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Background: An accurate assessment of the hyperon-nucleon interaction is of great interest in view of recent
observations of very massive neutron stars. The challenge is to build a realistic interaction that can be used over
a wide range of masses and in infinite matter starting from the available experimental data on the binding energy
of light hypernuclei. To this end, accurate calculations of the hyperon binding energy in a hypernucleus are
necessary.
Purpose: We present a quantum Monte Carlo study of � and �� hypernuclei up to A = 91. We investigate the
contribution of two- and three-body �-nucleon forces to the � binding energy.
Method: Ground state energies are computed solving the Schrödinger equation for nonrelativistic baryons by
means of the auxiliary field diffusion Monte Carlo algorithm extended to the hypernuclear sector.
Results: We show that a simple adjustment of the parameters of the �NN three-body force yields a very
good agreement with available experimental data over a wide range of hypernuclear masses. In some cases no
experiments have been performed yet, and we give new predictions.
Conclusions: The newly fitted �NN force properly describes the physics of medium-heavy � hypernuclei,
correctly reproducing the saturation property of the hyperon separation energy.

DOI: 10.1103/PhysRevC.89.014314 PACS number(s): 21.80.+a, 13.75.Ev, 21.60.De, 21.60.Ka

I. INTRODUCTION

The problem of determining a realistic interaction among
hyperons and nucleons capable of reconciling the terrestrial
measurements on hypernuclei and the recent observations of
very massive neutron stars is still by and large unsolved. The
amount of data available for nucleon-nucleon scattering [1]
is enough to build satisfactory models of nuclear forces,
either purely phenomenological or built on the basis of an
effective field theory [2–8]. In the hyperon-nucleon sector,
much less data are available [9–11], and almost nothing
is known about the hyperon-hyperon interaction. The main
reasons of this lack of information are the instability of
hyperons in the vacuum and the impossibility of collecting
hyperon-neutron and hyperon-hyperon scattering data. This
implies that interaction models must be fitted mostly to binding
energies (and possibly excitations) of hypernuclei.

Besides the very old emulsion data [12,13], several mea-
surements of hypernuclear energies have become available
in the last few years [14–24], both for single and double �
hypernuclei. These can be used to validate or to constrain
the hyperon-nucleon interactions within the framework of
many-body systems. The ultimate goal is then to constrain
these forces by reproducing the experimental energies of
hypernuclei from light systems made of few particles up to
heavier systems.
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In previous work it was shown that the inclusion of a
�NN interaction gives a very important repulsive contribution
towards a realistic description of the saturation property of the
� separation energy in medium-heavy hypernuclei [25]. In this
paper, we focus on single and double � hypernuclei to study
more in detail the role of �N and �NN interactions. Ground
state properties of hypernuclei are here computed by means of
quantum Monte Carlo (QMC) methods, and in particular by
the auxiliary field diffusion Monte Carlo (AFDMC) algorithm.
These methods have been shown to be very accurate in solving
the many-body problem fully nonperturbatively even when the
system is dominated by very strong correlations that cannot be
neglected [26]. This is the case for nuclear systems.

The paper is organized as follows. In Sec. II, we introduce
the Hamiltonians involved in the description of single and
double � hypernuclei. Section III gives an overview of the
auxiliary field diffusion Monte Carlo method with particular
attention to its application to hypernuclear systems (Sec. III B).
Next, in Sec. IV we report the results for single � hypernuclei
(Sec. IV A) and for double � hypernuclei (Sec. IV B). Finally,
in Sec. V the conclusions of our work.

II. HAMILTONIAN

We describe nuclei and � hypernuclei with a nonrelativistic
Hamiltonian that includes two- and three-body forces,

Hnuc = TN + VNN =
∑

i

p2
i

2mN

+
∑
i<j

vij , (1)
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Hhyp = Hnuc + T� + V�N + V�NN + V��

= Hnuc+
∑

λ

p2
λ

2m�

+
∑
λi

vλi+
∑
λ,i<j

vλij+
∑
λ<μ

vλμ, (2)

where A is the total number of baryons A = NN + N�, latin
indices i,j = 1, . . . ,NN label nucleons, and greek symbols
λ,μ = 1, . . . ,N� are used for � particles. The nuclear
potential is limited to a two-body interaction, while in the
strange sector we adopt explicit �N and �NN interactions. In
the case of double � hypernuclei, a �� force is also involved.

A. Nucleon-nucleon interaction

The interaction between nucleons is described via the
Argonne V4′ and V6′ two body-potentials [5], that are
simplified versions of the more sophisticated Argonne V18
potential [3] obtained with a reprojection of the interaction to
preserve the phase shifts of lower partial waves. The Argonne
potential between two nucleons i and j is written in coordinate
space as a sum of operators,

vij =
n∑

p=1

vp(rij )O p
ij , (3)

where n is the number of operators, which depends on the
potential, vp(rij ) are radial functions, and rij is the interparticle
distance. The six operators included in the Argonne V6′
potential mainly come from the one-pion exchange (OPE)
between nucleons and they read

O p=1,6
ij = (1,σ i · σ j ,Sij ) ⊗ (1,τ i · τ j ), (4)

where Sij is the usual tensor operator

Sij = 3(σ i · r̂ ij )(σ j · r̂ ij ) − σ i · σ j . (5)

The AV4′ force does not include the tensor terms p = 5,6.
It is important to note that the above nuclear potentials do

not provide the same accuracy as AV18 in fitting NN scattering
data in all partial waves. In addition, three-body NNN forces
are purposely disregarded for technical reasons related to
the AFDMC algorithm used. As reported in Refs. [25,27],
these restrictions on the nuclear potentials do not affect the
main result of this work, namely the calculation of the �
separation energy (the difference between the binding energy
of a nucleus and the corresponding � hypernucleus), which
is not significantly dependent on the specific choice of the
nucleon Hamiltonian.

