

The methods of EFT have become popular in many fields.
(For a review, see, e.g., Refs. [21,22].) In this scheme, a theory
is constructed based on a scale which separates low energy and
high energy degrees of freedom, and the theory constructed
in such a way provides a systematic perturbative expansion
in powers of Q/�H , where Q is the typical scale of the
reaction in question and �H is the large (or high energy) scale.
High energy degrees of freedom above �H are integrated out
and their effects are accounted for through the coefficients of
contact interactions, so-called low energy constants, in higher
order.

In this work, we investigate the relation between the 4
��H

bound state and the S-wave hypertriton-� scattering below
the hypertriton breakup momentum for spin singlet and triplet
channels by employing halo/cluster EFT at leading order (LO).
In particular, we treat the 4

��H hypernucleus as a three-body
��d system, where d stands for a deuteron. Although the
scattering experiment with double-� systems is not feasible
in the near future, qualitative information from the scattering
results can be possibly connected to the bound state problem,
which is main motivation of the present work.

Below the hypertriton breakup momentum, we can choose
the typical momentum (Q) of the reaction as the � particle
separation momentum from the hypertriton, which is defined
by γ�d = √

2μ�dB� � 13.5 ± 2.6 MeV, where μ�d is the
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reduced mass of the �d system and B� is the � particle
separation energy from the hypertriton, B

expt.
� � 0.13 ± 0.05

MeV [23]. On the other hand, the large (high momentum)
scale �H is chosen to be the deuteron binding momentum,
γ = √

mNB2 � 45.7 MeV, where mN is the nucleon mass
and B2 is the deuteron binding energy, B2 � 2.22 MeV. Then
our expansion parameter is Q/�H ∼ γ�d/γ � 1/3, which
supports our expansion scheme. Because the deuteron is not
broken up into two nucleons at low momentum below the
deuteron binding momentum, we may treat the deuteron field
as a cluster field, i.e., like an elementary field.

The ��d system can form spin singlet and spin triplet
states for the 4

��H channel and we consider only the S-wave
case for the relative orbital angular momentum. For the spin
singlet channel of the S-wave hypertriton-� scattering, we
obtain a single integral equation for the scattering amplitude,
which is parameterized by the effective range parameters of the
S-wave �-d scattering in the hypertriton channel, namely, the
scattering length a�d (or equivalently the hypertriton binding
momentum γ�d ) and the effective range r�d . The integral is
regularized by introducing a sharp momentum cutoff �c in the
integral equation. We find that when the cutoff �c is larger than
�H , there is no cutoff dependence in the results, which implies
that the system is insensitive to the short range mechanism
[24]. This then suggests that introducing a three-body contact
interaction at LO is not necessary. In addition, here we employ
the standard Kaplan-Savage-Wise (KSW) counting rules [25],
where the effective range, r�d , is treated as a higher order term.
This shows that the scattering length a0 and the phase shift δ0
of the S-wave hypertriton-� scattering are well controlled
by γ�d .

On the other hand, for the spin triplet channel, coupled
integral equations are obtained for the scattering amplitudes.
Because of spin statistics these equations consist of two cluster
channels. One is the hypertriton-� channel of spin-1 and the
other is the deuteron and double-� system, where we assume
that the double-� is described by the ��-dibaryon state and
the components in the cluster states are in relative S wave. We
find that the coupled integral equations show a sensitivity to
the cutoff �c. Thus, as in the case of three-nucleon system
in the triton channel within pionless EFT [26], a three-body
contact interaction needs to be introduced in order to make
the results cutoff independent. In addition, within the standard
KSW counting rules [25] the dressed composite propagators
of the hypertriton for the �-d composite state and of the
dibaryon for two � particles in 1S0 state are expanded in terms
of the effective range parameters. Thus the coupled integral
equations are represented in terms of only four parameters at
LO, namely, γ�d , a��, the coupling of the three-body contact
interaction g1(�c), and the cutoff �c. Unlike the effective
range parameters, however, there are no experimental data to
constrain g1(�c) for 4

��H.
Because of the paucity of empirical information to constrain

the low energy constants it is very hard to draw a robust
prediction on the existence of the bound state in the 4

��H
channel. Therefore, instead of tackling the problem of the
existence of bound states we investigate the effect of the
contact term in the 4

��H system. For this purpose we consider
two cases. In the first case, we do not include the contact

interaction by setting g1 = 0. Then the system is found to
have a large negative scattering length at �c � �H , which
may imply the formation of a quasi-bound state. Furthermore,
if �c is sent to the asymptotic limit, �c → ∞, we find that a
bound state arises in the system.

