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In recent years, the N = 90 isotones have been investigated to a large extent in relation to studies of quantum
phase transitions. In this paper, we use the mean field approach with pairing-deformation self-consistent total
Routhian surface (TRS) calculations to study the N = 90 isotones and neighboring nuclei. The important
probes, such as moments of inertia, quadrupole moments, the energy ratio of E(4+

1 )/E(2+
1 ), and octupole and

hexadecapole degrees of freedom are considered and the calculated results are compared with the available
experimental data. From a microscopic point of view, the N = 90 isotones characterize the onset of the deformed
region and are very well described by mean field calculations. The results are compared with those from other
studies in beyond mean field approximations. Shape coexistence phenomena in the region of interest are discussed.
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I. INTRODUCTION

Many physical systems undergo phase transitions. Despite
the fact that atomic nuclei are finite systems, they too exhibit
phase transitions, like in their shape, and these changes
markedly modify the properties of the entire system. Following
the introduction by Iachello [1,2] of a simple model of
critical point symmetries of the shape transitions X(5) from
spherical vibrator to axial rotor and E(5) from spherical to
γ -unstable nuclei, there has been considerable effort invested
in both theoretical and experimental studies of these dynamical
symmetries. The development of collectivity as one moves
away from closed shells in nuclei is a topic of abiding interest
and Iachello’s introduction of the X(5) critical point symmetry
points the way to where one might find the critical point in such
quantum phase transitions; see also reviews in Refs. [3–6].

Phase transitions have also been studied from different
perspectives, using a variety of different mean field methods
like the relativistic Hartree-Bogoliubov theory [7–10]. In some
of these works, it was suggested that the phase transition can be
related to a prolate-oblate shape transition [7,11]. In the present
work we examine the issue of phase transitions in N = 90
isotones from a mean field perspective. In this work, triaxial
deformations are taken into account, in order to describe the
possible prolate to oblate shape transitions adequately if they
exist. This ensures that any spurious minima corresponding to
saddle points in the potential energy landscape are found. Our
results reveal that the oblate minima in the N = 90 region are
spurious and that there is no evidence for prolate oblate shape
co-existence in this mass region. This result, showing that the
oblate minima are saddle points in β-γ plane, is consistent
with the results of Refs. [10,12].

In addition to the potential energy surfaces, the moments of
inertia and quadrupole moments were calculated and compared
to the experimental values. Since the issue of quantum phase
transitions in a finite system is of particular interest we believe
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that a better understanding of these three indicators will
provide deeper insight into this phenomenon. It is an open issue
how nuclei in which these observables are well described by
the mean field approach relate to phase transitional behaviour
and/or reveal a critical point symmetry. It is well known that the
cranking moment of inertia describes the structure of low and
high spin yrast states rather well, provided the mean field has
a well-defined, deformed shape. Thus, it is of high interest to
determine the ratio R(4/2) for the N = 90 isotones in realistic
calculations. This will also allow us to establish the region in
which the deformed mean field approximation is valid, i.e., the
region of deformed nuclei within the mean field concept.

In the next section our calculations are described and the
results are discussed. A comparison is then made with the
experimental data.

The conclusions are given in Sec. III.

II. THE RESULTS

The deformed mean field for our investigation is based on a
deformed Woods-Saxon potential [13] and the Strutinsky shell
correction approach [14,15]. Rotational states are generated by
means of the cranking approximation, which is well suited
to application to deformed nuclei. Pairing correlations are
included via a seniority pairing force and a double-stretched
quadrupole pairing interaction. The time-odd component of
the latter is of particular importance if we are to obtain a
correct description of the moment of inertia [16,17]. The
pairing Hamiltonian is calculated in a self-consistent fashion
at each frequency and each deformation point. In order to
avoid the spurious breakdown of the pairing field, approximate
particle number projection via the Lipkin Nogami method is
employed. For further details of the method, we refer the reader
to Refs. [18,19]. The total energy is minimized with respect
to the shape parameters [20]. The method has successfully
been applied over the entire nuclear chart, giving in general a
very accurate description of the rotational spectra of deformed
nuclei; see, e.g., Refs. [21–24]. The accuracy with which
the TRS calculations reproduce the properties of high spin
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FIG. 1. Potential energy as a function of β2 for the even-even Nd nuclei from N = 82–98, as a result of mean-field calculations with a
deformed Woods-Saxon potential. (Details on calculations are given in the text.)