B. Hyperon-nucleon interaction

To describe the interaction between the � particle and
the nucleons, we adopt a class of Argonne-like interactions
that have been developed starting from the 1980s by Bodmer,
Usmani, and Carlson on the grounds of quantum Monte Carlo
methods and have been mostly used in variational Monte Carlo
calculations [28–41]. The interaction is written in coordinate
space and it includes two- and three-body hyperon-nucleon
components with a hard-core repulsion between baryons and
a charge symmetry breaking term.

�N charge symmetric potential. Since the � particle
has isospin I = 0, there is no OPE term, the strong �π�
vertex being forbidden due to isospin conservation. The
� hyperon can exchange a pion only via a �π� vertex.
The lowest-order �N coupling must therefore involve the
exchange of two pions, with the formation of a virtual
� hyperon, as illustrated in Fig. 1(a). The 2π -exchange
interaction is of intermediate range with respect to the
long-range part of NN force. One-meson-exchange processes
can only occur through the exchange of a K,K∗ kaon
pair, that contributes in exchanging strangeness between the
two baryons, as shown in Fig. 1(b). The K,K∗ exchange
potential is short-range and it is expected to be quite weak
because the K and K∗ tensor contributions have opposite
sign [42]. The short-range contributions are included, as in the
Argonne NN interaction, by means of a Wood-Saxon repulsive
potential

vc(r) = Wc(1 + e
r−r̄
a )−1. (6)

The �N interaction has therefore been modeled with an
Urbana-type potential [43], consistent with the available �p
scattering data, with an explicit space exchange term

vλi = v0(rλi)(1 − ε + εPx) + 1
4vσT 2

π (rλi) σ λ · σ i , (7)

where Px is the �N exchange operator and v0(r) = vc(r) −
v̄ T 2

π (r) is a central term. The terms v̄ = (vs + 3vt )/4 and vσ =
vs − vt are the spin-average and spin-dependent strengths,
where vs and vt denote singlet- and triplet-state strengths,
respectively. Note that both the spin-dependent and the central
radial terms contain the usual regularized OPE tensor operator
Tπ (r)

Tπ (r) =
[

1 + 3

μπr
+ 3

(μπr)2

]
e−μπ r

μπr

(
1 − e−cr2)2

, (8)
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FIG. 1. Meson exchange processes between nucleons and hyperons. (a) and (b) represent the �N channels. (c)–(e) are the three-body
�NN channels included in the potential by Usmani et al. See [41] and references therein.
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TABLE I. Parameters of the �N and �NN interaction (see [41]
and references therein). For CP and WD the variational allowed range
is shown. The value of the charge-symmetry breaking parameter Cτ

is from Ref. [34].

Constant Value Unit

Wc 2137 MeV
r̄ 0.5 fm
a 0.2 fm
vs 6.33, 6.28 MeV
vt 6.09, 6.04 MeV
v̄ 6.15(5) MeV
vσ 0.24 MeV
c 2.0 fm−2

ε 0.1–0.38
Cτ −0.050(5) MeV
CP 0.5–2.5 MeV
CS ∼1.5 MeV
WD 0.002–0.058 MeV

where μπ is the pion reduced mass

μπ = 1

�

mπ0 + 2 mπ±

3
,

1

μπ

� 1.4 fm. (9)

All the parameters defining the �N potential can be found in
Table I. For more details see for example Ref. [41].

�N charge symmetry breaking potential. The �-nucleon
interaction should distinguish between the nucleon isospin
channels �p and �n. This is required by the experimental
data, in particular the 4

�H and 4
�He ground- and excited-

state energies [12], that have been reproduced in Ref. [29]
by means of a phenomenological spin-dependent, charge-
symmetry breaking (CSB) potential. It was found that the
CSB contribution is effectively spin independent. Follow-
ing Ref. [34], we can express the CSB �N interaction
as

vCSB
λi = Cτ T 2

π (rλi)τ
z
i , (10)

where Cτ was found by the analysis of the A = 4 mirror �
hypernuclei and it is listed in Table I. Cτ being negative,
the �p channel becomes attractive while the �n channel is
repulsive. The contribution of CSB is expected to be very
small in symmetric hypernuclei (if Coulomb is neglected) but
could have a significant effect in hypernuclei with a neutron
(or proton) excess.

�NN potential. In contrast to the nucleon-nucleon force,
the lowest order �-nucleon interaction involves the exchange
of two pions. At the same 2π -exchange order, there are
diagrams involving two nucleons and one hyperon, as shown
in Figs. 1(c), 1(d), and 1(e). The first two diagrams correspond
to P -wave and S-wave 2π exchange. The last diagram rep-
resents a dispersive contribution associated with the medium
modifications of the intermediate-state potentials for the �,
N , 	 due to the presence of the second nucleon. This term
includes short-range contributions and it is expected to be
repulsive due to the suppression mechanism associated with
the �N -�N coupling [44,45].

