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Nucleon-nucleon scattering from the dispersive N/D method: Next-to-leading order study
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We consider nucleon-nucleon (NN ) interactions from chiral effective field theory applying the N/D method.
The dynamical input is given by the discontinuity of the NN partial-wave amplitudes across the left-hand
cut (LHC) calculated in chiral perturbation theory by including one-pion exchange (OPE), once-iterated OPE,
and leading irreducible two-pion exchange. We discuss both uncoupled and coupled partial waves. We show
algebraically that the resulting integral equation has a unique solution when the input is taken only from OPE
because it is of the Fredholm type with a squared integrable kernel and an inhomogeneous term. Phase shifts and
mixing angles are typically rather well reproduced, and a clear improvement of the results obtained previously
with only OPE is manifest. We also show that the contributions to the discontinuity across the LHC are amenable
to a chiral expansion. Our method also establishes correlations between the S-wave effective ranges and scattering
lengths based on unitarity, analyticity, and chiral symmetry.
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I. INTRODUCTION

The application of chiral perturbation theory (ChPT), the
low-energy effective field theory of QCD, to the problem
of nuclear forces was elaborated in Ref. [1] and first put
in practice in Ref. [2]. Its application to nucleon-nucleon
(NN ) scattering has reached nowadays a sophisticated and
phenomenologically successful status [2–8]. See Refs. [9–14]
for related reviews. In particular, Refs. [3,4] take the next-to-
next-to-next-to-leading order (N3LO) potential and reproduce
NN phase-shift data up to Elab ∼ 200 MeV accurately, with
Elab the laboratory-frame kinetic energy.

However, the use of the NN potential calculated in ChPT
up to some order in a Lippmann-Schwinger equation, as
originally proposed in Ref. [1], is known to yield regulator-
dependent results. That is, the chiral counterterms present
in the potential are not able to reabsorb all the ultraviolet
divergences that result in the solution of the Lippmann-
Schwinger equation [5,6,15–22]. Stable results with the
NN potential determined from one-pion exchange (OPE)
are obtained in Refs. [5,16] for �< 4 GeV, where � is
a three-momentum cutoff. This is achieved by promoting
counterterms from higher to lower orders in the partial waves
with attractive 1/r3 tensor force generated by OPE [16]. The
extension of these ideas to higher orders in the chiral potential
is undertaken in Refs. [20,21] by treating perturbatively
subleading contributions to the NN potential beyond OPE.
When the limit � → ∞ is taken in the Lippmann-Schwinger
equation, it results that only one counterterm is operative
for attractive singular potentials and none is operative for
the repulsive singular ones [5,17,23,24]. This scheme is too
rigid from the point of view of effective field theory, which
implies deficiencies in the description of some NN partial
waves compared with data, as well as the loss of order-by-order
improvement in the predictions in those cases. This has been
recently analyzed in detail in Ref. [23] up to N3LO. On
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the other hand, it has been shown in Ref. [25] that OPE is
renormalizable in manifestly Lorentz covariant baryon ChPT,
while this is not the case when the heavy-baryon expansion is
used, as shown in Ref. [19].

Regulator dependence can also be avoided by employing
dispersion relations (DRs), that involve only convergent
integrals once enough subtractions are taken. This technique
was recently applied in Refs. [26,27] employing the N/D
method [28] and OPE. References [26,27] argued that this
method could be applied to higher orders in the chiral expan-
sion by calculating perturbatively in ChPT the discontinuity of
a partial-wave amplitude, which is 2i times its imaginary part,
along the left-hand cut (LHC). Within ChPT, this discontinuity
stems from multipion exchanges and it constitutes, together
with the subtraction constants, the input required to solve the
N/D method. We want to investigate explicitly the chiral
expansion of the discontinuity along the LHC and extend
the calculations in Refs. [26,27] by including the leading
irreducible and reducible TPE, as calculated by Ref. [29] in
ChPT. One of the main aims of the work is to show quanti-
tatively that the referred chiral expansion of the discontinuity
of a NN partial-wave amplitude is meaningful. The leading
contribution to this imaginary part is OPE, O(p0), and both
of the subleading ones, once-iterated OPE and irreducible
TPE, have typically similar sizes, as we show below, and
could be booked in the chiral counting as the latter, which
is explicitly O(p2). It is also shown that further contributions
to the discontinuity along the LHC by increasing the numbers
of pion ladders in NN reducible diagrams are more suppressed
because they contribute only deeper in the complex plane and
move further away from the low-energy physical region.

Another novelty in the present work compared with
Refs. [26,27] is the way that NN partial waves with orbital
angular momentum (�) � � 2 and the mixing partial waves
with total angular momentum (J ) J � 2 are treated to fulfill
the right threshold behavior, which requires that they vanish as
A� and AJ , respectively, for A → 0. Here and in the following
we denote the center-of-mass-frame (c.m.) three-momentum
squared by A. This is done by taking at least � or J subtractions
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in the appropriate DRs. We see below that, at most, only one
of the resulting subtraction constants is necessary to be fitted
to data, while the others are fixed to their perturbative values.
This comprises the so-called principle of maximal smoothness,
which simplifies considerably the description of higher NN
partial waves.

The N/D method was used in Refs. [30–33] to study NN
scattering. Reference [30] was restricted to NN S waves and
took only OPE as input along the LHC. References [31,32] also
included other heavier mesons as sources for the discontinuity,
in line with the meson theory of nuclear forces. Reference [33]
modeled the LHC discontinuity by OPE and one or two ad hoc
poles. No attempt was made in these works to offer a systematic
procedure to improve the calculation of the discontinuity along
the LHC. The main novelty that modern chiral effective field
theory of nuclear forces can offer to us in connection with the
N/D method consists precisely in calculating systematically
such input discontinuity. This is the point that we want to
elaborate further in the present research. Importantly, we also
show that we achieve a reproduction of NN phase shifts and
mixing angles in good agreement with the Nijmegen partial-
wave analysis (PWA) [34], which offers a clear improvement
compared with that obtained in Refs. [26,27] with only OPE.
We also mention Ref. [35], where the N/D method is used in
connection with ChPT and NN scattering. It is important to
stress that we do not perform any truncation of the LHC and we
keep its full extent in all the dispersive integrals considered in
the c.m. three-momentum squared complex plane, while this
is not the case in Ref. [35]. In the latter reference the dispersive
integrals along the LHC are cut at the c.m. three-momentum
squared value −9M2

π/4. Because of this truncation, Ref. [35]
does not resolve soft pion-exchange contributions involving a
center-of-mass (c.m.) three-momentum squared smaller than
−9M2

π/4 (whose square root in modulus is just 1.5Mπ ) from
short-range physics. This is avoided by construction in our
framework where we keep the full extent of the integrals along
the pertinent cuts, as required by analyticity.

The contents of the paper are organized as follows. After
this introduction we explain the formalism and deduce the
proper integral equations (IEs) for the uncoupled waves in
Sec. II. The expansion of the discontinuity along the LHC in
powers of three-momentum and pion masses (the so-called
chiral expansion) and in the number of pions exchanged
is discussed in Sec. III. We also show in this section
that the IEs when this discontinuity is given in terms of
OPE have a unique solution and discuss some necessary
conditions for having a solution when considering higher-order
correction to this discontinuity. The method is applied to
the 1S0 and the uncoupled P waves in Secs. IV and V,
respectively. The constraints that result from requiring the
proper threshold behavior for partial waves with � � 2 are
the contents of Sec. VI. Then, the numerical results for
the uncoupled D, F , G, and H waves are considered in
Secs. VII–X. We quantify the different contributions to the dis-
continuity of a partial wave across the LHC in Sec. XI, where it
is shown quantitatively the dominance of OPE and the sublead-
ing role of TPE. Section XII provides the extension of the for-
malism to the coupled-partial-wave case. This is then applied
to the systems 3S1-3D1 (Sec. XIII), 3P2-3F2 (Sec. XIV), 3D3-3G3

(Sec. XV), 3F4-3H4 (Sec. XVI), and 3G5-3I5 (Sec. XVII).
Conclusions and outlook are then provided in Sec. XVIII.

II. THE N/D METHOD: UNCOUPLED WAVES

A NN partial-wave amplitude in the three-momentum
squared plane (that we call the A plane) has two disjoint cuts.
The right-hand cut (RHC) is due to the intermediate states
in NN scattering and then it extends from threshold (A = 0)
up to A = ∞. It comprises the elastic cut with two-nucleon
intermediate states, as well as the inelastic cuts, whose lighter
thresholds are due to n-pion production giving contribution for
A2 � n2M2

π/4 + nmMπ , with Mπ the pion mass and m the
nucleon mass. There is also the LHC, for which lower-energy
contributions are attributable to the exchange of n pions for
A � −M2

πn2/4, so that OPE extends for A � −M2
π/4, TPE

extends for A � −M2
π , and so on.

We first start by considering the uncoupled NN partial
waves. Below, in Sec. XII, we present the generalization to
coupled waves.

The two cuts present in a given NN partial wave, TJ�S(A),
with S the total spin, � the orbital angular momentum, and J
the total angular momentum, can be separated by writing it
as the quotient of a numerator, NJ�S(A), and a denominator,
DJ�S(A), function

TJ�S(A) = NJ�S(A)

DJ�S(A)
, (1)

such that NJ�S(A) has only LHC, while DJ�S(A) has only
RHC. This is the essential point of the N/D method, first
introduced in Ref. [28] to study ππ scattering.

In the rest of this section we skip the subscripts J�S because
we always refer to a definite NN partial wave. In addition,
because all the functions involved in Eq. (1) are real at least
in a finite interval along the real axis, they fulfill the Schwartz
reflection principle,

f (z∗) = f (z)∗. (2)

As a result, their discontinuity across a cut along the real axis
is given entirely by the knowledge of the imaginary part of
the function, because f (z + i0+) − f (z − i0−) = 2iImf (z +
i0+), with z ∈ R.

Elastic unitarity in our normalization requires

ImT (A) = m
√

A

4π
|T |2, A � 0. (3)

In the following we designate by

ρ(A) = m
√

A

4π
, A � 0, (4)

the phase-space factor in Eq. (3). This equation has a simpler
expression when given as the imaginary part of the inverse of
the partial wave along the RHC,1

Im
1

T
= −ρ(A), A � 0. (5)

1Inelastic channels owing to (multi-)pion production are not
included in our low-energy analysis.
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Equation (5), together with Eq. (1), translates to the following
equation for ImD(A) along the RHC:

ImD(A) = −ρ(A)N (A), A > 0. (6)

On the other hand, the discontinuity of a NN partial wave
along the LHC is denoted by

T (A + i0+) − T (A − i0+) = 2i�(A),

�(A) ≡ ImT (A + i0+), A � −M2
π

4
.

