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Coulomb and spin-orbit interactions in random-phase approximation calculations
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We present a fully self-consistent computational framework composed by Hartree-Fock plus random-phase
approximation where the spin-orbit and Coulomb terms of the interaction are included in both steps of
the calculations. We study the effects of these terms of the interaction on the random-phase approximation
calculations, where they are usually neglected. We carry out our investigation of excited states in spherical nuclei
of oxygen, calcium, nickel, zirconium, tin, and lead isotope chains. We use finite-range effective nucleon-nucleon
interactions of Gogny type. The size of the effects we find is, usually, of a few hundred keV. There are not simple
approximations which can be used to simulate these effects since they strongly depend on all the variables related
to the excited states, angular momentum, parity, excitation energy, isoscalar, and isovector characters. Even the
Slater approximation developed to account for the Coulomb exchange terms in the Hartree-Fock approximation
is not valid in random-phase approximation calculations.
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I. INTRODUCTION

The combination of Hartree-Fock (HF) and random-phase
approximation (RPA) calculations carried out with a unique
effective interaction has been able to provide a good de-
scription of known nuclear properties in a wide range of the
nuclear chart, from light nuclei around the oxygen region up to
very heavy nuclei such as uranium. This success has induced
us to believe that this computational scheme could provide
good predictions of the properties of exotic nuclei which will
be produced in the next few years in radioactive ion beams
facilities. This possibility has increased the interest in defining
more precisely the details of the self-consistent HF plus RPA
(HF + RPA) calculations.

In HF calculations, the presence of the spin-orbit term of the
interaction is essential to properly describe the shell structure
of the various nuclei, and that of the Coulomb interaction to
distinguish between proton and neutron single particle (s.p)
properties. These two terms of the effective nucleon-nucleon
interaction are usually neglected in RPA calculations, since
the evaluation of their contributions, considered small as
compared to that of the other terms of the interaction, is
computationally quite heavy.

The relatively small size of the effects of Coulomb and
spin-orbit terms has been confirmed in recent years by the
results of some fully self-consistent HF + RPA calculations.
The calculations carried out with zero-range Skyrme forces [1–
6] indicate that spin-orbit and Coulomb interactions produce
effects of a few hundred keV.

To the best of our knowledge, fully self-consistent
HF + RPA calculations with finite-range interactions have
been carried out only by using Gogny interactions. In these
types of calculations, the results obtained by Péru et al.
[7] show that the spin-orbit term of the interaction plays a
remarkable role in the structure of the low-lying quadrupole
and octupole states by modifying both excitation energies and

transition probabilities. In the same work it has been shown that
the Coulomb force in RPA calculations significantly affects the
centroid energies of the isovector giant dipole resonances and
their energy weighted sum rule values. The study of Ref. [7]
has been conducted by considering the doubly magic nuclei
78Ni, 100Sn, 132Sn, and 208Pb with the D1S′ parametrization of
the Gogny two-body effective interaction.

Recently, we have developed an approach to carry out
HF + RPA self-consistent calculations with finite-range inter-
actions [8]. We have used this model to study magnetic and
electric nuclear excitations with Gogny interactions, but in
these investigations the spin-orbit and Coulomb terms of the
interactions were not considered in the RPA calculations.

In the present work, we show the results of a study
in which we have evaluated the effects of these terms of
the D1M parametrization of the Gogny interaction in fully
self-consistent HF + RPA calculations. With respect to the
investigation of Ref. [7], we have considered a different
interaction, a wider set of spherical nuclei, and we have focused
our attention mainly to low-lying excited states, rather than
to the centroid energies of giant resonance excitations. We
have studied the validity of the Slater approximation [9] in
the treatment of the Coulomb exchange RPA terms. We have
calculated the effects of the spin-orbit and Coulomb terms on
low lying 2+ and 3− multipole excitations and the dependence
of these effects in isoscalar (IS) and isovector (IV) excitations
in nuclei with the same number of protons and neutrons. We
have considered excitations dominated by single particle-hole
(p-h) pairs and we have studied the evolution of the effects with
different values of the angular momentum of the excitations.
Our results confirm that the effects of the spin-orbit and
Coulomb terms of the interactions are of a few hundred keV.

Our model is presented in Sec. II. Details and basic
ingredients of the calculations are presented in Sec. III. In
Sec. IV we have discussed the effects of the spin-orbit and
Coulomb interactions in a selected set of results and studied the
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validity of the Slater approximation for the Coulomb exchange
term. In Sec. V we summarize the main results of our work
and we draw our conclusions.