As reported in Ref. [41], the three-body potential vλij

can be conveniently decomposed in the 2π -exchange con-
tributions v2π

λij = v
2π,P
λij + v

2π,S
λij [Figs. 1(c) and 1(d)] and the

spin-dependent dispersive term vD
λij [Fig. 1(e)] as follows:

v
2π,P
λij = −CP

6
{Xiλ ,Xλj } τ i · τ j , (11)

v
2π,S
λij = CS Z(rλi)Z(rλj ) σ i · r̂ iλ σ j · r̂jλ τ i · τ j , (12)

vD
λij = WD T 2

π (rλi)T
2
π (rλj )

[
1 + 1

6
σ λ ·(σ i + σ j )

]
. (13)

The function Tπ (r) is the same as in Eq. (8), while the Xλi and
Z(r) are defined by

Xλi = Yπ (rλi) σ λ · σ i + Tπ (rλi) Sλi, (14)

Z(r) = μπr

3
[Yπ (r) − Tπ (r)], (15)

where

Yπ (r) = e−μπ r

μπr
(1 − e−cr2

) (16)

is the regularized Yukawa potential and Sλi is the same
tensor operator as in Eq. (5). The range of parame-
ters CP , CS , and WD can be found in Table I. It
is important to note that the three-body �NN interac-
tion has been used in variational Monte Carlo calcula-
tions for single � hypernuclei (3

�H [30,33], 4
�H and 4

�He
[29,30,33,35], 5

�He [30,33–36,39,41,46], 9
�Be [28,32],

13
� C [28], and 17

� O [31,46]) and double � hypernuclei ( 4
��H,

5
��H, 5

��He [38], and 6
��He [37,38,40]), but no unique set of

parameters has been set so far.
We stress the fact that, unlike the nucleon sector, both

the two- and three-body hyperon-nucleon interactions are of
the same 2π -exchange order. In addition, the mass of the
intermediate excited state � compared to the � is much
smaller than in the pure nucleonic case, where the difference
between the nucleon and the 	 resonance is much larger. The
�NN interaction should therefore be considered necessary
in addition to the �N force in any consistent theoretical
calculation involving a �.

C. Hyperon-Hyperon interaction

For the �� potential, we follow the guide lines adopted in
the three- and four-body cluster models for double � hyper-
nuclei [47,48], which were also used in Faddeev-Yakubovsky
calculations for light double � hypernuclei [49] and in vari-
ational calculations on 4

��H [38,50], 5
��H and 5

��He [38,51],
and 6

��He [37,38,40,51], with different parametrizations.
The employed effective interaction is a low-energy phase

equivalent Nijmegen interaction represented by a sum of three
Gaussians:

vλμ =
3∑

k=1

(
v

(k)
0 + v(k)

σ σ λ · σμ

)
e−μ(k)r2

λμ . (17)

The most recent parametrization of the potential (see Table II),
has been fitted to simulate the �� sector of the Nijmegen F
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TABLE II. Parameters for the one-boson exchange potential
simulating the �� interaction. Depths v

(k)
0 and v(k)

σ (MeV) for each
size parameter μ(k) (fm−2) [48].

μ(k) 0.555 1.656 8.163

v
(k)
0 −10.67 −93.51 4884

v(k)
σ 0.0966 16.08 915.8

(NF) interaction [52–54]. The NF model is the simplest among
the Nijmegen models with a scalar nonet, which seems to be
more appropriate than the versions including only a scalar
singlet in order to reproduce the weak binding energy indicated
by the NAGARA event [16]. The components k = 1,2 of the
above Gaussian potential are determined so as to simulate the
�� sector of NF, and the strength of the part for k = 3 is
adjusted so as to reproduce the 6

��He NAGARA experimental
double � separation energy of 7.25 ± 0.19+0.18

−0.11 MeV. In 2010,
Nakazawa reported a new, more precise determination of
B�� = 6.93 ± 0.16 MeV for 6

��He [20], obtained via the 
−
hyperon capture at rest reaction in a hybrid emulsion. This
value has been recently revised to B�� = 6.91 ± 0.16 MeV
by the E373 (KEK-PS) Collaboration [23]. No references were
found about the refitting of the �� Gaussian potential on
the more recent experimental result, which is in any case
compatible with the NAGARA event. We therefore use the
original parametrization of Ref. [48].

III. METHOD

A. Auxiliary field DMC method for nuclei

The auxiliary field diffusion Monte Carlo (AFDMC)
method was introduced by Schmidt and Fantoni [55] as
an extension of the usual diffusion Monte Carlo (DMC)
method to deal in an efficient way with spin/isospin-dependent
Hamiltonians. The standard DMC projects out the ground
state of the system by starting from a trial wave function not
orthogonal to the true ground state. By sampling configurations
of the system in coordinate-spin-isospin space, the trial wave
function is propagated in imaginary-time τ . Expectation values
are computed averaging over the sampled configurations in
the τ → ∞ limit, for which the evolved state approaches the
ground state of the Hamiltonian.