In the second case, we turn on the contact interaction. To
constrain the value of g1(�c), we employ the results of the
potential model calculations of Refs. [11,12] and determine
g1(�c) by using the computed double-� separation energy
B�� of 4

��H for given values of a��. Then we find that the
renormalized g1(�c) exhibits the so-called limit-cycle when
�c is sent to the asymptotic limit. In the present work, we also
calculate B�� as a function of a�� for a fixed g1(�c) and a
correlation between B�� and 1/a1 as well, where a1 is the
scattering length of the S-wave hypertriton-� scattering in the
spin triplet channel at LO. We find that the a�� dependence
of B�� is quite sensitive to the value of �c. For example,
B�� is found to be almost insensitive to a�� when �c � �H .
On the other hand, the reported a�� dependence of B�� in
the potential model calculations of Refs. [11,12] is recovered
when �c � 6�H . In the present work, we will investigate the
implications of the choice on the cutoff �c and the a�� and
�c dependence of the properties of 4

��H system in the cluster
theory.

This paper is organized as follows. We start with the
relevant effective Lagrangian in the next section, which defines
notations and our basic tools for studying hypernuclei. In
Sec. III, the two-body parts of the ��d system, i.e., the
dressed �� dibaryon propagator in 1S0 channel and the dressed
hypertriton propagator (as a �d system), are constructed. In
Sec. IV, the integral equations of the ��d three-body system
for the S-wave hypertriton-� scattering are constructed in
the spin singlet and triplet states. The numerical results are
presented in Sec. V, and Sec. VI contains a summary and
conclusions of this work.

II. EFFECTIVE LAGRANGIAN

In EFT, effective Lagrangian is constructed on the sym-
metry requirement with relevant degrees of freedom at low
energies being expanded in terms of the number of derivatives
order by order [27]. The effective Lagrangian at LO for this
work can be written as

L = L� + Ld + Ls + Lt + L�t . (1)

Here,L� andLd are the standard one-body � and (elementary)
deuteron Lagrangian in the heavy-baryon formalism [28],
which read

L� = B†
�

[
iv · ∂ + (v · ∂)2 − ∂2

2m�

]
B� + · · · , (2)

Ld = d
†
i

[
iv · ∂ + (v · ∂)2 − ∂2

2md

]
di + · · · , (3)

where B� is the �-baryon field of spin-1/2, di is the deuteron
(vector) field of spin-1, and vμ is a velocity vector with vμ =
(1,0) in our case. The � and deuteron masses are represented
by m� and md , respectively. The dots denote the higher order
terms that are irrelevant for the LO calculations.
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Equation (1) also contains the Lagrangian for the compos-
ites containing strangeness. For this purpose, we introduce s
and t fields to denote the �� dibaryon in the 1S0 state and
the �d composite in the 2S1/2 state. Then Ls and Lt are the
Lagrangians for these fields including s ↔ �� and t ↔ �d
interactions, which read [29–31]

Ls = σss
†
[
iv · ∂ + (v · ∂)2 − ∂2

4m�

+ �s

]
s

− ys

[
s†

(BT
�P (1S0)B�

) + H.c.
] + · · · , (4)

Lt = σt t
†
[
iv · ∂ + (v · ∂)2 − ∂2

2(md + m�)
+ �t

]
t

+ yt√
3

[t† �σ · �d B� + H.c.] + · · · , (5)

where σs and σt are sign factors, �s and �t are the mass differ-
ences between the composite states and their constituents, and
ys and yt are coupling constants. The spin projection operator
of the �� composite onto the 1S0 state is

P (1S0) = − i

2
σ2, (6)

The three-body contact interaction is given by the La-
grangian L�t , where t and � fields are in the 3S1 channel,
which reads

L�t = −g1(�c)

�2
c

(BT
�P

(3S1)
i t

)†(BT
�P

(3S1)
i t

) + · · · , (7)

with the spin projection operator onto the 3S1 state,

P
(3S1)
i = − i

2
σ2σi. (8)

The coupling constant of the three-body contact interaction is
given by g1(�c) as a function of the cutoff �c which will be
introduced in the integral equations below.

III. TWO-BODY PART

A. S-wave �� scattering in 1S0 channel

At low energies, we assume that the dominant partial wave
of �� scattering is the 1S0 state and the scattering process can
be described by the effective range parameters. Therefore, this
is similar to the low-energy nucleon-nucleon scattering in the
1S0 channel studied, for example, in Ref. [30]. Diagrams for
the dressed dibaryon field and for the scattering amplitude are
shown in Figs. 1 and 2, respectively.