(7)

From Eqs. (1) and (7) this, in turn, implies the following result
for ImN (A) along the LHC:

ImN (A) = �(A)D(A), A � −M2
π

4
. (8)

Next, we want to make use of Eqs. (6) and (8) to write down
the dispersive integrals for D(A) and N (A), respectively. For
that we need to take into account the high-energy behavior of
these functions. The relation in our normalization between the
S and T matrices in partial waves, as follows from Eq. (3), is

S(A) = 1 + 2iρ(A)T (A), (9)

with S(A) the S-matrix element. Inverting the previous
equation, it follows that T (A) = O(A− 1

2 ) at high energies,
A ∈ R, and A → ∞, because S(A) = O(1) along the RHC.
Let us assume that D(A) = O(An0 ) for A → ∞; then, because

N (A) = T (A)D(A), (10)

it follows that for real A and A → +∞, N (A) = O(An0− 1
2 ).

Because N (A) has only LHC, this limit is also valid for any
other direction in the A plane for A → ∞, according to the
the Sugawara and Kanazawa theorem [36,37]. As a result of
the high-energy behavior of N (A) and D(A), if we divide
simultaneously both functions by (A − C)n, n > n0, we can
write down unsubtracted DRs for the new functions D̂(A) and
N̂ (A) defined as

D̂(A) = D(A)

(A − C)n
, N̂ (A) = N (A)

(A − C)n
. (11)

To avoid unnecessary complications in the technical deriva-
tions we take −M2

π/4 < C < 0, and the following DRs, on
account of Eqs. (6) and (8), give

D̂(A) =
n∑

i=1

δ̃i

(A − C)i
− 1

π

∫ ∞

0
dq2 ρ(q2)N̂ (q2)

q2 − A
,

(12)

N̂ (A) =
n∑

i=1

ν̃i

(A − C)i
+ 1

π

∫ L

−∞
dk2 �(k2)D̂(k2)

k2 − A
,

with

L = −M2
π

4
. (13)

Coming back to our original functions D(A) and N (A)
by multiplying both sides of Eq. (12) by (A − C)n, gives the

following results:

D(A) =
n∑

i=1

δ̃i(A − C)n−i − (A − C)n

π

×
∫ ∞

0
dq2 ρ(q2)N (q2)

(q2 − A)(q2 − C)n
,

(14)

N (A) =
n∑

i=1

ν̃i(A − C)n−i + (A − C)n

π

×
∫ L

−∞
dk2 �(k2)D(k2)

(k2 − A)(k2 − C)n
.

It is convenient to relabel the coefficients in the polynomial
term of the previous equation and define δi ≡ δ̃n−i+1 and νi ≡
ν̃n−i+1 so that Eq. (14) is rewritten as

D(A) =
n∑

i=1

δi(A − C)i−1 − (A − C)n

π

×
∫ ∞

0
dq2 ρ(q2)N (q2)

(q2 − A)(q2 − C)n
,

(15)

N (A) =
n∑

i=1

νi(A − C)i−1 + (A − C)n

π

×
∫ L

−∞
dk2 �(k2)D(k2)

(k2 − A)(k2 − C)n
,

and we recover standard n-time-subtracted DRs. In the previ-
ous equation one has to take the limit A + i0+ for real values
of A along the integration intervals. Because it is possible to
divide simultaneously N (A) and D(A) by a constant, because
only its ratio is relevant for obtaining T (A), we normalize the
function D(A) in the following as

D(0) = 1. (16)

In this way, one of the subtraction constants δi in Eq. (15) is
superfluous.

In summary, as a result of the discussion in this section,
we can state the following conclusion: If there exists an N/D
representation of the on-shell NN partial wave [Eq. (1)], then
the functions D(A) and N (A) must satisfy n-time-subtracted
DRs [Eq. (15)] for n large enough.

To solve Eq. (15) it is useful to insert the expression for
N (A) into that of D(A) and then we end with the following IE
for D(A),

D(A) =
n∑

i=1

δi(A − C)n−i −
n∑

i=1

νi

(A − C)n

π

×
∫ ∞

0
dq2 ρ(q2)

(q2 − A)(q2 − C)n−i+1
+ (A − C)n

π2

×
∫ L

−∞
dk2 �(k2)D(k2)

(k2 − C)n

∫ ∞

0
dq2 ρ(q2)

(q2 − A)(q2 − k2)
.

(17)
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(a) (b) (c) (d)

FIG. 1. From left to right OPE and TPE diagrams. The solid lines
represent nucleons, the dashed ones represent pions, and the angular
lines indicate the way the diagram should be cut to contribute to
�(A).

Notice that on the right-hand side (r.h.s.) of the previous
equation D(A) is only needed along the LHC. We solve
numerically this IE by discretization and determine D(A) for
A � −M2

π/4. Once this is known, we can then calculate D(A)
and N (A) for any other values of A, making use of the DRs in
Eq. (17) and the second term of Eq. (15), respectively.2

The integrals along the RHC in Eq. (17) can be done
algebraically. We define the function g(A,k2) as

g(A,k2) ≡ 1

π

∫ ∞

0
dq2 ρ(q2)

(q2 − A)(q2 − k2)

= im/4π√
A + i0+ + √

k2 + i0+ . (18)

Here the +i0+ is relevant for calculating this function when
needed in the dispersive integrals above. In terms of g(A,k2)
one also has

∂i−1g(A,C)

∂Ci−1
= (i − 1)!

π

∫ ∞

0
dq2 ρ(q2)

(q2 − A)(q2 − C)i
. (19)

It is also clear that once the D(A) and N (A) are expressed
in the form of standard DRs, Eq. (15), it is not really necessary
to take the subtraction point C with the same value for
both functions. In practice, we take C = 0 for the function
N (A). For the function D(A) we always take one subtraction
at C = 0, because then it is straightforward to impose the
normalization condition Eq. (16). Let us stress that DRs
are independent of the value taken for the subtraction point
because a change in C would be reabsorbed in a change of the
values of the subtraction constants [38], δi for D(A) and νi for
N (A).

III. THE INPUT �(A) FUNCTION

In Refs. [26] and [27] the input function �(A) was calcu-
lated from OPE. We now extend this calculation and determine

2For a large-enough number of subtractions—typically three or
more—it is more advantageous numerically to solve the IEs in the
form corresponding to Eq. (12). In this way, one avoids having too
large numbers for large values of A that could cause problems to the
numerical subroutines for inverting matrices.

FIG. 2. NN reducible diagram with n-time-iterated OPE. The
meanings of the lines are the same as in Fig. 1. The vertical dots
indicate extra pion ladders. This diagram only contributes to �(A)
for A � −n2M2

π/4.

�(A) including as well leading TPE, both irreducible TPE
and once-iterated OPE from the results of Ref. [29].3 The
relevant Feynman diagrams are depicted schematically in
Fig. 1, where the solid lines are nucleons, the dashed lines
are pions, and the angular lines indicate how each diagram
should be cut to give contribution to �(A). From left to
right in Fig. 1, the first diagram is OPE, the second and
third ones correspond to irreducible TPE, while the last
one is once-iterated OPE. This latter diagram contains both
irreducible and reducible contributions, explicitly separated in
Ref. [29].

Notice that the calculation of the imaginary part of the
diagrams in Fig. 1 along the LHC is finite. When cutting
the loop diagrams for TPE, as indicated in Fig. 1, an
extra Dirac-δ function originates (beyond those required by
energy-momentum conservation) that reduces the momentum
integration to a finite domain.

It has long been known [1] that NN irreducible diagrams
are amenable to a chiral expansion. This source of �(A) could
then be calculated perturbatively and improved order by order
in the chiral expansion in a systematic way. In the standard
chiral counting [1], OPE is O(p0) and leading irreducible TPE
is O(p2).

Regarding the NN reducible diagrams, they give con-
tribution to �(A) by cutting the OPE ladders. Indeed, an
n-time-iterated OPE diagram (see Fig. 2) contributes only
to �(A) by putting on shell all the n pion lines, that is,
for A � −n2M2

π/4. This is obvious if we keep in mind the
fact that the Schrödinger propagator for each of the NN
intermediate states cannot be cut because it is proportional
to 1/(A − q2), with q a three-momentum that stems from the
linear combination of loop and external three-momenta, and
A < 0. Then, from Cutkosky rules, the cutting of just one pion
line requires to cut the rest of lines because no nucleon line
can be cut for A < 0 and the angular line in Fig. 2 must go
through all the pion ladders, as shown in the figure.4 This

3Leading TPE means that the vertices employed in the calculation
are the lowest-order ones in the chiral expansion that stem from the
O(p) πN Lagrangian.

4We have explicitly checked this conclusion for twice- and three-
time-iterated OPE.
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establishes a natural hierarchy of pion ladders at low energies,
because by adding one extra ladder we move deeper in the
LHC and then further away from the low-energy physical
region that has A > 0. For a given NN reducible diagram
with n pion ladders we can also consider its chiral corrections,
which will be relatively suppressed by higher orders in the
chiral expansion with respect to the simplest diagram with n
pion ladders, depicted in Fig. 2, which is calculated from the
lowest-order LπN Lagrangian.

Then, increasing both the number of pions exchanged
and the chiral order of the calculation reduce the weight
of a diagram to �(A) at low energies. As we discuss in
more detail below in Sec. XI, irreducible and reducible TPE
diagrams typically contribute with a similar size to �(A),
so that we book the relative suppression of increasing the
number of pion ladders by one in a reducible NN diagram
as O(p2), the same amount as an irreducible loop calculated
with lowest-order πN vertices counts in the chiral expansion.
In this way, to proceed with the calculation of �(A), for a
given NN irreducible Feynman diagram we count its chiral
order in the standard manner [1] and book its contribution to
�(A) according to the latter. For a NN reducible diagram,
a leading two-pion ladder (calculated with the lowest-order
πN vertex) counts as O(p2) and every extra leading pion
ladder introduces additionally two extra powers of momentum
in the chiral counting. On top of that, we add the chiral
order corresponding to other parts of the diagram that are
NN irreducible, as well as the increase in the chiral order
owing to perturbative corrections to the leading calculation
of pion ladders. The result of this addition is the final chiral
order corresponding to the considered NN reducible diagram
to �(A).