rotational bands gives us some confidence in the method when
it is employed in describing the properties of deformed nuclei
more generally with the mean field.

We start by examining the potential energy surfaces as
they emerge from calculations for axially symmetric shapes
for the chain of even-even Nd isotopes, from N = 82 to
N = 98 (see Fig. 1). The potential energy curves in the
Nd isotopes as a function of N might serve as a textbook
example for the onset of deformation; see, e.g., Ref. [25]. The
N = 82 isotope is spherical, and one expects a vibrational
excitation structure. On the other hand, for N = 98 we see a
well-developed deformed shape, having β2 ≈ 0.28 and hence
rotational structure. At N = 84, the equilibrium shape is
still spherical, but considerably softer. For N = 86, there is
effectively a broad minimum and at N = 88 a deformed shape
emerges. The deformation increases smoothly with increasing
neutron number up to 150Nd and there is little change above
150Nd. The mean field approximation is applicable when the
fluctuations in β are smaller than the mean field value, which
is equivalent to stating that the zero-point motion is confined
within the barriers of the potential surface. For those cases the
cranking approximation is well justified. Our results indicate
that for N = 90 this indeed is the case.

From the potential energy curves shown in Fig. 1 one
may deduce that there is oblate-prolate shape coexistence in
some of the Nd isotopes. By relaxing the condition of axially
symmetric shapes and allowing triaxiality to play a role, one
realizes that the oblate “minimum” is actually a saddle point
and that there is no sign of shape coexistence (see Fig. 2).
Clearly, any conclusion about prolate-oblate shape coexistence
should be made with care when the symmetry is restricted to
axially symmetric shapes. Oblate minima in the N = 90 region
are an artifact of the symmetry restriction in the model. The
calculations show that the N = 90 isotones from Nd to Dy all
have well-developed minima at β2 ≈ 0.23. In order to address

the question of whether a simple mean field model can give a
quantitative description of nuclei at or near a critical point, we
compare our calculations with the Skyrme Hartree-Fock BCS
(HFBCS) calculations described in Ref. [26]. Qualitatively,

FIG. 2. (Color online) Calculated TRSs for the N = 90 isotones,
150Nd, 152Sm, 154Gd, and 156Dy. Energy difference between adjacent
contour lines is 100 keV. The calculations were carried out with a
deformed Woods-Saxon potential. (The details are given in the text.)
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FIG. 3. Calculated potential energy as a function of β2 for some
even-even Nd isotopes as a result of Skyrm Hartree-Fock BCS
(HFBCS) calculations described in Ref. [26].

the calculations are in agreement; see Fig. 3. The potential
depths of the energy curves are very similar, revealing that
at N = 86, the nuclear shape is becoming deformed with a
similar value of the deformation parameter for all the values
of Z. The main difference in the calculations is related to
the more sudden increase in deformation between N = 90
and N = 92 in the Skyrme HFB calculations, whereas in
the calculations with Woods-Saxon potential, the deformation
increases smoothly with neutron number. This difference most
probably reflects the difference in the single-particle spectrum,
related to deformed shell gaps below and above the [660]1/2
Nilsson orbit. It is also interesting to compare our results
with the Hartree-Fock-Bogoliubov (HFB) approach using the
Gogny interaction [27]. As one would expect, this study gives
potential energy curves in a region of interest similar to ours.
They found that the transitional behavior appears for the
N = 86–90 isotopes, 146−150Nd. The main difference is that
they find a wide minimum on the prolate side as well as an
additional minimum on the oblate side. As indicated earlier,
the suggestion of shape coexistence should be considered with
care when restricting calculations to axial symmetric shapes.