Referring the details to Ref. [30], we can obtain the
scattering amplitude in the center-of-mass (CM) frame as

A(E) = 4π

m�

(
− 1

a��

+ 1

2
r��k2 − ik

)−1

, (9)

= + + + ...

FIG. 1. Diagrams for dressed dibaryon propagator. On the right-
hand side, the double solid line represents the bare dibaryon
propagator and the single solid line denotes the � propagator.

FIG. 2. Diagram for �� scattering amplitude. A double line with
a filled circle denotes a dressed propagator as explained in Fig. 1.

where a�� and r�� are the scattering length and effective
range of �� scattering in the 1S0 channel. The on-shell total
energy is E = k2/m� with k = |k|.

Thus the renormalized dressed dibaryon propagator can be
written as

Ds(p0, p) = 4π

m�y2
s

[
1

a��

+ 1

2
r��

(
−m�p0 + 1

4
p2 − iε

)

−
√

−m�p0 + 1

4
p2 − iε

]−1

(10)

and

ys = − 2

m�

√
2π

r��

. (11)

Here, p0 and p are the off-shell (loop) energy and momentum
which do not satisfy the on-shell condition in the CM frame
mentioned above. In addition, we have suppressed the cutoff
dependence in the effective range parameters from the bubble
diagrams. We use the same cutoff value for renormalizing a��

and r�� in the three-body part, which will be discussed in
Sec. IV.

B. S-wave �d system in hypertriton channel

The hypertriton ( 3
�H) has the quantum numbers of Jπ =

1/2+ and T = 0, where T stands for isospin, and its �
separation energy is B� = 0.13 ± 0.05 MeV [23]. We refer
the readers to Ref. [32] for a study on this state within pionless
EFT.

Shown in Fig. 3 are the diagrams for the dressed hypertriton
(t field) propagator as a �d composite state. Then the

= + + + ...

FIG. 3. Diagrams for dressed hypertriton propagator as a �d

system. In the right-hand side, the solid line denotes the � hyperon
while the thick solid line represents the deuteron. The bare t field as
a �d composite state in hypertriton channel is denoted by the double
(thin and thick) solid line.
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renormalized dressed hypertriton propagator is obtained as

Dt (p0, p) = 2π

μ�dy
2
t

{
1

a�d

+ 1

2
r�d

[
−2μ�d

(
p0 − 1

2(m� + md )
p2 + iε

)]
−

√
−2μ�d

(
p0 − 1

2(m� + md )
p2 + iε

)}−1

(12)

with

yt = − 1

μ�d

√
2π

r�d

, (13)

where μ�d is the reduced mass of the �d system, i.e., μ�d =
m�md/(m� + md ), and a�d and r�d are the effective range
parameters of the S-wave �-d scattering in the hypertriton
channel. In Ref. [32], these effective range parameters are
estimated as a�d = 16.8+4.4

−2.4 fm, and r�d = 2.3 ± 0.3 fm,
which leads to γ�d = 1/a�d + r�dγ

2
�d/2 � 12.8 MeV when

we use the central values of the parameters. This value is
consistent with the one given in Sec. I within error.

Since there exists a bound state for hypertriton, the
propagator should have a pole at k = iγ�d and we may rewrite
the on-energy-shell dressed propagator as

Dt (E) = 2π

μ�dy
2
t

[
γ�d − 1

2
r�d

(
k2 + γ 2

�d

) + ik

]−1

, (14)

where E = k2/(2μ�d ). Furthermore, near the pole, the prop-
agator can be further simplified as

Dt (E) � Z�d

E + B�

with Z�d = γ�dr�d

1 − γ�dr�d

, (15)

where Z�d is the wave function normalization factor of the
hypertriton as a �d system. Since the inverse of the effective
range has a large scale, r−1

�d � 86 MeV, one can see that
the KSW counting rules, where the propagator and Z�d are
expanded in terms of r�d , would be a good approximation,
which can be seen from the fact that γ�dr�d � 0.16 < 1/3.

IV. THREE-BODY PART

In this section, we construct the integral equations for
S-wave scattering of hypertriton and �, which has two spin
channels, S = 0 and 1, because both the hypertriton and �

have spin-1/2. For S = 0 channel, the amplitude t(p,k; E)
consists of hypertriton-� channel only. In Fig. 4, diagrams of
the integral equation for the scattering amplitude are shown,
which lead to

t(p,k; E) = −3K(a)(p,k; E) + 1

2π2

∫ �c

0
d
 
2 3K(a)(p,
; E)