II. THE MODEL

The only input required by our self-consistent approach
is the effective nucleon-nucleon force. We have considered a
general finite-range force which we express as

V̂α(i,j ) = vα(rij ) Oα
i,j , α = 1,2, . . . ,8 , (1)

where vα are scalar functions of the distance between the two
interacting nucleons, and Oα indicates the type of operator
dependence

Oα
i,j : 1 , τ (i) · τ (j ) , σ (i) · σ (j ) , σ (i) · σ (j ) τ (i) · τ (j ) ,

Sij , Sij τ (i) · τ (j ) , Lij · S , Lij · S τ (i) · τ (j ) . (2)

In the above expression σ is the Pauli matrix operator acting on
the spin variable and τ the analogous operator for the isospin.
The tensor operator is defined as

Sij = 3
σ (i) · rij σ (j ) · rij

r2
ij

− σ (i) · σ (j ) , (3)

where

rij = ri − rj (4)

represents the relative coordinate. In the spin-orbit terms of
the force, α = 7,8, we have indicated with

Lij = rij × pij (5)

the relative angular momentum of the two interacting nucleons,
where their relative momentum has been defined as

pij = 1
2 (pi − pj ) , (6)

and with

S = si + sj (7)

the total spin of the nucleon pair.
With this type of interactions, we solved the HF equations as

indicated in Refs. [10,11]. From the solution of these equations
we obtained a set of s.p. wave functions that have been used
to solve the RPA equations. We have considered the RPA
equations in their matrix formulation [12–14].

We have evaluated the corresponding matrix elements by
expressing the force in configuration space as the Fourier
transform of the force given in momentum space

vα(rij ) = 1

(2π )3/2

∫
d3q exp[iq · (ri − rj )] ṽα(q) . (8)

In this way, we could separate the coordinates ri and rj and
carry out the multipole expansion of the two exponentials. A
detailed derivation of the matrix element expressions for all
the force channels up to α = 6 can be found in Ref. [15].

In our previous works [8], the spin-orbit and Coulomb
matrix elements have been neglected in RPA calculations,
and we have considered them in HF calculations only. The

inclusion of the Coulomb interaction in the RPA calculations

vC(rij ) = e2

|r i − rj | (9)

is relatively easy, since the RPA matrix elements are identical
to those of the scalar term of the interaction (1) (see Ref. [15]).
Obviously, we have to consider that the interaction is active
only between proton p-h pairs.

The evaluation of the spin-orbit matrix elements is more
involved. We give in the Appendix some details about it.
The general expressions presented in this appendix have been
obtained by considering that the scalar functions vα=7,8 of
Eq. (1) have finite range. In our calculations we used Gogny
interactions that include a spin-orbit potential of contact type,
analogous to that adopted in Skyrme-like interactions:

F SO
ij = 2 i W0 [←−p ij × δ(rij ) −→p ij ] · S , (10)

where the arrows indicate the side on which the operator pij

acts. Taking into account the expression

δ(rij ) = lim
μ→∞

μ3

π3/2
exp

( − μ2r2
ij

)
, (11)

we obtain

F SO
ij = 2 i W0 lim

μ→∞
μ3

π3/2

[←−p ij × exp
( − μ2r2

ij

) −→p ij

] · S

= − 4 W0

[
lim

μ→∞
μ5

π3/2
exp

( − μ2r2
ij

)]
Lij · S . (12)

By comparing the above expression with the v7 term of Eq. (1),
we identify

v7(rij ) = − 4 W0 lim
μ→∞

μ5

π3/2
exp

( − μ2r2
ij

)
(13)

whose Fourier transform is

ṽ7(q) = lim
μ→∞

∫
d3r exp[−iq · (ri − rj )] v7(r) = W0 q2 ,

(14)

which is the expression used in our RPA calculations.
In the following, we indicate with ω0 the excitation energies

obtained without spin-orbit and Coulomb interactions in RPA
calculations. In analogy, we call ωC, ωSO, and ωC+SO the
energies obtained when, only the Coulomb, or only the
spin-orbit term, or both are included.

III. DETAILS OF THE CALCULATIONS

The results we present in this article have been obtained by
using the D1M parametrization [16] of the Gogny interaction
[17]. We carried out calculations also with the more traditional
D1S force [18] but, since the results are very similar to those
obtained with the D1M interaction, we do not show and
discuss them here. The D1M interaction is composed by four
finite-range terms, the scalar, isospin, spin, and spin-isospin
dependent terms, a zero-range density dependent term and, in
addition, the Coulomb and a zero-range spin-orbit term.

The first step of our calculations consists in constructing the
s.p. basis by solving the HF equations with the complete D1M
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interaction described above. This is done by imposing bound-
state boundary conditions at the edge of the discretization box.
The technical details concerning the iterative procedure used
to solve the HF equations for a density-dependent finite-range
interaction can be found in Refs. [11,19]. When the stable
solution, corresponding to the minimum of the binding energy,
is reached, the HF equations are solved again, not only for
the states below the Fermi surface, but, by using the local
Hartree and the nonlocal Fock-Dirac potentials constructed
on these s.p. states, also for those states above it. In this
manner we generate a set of discrete bound states also in
the positive energy region, which should be characterized by
the continuum. The level density in the continuum region is
strictly related to the size of the space integration box: the
larger is the box the higher is the level density.

We write the RPA secular equations [13] in matrix form
and solve them by diagonalization. The dimensions of the
matrix to diagonalize are given by the number of the p-h pairs
contributing to the specific excitation. This depends on the
number of the s.p. states composing the configuration space.
In our approach, the results of the RPA calculations depend
on two parameters, the level density, which is related to the
size of the integration box, and the maximum s.p. energy. We
have chosen the values of these two parameters by controlling
that the centroid energies of the giant dipole responses do not
change by more than 0.5 MeV when either the box size or the
maximum s.p. energies are increased. The most demanding
calculations are those we carried out for the 208Pb nucleus.
In this nucleus, by using a box radius of 25 fm and an upper
limit of s.p. energy of 100 MeV, we diagonalize matrices of
dimensions of about 1300 × 1300.