A. Subtractions in the IE for D(A) and the chiral
power of �(A)

As discussed above, the input function �(A) is calculated
up to some chiral order in ChPT. The higher the order of
the calculation, the higher is the maximum divergence of
�(A) for A → ∞. Indeed, the latter typically diverges except
for the OPE case in which it vanishes at least as 1/A for
A → ∞. This can be explicitly checked with the expressions
given in the Appendix of �(A) obtained from OPE in all
the partial waves studied in this work. At NLO the function
�(A) diverges at most linearly in A in the limit A → ∞,
while at N2LO it does at most as |A|3/2 in the same limit.
If we generally set that �(A) → Aα for A → ∞, with α a
real number, we have typically an increase in the value of
α with the chiral order. Thus, it is an interesting question
to settle whether there is a relation between the chiral order
up to which �(A) is calculated and the minimum number of
subtractions needed in the IE for D(A) along the LHC (A < L)
[Eq. (17)] to have a well-defined solution. One should not
expect any restriction on the maximum number of subtractions
by the requirement that the IE is mathematically meaningful.
Indeed, we show below that when �(A) is calculated only
from OPE one has always a unique solution, no matter how
large the number of subtraction taken, because it can be
reduced to a Fredholm IE of the second kind, where the

associated kernel and the inhomogeneous term are quadrat-
ically integrable.

Let us first take the once-subtracted DRs for D(A) and
N (A). We assume that �(A) = λ(−A)γ and we demonstrate
the important result that the once-subtracted DRs has a unique
solution for γ < −1/2. Taking in Eq. (17) C = 0, n = 1, and
δ1 = 1, so as to fulfill the normalization condition Eq. (16),
we have

D(A) = 1 − ν1
A

π

∫ ∞

0
dq2 ρ(q2)

q2(q2 − A)

+ A

π2

∫ L

−∞
dk2D(k2)�(k2)

k2

∫ ∞

0
dq2 ρ(q2)

(q2−k2)(q2−A)
.

(20)

The integrals along the RHC can be done explicitly taking into
account Eq. (18), and then Eq. (20) simplifies to

D(A) = 1 + ν1
m

√−A

4π
+mA

4π2

∫ L

−∞
dk2 D(k2)�(k2)

k2(
√−A + √−k2)

.

(21)

Now, we substitute �(k2) by its explicit expression given
above and introduce the dimensionless variables

x = L/k2, y = L/A. (22)

Equation (21) now becomes

D̂(y) = 1 + ν1
m(−L)

1
2

4πy
1
2

+ λm

4π2
(−L)γ+ 1

2

×
∫ 1

0

dx

xγ+ 1
2 y

1
2

D̂(x)√
x + √

y
, (23)

where we have denoted by D̂(y) the function D(L/y) ≡ D̂(y).
To symmetrize the previous IE with respect to x and y, we
multiply D̂(y) by y− γ

2 and define the new function

D̃(y) = y− γ
2 D̂(y). (24)

The IE satisfied by this function follows straightforwardly
from Eq. (23) and it reads

D̃(y) = y−γ /2 + y− γ+1
2 ν1

m(−L)
1
2

4π

+ λm

4π2
(−L)γ+ 1

2

∫ 1

0
dx

D̃(x)

(xy)
γ+1

2 (
√

x + √
y)

. (25)

The symmetric kernel in this IE is

K(y,x) = 1

(xy)
γ+1

2 (
√

x + √
y)

, (26)

which is quadratically integrable for γ < −1/2, as is the

inhomogeneous term y−γ /2 + y− γ+1
2 ν1

m(−L)
1
2

4π
. As a result

of the Fredholm theorem [39], one can guarantee that
Eq. (25) has always a unique solution as long as the
constant

β = (−L)γ+ 1
2 λm/(4π2) (27)
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is not an eigenvalue of the kernel K(x,y) given above. Note
that the coefficient λ is a function of low-energy physical
constants determined within an error interval, so that an
infinitesimal change in those constants will make that the
resulting β is no longer an eigenvalue of the kernel, because
there are no accumulation points of the eigenvalues in the finite
domain [39]. Then we can state:

Proposition 1. The solution for the once-subtracted IE for
D(A) along the LHC always exists and it is unique for γ <
−1/2.

Indeed, for any number of subtractions, the resulting IE
in terms of the dimensionless variables x and y, once it is
symmetrized as in the discussion above, has the same kernel
as in Eq. (26). This can be understood easily because if
one subtraction is added, then we have an extra factor A
in front of the LHC dispersive integral and another 1/k2

inside it. In terms of the variables x and y, this implies the
factor L/y · x/L. Thus, the L’s cancel each other and we
have one extra y and one less x in the denominator. As
a result, when symmetrizing by considering D̃(y), one has
to multiply D̂(y) by one extra y, and the same kernel is
obtained because the extra x is eaten by D̂(x) to become D̃(x)
inside the integration. In addition, the inhomogeneous term
in the process of adding more subtraction does not become
more singular because the extra factor of 1/y that appears
in the last subtraction terms added is canceled by the extra
factor y when ending with the symmetric IE for D̃(y). As
a result Proposition 1 can be generalized to any number of
subtractions.

Proposition 2. The solution for the any-time-subtracted IE
to calculate D(A) along the LHC always exists and it is unique
for γ < −1/2.

It is important to realize that when calculating D(A)
with �(A) from OPE, one has that �(A) = ∑n

i=0 αi(−A)γ−i ,
with γ � −1, and n is a finite natural number. As a
result, the kernel that is obtained proceeding as done
previously with λ = α0 is given by Eq. (26) times the

polynomial 1 + ∑n
i=1(y/L)iαi/α0, which does not affect the

fact that it is a quadratically integrable kernel for γ � −1/2.
However, the inhomogeneous term is the same as before and
it is quadratically integrable as well by the same arguments as
given above. As a result, we obtain the following important
result.

Proposition 3. When �(A) is given at LO from OPE, the
resulting IE for calculating D(A) along the LHC always has a
unique solution for any number of subtractions.

This theorem on the existence of a unique solution of
the N/D method when �(A) is restricted to its leading
contribution from OPE contrasts with the situation found
by solving the Lippmann-Schwinger equation with the OPE
potential. The latter has a singular behavior diverging as 1/r3

for r → 0 in the triplet waves and its solution does not follow
the standard procedure for nonsingular potential in quantum
mechanics. To obtain cutoff-independent results when using
this potential in a Lippmann-Schwinger equation, one needs
two S-wave counterterms, one for each NN S wave [7,16,40],
as well as in any other partial wave for which the tensor
force is attractive [16]. The addition of these last counterterms
for P and higher partial waves violates the naive chiral
power counting. The situation that emerges after resumming
relativistic corrections in the nucleon propagator is discussed
in Ref. [25].

However, �(A) for A → ∞ diverges typically as A at
next-to-leading order (NLO), and γ > 1 for higher orders in
the chiral expansion of �(A). Once γ � −1/2 the symmetric
kernel K(x,y) [Eq. (26)] is not quadratically integrable so that
we cannot apply the Fredholm theorem. To proceed, we study
the limit A → −∞ and take the leading diverging behavior
for �(A) as λ(−A)γ when A → −∞. Next, let us integrate in
Eq. (25), with x � ε, ε > 0, taking at the end the limit ε → 0+.
To keep the integration limits between 0 and 1 for this case as
well, we introduce the new variables t = (x − ε)/(1 − ε) and
u = (y − ε)/(1 − ε) and denote the solution to the resulting
IE as D̃ε(u). The new IE reads

D̃ε(u) = (1 − ε)−
γ
2

(
u + ε

1 − ε

)− γ
2
[

1 + (1 − ε)−
1
2

(
u + ε

1 − ε

)− 1
2

ν1
m(−L)

1
2

4π

]

+ λm

4π2
(−L)γ+ 1

2

∫ 1

0
dt

D̃ε(t) (1 − ε)−γ− 1
2[(

t + ε
1−ε

)(
u + ε

1−ε

)] γ+1
2

(√
t + ε

1−ε
+

√
u + ε

1−ε

) , (28)

with the modified kernel Kε(u,t) given by

Kε(u,t) = (1 − ε)−γ− 1
2[(

t + ε
1−ε

)(
u + ε

1−ε

)] γ+1
2

(√
t + ε

1−ε
+

√
u + ε

1−ε

) . (29)

This kernel is now quadratically integrable. Let us denote the inhomogeneous term by f (u), namely,

f (u) = (1 − ε)−
γ
2

(
u + ε

1 − ε

)− γ
2
[

1 + (1 − ε)−
1
2

(
u + ε

1 − ε

)− 1
2

ν1
m(−L)

1
2

4π

]
. (30)
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The solution of Eq. (28), according to the Fredholm theorem,
can be given in terms of the resolvent kernel Hε(u,t) as5

D̃ε(u) = f (u) + λm

4π2
(−L)γ+ 1

2

∫ 1

0
dt Hε(u,t)f (t). (31)

It is important to remark that the kernel Kε(u,t) given in
Eq. (29) is positive definite. The calculation of Hε(u,t)
applying the Neumann series gives

Hε(u,t) =
∞∑

n=1

βn−1Kε;n(u,t),

Kε;n+1(u,t) =
∫ 1

0
dvKε(u,v)Kε;n(v,t), (n � 1), (32)

Kε;1(u,t) ≡ Kε(u,t).

Because Kε(u,t) > 0 for u,t ∈ [0,1], it follows from the
previous equation that this is also the case for Kε;n(u,t), n � 1.
For the P and higher partial waves ν1 = 0, so that f (u) is
a positive-definite function. The same can be said for the
S waves with scattering length (aS) less than zero, because
ν1 = −4πaS/m is then a positive quantity. From Eq. (32) it
follows that the resolvent kernel Hε(u,t) > 0 if β > 0 [that is
equivalent to λ > 0; see Eq. (27)].6 In this case one also has
that D̃ε(u) � (1 − ε)−

γ
2 (u + ε

1−ε
)−

γ
2 , which, in terms of the

original function D(A), implies that D(A) � 1. Taking into
account this bound, it is clear that the original once-subtracted
IE for D(A) [Eq. (21)] has no solution in the limit ε → 0+
because the last integral in Eq. (21) does not converge as soon
as γ � 1/2. We have then arrived at the following result.

Proposition 4. For γ � 1/2 the P and higher partial waves,
as well as for S waves with aS < 0, to have λ < 0 is a necessary
condition for the existence of solution for the once-subtracted
IE satisfied by D(A).

Note that once λ < 0 we can have a cancellation between
the two terms in the r.h.s. of Eq. (31), which are needed to
achieve a vanishing D(A) in the limit A → −∞ for γ � 1/2.
In our numerical procedure for the once-subtracted IE with
λ < 0 and γ = 1 (as corresponds to the NLO case) we have
always found the solution having a perfectly stable ε → 0+
limit.