In nuclear Hamiltonians, the potential contains quadratic
spin and isospin operators, so the many-body wave function
cannot be written as a product of single-particle, spin-isospin
states. The number of components in the propagated wave
function grows exponentially with A and thus it quickly
becomes computationally intractable. Standard DMC calcu-
lations for nuclei are in fact limited up to 12 nucleons [56–58]
or 16 neutrons [59].

The idea of the AFDMC method consists of reducing
the quadratic spin-isospin operators into linear terms in
the propagator. The starting point is to recast the Argonne
V6- and V4-type potentials in spin-isospin independent and

spin-isospin dependent components, the latter of the form

VNN = 1

2

∑
i 	=j

∑
γ

τiγ A
[τ ]
ij τjγ

+ 1

2

∑
i 	=j

∑
αβ

σiα A
[σ ]
iα,jβ σjβ

+ 1

2

∑
i 	=j

∑
αβγ

τiγ σiα A
[στ ]
iα,jβ σjβ τjγ . (18)

The matrices A are real and symmetric with zero diagonals
and contain proper combinations of the components of AV6
and AV4 (latin indices are used for the nucleons, greek ones
refer to the Cartesian components of the operators)

A
[τ ]
ij = v2(rij ),

A
[σ ]
iα,jβ = v3(rij )δαβ + v5(rij )

(
3 r̂α

ij r̂
β
ij − δαβ

)
, (19)

A
[στ ]
iα,jβ = v4(rij )δαβ + v6(rij )

(
3 r̂α

ij r̂
β
ij − δαβ

)
.

By diagonalizing such matrices it is possible to write the
quadratic operators of Eq. (4) in terms of the eigenvectors
of the matrices A. In the σ channel we define for example

O[σ ]
n =

∑
jβ

σjβ ψ
[σ ]
n,jβ, (20)

where ∑
jβ

A
[σ ]
iα,jβ ψ

[σ ]
n,jβ = λ[σ ]

n ψ
[σ ]
n,iα. (21)

Given the nucleon-nucleon spin-isospin dependent interaction
in this form, we can write the imaginary time propagator by
means of the Hubbard-Stratonovich (HS) transformation

e− 1
2 τ λn (On)2 = 1√

2π

∫
dxn e− x2

n
2 e

√−τλn xn On . (22)

The newly introduced xn variables, called auxiliary fields, are
sampled to evaluate the integral of Eq. (22). The linearized
propagator has the effect of rotating the spin-isospin compo-
nents of each single nucleon. This eventually recovers the
action of the quadratic spin-isospin operators on the trial
wave function containing all the possible good spin-isospin
states. The procedure described reduces the dependence to the
number of operations needed to evaluate the trial wave function
from exponential to polynomial in the number of nucleons.
The price to pay is the additional computational cost due to
the diagonalization of the A matrices and the sampling of the
integral over auxiliary fields. In any case, there is a net gain in
computational time, the total number of AFDMC operations
being at most proportional to A3.

The details of the AFDMC algorithm for nuclei and neutron
matter can be found in Refs. [60–62], where the adopted
nuclear wave function, the computation of expectation values,
and the approximations used to overcome the Fermion sign
problem are discussed in detail.
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B. Auxiliary field DMC method for hypernuclei

Hypernuclear wave function. The starting point of all DMC
methods is the set up of the trial wave function. The � particle
is distinguishable from the nucleons so, to describe single and
double � hypernuclei, we write a factorized trial wave function
of the form

ψT (R,S) = ψN
T (RN,SN ) ψ�

T (R�,S�), (23)

where R = {RN,R�} and S = {SN,S�} with Rp =
{r1, . . . ,rNp

} and Sp = {s1, . . . ,sNp
}, p = N,�. The two

components of ψT are chosen to be of the same form as in
Refs. [61],

ψ
p
T (Rp,Sp) =

[ ∏
i<j

fij

]
p

A
[∏

i

ϕi(r i − rCM,si)

]
p

, (24)

where A is an antisymmetrization operator, rCM is the center
of mass of the hypernucleus, and ϕi are single-particle space
and spin-isospin orbitals, built from combinations of radial
functions, spherical harmonics, and spinors. Radial orbitals
are the solutions of the self-consistent Hartree-Fock problem
with the Skyrme effective interactions of Ref. [63]. For the
� particle, we assume the neutron 1s1/2 radial function.
Spinors are defined as four-component complex vectors for
the nucleons and two-component complex vectors for the �
particles:

s N
i =

⎛⎜⎝ai

bi

ci

di

⎞⎟⎠ = ai |p↑〉 + bi |p↓〉+ci |n↑〉+di |n↓〉, (25)

s �
i =

(
ui

vi

)
= ui |� ↑〉 + vi |� ↓〉. (26)

The functions fij are symmetric and spin independent Jas-
trow correlation functions, solutions of the Schrödinger-like
equation for fij (r < d),

− �
2

2μij

∇2fij (r) + η vc
ij (r)fij (r) = ξfij (r), (27)

where vc
ij (r) is the spin-independent part of the two-body

interaction, μij = mp/2 the reduced mass of the pair, and η and
the healing distance d are variational parameters. For distances
r � d, we impose fij (r) = 1. The role of fij functions is to
include the short-range correlations in the trial wave function.
In the AFDMC algorithm the effect is simply a reduction of
the overlap between pairs of particles, with the reduction of the
energy variance. Since there is no change in the phase of the
wave function, the fij do not influence the computed energy
value in projection methods.