×Dt

(
E − 
2

2m�

,�

)
t(
,k; E) (16)

with the one-deuteron-exchange interaction K(a)(p,l; E),

K(a)(p,
; E) = 1

3

mdy
2
t

2p

ln

( md

2μ�d
(p2 + 
2) + p
 − mdE

md

2μ�d
(p2 + 
2) − p
 − mdE

)
,

(17)

where p and k are relative off-shell and on-shell momenta of
hypertriton-� scattering in the CM frame, respectively, and E
is the total energy,

E = − γ 2
�d

2μ�d

+ 1

2μ�(�d)
k2, (18)

with μ�(�d) being the reduced mass of the �-(�d) system
so that μ�(�d) = m�(m� + md )/(2m� + md ). A sharp cutoff
momentum �c was introduced as before in the integral
equation. However, as we shall see below, the integral equation
is insensitive to the value of �c, which weakens the necessity
of three-body contact interactions.

For the S = 1 channel, however, we have two scattering
amplitudes, namely, a(p,k; E) for the spin triplet �t (�
and hypertriton) cluster channel and b(p,k; E) that connects
the �t cluster channel to the ds (deuteron and the ��
dibaryon) cluster channel. In Fig. 5, diagrams of coupled
integral equations are presented, from which we obtain

a(p,k; E) = K(a)(p,k; E) − g1(�c)

�2
c

− 1

2π2

∫ �c

0
d
 
2

[
K(a)(p,
; E) − g1(�c)

�2
c

]
Dt

(
E − 
2

2m�

,�

)
a(
,k; E)

− 1

2π2

∫ �c

0
d
 
2K(b1)(p,
; E)Ds

(
E − 
2

2md

,�

)
b(
,k; E), (19)

b(p,k; E) = K(b2)(p,k; E) − 1

2π2

∫ �c

0
d
 
2K(b2)(p,
; E)Dt

(
E − 
2

2m�

,�

)
a(
,k; E),

with one-�-exchange interactions K(b1)(p,
; E) and
K(b2)(p,
; E), which read

K(b1)(p,
; E)

= −
√

2

3

m�ysyt

2p

ln

[
p2 + m�

2μd�

2 + p
 − m�E

p2 + m�

2μd�

2 − p
 − m�E

]
, (20)

K(b2)(p,
; E)

= −
√

2

3

m�ysyt

2p

ln

[ m�

2μd�
p2 + 
2 + p
 − m�E

m�

2μd�
p2 + 
2 − p
 − m�E

]
. (21)

In Eq. (19), we have introduced the three-body con-
tact interaction that contains the coupling constant
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= +

FIG. 4. Diagrams of the integral equation for S-wave scattering
of hypertriton and � for spin singlet (S = 0) channel. See the caption
of Fig. 3 as well.

g1(�c).2 As we shall see below, the integral equations depend
on the cutoff �c, and g1(�c) accounts for the high momentum
effects above �c.

V. NUMERICAL RESULTS

A. S-wave scattering of hypertriton and � in S = 0 channel

In the dressed hypertriton propagator Dt given in Eq. (12),
there are two singularities at 
 � 13 MeV and 
 � 172 MeV
when E = 0 in Eq. (19). The first one corresponds to the
binding momentum of the hypertriton in the �-d system
and the second one to an unphysical deeply bound state. We
avoid the effect from the unphysical deeply bound state by
expanding the effective range correction, as mentioned above,
employing the KSW counting rules.

The on-shell scattering matrix is given by

T (k,k) = √
Z�d t(k,k; E)

√
Z�d , (22)

and thus the integral equation in terms of the half-off-shell
scattering matrix at LO reads

T (p,k) = −3γ�dr�dK(a)(p,k; E)

− 3

2π2
μ�(�d)r�d

∫ �c

0
d
K(a)(p,
; E)

×
{

γ�d+
√

γ 2
�d+

μ�d

μ�(�d)

(
2 − k2)

}

2T (
,k)


2 − k2 − iε
.

(23)

This shows that the integral equation is expressed in terms
of two parameters, namely, γ�d and �c, in addition to the
deuteron and � masses. As mentioned before, this integral

2The coupling constant g1(�c) is a dimensionless quantity.
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FIG. 6. Phase shift δ0 (in degrees) of the S-wave hypertriton-�
scattering in the spin singlet channel as a function of momentum k

(in MeV).

equation is insensitive to the value of �c and thus the scattering
in the S = 0 channel is well controlled by one effective range
parameter, γ�d .