IV. RESULTS

In this section we study the effects of the Coulomb and
spin-orbit interactions in RPA calculations. For this study we
have considered a set of isotopes representative of various
regions of the nuclear chart. For the light nuclei we have chosen
the oxygen isotopes 16O, 22O, 24O, 28O, for the medium nuclei
some calcium, 40Ca, 48Ca, 52Ca, 60Ca, and nickel isotopes,
48Ni, 56Ni, 68Ni, 78Ni, for the heavier nuclei some tin isotopes,
100Sn, 114Sn, 116Sn, 132Sn, and, in addition, the 90Zr and 208Pb
nuclei. A common feature of all these nuclei is that the s.p.
levels below the Fermi surface are fully occupied, and those
above it are completely empty. This implies that the nuclei we
have considered have spherical shape. In addition, since the
energy gap between the last occupied s.p. level and the first
empty level is relatively large, the pairing effects are negligible.
Our calculations do not consider these effects, even though the
Hartree-Fock-Bogoliubov calculations of Ref. [20] indicate
the presence of pairing effects in the 22O, 52Ca, 60Ca, 68Ni,
90Zr, 114Sn, and 116Sn nuclei.

First, we have focused our attention into low-lying
quadrupole and octupole electric excitations, more precisely
those 2+ and 3− excitations dominated by p-h pairs where
the particle is below the continuum threshold. We found 3−
states with these characteristics for all the nuclei we have
investigated. On the contrary, these type of states are not
present in the 2+ excitations of 16O, 28O, 40Ca, 60Ca, and

48Ni. We have studied the effects of the Coulomb force, and
the need of an exact treatment of its exchange matrix elements
(Sec. IV A), and then the effects of the spin-orbit interaction
(Sec. IV B). In Sec. IV C we investigate whether the Coulomb
and spin-orbit interactions have different effects on IS and IV
excitations in nuclei with N = Z. In Sec. IV D we study the
sensitivity to Coulomb and spin-orbit terms of those states
dominated by a unique s.p. transition, as a function of the
angular momentum of the excitation.

A. Effects of the Coulomb force on quadrupole and octupole
electric excitations

The use of a finite-range interaction in a fermionic
many-body system requires the evaluation of both direct and
exchange matrix elements of the force. The evaluation of these
latter ones is numerically much more involved than that of the
former ones. For this reason, the exchange matrix elements of
the Coulomb interaction are often estimated by using a local
density approximation, called the Slater approximation [9],
which reduces their contribution to a correction of the direct
matrix elements. The validity of the Slater approximation
in HF calculations has been investigated for the zero-range
Skyrme force [21–23] but also for the finite-range Gogny [24]
interaction.

We study the validity of the Slater approximation in RPA
calculations by comparing its results with those obtained by
exactly evaluating the Coulomb exchange matrix elements.
The expression of the Coulomb exchange contribution to the
total HF energy in the Slater approximation is [6]

ESlater
C,ex = −3e2

4

(
3

π

)1/3 ∫
d3r ρ4/3

p (r) , (15)

where ρp is the proton density. From the above equation we
obtain

V Slater
C,ex (rij ) = −e2

3

(
3

π

)1/3

ρ−2/3
p (rj ) δ(rij ) , (16)

which is the exchange Coulomb potential in the Slater
approximation to be used in RPA calculations [6]. Specifically,
we added this expression to that of the Coulomb potential (9),
and calculated only the direct matrix elements.

To study the effects of the Coulomb interaction on the
RPA, we use the same set of s.p. states generated by the
HF calculations with the full D1M Gogny interaction, and
we compare the results obtained without Coulomb interaction
with those obtained by including it in the exact manner and in
the Slater approximation. In this study the spin-orbit term of
the interaction has not been considered in the RPA calculations.

For the various nuclei we have investigated, we present in
Fig. 1 the RPA results for low-lying 2+ and 3− states, panels
(a) and (b), respectively, carried out by including the Coulomb
interaction. The results presented are the differences between
the energies obtained with and without Coulomb interaction,
ωα

C − ω0. The open squares, α ≡ D, indicate the results
obtained when only the direct terms of the Coulomb matrix
elements are considered, and the solid circles, α ≡ D + E,
when also the exchange matrix elements are included. The
solid triangles, α ≡ D + S, show the results obtained when
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FIG. 1. Difference between the RPA energies calculated with and
without Coulomb interaction for quadrupole and octupole electric
excitations of the nuclei we are investigating. The open squares,
α ≡ D indicate the results obtained by considering the Coulomb direct
term only, the solid circles, α ≡ D + E those obtained by considering
also the exchange term. The solid triangles, α ≡ D + S, show the
results obtained by using the Slater approximation to describe the
exchange term. All the results of the figure have been obtained without
spin-orbit interaction in the RPA calculation. The lines are drawn to
guide the eyes.

the Slater approximation of the exchange matrix elements is
used.