In the case with λ > 0, by including more subtractions
the inhomogeneous term in Eq. (31) changes so that it is no
longer positive definite and finally a solution can be obtained.
This is apparent by looking at the inhomogeneous term in
Eq. (17) for A < L. All the subtraction constants δi with i �

5We assume again that we are not in the unlikely situation in which
β is an eigenvalue of the kernel Kε(u,t). If this is not the case, we
change infinitesimally the physical constants, e.g., gA or Mπ , so that
the resulting β is no longer an eigenvalue because the eigenvalues
have no accumulation point in the finite domain.

6The Neumann series converges in the β-complex plane inside the
circle whose radius is the smallest of the moduli of the eigenvalues
of Kε(u,t). The analytical extrapolation in β of Eq. (32) is needed
beyond this circle in the β-complex plane. However, we trust this
statement for any β because it is valid at any order in perturbation
theory.

2 and νj (j = 1,2, . . .) have a priori not a definite sign. In
addition, the monomials (A − C)n for n odd and A → −∞
are negative, while the RHC integrals multiplying the constants
νi are positive definite for negative A and C.

Adding more subtraction could also be motivated not only
by having an IE with a well-defined solution but also by the
interest of enhancing the information in the low-energy region,
so that the results are less sensitive to higher energies. The
inhomogeneous term f (u) [Eq. (30)] is a power expansion
with integer or half-integer powers of u and by including more
subtractions we increase the number of terms in the expansion.
As a result, f (u) contains more and more information that
controls the low-energy limit u → 1, both in f (u) itself, as well
as in the integral in Eq. (31). A question arises about whether it
is possible to ascribe some kind of (chiral) power counting that
indicates the minimum number of subtraction constants that
we should include in the IE, in harmony with the chiral order
in which �(A) is evaluated. In the so-called Weinberg scheme
[1–4] the number of counterterms included in the calculation
of the potential is fixed by naive chiral power counting. The
final consistency of this scheme, once the potential is iterated
in a Lippmann-Schwinger equation, has long been discussed
in the literature, as discussed in the Introduction, and other
schemes are proposed that differ mostly in the treatment of the
local counterterms [5,6,15–22]. It is beyond the scope of the
present research at this stage to ascribe a chiral power to the
subtraction constants present in our equations. Nevertheless,
we decide the number of subtractions to be included in each
IE as follows.

(i) We have an IE giving rise to stable solutions at low
energies,

√
A � 500 MeV. Stable here means that the

results are independent of the lower limit of integration
along the LHC.

(ii) We require that our description of the Nijmegen phase
shifts and mixing angles are not worse than the one
obtained by solving the Lippmann-Schwinger equation
within the Weinberg scheme at NLO, that is, when the
Lippmann-Schwinger equation is solved with a three-
momentum cutoff that is fine tuned to data employing
the NLO chiral potential given by OPE and leading
TPE [4].

IV. UNCOUPLED WAVES: 1S0

In this section we study the 1S0 partial wave. We first take
once-subtracted DRs, n = 1, and the IE for D(A) [Eq. (17)]
with C = 0 reads

D(A) = 1 − ν1Ag(A,0) + A

π

∫ L

−∞
dk2 �(k2)D(k2)

k2
g(A,k2),

(33)

with N (A) [Eq. (15)] given by

N (A) = ν1 + A

π

∫ L

−∞
dk2 �(k2)D(k2)

k2(k2 − A)
. (34)

We have one free parameter ν1 that can be fixed in terms
of the 1S0 scattering length as by taking into account the
effective range expansion for an S wave, which reads in our
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ZHI-HUI GUO, J. A. OLLER, AND G. RÍOS PHYSICAL REVIEW C 89, 014002 (2014)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300

δ(
1 S 0

)o

p(MeV)

Theory: OPE
Theory: as, rs fixed

Theory: as fixed
Nijmegen data

FIG. 3. (Color online) Phase shifts of the 1S0 NN partial wave
as a function of the c.m. three-momentum p expressed in MeV. The
(red) solid line represents our results with n = 1 [Eq. (33)], with
only as fixed to its experimental value. The (magenta) dash-dotted
line corresponds to n = 2 [Eq. (44)], with as and rs fixed to their
experimental values and ν2 fitted to data [Eq. (50)]. In addition, the
(blue) dotted line represents the OPE result of Ref. [26]. Finally, the
Nijmegen PWA phase shifts are shown by the (black) dashed line.

normalization

4π

m

D

N
= − 1

as

+ 1

2
rsA − i

√
A + O(A2), (35)

with rs the 1S0 effective range. Because for A = 0 we have
N (0) = ν1 and D(0) = 1, it follows that

ν1 = −4πas

m
. (36)

The experimental value for the 1S0 scattering length is as =
−23.76 ± 0.01 fm [4].

The phase shifts obtained by solving the IE of Eq. (33) are
shown in Fig. 3 as a function of the c.m. three-momentum
p = √

A. The (red) solid line corresponds to our results from
Eqs. (33) and (36) with �(A) calculated up to and including
O(p2) contributions, and they are compared with the neutron-
proton (np) 1S0 phase shifts of the Nijmegen PWA [34] (black
dashed line) and with the OPE results of Ref. [26] (blue dotted
line). As we see, there is a clear improvement when including
TPE.

We can also predict rs by expanding the left-hand side of
Eq. (35) up to and including O(A), giving

rs = m

2π2as

∫ L

−∞
dk2 �(k2)D(k2)

(k2)2

{√
−k2 − 1

as

}
. (37)

Our calculation of D(A) at O(p2) gives the numerical result

rs = 2.32 fm, (38)

close already to its experimental value rs = 2.75 ± 0.05 fm or
the value rs = 2.670 fm determined in Ref. [41] for the NijmII
potential.

It is important to stress that Eq. (37) exhibits a clear
correlation between the effective range and the scattering

length for the 1S0 partial wave. This correlation, first noticed
in Ref. [6], can be written as

rs = α0 + α−1

as

+ α−2

a2
s

, (39)

where the coefficients α0,−1,−2 are independent of the scat-
tering length as . This follows because D(A) satisfies the
linear IE Eq. (33), that we now rewrite as L[D(A)] = 1 +
as

4π
m

Ag(A,0), with the linear operator L[D(A)] defined as

L[D(A)] = D(A) − A

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2)2
g(A,k2). (40)

The solution D(A) can be split as the sum of two terms
D0(A) + asD1(A), with D0,1(A) independent of as and sat-
isfying

L[D0(A)] = 1, L[D1(A)] = 4π

m
Ag(A,0). (41)

Substituting D(A) = D0(A) + asD1(A) into Eq. (37), we then
have the following expressions for the coefficients:

α0 = m

2π2

∫ L

−∞
dk2 �(k2)D1(k2)

(k2)2

√
−k2,

α−1 = m

2π2

∫ L

−∞
dk2 �(k2)

(k2)2
[D0(k2)

√
−k2 − D1(k2)],

(42)

α−2 = − m

2π2

∫ L

−∞
dk2 �(k2)D0(k2)

(k2)2
.

Notice that in our formalism this correlation between rs and
as stems from unitarity and analyticity and it makes sense as
long as the once-subtracted DR [Eq. (33)] exists. Our NLO
solution gives the numerical values

α0 = 2.10 fm, α−1 = −4.89 fm2, α−2 = 5.46 fm3.

(43)

The 1S0 effective range was predicted by the knowledge of the
scattering length and the chiral TPE potential in the first entry
of Ref. [6] by renormalizing the Lippmann-Schwinger equa-
tion with boundary conditions and imposing the hypothesis of
orthogonality of the wave functions determined with different
energy.7 The numerical values for the coefficients obtained in
Ref. [6] when the TPE potential is calculated at NLO, are α0 =
2.122 fm, α−1 = −4.889 fm2, and α−2 = 5.499 fm3, resulting
in rs = 2.29 fm. These numbers, obtained by a completely
independent method from ours, are indeed in remarkably good
agreement with our results for rs [Eq. (38)] and with the
coefficients in Eq. (43). The same reference also calculated
these coefficients including subleading TPE up to N2LO,
giving α0 = 2.59–2.67 fm, α−1 = −5.85 ∼ (−5.64) fm2, and
α−2 = 5.95–6.09 fm3. The intervals of numerical values arise

7Because the potentials involved are singular, this orthogonality
condition does not follow like in the case of a regular potential but
must be imposed, which is a working assumption of the formalism of
Ref. [6].
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from the values taken for the ci counterterms of the O(p2) πN
Lagrangian [6]. We should also stress that our derivation of
the correlation of Eq. (39) is based on basic properties of the
NN partial-wave amplitudes, namely, analyticity, unitarity,
and chiral symmetry. This is an important result, which
also reinforces the assumption of orthogonality of the wave
functions employed in Ref. [6]. Regarding the phase shifts,
our results by fixing only as to experiment (solid line in
Fig. 3) are also quite similar to those obtained with the

NLO TPE potential in Ref. [6]. This is also the case when
comparing with the phase shifts calculated in the third entry
of Ref. [5] by making use of a chiral potential with NLO TPE
plus a contact term that is fixed in terms of the experimental
scattering length as . This reference obtains the value rs 	 2.26
fm (which is extracted approximately from Fig. 2 of Ref. [5],
because rs is not given explicitly there), which is also quite
similar to our result in Eq. (38).