The scattering length a0 of the S-wave hypertriton-�
scattering in the S = 0 channel is then computed by taking
the limit for the on-shell momentum k → 0, which leads
to T (0,0) = − 2π

μ�(�d)
a0. Here, we introduce the half-off-shell

scattering length a(p,0) as

a(p,0) = −μ�(�d)

2π
T (p,0), (24)

so that it reduces to the scattering length as a0 = a(0,0).
We numerically calculate the off-diagonal part of the

scattering length a0(p,0) with �c ∼ 170 MeV to find that
the off-diagonal part of the scattering length becomes indeed
very small when the off-shell momentum p is larger than
the large scale �H ∼ γ � 45.7 MeV. We also calculate the
scattering length a0(0,0) as a function of the cutoff �c to
find that a(0,0) is nearly independent of the cutoff if it is
relatively small, such as �c � 20 MeV. Therefore, the S-wave
hypertriton-� scattering in the spin singlet channel would be
well described by considering the cutoff region of �c � �H .
From this procedure we obtain

a0 = 16.0 ± 3.0 fm, (25)

= + + + +

= +

FIG. 5. Diagrams of coupled integral equations for S-wave scattering of the hypertriton and � for the spin triplet (S = 1) channel. See the
captions of Figs. 1 and 3 as well.
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which is our prediction on the scattering length,
where the error was estimated from the uncertainties
in γ�d . 3

In Fig. 6, the calculated phase shift δ0 of the S-wave
hypertriton-� scattering in the spin singlet channel is presented
as a function of k. The form of the calculated phase shift δ0

determines the two effective range parameters as a0 � 16.0 fm
and r0 � 2 fm. In addition, we find no limit-cycle in the

numerical calculation of the integral equation within the range
up to �c ∼ 108 MeV.

B. 4
��H bound state and S-wave scattering of hypertriton-�

in the S = 1 channel

For the spin triplet channel, the coupled integral equations
can be rewritten in terms of the half-off-shell scattering
amplitudes a1(p,k) and b1(p,k) which are defined by

a1(p,k) = −Z�d

2π
μ�(�d)

[
K(a)(p,k; E) − g1(�c)

�2
c

]
− 1

2π2

∫ �c

0
d
 
2

[
K(a)(p,
; E) − g1(�c)

�2
c

]
Dt

(
E − 
2

2m�

,�

)
a1(
,k)

− 1

2π2

∫ �c

0
d
 
2K(b1)(p,
; E)Ds

(
E − 
2

2md

,�

)
b1(
,k), (26)

b1(p,k) = −Z�d

2π
μ�(�d)K(b2)(p,k; E) − 1

2π2

∫ �c

0
d
 
2K(b2)(p,
; E)Dt

(
E − 
2

2m�

,�

)
a1(
,k), (27)

with the normalizations

a1(k,k) =
√

Z�d a(k,k)
√

Z�d ,

b1(k,k) =
√

Z�d b(k,k)
√

Z�d .
(28)

The scattering length a1 is then defined as

a1 = −μ�(�d)

2π
a1(0,0). (29)

Because the effect from the unphysical singularities in the dressed dibaryon and hypertriton propagators (Ds and Dt ) on
the scattering length a1 is significant, we employ the KSW counting rules and expand the propagators and the wave function
normalization factor Z�d in terms of the effective ranges r�d and r��, as discussed in Sec. I. Therefore, at LO, the propagators
Dt and Ds and the wave function normalization factor Z�d are written as

DLO
t

(
E − 
2

2m�

,�

)
= −2π μ�(�d)

μ2
�dy

2
t

[
γ�d +

√
γ 2

�d + μ�d

μ�(�d)

(
2 − k2)

]
1


2 − k2 − iε
, (30)

DLO
s

(
E − 
2

2md

,�

)
= 4π

m�y2
s

⎡
⎣ 1

a��

−
√√√√ m�

2μ�d

γ 2
�d − m�

2

(

2

μd(��)

− k2

μ�(�d)

)⎤
⎦

−1

, (31)

ZLO
�d = γ�d r�d , (32)

where μd(��) is the reduced mass of the d-(��) system,
μd(��) = 2m�md/(2m� + md ).

In addition to the masses, therefore, we have four param-
eters, namely, γ�d , a��, g1(�c), and �c.4 In the present
work, we fix γ�d by the hypertriton binding energy. The
parameter a�� may be determined from other available

3Alternatively, one may include the effective range r�d in the dressed
propagator, as in Refs. [33,34] for the studies on the S-wave neutron-
deuteron scattering in the spin quartet channel within pionless EFT.
If we take this procedure, we would obtain a0 = 17.3 ± 2.9 fm.

4In principle, the integral equation depends on the effective ranges
r�d and r�� through the coupling constants yt,s and the normalization
factor ZLO

�d . But this dependence is canceled or included in the
normalization of the amplitude b1, and, therefore, they do not appear
in the final expressions.

empirical information. However, there exists no available
information from the three-body system to constrain the value
of g1(�c). In the present work, therefore, instead of studying
the energy levels of the 4

��H hypernucleus, we examine the
effect of the coupling g1(�c) in this system.