The results shown in Fig. 1 indicate that the effects of the
Coulomb interaction are rather small. We observe maximum
differences of the order of a few hundred keV, in much cases
smaller than 100 keV. If only the direct matrix elements are
considered the Coulomb interaction is always repulsive: all
the nuclei show positive differences, smaller than 100 keV
for the 2+, and smaller than 200 keV for the 3−. The sign
of the difference is reversed when the exchange terms are
considered, as the solid circles indicate. The behavior of the
complete results strongly depend on the multipolarity and
on the nucleus considered. The effects on the 2+ states of
the oxygen and calcium isotopes are negligible, while they
become remarkable in the nickel isotopes, more relevant than
the effects found in the heavier nuclei we have considered. The
situation on the 3− states is again different. In this case, the
isotopes where we observe the largest effects are those of
oxygen and calcium, while the effects on the heavier nuclei
become gradually smaller.

The results obtained with the Slater approximation strictly
follow those obtained by considering only the direct term,
and slightly lower the size of the repulsive effect. The Slater
approximation is unable to modify the effects of the direct
Coulomb matrix elements to reproduce in a reasonable way
the effects of the exchange terms.
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FIG. 2. The same as in Fig. 1, but now the various symbols
represent the RPA energy differences obtained by considering the
spin-orbit interaction only (solid triangles), the Coulomb interaction
only (solid circles), and both of them (open squares). As in Fig. 1 these
results are expressed as differences with the RPA energies calculated
without these terms of the interaction. The lines are drawn to guide
the eyes.

B. Effects of the spin-orbit force on quadrupole and octupole
electric excitations

We use again the 2+ and 3− states considered in the previous
section to discuss the effects of the spin-orbit interaction. The
results of the calculations done by including the Coulomb and
spin-orbit terms of the interactions for the evaluation of the
excitation energy of these multipoles are presented in Fig. 2 as
a difference with the energies ω0 obtained without them.

In Fig. 2 the solid triangles indicate the results obtained by
using the spin-orbit force only, while the results of the complete
calculations, where both Coulomb and spin-orbit terms are
considered, are shown by the open squares. For completeness,
we show again, with the solid circles, the results obtained by
using the Coulomb interaction only.

We first remark that the effects of the spin-orbit force are,
in the great majority of the cases, larger than those of the
Coulomb interaction. The second remark is that, in general,
the spin-orbit interaction is attractive. The exceptions to this
trend that we observe are for the 3− excitations of 16O and of
68Ni. The global effect is essentially given by the simple sum
of the two effects separately considered. The largest effects are
those found for the 3− state in 52Ca nucleus and for the 2+ state
in 56Ni nucleus where they reach the values of about 1.2 MeV.
A comparison of our results with those of Péru et al. [7] for
the 78Ni, 100Sn, 132Sn, and 208Pb shows a good agreement.

In Fig. 3 we show the energies of the 2+ and 3− states
obtained by using the D1M interaction with and without
Coulomb and spin-orbit terms, open and solid squares,
respectively. We observe that the inclusion of the Coulomb
and spin-orbit terms reduces the energy values. We compare
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FIG. 3. Excitation energies of the lowest collective 2+ (a) and
3− (b) states for the nuclei we are investigating. The solid squares
indicate the results obtained by neglecting both Coulomb and spin-
orbit interactions and the open squares those obtained by considering
them. These energies are compared with the available experimental
values taken from Refs. [25,26] and represented by the crossed circles.
The lines are drawn to guide the eyes.

the results of our calculations with the available experimental
values taken from the compilations of Refs. [25–28] (crossed
circles). The experimental spectrum is much richer than that
produced by our calculations, therefore, in some cases, the
identification of the experimental excited state to be compared
with that theoretically found is not free from ambiguities. For
this reason, we do not enter in a detailed discussion of each
result. In any case, we can state that the comparison shown
in Fig. 3 is satisfactory, especially considering that these RPA
calculations are parameter free.

The case of the low-lying 2+ state in 208Pb has been
carefully investigated. Calculations carried out with SLy4
interaction [4] and with the Gogny D1S′ force [7] indicate
that the inclusion of spin-orbit and Coulomb terms reduces
the discrepancy between theory and experiment. We observe
the same effect also in our calculations, where energy value
of 5.61 MeV is reduced to 4.93 MeV when both terms are
included. The experimental value is 4.08 MeV (Ref. [29]) and
the shift of about 0.85 MeV we obtain in our calculation is
similar to that found in Refs. [4,7].

The differences observed for the 3− states with respect
to the experimental values are smaller than 2 MeV except for
114Sn and 116Sn. In these nuclei, the inclusion of pairing effects
improves the agreement [30,31].