As discussed above, the potential energy surfaces reveal
nicely the calculated equilibrium shapes as a function of
deformation but do not allow further conclusions to be made
on the applicability of the model with respect to observables
such as the quadrupole moment and moments of inertia. In
the deformed mean field picture, the transitional quadrupole
moment is an excellent observable to characterize the shape
of the nucleus. In the collective model of Bohr and Mottelson,
assuming a uniformly rotating body with given spins, the
transitional moment is given by

B(E2; KI1 → KI2) = 5

16π
e2Q2

0〈I1K20|I2K〉2, (1)

where the intrinsic quadrupole moment Q◦ is obtained as
the integral of the charge distribution. One can directly use
the deformation parameters of the potential to deduce the
corresponding quadrupole moment. Instead, in the present
calculations, we calculate the expectation values of the
quadrupole operators Q20 and Q22 microscopically from the
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FIG. 4. The experimental (squares) [28] and calculated (circles)
quadrupole moments for even-even Nd, Sm, Gd, and Dy isotopes as
a function of neutron number N .

occupation probability of the single-particle levels of the
Woods-Saxon potential:

〈Q2μ〉 = Tr〈q2μρ(ω)〉, (2)

where q2μ is the matrix of the single-particle quadrupole
moments and ρ(ω) is the density matrix at rotational frequency
ω as obtained in the self-consistent HFB diagonalization.
Reference [9] asserts that if one is to recognize a critical
point symmetry in a particular nucleus, B(E2) ratios are one
of two properties that must be calculated. Although B(E2)
rates are not possible to obtain directly from the mean-field
calculations, we compare our calculated quadrupole moments
to the experimentally deduced ones, using the relation between
experimental B(E2) ratios and quadrupole moments, Eq. (1).
For obvious reasons, the deformed mean field does not give
a quadrupole moment when the deformation is zero. In
contrast, experiment reveals a sizable moment, showing that
the deformed mean field model does not apply to those nuclei
in Fig. 4. (For the experimental data, see Ref. [28].) The
transition probability can be calculated in, e.g., the random
phase approximation (RPA), as the first-order extension of
the mean field. Indeed, RPA calculations nicely depict the
drop in excitation energy from N = 82 to N = 84 [29]. In
our calculations, we find a sudden onset of the quadrupole
moment at N = 86, related to the fact that the deformation
has a nonzero value. This does not necessarily imply that the
approximations underlying the calculations are valid. In the
experiment one notices a smooth increase in the transitional
quadrupole moment, revealing the transition from vibrational-
like to rotational structure.

The change in the quadrupole moment with N , dq/dN,
is expected to be largest at the point of transition from
vibrational-like to deformed. In the chains of nuclei discussed
here from Nd to Dy, it occurs between N = 88 and N = 90.
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FIG. 5. The change in quadrupole moments for experiment
(squares) [28] and calculations (circles) as a function of neutron
number in the even-even Nd, Sm, Gd, and Dy nuclei for N = 82–98
nuclei from top to bottom respectively.

This result is consistent with the result of the study of the
beyond mean field approximation using the Gogny interaction
given in Ref. [10] (see Fig. 5). For transitional nuclei the
contribution to the quadrupole transition originates from a
superposition of uniform rotational and vibrational motion.
Since the rotational component is larger in size, one expects
that the calculations assuming uniform rotation may yield
reasonable results, even when the structure of the first excited
state still has an appreciable component of vibrational motion.
Indeed, the calculated quadrupole moments agree rather well,
starting from N = 86 and certainly by N = 88.