Next, we consider the twice-subtracted DRs, n = 2,

D(A) = 1 + δ2A − ν1
A

(
A + M2

π

)
π

∫ ∞

0
dq2 ρ(q2)

(q2 − A)
(
q2 + M2

π

)
q2

− ν2A
(
A + M2

π

)
g
(
A,−M2

π

)
+ A

(
A + M2

π

)
π2

∫ L

−∞
dk2 �(k2)D(k2)

(k2)2

∫ ∞

0
dq2 ρ(q2)q2

(q2 − A)
(
q2 + M2

π

)
(q2 − k2)

, (44)

N (A) = ν1 + ν2A + A2

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2 − A)(k2)2
, (45)

where, the extra subtraction in the function D(A) is taken at C = −M2
π , while for the function N (A) the two subtractions are

taken at C = 0; see Eq. (15). The subtraction constant ν1 is also given by Eq. (36). Next we fix δ2 in terms of rs . For that,
according to Eq. (35), one needs to expand

4π

m

D

N
+ i

√
A (46)

up to and including O(A) terms. In this expansion, one should consider carefully the combination of the first integral on the r.h.s.
of Eq. (44) with im

√
A/4π ,

− A
(
A + M2

π

)
π

∫ ∞

0
dq2 ρ(q2)

(q2 − A)
(
q2 + M2

π

)
q2

+ im
√

A

4π
= A

(
A + M2

π

)
M2

π

[
g
(
A,−M2

π

) − g(A,0)
] + im

√
A

4π
= mA

4πMπ

. (47)

For the rest of terms, the expansion is straightforward because the limit A = 0 can be taken directly inside the integrals. One
ends with an expression for δ2,

δ2 = as

Mπ

(
1 − 1

2
rsMπ

)
+ ν2

ν1

[
1 + ν1M

2
πg

(
0,−M2

π

)] − M2
π

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2)2
g
(
k2,−M2

π

)
, (48)

which is then substituted in Eq. (44), and our final expression for the twice-subtracted DR of D(A) gives

D(A) = 1 + A

{
as

Mπ

(
1 − 1

2
rsMπ

)
+ ν2

ν1

[
1 + ν1M

2
πg

(
0,− M2

π

)]} − A
(
A + M2

π

)[
ν2g

(
A, − M2

π

) − ν1
g
(
A, − M2

π

) − g(A,0)

M2
π

]
+ A

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2)2

{
A + M2

π

k2 + M2
π

[
k2g(A,k2) + M2

πg
(
A,−M2

π

)] − M2
πg

(
k2,−M2

π

)}
. (49)

The subtraction constant ν2 is fitted to the np Nijmegen PWA
phase shifts for

√
A � 150 MeV.8 The best value is

ν2 = 0.24M−4
π , (50)

and the resulting curve is shown by the (magenta) dash-dotted
line in Fig. 3. We see that this curve follows closely the
experimental phase shifts. It is also interesting to remark
that the results with n = 1, which were able to predict
the experimental value for rs rather closely, can be exactly

8Because Ref. [34] does not provide errors, we always perform a
least-squares fit, without weighting.

reproduced, as expected, in terms of the twice-subtracted DRs
with ν2 = −1.346M−4

π .
As we did before for the once-subtracted DR results, we

compare our phase shifts from the twice-subtracted DRs
[Eq. (49)] with the ones obtained in Ref. [5] but now when
the NLO TPE potential is supplied with two counterterms, one
of them associated with an energy- or momentum-dependent
local term. The (magenta) dash-dotted line in Fig. 3 runs
much closer to data than the just-mentioned results of Ref. [5],
which, for the case with a momentum-dependent local term
in the potential, quickly become cutoff independent once
� > 900 GeV. Nevertheless, in this case we have to say
that the twice-subtracted DRs contain three free parameters,
while only two free parameters are involved in Ref. [5].
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An interesting point to discuss is that in the case of the
twice-subtracted DRs with �(A) calculated at NLO we are
able to implement the exact experimental value for rs , while
this is not possible in Ref. [5] when solving the Lippmann-
Schwinger equation with the NLO TPE potential supplied
with a momentum-dependent local term. This limitation is
also discussed in Ref. [6] and it is connected to the Wigner
bound that limits the impact of short-range physics included in
energy-independent potentials on physical observables [42].9

In the twice-subtracted DR case of the N/D method, fixing
rs to experiment is straightforward because it only implies
a linear equation [Eq. (48)], which allows us to determine
δ2 in terms of the experimental values of rs and ν2. To
better see how the experimental value of rs is implemented
in Eq. (49), let us particularize it for A < L, because once
D(A) is solved along the LHC, everything is then calculated in
terms of DRs involving D(A) along this domain. Equation (49)
simplifies to

D(A) = 1 − as

√−A

(
1 − 1

2
rs

√−A

)
+

(√−A − 1

as

)
m

4π
ν2A

+ A

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2)2

{
A + M2

π

k2 + M2
π

[
k2g(A,k2) + M2

πg
(
A,−M2

π

)] − M2
πg

(
k2,−M2

π

)}
. (51)

In the once-subtracted DR case [Eq. (33)], the inhomogeneous
term is just 1 − as

√−A. Note that the factor 1 − rs

√−A/2
multiplying −as

√−A cannot be considered as a correction
because rsMπ ∼ 1. This is to be expected because including
one extra subtraction in Eq. (33) implies a reshuffling of the
dispersive integral, which has typically the same size as the
counterterms.10

V. UNCOUPLED P WAVES

In this section we discuss the application of the method to
the uncoupled P waves.

A. 3P0 wave

For the 3P0 uncoupled wave we also consider first the
once-subtracted DR already used for the 1S0 case, i.e., Eqs. (33)
and (34). The only important difference is that for P and
higher orbital-angular-momentum partial waves we have the
threshold behavior TJ�S(0) = 0 at A = 0, so that ν1 = 0.
Hence, for � � 1 Eqs. (33) and (34) reduce to

DJ�S(A) = 1 + A

π

∫ L

−∞
dk2 �(k2)DJ�S(k2)

k2
g(A,k2),

NJ�S(A) = A

π

∫ L

−∞
dk2 �(k2)DJ�S(k2)

k2(k2 − A)
. (52)

Notice that there are no free subtraction constants in Eq. (52)
and the emerging results are then predictions of our approach.
In Fig. 4 we show our results by the (red) solid line. We see
that this curve is much closer to data than the OPE result of

9Reference [5] also considers the case of adding to the NLO TPE
an energy-dependent local term. The authors of Ref. [5] can then
reproduce the experimental value for rs , but they obtain phase shifts
that show a strong oscillatory dependence with the actual value taken
for the cutoff �.

10The latter would change by contributions from the dispersive
integral by just changing the subtraction point so that the final result
would be independent of the subtraction point chosen.

Ref. [26] given by the (blue) dotted line, so that the correction
is in the right direction.

Next, we consider the twice-subtracted DRs of Eqs. (15)
and (17) but now with ν1 = 0 and C = 0. They can be
written as

D(A) = 1 + δ2A − ν2A
2g(A,0) + A2

π

∫ L

−∞
dk2

× �(k2)D(k2)

(k2)2
g(A,k2), (53)

N (A) = ν2A + A2

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2 − A)(k2)2
.

In this equation we take C = 0 for all the subtractions,
because no infrared divergences are generated in the integrals
along the RHC for ν1 = 0. Notice that this was not the case
for the 1S0 partial wave because of the first integral on the
r.h.s. of Eq. (44). The subtraction constant ν2 can be fixed

 0
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FIG. 4. (Color online) Phase shifts of the 3P0 NN partial wave.
The (red) solid line corresponds to our results with n = 1 [Eq. (52)];
the (magenta) dash-dotted line represents our results with n = 2
[Eq. (53)]. The (blue) dotted line represents the OPE result from
Ref. [26] and the (black) dashed line represents the Nijmegen PWA
phase shifts, which almost coincides with the n = 2 result.
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straightforwardly to the experimental scattering volume,11

ν2 = 4πaV

m
. (54)

For the 3P0 partial wave we have aV = 0.890M−3
π , a value that

is derived from the Nijmegen PWA phase shifts [34]. Finally,
the subtraction constant δ2 is fitted to data with the value

δ2 = −0.30M−2
π . (55)

The resulting curve is shown by the (magenta) dash-dotted
line in Fig. 4, which perfectly agrees with the phase shifts of
Ref. [34] (given by the black dashed line). The reproduction
of the data is so good that the fit is completely insensitive to
the upper limit of

√
A fitted, in the range shown in the figure.

B. 3P1 wave

This partial wave illustrates our conclusion in Sec. II with
respect to the fact that n should be large enough to write
meaningful DRs for D(A) and N (A) [Eqs. (15)]. Here the
once-subtracted DR [Eq. (52)] does not have a solution.12

The reason is that, for 3P1, the asymptotic behavior of �(A)
for A → −∞ corresponds to λ(−A), with λ > 0, so that the
once-subtracted DR should not converge in this case, as shown
by Proposition 4 in Sec. III A.

We finally need to take three subtractions to have a mean-
ingful IE without dependence in the lower limit of integration
along the LHC. The twice-subtracted DRs do not provide
stable results either. For the function D(A), one subtraction
is taken at C = 0 and the other two at C = −M2

π , while all of
them are taken at C = 0 for N (A). The three-time-subtracted
DRs are then given by

D(A) = 1 + δ2A + δ3A
2 − ν2

A
(
A + M2

π

)2

π

∫ ∞

0
dq2 ρ(q2)(

q2 + M2
π

)2
(q2 − A)

− ν3
A

(
A + M2

π

)2

π

∫ ∞

0
dq2 q2ρ(q2)(

q2 + M2
π

)2
(q2 − A)

+ A
(
A + M2

π

)2

π2

∫ L

−∞
dk2 �(k2)D(k2)

(k2)3

∫ ∞

0
dq2 (q2)2ρ(q2)(

q2 + M2
π

)2
(q2 − k2)(q2 − A)

. (56)

The subtraction constant ν2 is fixed in terms of the 3P1

scattering volume, aV = −0.543M−3
π from the the Nijmegen

PWA [34], according to the expression ν2 = 4πaV /m, already
used for the 3P0 wave. We then fit the subtraction constants δ2

and δ3, while ν3 is finally fixed to zero. We have checked that
the resulting fit is stable if we release ν3 from zero and, because
we are able to reproduce perfectly the data, as shown by the
(red) solid line in Fig. 5, we do not need to release ν3. The
resulting fit is

ν3 = 0∗, δ2 	 (2.5∼3.0)M−2
π , δ3 	 (0.2∼0.3)M−4

π .

(57)

Here the asterisk indicates that ν3 is fixed to zero. The final
result, which overlaps data (black dashed line), is indicated
by the (red) solid line in Fig. 5. The blue dotted line is the
OPE result of Ref. [26] that was obtained in terms of a once-
subtracted DR.

C. 1P1 wave

Now we consider the singlet uncoupled wave 1P1, where
λ < 0 so that we expect to have a solution for the once-
subtracted IE. Indeed, this is the case. As usual, we discuss
first the once-subtracted DR and then the twice-subtracted
case. The former has no free parameters. For the latter case
the scattering volume, aV = −0.939M−3

π , is used to fix ν2 and

11That we define as aV = limA→0+ δ(A)/A3/2, with δ(A) the phase
shifts.

12The numerical outcome depends on the lower limit of integration
when discretizing the IE for D(A).