C. IS and IV excited states

In this section we investigate whether the Coulomb and
spin-orbit forces generate different effects on IS and IV
excitations. For this study, we have selected cases where

TABLE I. Isotopes with equal number of protons and neutrons
selected to study the effects of Coulomb and spin-orbit interactions
on IS and IV excitations. In the second column we indicate the proton
and neutron p-h pairs which dominate the excitations, and in the third
column the angular momentum and the parity of the excited states we
have considered. The values, in MeV, of the excitation energies ω0, are
those obtained without Coulomb and spin-orbit interactions. When
available, we present in the columns labeled “exp” the experimental
values taken from the compilations of Refs. [25,26].

excitation energy (MeV)

IS IV

nucleus p-h pair J π ω0 exp ω0 exp

16O 1d5/2 1p−1
1/2 2− 9.42 8.87 11.25 12.53

1d5/2 1p−1
3/2 4− 16.00 17.79 16.98 18.98

40Ca 1f7/2 1d−1
3/2 2− 6.51 7.53 8.38 8.42

1f7/2 1d−1
3/2 4− 6.66 5.61 7.03 7.66

56Ni 1f5/2 1f −1
7/2 1+ 7.93 11.16

2p3/2 1f −1
7/2 3+ 5.79 6.21

2p3/2 1f −1
7/2 5+ 5.99 6.30

100Sn 1g7/2 1g−1
9/2 1+ 7.62 10.37

2d5/2 1g−1
9/2 3+ 6.53 7.00

2d5/2 1g−1
9/2 5+ 6.59 6.88

the IS and IV characters of the multipole excitation are
well identified. We have limited our investigation to nuclei
with equal number of protons and neutrons and to multipole
excitations dominated by the p-h pairs where particle and hole
states are just above and just below the Fermi surface. In this
situation, we can identify excited states dominated by the same
p-h pairs in both proton and neutron sectors. The quantum
numbers identifying the s.p. states of these p-h pairs are the
same for protons and neutrons. When the proton and neutron
p-h pairs are in phase we have an IS excitation and when they
are out of phase we have the IV excitation. Thus, the IS and IV
character of the excitation can be easily identified in our RPA
calculations by observing the relative sign of the proton and
neutron RPA forward X amplitudes defined, as usual [13], as

|ν〉 =
∑

ph

(
Xν

ph a+
p ah − Y ν

ph a+
h ap

)|0〉 , (17)

where |ν〉 and |0〉 are the RPA excited and ground states, and
a+ and a the creation and annihilation s.p. operators.

In Table I we show the nuclei we have considered, the p-h
pairs dominating the transitions, and the angular momentum
and parity of the multipole excitation. We also indicate the
values of the energies ω0 obtained without the Coulomb and
spin-orbit interactions. We compare these energies with the
available experimental energies taken from the compilations
of Refs. [25–28]. The information given in Table I completes
that given in Fig. 4, where the effects of the Coulomb and
spin-orbit interaction terms are shown as differences with
respect to ω0. The labels C, SO, and SO + C indicate the
results we have obtained by adding to the D1M interaction
only the Coulomb, only the spin-orbit, or both terms of the
interactions, respectively.
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The results shown in panel (a) of Fig. 4 indicate that the
Coulomb interaction is always lowering the excitation energy
values, and its effects are rather insensitive to the IS or IV
nature of the excitation. In panel (b) of Fig. 4, we observe, that
the effects of the spin-orbit interaction are, in absolute value,
always larger in the IS than in the IV excitations. The larger
difference between the effects of the spin-orbit interaction on
IS and IV excitations occurs for the 2− state in 16O. The sign
of the spin-orbit effects is not always the same. We observe an
enhancement of the energy values for all the 1+ and 2− states
shown in the figure, and also for the 4− state in 40Ca. For the
other cases the energy values are lowered.

We show in panel (c) of Fig. 4 the global effect obtained
by considering both Coulomb and spin-orbit interactions.
In the case of IV excitations, we observe a reduction of
the energy values of about 150 keV, almost independent
of the multipolarity and nucleus considered. The situation for
the IS states is more complicated. We find a lowering of the
ω0 values in all cases except for the 2− state in 16O and for the
two states we have considered in 40Ca. In any case, the size of
these effects is rather small, reaching ∼300 keV at most. The

-750

-500

-250

0

250

500

-1500

-1000

-500

0

500

ω
α
−

ω
0

(k
eV

)

Jπ

48Ca 52Ca 48Ni 68Ni 116Sn 132Sn

48Ca 60Ca 68Ni 78Ni 90Zr 132Sn

protonic

neutronic

(a)

(b)

SO

C

SO+C

2−
3−

4−
5−

2−
3−

4−
5−

2+

3+

4+

5+

2+

3+

4+

5+

2+

3+

4+

5+

6+

7+ 2+

3+

4+

5+

6+

7+

2+

3+

4+

5+ 2−

3−
4−

5−
6−

4−
5−

2+

3+

4+

5+

6+

7+

2+

3+

4+

5+

6+

7+

2+

3+

4+

5+

6+

7+

FIG. 5. Energy differences between results obtained by selec-
tively including the Coulomb and spin-orbit interactions, and those
without them. The various lines connect the results obtained by
including only the Coulomb interaction (solid circles), only the spin-
orbit interaction (solid triangles), and both of them (open squares).
The p-h pairs dominating the various excitations are indicated in
Table II. The lines are drawn to guide the eyes.

inclusion of these terms slightly worsen the agreement with
the available experimental data, as it is possible to deduce from
the results shown in Table I.