1. Scattering length a1 without three-body contact interaction

We first consider the case when g1(�c) = 0 and calculate
the two-� separation energy B�� in the 4

��H bound state and
the scattering length a1 of the S-wave hypertriton-� scattering
for the spin triplet channel at LO. In this case we find that there
is no bound state formed with the cutoff value in the range of
�c = 50–300 MeV.

In Fig. 7, we present our results for the LO scattering length
a1 with several values of a��, namely, a�� = −0.5, −1.0,
−1.5, −2.0 fm, as a function of the momentum cutoff �c.
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FIG. 7. (Color online) Scattering length a1 of S-wave
hypertriton-� scattering in the S = 1 channel at leading order
as a function of �c for a�� = −0.5, − 1.0, − 1.5, − 2.0 fm.

This shows that the calculated a1 curves show a significant
dependence on �c as well as on a��. The a�� dependence
of a1 becomes more significant when �c is larger than �H as
shown in Fig. 7. When the cutoff parameter �c is down close to
the large scale of the theory, i.e., �c � �H ∼ 45.7 MeV, such
a dependence becomes mild. We then obtain negative values
for the scattering length, namely, a1 � −21.7, −22.7, −23.8,
−24.8 fm for a�� = −0.5, −1.0, −1.5, −2.0 fm, respectively,
with �c = 45.7 MeV. Since a1 is negative and its magnitude
is large, it may imply a formation of a quasibound state.

As �c increases, a1 decreases until it shows a pole-structure
at around �c ∼ 80, 33, 17, 10 GeV depending on the value
of a��. After passing the pole, a1 changes the sign as shown
in Fig. 7. This corresponds to a formation of a bound state
with zero binding energy at such a huge cutoff. In other words,
the one-deuteron-exchange interaction has a sensitivity to �c

and it becomes attractive enough to make a bound state at the
asymptotic limit of the cutoff.

To make the result cutoff-independent, however, one needs
to promote the three-body contact interaction at LO so that
the cutoff dependence is controlled by the additional coupling
constant [26]. We work on in this scheme below.

2. 4
��H bound state with three-body contact interaction

We now consider the case with g1(�c) 	= 0 to investigate its
role in the 4

��H hypernucleus. Since there is no experimental
information to constrain the value of g1(�c), we adopt the
values of this coupling constant determined as follows. We
first assume a formation of the 4

��H bound state due to the
three-body-contact interaction and fit g1(�c) to reproduce the
potential model results of Refs. [11,12]. To be specific, we
choose the following three sets for B�� and a��:

(I) B�� � 0.2 MeV and a�� = −0.5 fm,

(II) B�� � 0.6 MeV and a�� = −1.5 fm, (33)

(III) B�� � 1.0 MeV and a�� = −2.5 fm.

In Fig. 8, we show the calculated strength of the three-body
contact interaction g1(�c) as a function of �c, which can
reproduce the three parameter sets of Eq. (33). One can
see that the curves of g1(�c) are rather mildly varying

-20

-15
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-5

 0
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 15

 20

101 102 103 104 105 106

g 1
(Λ

c)

Λc (MeV)

(I)
(II)

(III)

FIG. 8. (Color online) Coupling g1(�c) of three-body contact
interaction as a function of the cutoff �c which produces a bound
state of 4

��H with three different sets of B�� and a��. See the text
for the parameter sets (I), (II), and (III).

at �c = 10–104 MeV, and each curve has a singularity at
�c ∼ 105 MeV indicating the possibility of the first cycle of
the limit-cycle. This implies that the one-deuteron-exchange
interaction for the S = 1 channel contains an attractive (singu-
lar) interaction at very high momentum, say, �c ∼ 105 MeV.
This property has also been observed in the calculation of a1
as shown in Fig. 7. At such a very high momentum, however,
the applicability of the present theory, a very low energy
EFT, cannot be guaranteed and thus the mechanisms of the
formation of a bound state must have different origins. We note,
on the other hand, that, if we choose g1(�c) � −2 or smaller
at �c ∼ 50 MeV in the coupled integral equations, a bound
state can be created. Such a value of g1(�c) is in a natural size
and may be generated from the mechanisms of high energy
such as σ -meson exchange or two-pion exchange near the
intermediate range of nuclear force, i.e., �c = 300–600 MeV.

In order to study the correlation between B�� and a��, we
calculate B�� as a function of a�� and show the results in
Fig. 9 for various cutoff values, i.e., �c = 50, 150, 300 MeV.