δ2 is fitted to data. However, now the fit is not very sensitive
to this subtraction constant, which is determined only within
a large interval of positive values from 0.8M−2

π up to 27M−2
π ,

depending on the upper limit for
√

A taken in the fit.
Our results for once- and twice-subtracted DRs are almost

identical, as can be seen by comparing the (red) solid and
(magenta) dash-dotted lines in Fig. 6, respectively. Both curves
are overlapping and reproduce the data fairly well for

√
A <

200 MeV.
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FIG. 5. (Color online) Phase shifts of the 3P1 NN partial wave.
The (red) solid line corresponds to our results with three-time-
subtracted DRs, with aV fixed and δ2 and δ3 fitted [Eq. (57)]. The
(blue) dotted line represents the OPE result from Ref. [26] and the
(black) dashed line represents the Nijmegen PWA phase shifts.
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ZHI-HUI GUO, J. A. OLLER, AND G. RÍOS PHYSICAL REVIEW C 89, 014002 (2014)

-25

-20

-15

-10

-5

 0

 0  50  100  150  200  250  300

δ(
1 P 1

)o

p(MeV)

Theory: OPE
Theory: No free parameters

Theory: aV fixed
Nijmegen data

FIG. 6. (Color online) Phase shifts of the 1P1 NN partial wave.
The (red) solid line corresponds to our results with a once-subtracted
DR, n = 1. The (magenta) dash-dotted line represents the case
of a twice-subtracted DR, n = 2, with aV fixed and δ2 fitted.
The (blue) dotted line represents the OPE result from Ref. [26]
and the (black) dashed line represents the Nijmegen PWA phase
shifts.

VI. UNCOUPLED WAVES: � � 2

A partial-wave amplitude with � � 2 should vanish as A�

in the limit A → 0. This behavior is not directly implemented
by the DR Eq. (15), unless some constraints are imposed.
The right threshold behavior can be achieved by taking
the subtraction point C = 0 in N (A) and then imposing
νi = 0 for i = 1, . . . ,� in Eq. (15). In this way, because
T = N/D and D(0) = 1, one has that T → A� for A → 0,
being necessary to consider at least �-time-subtracted DRs.
In practice, we take the minimum number of subtractions,
n = �, and C = 0 in Eq. (15), so that we end with the
equations

D(A) = 1 +
�∑

i=2

δiA
i−1 + A�

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2)�
g(A,k2),

(58)

N (A) = A�

π

∫ �

−∞
dk2 �(k2)D(k2)

(k2)�(k2 − A)
. (59)

The δi are free parameters that are proportional to deriva-
tives of the function D(A) at A = 0,13 namely,

δn = (n − 1)! D(n−1)(0), n � 2, (60)

with

D(n)(0) = ∂nD(A)

∂An

∣∣∣∣
A=0

. (61)

13Strictly speaking, they correspond to the derivatives from the left
of D(A) at A = 0; that is, the limit A → 0− is the proper one to avoid
the branch-cut singularity in D(A) owing to the onset of the unitarity
cut for A > 0.

Nevertheless, as � increases, rescattering effects giving rise to
the unitarity cut are less important because of the centrifugal
barrier and then D(A) 	 1 for A in the range of interest here.
This manifests in the fact that the δi can be taken equal to
zero except the one with the largest subscript, i = �, which
is fitted to data, providing a good reproduction of the latter
in most of the cases. This is the situation that corresponds to
the smoothest D(A) in the low-energy region, and we refer to
it as the “principle of maximal smoothness.” This rule stems
from our study of NN partial-wave amplitudes with � � 2,
and it holds not only in the uncoupled waves but it is also
applicable to the coupled ones. Even if we released all the
δi there is no significant improvement in the reproduction of
data with respect to that obtained when only δ� 
= 0. It is also
shown below that if we insist on using the once-subtracted
DRs [Eq. (52)], the resulting phase shifts are very similar
to those obtained with � subtractions for the partial waves
with � � 3. The reason is that for partial waves with � high
enough the strict violation of the threshold behavior for such
higher partial waves is a rescattering effect that restricts indeed
to very low energies and it is more an artifact of academic
interest. In turn, this is a reflection of the general trend of
NN partial waves of becoming quite perturbative, typically
for � � 3 as obtained in Ref. [29] by studying perturbatively
the � � 2 waves within the one-loop approximation of baryon
ChPT.

Another method to guarantee the right behavior at threshold
was developed in Ref. [26] without the need for increasing the
number of subtraction constants. We refer to this reference for
further details. The neat result is that the D(A) function should
satisfy the set of constraints∫ L

−∞
dk2 �(k2)D(k2)

(k2)λ
= 0, (λ = 2, . . . ,�), (62)

with � � 2. To fulfill them, a set of � − 1 CDD poles [43]
is included in the D(A) function, the residues of which are
adjusted by imposing Eq. (62). The final expressions comprise
Eq. (59), which is the same as here, and a different equation
for D(A),

D(A) = 1 + A

π

∫ L

−∞
dk2 �(k2)D(2)

k2
g(A,k2)+A

∑�−2
n=0 cnA

n

(A − B)�−1
,

(63)

with B corresponding to the position of the CDD poles that
is finally sent to infinity. Notice that at low energies (A � B)
the addition of the CDD poles reduce to change the function
D(A) by a polynomial of degree � − 1. In this sense, this
method based on the constraints Eq. (62) and the addition of
the CDD poles [Eq. (63)] is a particular case at low energies of
the most general solution with � subtractions [Eq. (58)]. We do
not use further the method of Ref. [26] because unless �(A)
vanishes fast enough in the infinite, e.g., like 1/A in OPE, it
implies using integrals along the LHC that grow with powers
of B → ∞, which makes its numerical manipulation very
difficult. In particular, standard numerical subroutines used to
invert a matrix and find the numerical solution of the IE do not
provide the right answer for large B. This is the situation at
NLO because �(A) → A for A → ∞, and it would be even
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FIG. 7. (Color online) Phase shifts for 1D2 (left) and 3D2 (right). 1D2: The (red) solid line represents the NLO results with δ2 = 0. 3D2: The
(red) solid lines correspond to δ2 fitted [Eq. (64)]. The OPE results from Ref. [26] are represented by the (blue) dotted lines. The Nijmegen
PWA is represented by the (black) dashed lines.

worse if higher orders in the chiral expansion of �(A) were
implemented. In the present formalism, based on the Eqs. (58)
and (59) above, we can skip the aforementioned sum rules
of Eq. (62) because, by construction, we satisfy the threshold
behavior by having included � subtractions. The price to pay
is that now we have � − 1 free δi , precisely the number of
sum rules to be fulfilled in the formalism of Ref. [26]. For a
more general presentation on the proliferation of these sum
rules with increasing � for a once-subtracted DR of a NN
partial wave, the interested reader is referred to the book by
Barton [36].

Note that in the case of solving a Lippmann-Schwinger
equation with a NN potential V the right threshold behavior is
always implemented because of the series T = V + V GV +
V GV GV + · · · , where the left- and rightmost V ’s take care
of proving the right power of A when A → 0. This is explicitly
used in the subtractive method of Ref. [5].

VII. UNCOUPLED WAVES: D WAVES

For the D waves one has to solve Eq. (58) with � = 2. For
the case of the singlet 1D2 partial wave a fit to data is not
appropriate here because it produces negative values of δ2 that
in turn give rise to a resonance in the low-energy region, just
a bit above the energy range fitted. To avoid the resonance
behavior, we then impose that δ2 � 0. The (red) solid curve
in Fig. 7 corresponds to δ2 = 0M−2

π . Though there is a clear
improvement compared with the OPE results of Ref. [26] (blue
dotted line), higher-order corrections are still needed to provide
an accurate reproduction of data.

We follow the same steps for the 3D2 partial wave. In this
case we observe a numerical behavior not seen before when
solving Eq. (58). There is a dependence on the lower limit of
integration along the LHC that can be reabsorbed, however, in
the value of the free parameter δ2. In this way, the resulting
phase shifts below

√
A = 300 MeV are stable under changes

in the lower limit of integration. The phase shifts with
√

A <

200 MeV are fitted with

δ2 = −0.18+0.02
−0.01M

−2
π , (64)

where the errors show the variation in this parameter when the
lower limit of integration varies from −42 to −1872 GeV2.
The phase shifts obtained are the (red) solid line in the right
panel of Fig. 7 (the other lines obtained with the different
values mentioned for the lower limit of integration overlap
each other and cannot be distinguished in the scale of the
figure). We also see a clear improvement in the reproduction
of data when moving from OPE to TPE, especially for√

A < 200 MeV.

VIII. UNCOUPLED WAVES: F WAVES

Here we study the uncoupled F waves, namely, 1F3 and
3F3. For these waves, Eq. (58) is applied with � = 3 and it
requires three subtractions, with two free parameters δ2 and
δ3, proportional to D′(0) and D′′(0), in that order, according
to Eq. (60). In the following we use the derivatives D(n)(0) as
free parameters, which we consider more natural parameters
for the polynomial in front of the integral in Eq. (58).

The partial wave 1F3 is quite insensitive to D′(0) and slightly
dependent on D′′(0), which is required to be positive for a
better reproduction of data. We fix D′(0) = 0 in the following,
and show by the (red) solid line in the left panel of Fig. 8 the
outcome with D′′(0) = 1.2M−4

π , the resulting value of a fit to
data up to

√
A = 150 MeV. In turn, the (magenta) dash-dotted

line corresponds to take D′′(0) = 10M−4
π . Despite the large

variation in the value of D′′(0) the two lines overlap each
other, which clearly shows how little the results depend on the
actual values of D′′(0). The OPE results are quite similar as
the NLO ones.

The 3F3 partial wave is also insensitive to D′(0), but the
fit clearly prefers a value for D′′(0) around 0.014M−4

π . The
outcome at NLO is shown by the (red) solid line. One observes
a clear improvement in the reproduction of data from OPE to
NLO.
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FIG. 8. (Color online) Phase shifts for 1F3 (left) and 3F3 (right). 1F3: The (red) solid and (magenta) dash-dotted lines correspond to the NLO
results with D′′(0) = 1.7M−4

π and 10M−4
π . 3F3: The (red) solid lines represent D′′(0) = 0.014M−4

π . In both cases, the once-subtracted DR phase
shifts, from Eq. (52), are given by the (cyan) double-dotted lines. The OPE results from Ref. [26] are represented by the (blue) dotted line. The
Nijmegen PWA is represented by the (black) dashed lines.

The fact that for both waves we only need to fit D′′(0),
with D′(0) fixed to zero, illustrates the principle of maximal
smoothness for D(A) for high �. One can check whether the
F waves could be already treated in perturbation theory. For
that we propose to use the once-subtracted DR [Eq. (52)]
that has no the right threshold behavior which requires a
partial wave to vanish as A3 when A → 0. The origin for
the failure to reproduce the proper threshold behavior stems
from the resummation of the RHC undertaken by the D(A)
function. For a perturbative wave (Born approximation),
unitarity requirements should be of little importance. The
outcome from Eq. (52) is shown by the (cyan) double-dotted
lines in Fig. 8, which run very close to the (red) solid lines,
our NLO results that implement by construction the correct
threshold behavior. The 3F3 wave seems less perturbative than
the 1F3, because the once-subtracted DR provides results that
are more different compared with the full results. Had we

applied the once-subtracted DR for the D waves, the outcome
would have been very different from the results discussed
in Sec. VII and shown in Fig. 7 (particularly for the 3D2

that would not even match the correct sign). This indicates
that the F waves can be treated in good approximation in
perturbation theory, while this is not the case for the D waves
yet. A similar conclusion was also reached in Ref. [29] by
its perturbative study of NN scattering in one-loop baryon
ChPT.