D. Excited states dominated by a specific s.p. transition

In this section we investigate how the effects of the Coulomb
and spin-orbit interactions depend on the angular momentum
of the excitation. For this study we have selected p-h transitions
involving s.p. states near the Fermi energy. When it has been
possible we have chosen cases where the particle state is below
the continuum threshold. We have calculated all the multipole
excitations compatible with the angular momentum coupling
of the dominant p-h pair.

A selection of the most relevant results of this investigation
is shown in Fig. 5 as the difference between the energies
obtained by including Coulomb and spin-orbit terms with those
obtained without them. We present in Table II the p-h pairs
dominating the excitations of each nucleus considered in the
figure.

We show in panel (a) of Fig. 5 the results regarding the
multipole excitations dominated by proton s.p. pairs. The
solid circles indicate the results obtained by considering only
the Coulomb interaction, the solid triangles those obtained
by considering only the spin-orbit interaction, and the open
squares those where both interactions have been considered.

We observe that effects of the Coulomb interaction are es-
sentially independent of the multipole excitation, and produce
always a lowering of the energy values.
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TABLE II. Particle-hole pairs dominating the excited states
considered in Fig. 5.

p-h pair

protons neutrons

48Ca 1f7/2 1d−1
3/2 2p3/2 1f −1

7/2
52Ca 1f7/2 1d−1

3/2
60Ca 1g9/2 1f −1

5/2
48Ni 2p3/2 1f −1

7/2
68Ni 2p3/2 1f −1

7/2 1g9/2 2p−1
1/2

78Ni 2d5/2 1g−1
9/2

90Zr 2d5/2 1g−1
9/2

116Sn 2d5/2 1g−1
9/2

132Sn 2d5/2 1g−1
9/2 2f7/2 1h−1

11/2

The situation is much more complex for the results obtained
with the spin-orbit interaction. For example, in 48Ca and 52Ca
isotopes we observe an enhancement of the 2−, 3−, and 4−
excitation energies, and a lowering of the energies of the
other multipoles considered. We do not identify general trends
related to the change of the angular momentum value of the
excitation. The combined effect of the Coulomb and spin-orbit
interactions is essentially given by the algebraic sum of the two
effects; the interference phenomena are almost negligible.

The results obtained for the excitations dominated by the
neutron s.p. pairs indicated in Table II are shown in panel (b)
of Fig. 5. In this case, the effect of the Coulomb interaction
is almost zero. It is not exactly zero since in the RPA
solution, even if dominated by the neutron transition, there
are contributions of some proton p-h pairs. As in the proton
case, we do not identify general trends related to the inclusion
of the spin-orbit interaction. The size of the spin-orbit effects
is not always negligible and we observe differences of more
than 0.8 MeV for the 3− of 60Ca and the 2+ of 78Ni.

It is worth noting [see panel (b) of Fig. 5] that those
nuclei with the same neutron number show a similar trend
in the energy differences for the neutronic excitations. This is
apparent for 78Ni and 90Zr and for the two common excitations
of 60Ca and 68Ni.

V. CONCLUSIONS

In this paper we have presented the results of a study focused
on the role of Coulomb and spin-orbit interactions in RPA
calculations. The inclusion of these two terms of the force is
required when the s.p. wave functions and energies used in
RPA are generated by a HF calculation, to have a complete
self-consistency.

We have conducted our investigation in various spherical
nuclei covering different regions of the nuclear chart by
selecting some low-lying states where the details of the s.p.
wave functions around the Fermi surface are relevant.

By studying the low-lying 2+ and 3− excitations we found
the need of providing a proper treatment of the exchange term
of the Coulomb interaction, usually simulated by the Slater
approximation. The exchange term of the Coulomb interaction
in RPA calculations generates a globally attractive effect, i.e.,

an effect which lowers the value of the energies calculated
without it. The use of the direct term only has an opposite
effect, and the Slater approximation cannot solve the problem.

We have investigated the effects of the Coulomb interaction
in IS and IV excitations, and also in excitations dominated by
specific p-h pairs and coupled to different angular momentum
values. The results of all our calculations confirm the attractive
character of the Coulomb interaction. The size of the effects
of the Coulomb force is rather similar in all the cases we have
investigated and it is of about a few hundred keV.

The situation regarding the spin-orbit force is much more
complicated. The study of the low-lying 2+ and 3− states does
not show general behavior of the spin-orbit effects, even though
in the great majority of the cases the total effect is attractive.
We found a generally larger sensitivity to the IS transitions than
to the IV ones, however, we did not observe a general trend
of the effects. The sign of the effect changes depending on the
nucleus and on the multipolarity investigated. We observed
an analogous situation also when we investigated excitations
related to specific s.p. pairs. Also in this case, sign and size
of the effect depend on the nucleus investigated and on the
angular momentum of the excitation.

The effects of the spin-orbit interaction are larger than those
of the Coulomb interaction. The energy difference with respect
to the results obtained without them can be larger than 1 MeV.
The size of the total effect obtained by including both Coulomb
and spin-orbit forces in a unique RPA calculation is essentially
given by the sum of the two separated results. Interference
effects are negligible.

We have also studied the possibility of identifying Coulomb
and spin-orbit effects in other observables, different from the
excitation energies, but we found very small effects, therefore
we did not show here these results.