With the presented wave function, we consider nucleons
and hyperons as distinct particles. In this way, it is not possible
to include the �N exchange term of Eq. (7) directly in the
propagator, because it mixes hyperon and nucleon states. The
complete treatment of this factor would require an enlarged
hyperon-nucleon isospin space, which at present has not yet
been developed. A perturbative analysis of the v0(r)ε(Px − 1)
term is, however, possible as described in Ref. [25].

Algorithm. The idea of the standard AFDMC method
can be easily extended to � hypernuclear systems with the
interactions described in Secs. II B and II C. Consider the
hypernuclear potentials of Eqs. (7), (10), (11)–(13), and (17),
and assume the notations

Tλi = Tπ (rλi),

Yλi = Yπ (rλi), (28)

Qλi = Yλi − Tλi.

In analogy with the nucleon-nucleon A matrices of
Eqs. (19), we can define the following hyperon-nucleon and
hyperon-hyperon matrices (greek λ, μ indices indicate the
� particles)

B
[σ ]
λi = 1

4
vσTλi, (29)

C
[σ ]
λi = 1

3
WD

∑
j,j 	=i

T 2
λi T

2
λj , (30)

C
[στ ]
iα,jβ =

∑
λ

{
− 1

3
CP QλiQλj δαβ − CP QλjTλi r̂

α
iλ r̂

β
iλ

−CP QλiTλj r̂ α
jλ r̂

β
jλ +

[
1

9
CSμ

2
πQλiQλj |riλ||rjλ|

− 3 CP TλiTλj

(∑
δ

r̂ δ
iλ r̂ δ

jλ

)]
r̂ α
iλ r̂

β
jλ

}
, (31)

D
[σ ]
λμ =

3∑
k=1

v(k)
σ e−μ(k)r2

λμ . (32)

In such a way it is possible to recast the �N , �NN , and ��
interactions so that they contain at most two-body operators
in the hyperon-nucleon extended space

V�N =
∑
λi

∑
α

σλα B
[σ ]
λi σiα + Ṽ�N, (33)

V 2π
�NN = 1

2

∑
i 	=j

∑
αβγ

τiγ σiα C
[στ ]
iα,jβ σjβ τjγ , (34)

V D
�NN = 1

2

∑
λi

∑
α

σλα C
[σ ]
λi σiα + Ṽ�NN, (35)

V�� = 1

2

∑
λ 	=μ

∑
α

σλα D
[σ ]
λμ σμα + Ṽ��, (36)

where Ṽ�N , Ṽ�NN , and Ṽ�� include all the spin-isospin
independent and the linear Px , τ z

i terms

Ṽ�N =
∑
λi

v0(rλi)(1 − ε) +
∑
λi

v0(rλi) εPx

+
∑
λi

Cτ T 2
π (rλi) τ z

i ,

Ṽ�NN =
∑
λ,i<j

WD T 2
π (rλi)T

2
π (rλj ), (37)

Ṽ�� =
∑
λ<μ

3∑
k=1

v
(k)
0 e−μ(k)r2

λμ .
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All the remaining terms of Eqs. (33)–(36) consist of two-body
spin-isospin operators of exactly the same type as those of
Eqs. (18).

The algorithm follows then the nuclear version with the
sampling of the coordinates, which now contains also the �
particles, and of the auxiliary fields, one for each linearized
operator. The application of the propagator of Eq. (22) has
the effect of rotating the spinors of nucleons and �s. The
strategy adopted in order to control the Fermion sign problem
and reduce the variance of the estimators is the same of
Refs. [60–62], with a straightforward extension to the enlarged
hyperon-nucleon space.

The structure of the AFDMC algorithm for � hypernuclei
closely follows the usual AFDMC procedure:

(i) Sample the nucleons and �’s positions, spins and
isospins from |ψT (R,S)|2, using the Metropolis Monte
Carlo method.

(ii) Propagate the spatial degrees of freedom as in the
usual diffusion Monte Carlo with a drifted Gaussian
for a small time step.

(iii) For each set of generalized coordinates (walker), build
and diagonalize the potential matrices A, B, C, and D.

(iv) Loop over the eigenvectors, sampling the correspond-
ing auxiliary fields and rotating the spinors.

(v) Apply the fixed phase prescription and evaluate the
estimator contributions to averages for the calculation
of expectation values.

(vi) Iterate from 2 to 5 as long as necessary until con-
vergence of the energy is reached. Error bars on
expectation values are then estimated by means of
block averages and the analysis of autocorrelations on
data blocks.

IV. RESULTS AND DISCUSSION

A. Single � hypernuclei

A direct comparison of energy calculations with experi-
mental results is given for the � separation energy, defined
as

B�

(
A
�Z

) = E(A−1Z) − E
(
A
�Z

)
, (38)

where E is the energy of the system, i.e. the ground state
expectation value of the Hamiltonian,

E(κ) =
〈
ψ0

κ

∣∣Hκ

∣∣ψ0
κ

〉〈
ψ0

κ

∣∣ψ0
κ

〉 , κ = nuc,hyp. (39)

The computation of B� thus involves the calculation of the
energy of the nucleus A−1Z and the corresponding hypernu-
cleus A

�Z. The nuclear wave function is the same as in Eq. (24)
with the spinor of Eq. (25). As reported in Refs. [25,27], the �
separation energy is not sensitive to the details of the nuclear
interactions. On the grounds of this observation, we adopt
the nuclear potential AV4′ for both nuclei and hypernuclei
in the present work. This choice makes AFDMC calculations
less expensive and more stable. The resulting absolute binding
energies are not comparable with experimental results, but the
estimated B� is in any case realistic.