IX. UNCOUPLED WAVES: G WAVES

We now proceed to discuss the G waves and solve Eq. (58)
with � = 4. The situation here follows the general rule
discussed in Sec. VI, so that it is enough to release only D(3)(0),
which acts then as the active degree of freedom, with the other
D(i)(0), with i = 1,2, fixed to zero. From the best fits obtained
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FIG. 9. (Color online) Phase shifts for 1G4 (left) and 3G4 (right). Full results are represented by the (red) solid lines. The once-subtracted
DR phase shifts, from Eq. (52), are given by the (cyan) double-dotted lines. The OPE results from Ref. [26] are given by the (blue) dotted line.
The Nijmegen PWA is given by the (black) dashed lines.
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FIG. 10. (Color online) Phase shifts for 1H5 (left) and 3H5 (right). Full results are given by the (red) solid lines. The once-subtracted DR
phase shifts, from Eq. (52), are given by the (cyan) double-dotted lines. The OPE results from Ref. [26] are given by the (blue) dotted lines.
The Nijmegen PWA is given by the (black) dashed lines.

with one free parameter D(3)(0), if we release further the other
two parameters, D′(0) and D′′(0), no improvement is obtained.
For the partial wave 1G4 we obtain from the fit to data the
value D(3)(0) 	 −0.031M−6

π . However, for the 3G4 wave the
fit cannot pin down a precise value for D(3)(0), which is finally
fixed to zero. In both waves the reproduction of data is very
good as shown in Fig. 9 by the (red) solid line. The 3G4 wave
is the most perturbative one, as one can see by the fact that the
once-subtracted DR results (shown by the cyan double-dotted
lines in Fig. 9) are clearly closer to the full results than for the
1G4 case.

X. UNCOUPLED WAVES: H WAVES

The same rule of Sec. VI regarding the number of active
free parameters is observed here for � = 5 as in the case of
the F and G waves, so that we only release D(4)(0). For the

1H5 the best results are obtained with D(4)(0) = −0.6M−8
π ,

corresponding to the (red) solid line in the left panel of Fig. 10.
The results reproduce the Nijmegen PWA phase shifts fairly
well. The lines obtained from OPE [26] and by employing a
once-subtracted DR run close to our full ones at NLO. For the
3H5 wave we obtain the best value D(4)(0) 	 0.7 × 10−2M−8

π ,
which gives rise to results slightly better than by fixing it
directly to zero. The phase shifts obtained are shown by the
(red) solid line in the right panel of Fig. 10. They are quite
close to the Nijmegen PWA phase shifts in the range shown,
note also the small absolute value of the phase shifts.14 The
once-subtracted DR and OPE results are very similar between

14For 5 � J � 8 the Nijmegen PWA phase shifts [34] are those
obtained from the NN potential model of Ref. [44].
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FIG. 12. (Color online) (Left panels) Different contributions to the integral in Eq. (65) with � = 1. (Right panels) Contributions to �(A).
From top to bottom, we show the 3P0, 3P1, and 1P1 partial waves, respectively. The meanings of the lines are the same as in Fig. 11.

them and run rather close to the full results, indicating the
perturbative nature of the H waves.

XI. QUANTIFYING CONTRIBUTIONS TO �(A)

For any partial wave there is always a term, corresponding
to the last line in Eq. (17), that gives the nested contribution
of the LHC to the function D(A). This type of integration

along the LHC is the proper one to ascertain the relative size
of the different contributions to �(A), because any scattering
quantity can be calculated once the function D(A) is known
along the LHC. It is then not illuminating to look directly
at the relative sizes of the different contributions to �(A),
but one should look at the amount that they contribute to the
integral along the LHC. Because this integration involves the
very same function that we want to calculate, we evaluate it
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FIG. 13. (Color online) (Left panels) Different contributions to the integral in Eq. (65) with � = 2. (Right panels) Contributions to �(A).
From top to bottom, we show the 1D2 and 3D2 partial waves, respectively. The meanings of the lines are the same as in Fig. 11.

by substituting D(k2) → 1, although any other constant value
would be equally valid to ascertain relative differences. In this
way, we can then perform an a priori quantitative study about
the importance of the different contributions in �(A) when
solving Eq. (17).

At the practical level we have used Eq. (17) with changes in
its form because of different selections of the subtraction point
C, as explained above. We display in Eq. (65) the integrals
used for each wave to quantify the weight in our results of
the different contributions to �(A). All the integrals require
two or more subtractions so that they are convergent, owing to
the fact that at NLO �(A) diverges at most as A for A → ∞.
Indeed twice- or more subtracted DRs have been used in all
the partial waves in Secs. IV–X,

� � 1 :
A

(
A + M2

π

)
π2

∫ L

−∞
dk2 �(k2)

(k2)2

×
∫ ∞

0
dq2 q2ρ(q2)

(q2 − A)(q2 − k2)
(
q2 + M2

π

) , (65)

� � 2 :
A�

π2

∫ L

−∞
dk2 �(k2)

(k2)�

∫ ∞

0
dq2 ρ(q2)

(q2 − A)(q2 − k2)
.

Let us analyze first the case of the 1S0. For that we show
in the left panel of Fig. 11 the corresponding integral in
Eq. (65), while in the right panel we plot directly �(A). In
both cases we distinguish between OPE (green dash-dotted
line), irreducible TPE (blue dotted line), and reducible TPE
(magenta dashed line). The total result is given for the integral
(left panel) and it corresponds to the (red) solid line. We see
that the integral is clearly dominated by the OPE contribution,
despite the irreducible TPE contribution overpasses OPE in
�(A) at around −2M−2

π . The next contribution in importance
is irreducible TPE and the least important by far is reducible
TPE. The latter contribution is so much suppressed because
for the 1S0 it is proportional to m4

π .
The dominance of OPE in the integral at low energies along

the RHC is because (i) it starts to contribute the soonest in all
of them and (ii) the integrand in Eq. (65) is enhanced at low
three-momenta by the factor 1/(k2)2 for � � 1. Because of
these reasons, every contribution to �(A) that involves the
exchange of a larger number of pions should be increasingly
suppressed. Let us recall that precisely the threshold for each
contribution to �(A) controls its exponential suppression for
large radial distances in the NN potential, as exp(−nMπr)
for an n-pion-exchange contribution. Notice also that one can
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see clearly in the right panel of Fig. 11 that OPE increases
very fast in absolute value towards its threshold at −M2

π/4.
This is because OPE at low energies has a typical value for
its derivative proportional to 1/A2, which implies a large
relative change between the onset of OPE and that of TPE.
We can say from the left panel of Fig. 11 that it is justified to
calculate perturbatively the different contributions to �(A) for
the 1S0.

The case of the P waves is shown in Fig. 12. From top
to bottom we show the partial waves 3P0, 3P1, and 1P1, in that
order. The left panels show the integral in Eq. (65) and the right
ones the different contributions to �(A). The notation is the
same as used in Fig. 11. By comparing the (green) dash-dotted
and (red) solid lines in the left panels of Fig. 12, one clearly
observes the dominance of the OPE contribution. For the 3P0

wave both irreducible and reducible TPE are sizable but tend to
cancel mutually. The actual extent of this cancellation could be
sensitive to the exact values of the function D(k2) [substituted
by 1 in the integral along the LHC in Eq. (65)]. We also observe
that the irreducible and the reducible TPE contributions are
typically of similar size as a global picture for the P waves.
The pattern of results shown for the integral again suggests
that a perturbative treatment for the different contributions to
�(A), in the form discussed in Sec. III, is meaningful.

The corresponding curves for the D waves, � = 2 in
Eq. (65), are shown in Fig. 13. Again we observe a clear
dominance of OPE in the integral of Eq. (65). For the 1D2 wave

the irreducible TPE is lager than the reducible contribution,
but for the 3D2 the situation is reversed. So we conclude that
typically they should be considered of similar size, as argued
in Sec. III.

The F waves show an overwhelming dominance of the
OPE contribution to the integral in Eq. (65) with � = 3; see
the left panels of Fig. 14. This is in agreement with our
discussion in Sec. VIII, where we argue that these waves could
be treated perturbatively. In addition, these waves present
small corrections to the phase shifts from higher orders, as
shown in Fig. 8. We also see that irreducible and reducible
TPE have similar sizes (see, e.g., the right panels in Fig. 14).
A similar situation occurs for the G and H waves, shown
in Figs. 15 and 16, respectively. The fact that OPE and the
total result for the integration in Eq. (65) coincide for the F
and higher partial waves clearly indicates their perturbative
character. Notice that this is not the case for lower values
of � � 2.

The expressions for �(A) can be algebraically obtained
for the different partial waves from the expressions given
in Ref. [29]. A closer look at them would be appropriate to
disentangle the origin of the somewhat surprising result that
irreducible and reducible TPE contributions to �(A) have typ-
ically a similar size. To illustrate this point, let us consider the
3P0 wave for which, as shown in the top panel on the right of
Fig. 12, both reducible and irreducible TPE have opposite sign
but similar magnitude. The different contributions to �(A) are

�OPE = − g2
Aπ

16f 2

M2
π

A
, A < −M2

π

4
,

�IRR = 1

4608f 4A2π

{
− 2

√
A

(
M2

π + A
)[

3M4
π + A

(−M2
π + 2A

) + 2g2
A

(−3M4
π + 5A

(−M2
π + 2A

)
+g4

A

{ − 87M4
π + A

(
59M2

π + 98A
)}] + 6M4

π

[−M2
π + g2

A

(
2M2

π − 6A
) − 3A + g4

A

(
29M2

π + 21A
)]

× log

[
(−A)

1
2

Mπ

+
(

−1 − A

M2
π

) 1
2
]}

, A < −M2
π ,

�VGV = g4
Am

3840f 4A2

{
− 4M5

π − 20M2
π (−A)

3
2 + 24(−A)

5
2 − 15M4

π (−A)
1
2 log

[
− 1 + 2

(−A)
1
2

Mπ

]}
, A < −M2

π , (66)

where we have, from top to bottom, the OPE (�OPE), irre-
ducible TPE (�IRR), and reducible TPE (�VGV) contributions,
respectively. We see in �VGV the presence in the numerator
of the nucleon mass and an extra factor of π compared with
�IRR, as expected for a reducible diagram. However, we also
observe the presence of much bigger numerical factors in
the numerator of �IRR, which in the end make that both
contributions have similar size. To see this effect more clearly,
let us separate from �VGV and �IRR the terms proportional to
g4