Self-consistent mean-field models are the starting ground to
make predictions about the structure of exotic nuclei. The total
self-consistency of these calculations is a requirement which
reinforces the reliability of these calculations. The exclusion
of the Coulomb and spin-orbit terms of the interaction can
generate errors up to about 1 MeV on the RPA excitation
energies.
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APPENDIX: THE SPIN-ORBIT MATRIX ELEMENTS

In this appendix, we give some details of our calculations
of the RPA matrix elements for the spin-orbit interaction
terms V̂7 and V̂8 in Eqs. (1) and (2). We calculate, first, the
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generic matrix elements

〈V̂7〉 ≡ 〈(ab)J1M1|V̂7(1,2)|(cd)J2M2〉
〈(

1
2 ta

) (
1
2 tb

)∣∣1∣∣( 1
2 tc

)(
1
2 td

)〉
, (A1)

where a, b, c, and d indicate all the quantum numbers identifying the s.p. states involved: the principal quantum number n, the
orbital angular momentum l, and the total angular momentum j . In addition, ti = ±1/2 indicates the third component of the
isospin of the ith s.p. state. The explicit expression of the spin-orbit channel of the interaction, V̂7, is

V̂7(1,2) = v7(r12) L12 · S . (A2)

From the definitions (4)–(6), L12 can be expressed as

L12 = 1
2 (L − r1 × p2 − r2 × p1) , (A3)

where

L = l1 + l2 , (A4)

with li = ri × pi . We express the matrix element of Eq. (A1) as

〈V̂7〉 = 1
2 (VLS − V12 − V21) δta,tc δtb,td , (A5)

where

VLS = 〈(ab)J1M1|v7(r12) L · S|(cd)J2M2〉 , (A6)

Vij = 〈(ab)J1M1|v7(r12) ri × pj · S|(cd)J2M2〉 (A7)

and the δ’s come from the isospin matrix element.

As suggested in Ref. [32], we calculate VLS by changing from jj to LS coupling scheme:

VLS =
∑

L1S1L2S2

ĵa ĵb L̂1 Ŝ1 ĵc ĵd L̂2 Ŝ2

⎧⎪⎨⎪⎩
la

1
2 ja

lb
1
2 jb

L1 S1 J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

lc
1
2 jc

ld
1
2 jd

L2 S2 J

⎫⎪⎬⎪⎭
×〈(lalb)L1,

(
1

2

1

2

)
S1; J1M1|v7(r12) L · S|(lcld )L2,

(
1

2

1

2

)
S2; J2M2〉 , (A8)

where we have used the Wigner 9-j symbol and, for the angular momentum indexes, the convention l̂ = √
2l + 1. This coupling

scheme is convenient because the states are eigenstates of the L · S operator. By using this property, we obtain

VLS =
∑

L1S1L2S2

ĵa ĵb ĵc ĵd L̂1 Ŝ1 L̂2 Ŝ2
J2(J2 + 1) − L2(L2 + 1) − S2(S2 + 1)

2

⎧⎪⎨⎪⎩
la

1
2 ja

lb
1
2 jb

L1 S1 J1

⎫⎪⎬⎪⎭
×

⎧⎪⎨⎪⎩
lc

1
2 jc

ld
1
2 jd

L2 S2 J2

⎫⎪⎬⎪⎭ 〈(lalb)L1,

(
1

2

1

2

)
S1; J1M1|v7(r12)|(lcld )L2,

(
1

2

1

2

)
S2; J2M2〉 . (A9)

If S2 = 0, J2 = L2 and J2(J2 + 1) − L2(L2 + 1) − S2(S2 + 1) = 0. Thus, the only term contributing to the sum on S2 is
S2 = 1. Taking this into account we have

VLS =
∑

L1S1L2

ĵa ĵb ĵc ĵd L̂1 Ŝ1 L̂2

√
3

J2(J2 + 1) − L2(L2 + 1) − 2

2

⎧⎪⎨⎪⎩
la

1
2 ja

lb
1
2 jb

L1 S1 J1

⎫⎪⎬⎪⎭
×

⎧⎪⎨⎪⎩
lc

1
2 jc

ld
1
2 jd

L2 1 J2

⎫⎪⎬⎪⎭ 〈(lalb)L1,

(
1

2

1

2

)
S1; J1M1|v7(r12)|(lcld )L2,

(
1

2

1

2

)
1; J2M2〉 . (A10)
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Now it is useful to consider the expansion in terms of spherical harmonics Yλμ:

v7(r12) = 4
√

2π
∑
L

(−1)L L̂V (7)
L (r1,r2) [YL(r1) ⊗ YL(r2)]0

0 , (A11)

where

V (7)
L (r1,r2) =

∫
dq q2 jL(qr1) jL(qr2) ṽ7(q) . (A12)

The relation between v7(r12) and ṽ7(q) is given in Eq. (8). Now we can decouple the LS states and obtain

VLS = 3√
2π

δJ1,J2 δM1,M2

∑
L2L

(−1)L2+L l̂a l̂b l̂c l̂d ĵa ĵb ĵc ĵd L̂2
2 L̂2 [J2(J2 + 1) − L2(L2 + 1) − 2]