The calculated spins as a function of the rotational
frequency, from which one can deduce the moment of
inertia, are another sensitive probe of the validity of the
cranking approximation. The moments of inertia are described
rather well for deformed nuclei, for which the mean field
approximation is valid. In Fig. 6, we compare the calculated
spins to experiment for all of the N = 90 isotones discussed
in our study. Clearly, the calculations agree very well with the
experimental data in the low-spin regime, which is of relevance
to our discussion. This indicates that the N = 90 isotones
are well described by the mean field approach, indicating the
validity of a static-deformed mean field.

The most sensitive probe in the comparison with experiment
is the second moment of inertia, J 2. We used the calculated
spin alignment and frequency values to calculate the second
moment of inertia by means of the well-known equation J 2 =
dI/dω and the experimental moments of inertia were obtained
from the following equation:

J 2 = Ix(ω2) − Ix(ω1)

�(ω2 − ω1)
. (3)
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FIG. 6. The experimental (squares) [28] and calculated (circles)
spin(Ix) vs rotational frequency (�ω) in the even-even Nd, Sm, Gd,
and Dy nuclei for N = 82–98 nuclei from top to bottom respectively.

For an ideal vibrator, the J 2 moment of inertia is expected to be
infinite. It will be very large for anharmonic vibrators. On the
other hand, in a regime of deformed nuclei, we expect a smooth
increase in J 2 with increasing deformation. Hence, studying
the transition from vibrator to rotor in an isotopic chain, should
reveal a minimum in the moment of inertia as a function
of neutron number. Indeed, comparing the evolution of the
moments of inertia in the different isotopic chains from Nd to
Dy, it reaches a minimum at N = 90 and then smoothly and
steadily increases for larger N values, which is seen in Fig. 7.
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FIG. 7. The experimental (squares) [28] and calculated (circles)
dynamical moments of inertia. For the even-even Nd, Sm, Gd, and
Dy isotopes as a function of neutron number N.

014311-4



PROPERTIES OF N = 90 ISOTONES WITHIN THE MEAN . . . PHYSICAL REVIEW C 89, 014311 (2014)

FIG. 8. Calculated octupole deformation vs quadrupole deforma-
tion for 150Nd. Energy difference between adjacent contour lines is
100 keV.

Starting at N = 90, the moment of inertia increases smoothly,
with no sign of sudden changes. The calculated second moment
of inertia agree very well with experimental results from
N = 90 onwards and show the same behavior. The reason for
the larger moments of inertia in some of the N = 88 isotones
reflects the fact that in these nuclei at these frequencies, an
alignment is taking place; i.e., there is a sizable single-particle
contribution to the moment. At lower frequencies, we obtain
a lower moment of inertia in N = 88 as compared to N = 90,
indicating that the cranking approximation has limited validity
when it comes to the N = 88 isotones.

In order to investigate the dependence on other shape pa-
rameters, we calculated potential energy surfaces for octupole
and hexadecapole deformations. For the octupole degree of
freedom, one finds considerable softness that is largest at
N = 86,88 (∼0.08–0.09)for the Nd and Sm isotopes, while
it occurs at N = 84 (∼0.05) for the Gd and Dy isotopes. In the
case of the N = 90 isotones the octupole softness decreases
with increasing proton number, which indicates that N = 90
is not a major point of shape changes in the octupole direction
[30]. (See Fig. 8.) Moreover, as a result of our calculations
we found sizable β4 values for N = 90 and N = 92 [31]. See
Figs. 9 and 10.

FIG. 9. Calculated hexadecapole deformation vs quadrupole
deformation 150Nd. Energy difference between adjacent contour lines
is 100 keV.

FIG. 10. (Color online) The calculated hexadecapole deforma-
tions of the even-even Nd, Sm, Gd, and Dy isotopes as a function
of neutron number N .