In our previous work [25], we tackled the problem of
hyperon-nucleon interaction by studying closed-shell single
� hypernuclei with the inclusion of two- and three-body �-
nucleon forces. The set of parameters for the �NN potential
was originally taken from Ref. [46], being the choice that
made the variational B� for 5

�He and 17
� O compatible with the

expected results. It reads

(I)

⎧⎪⎨⎪⎩
CP = 0.60 MeV,

CS = 0.00 MeV,

WD = 0.015 MeV.

The main outcome of the study is that the saturation property of
the � binding energy is reproduced only with the inclusion of
the �NN interaction. However, with the given parametriza-
tion, only a qualitative accord with the experimental results
is obtained. Thus, a refitting procedure for the three-body
hyperon-nucleon interaction is needed.

As reported in Ref. [41], the CS parameter can be estimated
by comparing the S-wave term of Eq. (12) with the Tucson-
Melbourne model of the NNN force reported in Ref. [64]. We
take the same CS = 1.50 MeV value, in order to reduce the
number of fitting parameters. This choice is justified because
the S-wave component of the three-body �NN interaction is
sub-leading. We indeed verified that a change in the CS value
yields a variation of the total energy within statistical error
bars and definitely much smaller than the variation in energy
due to a change of the CP and WD parameters.

In Fig. 2 we report the systematic study of the � separation
energy of 5

�He as a function of both WD and CP . Solid
black dots are the AFDMC results. The red grid represents
the experimental B� = 3.12(2) MeV [12]. The dashed yellow
curve follows the set of parameters reproducing the expected
� separation energy. The same curve is also reported in Fig. 3
(red band with black dots and error bars), that is a projection
of Fig. 2 on the WD-CP plane. The dashed box represents the
WD and CP domain of the previous picture. For comparison,
the variational results of Ref. [41] are also reported. Green
curves are the results for v̄ = 6.15 MeV and vσ = 0.24 MeV,
blue ones for v̄ = 6.10 MeV and vσ = 0.24 MeV. Dashed,

3.5 4.0 4.5 5.0 5.5 6.0W
D   [ 10 -2

 MeV ]

0.5
1.0

1.5
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B
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FIG. 2. (Color online) � separation energy for 5
�He as a function

of strengths WD and CP of the three-body �NN interaction. The red
grid represents the experimental B� = 3.12(2) MeV [12]. The dashed
yellow curve is the interception between the expected result and the
B� surface in the WD-CP parameter space. Statistical error bars on
AFDMC results (solid black dots) are of the order of 0.10–0.15 MeV.
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FIG. 3. (Color online) Projection of Fig. 2 on the WD-CP plane.
Error bars come from a realistic conservative estimate of the
uncertainty in the determination of the parameters due to the statistical
errors of the Monte Carlo calculations. Blue and green dashed, long-
dashed, and dot-dashed lines (lower curves) are the variational results
of Ref. [41] for different ε and v̄ (two-body �N potential). The dashed
box corresponds to the parameter domain of Fig. 2. Black dots and
the red band (upper curve) are the projected interception describing
the possible set of parameters reproducing the experimental B�.

long-dashed, and dot-dashed lines correspond respectively to
ε = 0.1, 0.2, and 0.3.

In our calculations, we have not considered different com-
binations for the parameters of the two-body �N interaction,
focusing on the three-body part. We have thus kept fixed v̄
and vσ to the same values of the green curves of Fig. 3
(see Table I for the detailed list of constants). Moreover,
in the present work we have set ε = 0 for all the studied
hypernuclei due to the impossibility of exactly including the
Px exchange operator in the propagator. However, from a
perturbative analysis, the net effect of the v0(r)ε(Px − 1) term
on the hyperon separation energy within the statistical errors
of the Monte Carlo calculation, seems to be the same as a slight
change in the strength of the central �N potential.

Starting from the analysis of the results in the WD-CP space
for 5

�He, we performed simulations for the next closed-shell
hypernucleus 17

� O. Using the parameters in the red band of
Fig. 3 we identified a parametrization able to reproduce the
experimental B� for both 5

�He and 17
� O at the same time,

namely

(II)

⎧⎪⎨⎪⎩
CP = 1.00 MeV,

CS = 1.50 MeV,

WD = 0.035 MeV.

Given the set (II), the � separation energy of closed-shell
and open-shell single � hypernuclei has been calculated in a
mass range 3 � A � 91. The closed-shell hypernuclei are the
same of Ref. [25]. The results are summarized in Fig. 4, where
we report B� as a function of A−2/3, and as a function of A
in the inset. Solid green dots are the available experimental
data, empty symbols the AFDMC results. The blue curve is
obtained using only the two-body hyperon-nucleon interaction
in addition to the nuclear AV4′ potential. The red curve refers

B
 [M

eV
]

A-2/3

N

NN (I)

NN (II)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 0.1 0.2 0.3 0.4 0.5

A

0.0
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30.0

45.0

60.0

0 20 40 60 80

FIG. 4. (Color online) � separation energy as a function of
A−2/3. Solid green dots (dashed curve) are the available B� exper-
imental or semiempirical values. Empty blue dots (upper banded
curve) refer to the AFDMC results for the two-body �N interaction
alone. Empty red diamonds (middle banded curve) and empty black
triangles (lower banded curve) are the results with the inclusion also
of the three-body hyperon-nucleon force, respectively for the set
of parameters (I) and (II). In the inset, the same data plotted as a
function of A.

to the results for the same systems when also the three-body
�NN interaction with the old set of parameters (I) is included.
The black lower curve shows the results obtained by including
the three-body hyperon-nucleon interaction described by the
new parametrization (II). A detailed comparison between
numerical results and experiments for the hyperon-separation
energy can be found in Table III.