 0.1
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 1.2
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)
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FIG. 9. (Color online) Calculated two-� separation energy B��

from 4
��H bound state as a function of the scattering length a�� of

the S-wave �� scattering for the 1S0 channel with the cutoff values
�c = 50, 150, 300 MeV. The value of g1(�c) of all three curves is
fitted at the point (I): B�� = 0.2 MeV and a�� = −0.5 fm, marked
by a filled square. The points (II) and (III) are also included as blank
squares in the figure.

014318-7



SHUNG-ICHI ANDO, GHIL-SEOK YANG, AND YONGSEOK OH PHYSICAL REVIEW C 89, 014318 (2014)

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0  0.04  0.08  0.12  0.16

B
Λ

Λ
 (

M
eV

)

1/a1 (fm-1)

aΛΛ =-2.0 (fm)
= -1.5 (fm)
= -1.0 (fm)
= -0.5 (fm)

FIG. 10. (Color online) Correlations between B�� and 1/a1 with
a�� = −2.0, −1.5, −1.0, −0.5 fm. The coupling g1(�c) is fixed by
B�� = 0.2 MeV and �c = 50 MeV, marked by open squares in the
upper-right corner, for each value of a��. The curves are obtained by
varying �c from 50 MeV to 300 MeV.

Here, the coupling g1(�c) is fixed by using the parameter
set (I), i.e., B�� = 0.2 MeV and a�� = −0.5 fm, which is
marked by a filled square in Fig. 9. This is achieved with
g1(�c) � −2.48, −2.83, −2.96 for �c = 50, 150, 300 MeV,
respectively. Once the starting values are fixed, we vary the
value of a�� for a fixed value of �c, which changes the
values of B��. We then find that the behaviors of the B��

curves as functions of a�� are quite sensitive to the values
of the cutoff �c. For example, when we choose �c � �H ,
i.e., �c = 50 MeV, B�� is insensitive to the value of a�� and
makes a nearly flat curve as shown by the dotted line in Fig. 9.
However, with a larger cutoff value, �c = 300 MeV, B��

strongly depends on a�� and we can fairly well reproduce the
a�� dependence of B�� obtained by Filikhin and Gal [11] or
Nemura et al. [12].

This may imply that the main part of the correlation between
B�� and a�� in potential model calculations is related to the
high momentum part and, when we choose the cutoff �c �
�H , the mechanisms with high momentum are integrated out
and their effects are absorbed by the renormalized three-body
contact interaction g1(�c). Thus we do not have the dynamics
that is sensitive to the high momentum regime and this leads
to the cutoff-insensitive results. Therefore, when we choose
�c � �H = 50 MeV in our cluster EFT, the theory does
not to adequately probe the �-� interactions, but, when we
choose �c = 300 MeV, we can fairly well reproduce the
results obtained in the potential model calculations. However,
in the latter case, the theory becomes inconsistent because of
neglecting other mechanisms relevant in the high momentum
region, such as the channels of deuteron breakup into two
nucleons and of meson-exchanges among baryons.

In Fig. 10, we present our results on the correlation between
B�� and 1/a1 with four values of a�� where g1(�c) is fixed
by using the condition that B�� = 0.2 MeV at �c = 50 MeV.
Thus with �c = 50 MeV, we have g1 = −2.48, −2.45, −2.43,
−2.40 for a�� = −0.5, −1.0, −1.5, −2.0 fm, respectively.
Then the curves are obtained by varying �c from 50 to
300 MeV with the fixed values of g1 determined at �c =
50 MeV. We find that, at �c = 50 MeV, which gives the starting

points of the curves at the top right corner (marked by open
squares), the calculated scattering length a1 at LO turned out to
be positive due to the existence of the 4

��H bound state, and the
positions of these points are not sensitive to the value of a��,
as was seen in Fig. 9 for the case of B�� with �c = 50 MeV.
Thus we have a1 ∼ 5.7 fm corresponding to B�� � 0.2 MeV.
By increasing the cutoff values, we obtain the lower values of
B��. When a�� = −0.5 fm, the 4

��H bound state eventually
becomes unbound, and when a�� = −2.0 fm, B�� has a
minimum and then starts to increase with increasing cutoff.
We also find that the correlations do not show the sensitivity
to a��.