The energy ratio R4/2 is another important indicator of
structure. We used an averaging procedure in our calculations
in order to determine the E(4)/E(2) ratio. First the mean field
moments of inertia are calculated microscopically at each
frequency. Then using the relationship between energy and
moments of inertia we calculate the R4/2 ratio in rotational
basis using the following formula:

Erot = �
2

2J
I (I + 1) (4)

and

E(4+
1 )/E(2+

1 ) = 3,33
J (2)

J (4)
, (5)

where J (2(4)) is calculated at the frequency for the 2(4)+ →
0(2)+ transition, using interpolation. The calculated ratios
are shown in Table I. They clearly show that the mean
field estimates are consistent with the experimental data with
respect to this energy ratio. The experimental energies are
taken from Ref. [32].

The moment of inertia is changing with frequency, mainly
due to the change in the pairing field. This effect is not negligi-
ble, particularly for the N = 90 isotones. Apparently, N = 90
nuclei are nicely described within the cranking approximation.
A value of 2.9 appears to be a lower limit for the R4/2 ratio
that can be obtained in cranking calculations. The value of 3.3
obtained at the symmetry limit of SU(3) corresponds to an ideal
rigid rotor. Nuclei are not rigid rotors and the change in the
moment of inertia, as obtained from the cranking calculations,

TABLE I. The calculated and experimental E(4+
1 )/E(2+

1 ) ratio
for the N = 90 isotones.

Nucleus Calculated Experimental
E(4+

1 )/E(2+
1 ) E(4+

1 )/E(2+
1 )

150Nd 2.90 2.927
152Sm 3.04 3.009
154Gd 3.12 3.015
156Dy 3.07 2.934
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yields a rather accurate value of the response of the nuclear
mean field. Pairing correlations, of course, are crucial in this
context and are the single most important factor causing the
increase in the moment of inertia with increasing spin. The
dynamic change of pairing correlations and their influence
on a possible phase transition is not considered in algebraic
approaches. Therefore, one expects a “smearing effect,” due
to fluctuations in the nuclear wave function. It implies that the
value of 2.91, as obtained for the critical point symmetry, has to
be treated with caution in any comparison with real nuclei. As
stated in Ref. [33], nucleon numbers take only discrete values
and there is no continuous parameter associated with them.
From our calculations it emerges that N = 90 is well described
within the mean field model and that N = 88 and N = 90
mark the borderline between nuclei that can be described well
within the mean field and those that reveal deficiencies. The
presence of pairing correlations makes it difficult to use 2.91
as a number that definitively characterizes the phase transition
in nuclei. One may assume that the value is smaller in real
nuclei. In addition, the presence of pairing correlations in
the ground state results in two major changes: (i) the critical
value will be shifted to a lower neutron number and (ii) the
phase transition is most likely to be smeared out due to the
presence of strong fluctuations.

III. CONCLUSION

The present paper investigates the validity of the deformed
mean field for the description of N = 90 isotones with

pairing-deformation self-consistent total Routhian surface
(TRS) calculations. In order to understand how the nuclear
shape evolves, the calculations are carried out in the range
of N = 82–98. Our results show that the two minima ap-
pearing in axially symmetric calculations correspond to a
spurious one at oblate shape and a proper one at prolate
shape. We compared our calculations with the Skyrme
Hartree-Fock BCS (HFBCS) calculations and to previous
studies in the beyond mean field approximation. Previous
proposals of shape coexistence are not verified and should
be considered with care when calculations are restricted to
axially symmetric shapes [7,8,27]. Our calculations clearly
show that the transitional region of the N = 90 isotones
is well explained using two- and three-dimensional po-
tential energy surfaces within the cranking approximation.
The quadrupole moments, the moments of inertia, and the
calculated R4/2 ratio all agree very well with experimental
results. The impact of our study for the characterization of
phase transition in nuclei needs to be further elucidated. It
may also indicate a restricted validity of the concept due
to the presence of large fluctuations and other degrees of
freedom.
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