×
⎧⎨⎩

la
1
2 ja

lb
1
2 jb

L2 1 J2

⎫⎬⎭
⎧⎨⎩

lc
1
2 jc

ld
1
2 jd

L2 1 J2

⎫⎬⎭
{
la lb L2

ld lc L

} (
la lc L
0 0 0

) (
lb ld L
0 0 0

)

×
∫

dr1 r2
1 R∗

a (r1) Rc(r1)
∫

dr2 r2
2 V (7)

L (r1,r2) R∗
b (r2) Rd (r2) . (A13)

For the calculation of V12 we use again the LS coupling scheme and the operator written as follows:

r1 × p2 · S = i
√

6 [[r1 ⊗ p2]1 ⊗ S]0
0 . (A14)

The matrix element V12 is given by

V12 = i
√

6
∑

L1S1L2S2

ĵa ĵb ĵc ĵd L̂1 L̂2 Ŝ1 Ŝ2

⎧⎪⎨⎪⎩
la

1
2 ja

lb
1
2 jb

L1 S1 J1

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

lc
1
2 jc

ld
1
2 jd

L2 S2 J2

⎫⎪⎬⎪⎭

×〈(lalb)L1,

(
1

2

1

2

)
S1; J1M1|v7(r12) [[r1 ⊗ p2]1 ⊗ S]0

0|(lcld )L2,

(
1

2

1

2

)
S2; J2M2〉. (A15)

Decoupling the LS states we obtain

V12 = i
√

2 δJ1,J2 δM1,M2

∑
L1S1L2S2

(−1)L2+S1+1+J2 ĵa ĵb ĵc ĵd L̂1 L̂2 Ŝ1 Ŝ2

×
⎧⎨⎩

la
1
2 ja

lb
1
2 jb

L1 S1 J2

⎫⎬⎭
⎧⎨⎩

lc
1
2 jc

ld
1
2 jd

L2 S2 J2

⎫⎬⎭
{
L1 S1 J2

S2 L2 1

}

×〈(lalb)L1‖v7(r12) [r1 ⊗ p2]1‖(lcld )L2〉 〈
(

1

2

1

2

)
S1‖S‖

(
1

2

1

2

)
S2〉 . (A16)

By using again the expansion of Eq. (A11) we have

v7(r12) [r1 ⊗ p2]1
μ = −i 4

√
2π

∑
LK1K2

L̂ K̂1 K̂2

{
L 1 K1

1 K2 1

} (
L 1 K1

0 0 0

)
× r1 V (7)

L (r1,r2) [YK1 (r1) ⊗ [YL(r2) ⊗ ∇2]K2 ]1
μ , (A17)

where ∇ is the gradient operator, and by considering that the spin matrix element is

〈
(

1

2

1

2

)
S1‖S‖

(
1

2

1

2

)
S2〉 =

√
6 δS1,S2 δS1,1 (A18)
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we have

V12 = 18

√
2

π
δJ1,J2 δM1,M2

∑
L1L2

∑
LK1K2

(−1)la+ld+L2+J2 l̂a l̂b l̂c l̂d ĵa ĵb ĵc ĵd L̂2
1 L̂2

2 L̂2 K̂2
1 K̂2

2

×

⎧⎪⎨⎪⎩
la lb L1

lc ld L2

K1 K2 1

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

la
1
2 ja

lb
1
2 jb

L1 1 J2

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

lc
1
2 jc

ld
1
2 jd

L2 1 J2

⎫⎪⎬⎪⎭
{

L1 1 J2

1 L2 1

} {
L 1 K1

1 K2 1

}

×
(

L 1 K1

0 0 0

) (
la K1 lc

0 0 0

) ∫
dr1 r3

1 R∗
a (r1) Rc(r1)

∫
dr2 r2

2 R∗
b (r2)V (7)

L (r1,r2)

×
{(

ld K2 lb

0 0 0

) (
K2 1 L

0 0 0

)
d

dr2
Rd (r2) (A19)

+
√

2 ξ (lb + ld + L + 1)
√

ld (ld + 1)

(
ld K2 lb

1 −1 0

) (
K2 1 L

1 −1 0

)
1

r2
Rd (r2)

}
,

where ξ (n) = 1 or 0 if n is even or odd, respectively.

The expression of V21 can be obtained by using the same procedure with the obvious changes.

For the isospin dependent channel,

V̂8(1,2) ≡ v8(r12) L12 · S τ (1) · τ (2) , (A20)

the calculation is similar with the only difference of the isospin matrix element which is now

〈
(

1

2
ta

) (
1

2
tb

)
|τ (1) · τ (2)|

(
1

2
tc

) (
1

2
td

)
〉 = 2

(
δta,

1
2
δtb,− 1

2
δtc,− 1

2
δtd , 1

2
+ δta,− 1

2
δtb,

1
2
δtc,

1
2
δtd ,− 1

2

)
+(

δta,
1
2
δtc,

1
2

− δta,− 1
2
δtc,− 1

2

)(
δtb,

1
2
δtd , 1

2
− δtb,− 1

2
δtd ,− 1

2

)
. (A21)
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