TABLE III. � separation energies (in MeV) obtained using the
two-body plus three-body hyperon-nucleon interaction with the set of
parameters (II). The results already include the CSB contribution. In
the last column are the expected B� values. No experimental data for
A = 17,18,41,49,91 exist. For 17

� O the reference separation energy is
a semiempirical value. For A = 41,49,91 the experimental hyperon
binding energies are those of the nearest hypernuclei 40

� Ca, 51
� V, and

89
� Y respectively.

System AFDMC B� Expt. B�

3
�H −1.22(15) 0.13(5) [12]
4
�H 0.95(9) 2.04(4) [12]
4
�He 1.22(9) 2.39(3) [12]
5
�He 3.22(14) 3.12(2) [12]
6
�He 4.76(20) 4.25(10) [12]
7
�He 5.95(25) 5.68(28) [22]
13
� C 11.2(4) 11.69(12) [13]
16
� O 12.6(7) 12.42(41) [65]
17
� O 12.4(6) 13.0(4) [31]
18
� O 12.7(9)
41
� Ca 19(4) 18.7(1.1) [14]
49
� Ca 20(5) 19.97(13) [66]
91
� Zr 21(9) 23.11(10) [66]
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TABLE IV. � separation energies (in MeV) for the A = 4 mirror
� hypernuclei with (fourth column) and without (third column) the
inclusion of the charge symmetry breaking term. In the last column the
difference in the separation energy induced by the CSB interaction.
First and second rows refer to different set of parameters for the �NN

interaction, while the last row is the experimental result.

Parameters System B
sym
� BCSB

� 	BCSB
�

4
�H 1.97(11) 1.89(9)

Set (I) 0.24(12)4
�He 2.02(10) 2.13(8)
4
�H 1.07(8) 0.95(9)

Set (II) 0.27(13)4
�He 1.07(9) 1.22(9)
4
�H 2.04(4)

Expt. [12] 0.35(5)4
�He 2.39(3)

For systems with A � 5, all the � separation energies
are compatible with the expected results, where available.
For A< 5 our results are more than 1 MeV off from
experimental data. For 3

�H, the � separation energy is even
negative, meaning that the hypernucleus is less bound than the
corresponding nucleus 2H. We can ascribe this discrepancy to
the lack of accuracy of our nucleonic wave function. Moreover,
the single-particle orbitals might need to be changed when
the � is added to the nucleus. This effect is expected to be
much less important for heavier hypernuclei where bulk effects
dominate over the surface. A study of these systems within a
few-body method might solve this issue.

The effect of the CSB potential has been studied for the
A = 4 mirror hypernuclei. As reported in Table IV, without
the CSB term there is no difference in the � binding energy of
4
�H and 4

�He. When CSB is active, a splitting appears due to
the different behavior of the �p and �n channels. The strength
of the difference 	BCSB

� is independent on the parameters of
the three-body �NN interaction and it is compatible with the
experimental result [12].

The same CSB potential of Eq. (10) has been included in
the study of hypernuclei for A > 4. In Table V, the difference

TABLE V. Difference (in MeV) in the hyperon separation
energies induced by the CSB term for different hypernuclei. The
fourth column reports the difference between the number of neutrons
and protons. Results are obtained with the full two- plus three-body
[set (II)] hyperon-nucleon interaction. In order to reduce the errors,
	B� has been calculated by taking the difference between total
hypernuclear binding energies, instead of the hyperon separation
energies.

System p n 	np 	B�

4
�H 1 2 +1 −0.12(8)
4
�He 2 1 −1 +0.15(9)
5
�He 2 2 0 +0.02(9)
6
�He 2 3 +1 −0.06(8)
7
�He 2 4 +2 −0.18(8)
16
� O 8 7 −1 +0.27(35)
17
� O 8 8 0 +0.15(35)
18
� O 8 9 +1 −0.74(49)

in the hyperon separation energies 	B� = BCSB
� − B

sym
� is

reported for different hypernuclei up to A = 18. The fourth
column shows the difference between the number of neutrons
and protons 	np = Nn − Np. For the symmetric hypernuclei
5
�He and 17

� O the CSB interaction has no effect, this difference
being zero. In the systems with neutron excess (	np > 0), the
effect of the CSB consists in decreasing the hyperon separation
energy compared to the charge symmetric case. When 	np

becomes negative, 	B� > 0 due to the attraction induced by
the CSB potential in the �p channel, producing more bound
hypernuclei. These effects are in any case rather small and they
become almost negligible compared to the statistical errors
on B� when the number of baryons becomes large enough
(A > 16).