VI. SUMMARY AND DISCUSSION

In the present work, we studied the 4
��H bound state and

S-wave hypertriton-� scattering for spin singlet and triplet
channels below the hypertriton breakup momentum in halo
EFT at LO by treating the 4

��H system as a three-body
��d cluster system. In this approach, the hypertriton breakup
momentum γ�d � 13.4 MeV is chosen to be the typical scale
Q of the theory, whereas the deuteron binding momentum
γ � 45.7 MeV is chosen to be the high momentum scale �H .
Thus, in such a small typical momentum scale, the deuteron is
not broken into two nucleons, which justifies the treatment of
the deuteron field as a cluster (elementary) field. Furthermore,
our expansion parameter is Q/�H ∼ γ�d/γ ∼ 1/3.

For the spin singlet channel of the S-wave hypertriton-�
scattering, the amplitude is nearly independent of the cutoff,
thus there is no need to introduce the three-body contact
interaction at LO. Consequently, the integral equation at LO
is well described by one effective range parameter, γ�d .
This leads to the value of the scattering length a0 of the
S-wave hypertriton-� scattering for the spin singlet channel
as a0 = 16.0 ± 3.0 fm. We also found no bound state in this
channel at LO.

For the spin triplet channel of the S-wave scattering of hy-
pertriton and �, the scattering amplitudes are obtained through
two coupled integral equations. We find that when the cutoff
parameter �c is close to the asymptotic limit, the coupling
of the three-body contact interaction, i.e., g1(�c), exhibits
the limit-cycle, and thus the three-body contact interaction
should be included in the spin triplet channel. Consequently the
coupled integral equations are represented by four parameters,
γ�d , a��, g1(�c), and �c. The value of γ�d can be fixed from
the � separation energy of the hypertriton and that of a��

may be fixed from other experiments or possibly lattice QCD
simulations. However, there is no available experimental data
to constrain the value of g1(�c).

When we do not introduce g1(�c) in the theory, we obtain
a1 � −25 ∼ −22 fm with �c � �H . This may imply that
the hypertriton-� interaction is attractive but it is not strong
enough to form a bound state. Thus, if the 4

��H bound state
is formed, the main binding mechanism should stem from the
mechanisms of high momentum region, which is represented
by the coupling g1(�c) in the present approach. Therefore, to
take into account this effect, we assume a formation of the

4
��H bound state and employ the results of the potential model
calculations for the two-� separation energy B�� for several
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values of a�� to constrain the value of g1(�c). Using the fixed
g1(�c) we then calculate B�� as a function of a��. We also
calculate the correlations between B�� and 1/a1, where a1 is
the scattering length of the S-wave hypertriton-� scattering
for spin triplet channel.

As can be notably seen in the numerical results for the
correlation between B�� and a�� as given in Fig. 9, when
the cutoff is chosen to be the large scale of the theory,
i.e., �c � �H , B�� is insensitive to the value of a��. But,
when �c is larger than �H , say �c � 6�H , B�� is sensitive
to a��, which gives results similar to the potential model
predictions. This would be a natural consequence because a−1

��

is a quantity of a large scale, |a−1
��| � 100–400 MeV, compared

to the typical scale of the system, Q ∼ γ�d � 13.4 MeV. In
addition, the dynamics that exhibits the sensitivity to the �-�
interaction above �c � �H is integrated out and its effect
in high momentum is embedded in the contact interaction
g1(�c). Meanwhile, although the deuteron cluster theory with
a large cutoff value such as �c � 6�H can reproduce the a��

dependence of B�� similar to the potential model predictions,
this would be inconsistent with the construction principles
of EFT and it will miss the important dynamic mechanisms
as discussed before. Therefore, the a�� sensitivities in the
physical observables for the 4

��H hypernucleus, such as B��,
inevitably depend on the scale of the theory. Investigating the
a�� sensitivity in more detail at another scale in the 4

��H
system requires us to work with a noncluster theory such as
the pionless theory for four-body systems [35].

Experimentally, we still do not have enough information
to judge whether the 4

��H system is bound or not. This
causes the difficulty in studying the energy levels of the

4
��H hypernucleus within EFT since the value of the contact

interaction g1(�c) cannot be constrained by other information.
Therefore, it would be interesting to apply this approach to
other double-� hypernuclei where some empirical data are
available, such as the 6

��He system. The 6
��He hypernucleus

as a ��α three-body cluster system can be investigated in the
scheme of EFT. Because the binding energy, or equivalently the
two-� separation energy, of 6

��He is experimentally known,
it can be used to determine the strength of the three-body
contact interaction in the ��α system. Moreover, because
the α particle is more tightly bound than the deuteron, the
high momentum scale of the cluster theory becomes larger
than �H of the present work. Therefore, the study of 6

��He
in halo/cluster EFT can provide another tool to study a�� in
exotic systems and shed light on our understanding of strong
interactions in the strangeness sector. Work in this direction is
in progress and will be reported elsewhere.
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