Single-particle densities can be computed in Monte Carlo
calculations by considering the expectation value of the density
operator

ρ̂κ (r) =
∑

i

δ(r − ri), κ = N,�, (40)

where i is the single particle index running over nucleons for
ρN = 〈ρ̂N 〉 or hyperons for ρ� = 〈ρ̂�〉. The correct estimator
for positive defined operators O different from the total
Hamiltonian is obtained starting from the mixed DMC result
and the variational one via the relation [26]

〈O〉real = 〈ψ0|O|ψ0〉
〈ψ0|ψ0〉 =

( 〈ψT |O|ψ0〉
〈ψT |ψ0〉

)2

〈ψT |O|ψT 〉
〈ψT |ψT 〉

= 〈O〉2
DMC

〈O〉VMC
, (41)

where ψT is the trial wave function and ψ0 the projected
ground state wave function. Although easy to implement, the
calculation of single-particle densities in the present version
of the AFDMC algorithm suffers of two main issues. On
one hand, the employed trial wave function is too poor for
variational calculations. The estimate of 〈O〉VMC could be not
accurate enough, introducing severe biases in the calculation
of 〈O〉real. On the other hand, the employed NN potential is
too simplified to correctly describe the physics of nucleons
in nuclei and hypernuclei, particularly for heavy systems.
This lack of accuracy does not affect the calculation of
the hyperon separation energy but could be important in
the estimate of single particle densities. For these reasons
we do not report here the results for nucleon and hyperon
single-particle densities which will be presented in a future
work in connection with a better trial wave function and a
more realistic nucleon-nucleon interaction.

B. Double � hypernuclei

In the case of double � hypernuclei, the interesting
observables we can access with the AFDMC are the double �
separation energy,

B��

(
A
��Z

) = E(A−2Z) − E
(
A
��Z

)
, (42)

and the incremental �� energy,

	B��

(
A
��Z

) = B��

(
A
��Z

) − 2B�

(
A−1

�Z
)
. (43)

The calculation of these quantities proceeds in the same way
of those for single � hypernuclei, starting from the energy
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TABLE VI. Comparison between 4He and the corresponding
single and double � hypernuclei. In the second column the total
energies are reported. The third column shows the single or double
� separation energies. In the last column the incremental �� energy
	B�� is reported. All the results are obtained using the complete
two- plus three-body [set (II)] hyperon-nucleon interaction with the
addition of the �� force of Eq. (17). The results are expressed in MeV.

System E B�(�) 	B��

4He −32.67(8)
5
�He −35.89(12) 3.22(14)
6

��He −40.6(3) 7.9(3) 1.5(4)
6

��He Expt. [16] 7.25 ± 0.19+0.18
−0.11 1.01 ± 0.20+0.18

−0.11

of the nucleus, the corresponding � hypernucleus and now
the double � hypernucleus. In Table VI, we report the total
energies for 4He, 5

�He, and 6
��He in the second column, the

single or double hyperon separation energies in the third
and the incremental �� energy in the last column. The
value of B�� confirms the weak attractive nature of the
�� interaction [48,52–54]. Starting from 4He and adding
two hyperons with B� = 3.22(14) MeV, the energy of 6

��He
would be 1.0 to 1.5 MeV less than the actual AFDMC result.
Therefore the �� potential of Eq. (17) induces a net attraction
between hyperons, at least at this density.

Our results for B�� and 	B�� are very close to the
expected results for which the potential has originally been
fitted within the cluster model. The latest results B�� =
6.91(0.16) MeV and 	B�� = 0.67(0.17) MeV of Ref. [23]
suggest a weaker attractive force between the two hyperons.
A refit of the interaction of the form proposed in Eq. (17)
would be required. It would be interesting to study other
double � hypernuclei within the AFDMC framework with the
�N , �NN , and �� interaction proposed. Some experimental
data are available in the range A = 7–13, but there are
uncertainties in the identification of the produced double �
hypernuclei, reflecting in inconsistencies about the sign of the
�� interaction [67,68]. An ab initio analysis of these systems
might put some constraints on the hyperon-hyperon force,
which at present is still poorly known, and give information
on its density dependence. Also the inclusion of the ��N
force would be important.

V. CONCLUSIONS

We presented a detailed study of single � hypernuclei in the
framework of the quantum Monte Carlo method. By accurately
refitting the three-body hyperon-nucleon interaction we obtain
substantial agreement with available experimental data. The
present results confirm that the repulsion induced by the �NN
force properly corrects the saturation property of the hyperon
separation energy that is strongly overestimated by the use of
a bare �N interaction.

A �� effective interaction has also been applied to the
study of 6

��He. Results are in good agreement with the
available experimental data. This is a first step in the study
of S = −2 � hypernuclei with QMC calculations, for which
there are controversial results both from theoretical and
experimental studies.

The three-body �NN interaction used in this work provides
a stronger repulsion than in our previous more qualitative
results. On the grounds of this observation, we feel confident
that the application of the �N + �NN (and possibly ��)
interaction to the study of the homogeneous medium will lead
to a stiff equation of state for the � neutron matter. This fact
helps to understand how the necessary appearance of hyperons
at some value of the nucleon density in the inner core of a
neutron star might eventually be compatible with the observed
neutron star masses of order 2M� [69,70]. A study along this
direction is in progress and encouraging results are indeed
already available.
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