A and with the largest power of A, the ones that dominate for
|A| considerably larger than M2

π . These partial contributions
are called δVGV and δIRR, respectively. Their ratio, in this
order, is

δVGV

δIRR
= − πm

(−A)
1
2

36

245
. (67)

Again this equation exhibits clearly the large ratio of scales
πm

(−A)1/2 , as expected, but at the same time it has a large
numerical enhancement from the irreducible contribution
by the factor 245/36 	 7. This is large enough to make
both contributions similarly sized because the previous ratio
becomes

δVGV

δIRR
	 3Mπ

(−A)
1
2

∼ Mπ

(−A)
1
2

= O(1), A < −M2
π . (68)

The presence of numerical factors enhancing �IRR is,
in part, attributable to combinatorial reasons, by putting on
shell the two pions when cutting diagrams to evaluate their
imaginary part along the LHC; see Fig. 1. As an example,
let us take proton-proton (pp) scattering. Then, the reducible
part of Fig 1(d) only contributes by exchanging two π0,
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FIG. 14. (Color online) (Left panels) Different contributions to the integral in Eq. (65) with � = 3. (Right panels) Contributions to �(A).
From top to bottom, we show the 1F3 and 3F3 partial waves, respectively. The meanings of the lines are the same as in Fig. 11.

which contains a factor 1/2 because of the indistinguishability
of them. However, Fig. 1(c), in addition to π0π0, also
contains π+π− as intermediate state. As a result, Fig. 1(c)
at low energies is enhanced by a factor 3 compared with
Fig. 1(d).

XII. COUPLED PARTIAL WAVES

The spin triplet NN partial waves with total angular
momentum J mix the orbital angular momenta � = J − 1
and �′ = J + 1 (except the 3P0 wave that is uncoupled.) Each
coupled partial wave is determined by the quantum numbers
S, J , �, and �′. In the following for simplifying the notation
we omit them and indicate, for given J and S, the different
partial waves by tij , with i = 1 corresponding to � = J − 1
and i = 2 corresponding to �′ = J + 1. In matrix notation,
one has a symmetric 2 × 2 T matrix. In our normalization, the
relation between the T and S matrices reads

S(A) = I + i2ρ(A)T (A)

=
(

cos 2εJ e2iδ1 i sin 2εJ ei(δ1+δ2)

i sin 2εJ ei(δ1+δ2) cos 2εJ e2iδ2

)
, (69)

where I is the 2 × 2 unit matrix, εJ is the mixing angle, and δ1

and δ2 are the phase shifts for the channels with orbital angular
momentum J − 1 and J + 1, in this order.

Above threshold (A > 0), and below pion production, the
unitarity character of the S matrix, SS† = S†S = I , can be
expressed in terms of the (symmetric) T matrix as

ImT −1(A) = −ρ(A) I, (70)

where ρ(A) was already defined in Eq. (4). In the following, the
imaginary parts above threshold of the inverse of the T -matrix
elements, tij (A), play an important role,

Im
1

tij (A)
≡ −νij (A), A > 0. (71)

From Eq. (69), one can easily express the different νij

in terms of phase shifts and the mixing angle along the
physical region. It implies that we can write the diagonal
partial waves as tii and the mixing amplitude t12 as tii =
(e2iδi cos 2εJ − 1)/2iρ and t12 = ei(δ1+δ2) sin 2εJ /2ρ, respec-
tively. With these equalities it is straightforward to obtain
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FIG. 15. (Color online) (Left panels) Different contributions to the integral in Eq. (65) with � = 4. (Right panels) Contributions to
�(A). From top to bottom, we show the 1G4 and 3G4 partial waves, respectively. The meanings of the lines are the same as in
Fig. 11.

for A > 0

ν11(A) = ρ(A)

[
1 −

1
2 sin2 2εJ

1 − cos 2εJ cos 2δ1

]−1

, (72)

ν22(A) = ρ(A)

[
1 −

1
2 sin2 2εJ

1 − cos 2εJ cos 2δ2

]−1

, (73)

ν12(A) = 2ρ(A)
sin(δ1 + δ2)

sin 2εJ

. (74)

Equation (71) generalizes Eq. (5), valid for an uncoupled
partial wave. Indeed, if we set εJ = 0 in ν11(A) and ν22(A), the
uncoupled case is recovered. Note also that νii(A)/ρ(A) � 1
and for A → ∞ one expects that νij (A) = O(A

1
2 ) as ρ(A)

itself, because the absolute value of the trigonometric functions
in Eqs. (72)–(74) is bounded by 1.

We apply the N/D method, discussed in Sec. II, to each
partial wave tij separately,

tij (A) = Nij (A)

Dij (A)
. (75)

We define �ij as �11 = �, �22 = �′ = � + 2, and �12 = (� +
�′)/2 = � + 1. From the previous equation and Eq. (71), it
follows that

ImDij (A) = −Nij (A)νij (A), A > 0, (76)

ImNij (A) = Dij (A)�ij (A), A < L, (77)

where Imtij (A) ≡ �ij (A) along the LHC. The only formal
difference with respect to Eqs. (6) and (8) is that now, instead
of ρ(A), we have νij (A) in Eq. (76). Because of this, we
do not expect any change in the conclusions obtained in
Sec. III A regarding the solution of the IEs depending on
the high-energy behavior of �(A). We can then follow the
same line of reasoning as given in Sec. II and write down
unsubtracted DRs for Dij/(A − C)n and Nij/(A − C)n for
large enough n. Multiplying them by (A − C)n we derive the
proper DRs valid for Dij (A) and Nij (A), as done in Sec. II.
In this way, our general equations for the coupled-channel
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FIG. 16. (Color online) (Left panels) Different contributions to the integral in Eq. (65) with � = 5. (Right panels) Contributions to �(A).
From top to bottom, we show the 1H5 and 3H5 partial waves, respectively. The meanings of the lines are the same as in Fig. 11.

case arise:

Dij (A) =
n∑

p=1

δ(ij )
p (A − C)p−1 −

n∑
p=1

ν(ij )
p

(A − C)n

π

∫ ∞

0
dq2 νij (q2)

(q2 − A)(q2 − C)n−p+1

+ (A − C)n

π2

∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2 − C)n

∫ ∞

0
dq2 νij (q2)

(q2 − A)(q2 − k2)
, (78)

Nij (A) =
n∑

p=1

ν(ij )
p (A − C)p−1 + (A − C)n

π

∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2 − A)(k2 − C)n
. (79)

Of course, as in the uncoupled partial-wave case, we rewrite conveniently the previous equations whenever we take the subtractions
at different subtraction points, that is, not all of the them taken at the same C. In particular, we impose the normalization condition

Dij (0) = 1, (80)

so that one subtraction for Dij (A) is always taken at C = 0, and this gives

δ
(ij )
1 = 1. (81)

We indicate below, case by case, where the subtractions are taken.

For the partial waves with �ij � 2 we have to guarantee the
right threshold behavior such that tij (A) → A�ij for A → 0+.
This is done as in Sec. VI by considering �ij -time DRs with

all the subtraction constants in Nij (A) taken at C = 0 and
with vanishing value. For the function Dij (A), apart of the
subtraction taken at C = 0, the rest of them are taken at C 
= 0.
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The resulting IEs are

Dij (A) = 1 +
�ij∑

p=2

δ(ij )
p A(A − C)p−2 + A(A − C)�ij −1

π2

×
∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2)�ij

×
∫ ∞

0
dq2 νij (q2)(q2)�ij −1

(q2 − A)(q2 − k2)(q2 − C)�ij −1 , (82)

Nij (A) = A�ij

π

∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2)�ij (k2 − A)
. (83)

Notice that we have rewritten the (�ij − 1)th-degree polyno-
mial in Dij (A) so that the coefficients δ

(ij )
p have a simpler

relation with Dij (A). Indeed, one can deduce straightforwardly
that

δ(ij )
p = (−1)p

Cp−1

[
p−2∑
n=0

(−1)n

n!
CnD

(n)
ij (C) − 1

]
. (84)

That is, δ
(ij )
p is proportional to the difference of the Taylor

expansion of degree p − 2 of the function Dij (A) at around
A = C and evaluated at A = 0, and Dij (0) = 1. In the
practical applications that follow we always take C = −M2

π .
The situation with all the δ

(ij )
p equal to zero corresponds

to Dij (0) = 1 and D
(n)
ij (0) = 0 (this is the so-called pure

perturbative case for a high orbital-angular-momentum wave).
On the other hand, the rule given in Sec. VI for an n-time-
subtracted DR corresponds to having Dij (0) = 1, D

(p)
ij = 0

for 1 � p < n − 2 and D
(n−2)
ij (0) 
= 0.

As shown explicitly in Ref. [27], the ν22(A) function
diverges as A− 3

2 for A → 0. This requires some care to avoid
infrared divergent integrals, a problem already noticed in
Ref. [45]. This issue is cured in Eq. (82) because C 
= 0. Then,
the factor (q2)�22−1 cancels, at least partially, the threshold
divergence in ν22(A) so that the integral is convergent. Notice
that �22 � 2, with its smallest value for the 3D1 wave. The
function ν12(A) also diverges at threshold but only as A− 1

2 , so
that it does not give rise to any infrared divergent integral. For
completeness, we recall that the ν11(A) vanishes for A → 0 as
A

1
2 . In the following, we define the function gij (A,k2,C; m) as

gij (A,k2,C; m) = 1

π

∫ ∞

0
dq2 νij (q2)(q2)m

(q2 − A)(q2 − k2)(q2 − C)m
.

(85)

The main difference with respect to the uncoupled case is
that now one has to solve simultaneously three N/D equations
for ij = 11, 12, and 22, which are linked between each other
because of the νij (A) functions. They depend on the phase
shifts δ1, δ2 and on the mixing angle εJ , defined in Eq. (69),
which constitute also the final output of our approach. Thus,
we follow an iterative approach, as already done in Ref. [27], as
follows. Given an input for δ1, δ2, and εJ , one solves the three
IEs for Dij (A) along the LHC. Then the scattering amplitudes
on the RHC can be calculated. In terms of them, the phase shifts
δ1 and δ2 are obtained from the phase of the S-matrix elements

S11 and S22, while sin 2εJ = 2ρ|t12|n12/|n12|, according to
Eq. (69). In this way a new input set of νij functions,
Eqs. (72)–(74), is provided. These are used again in the IEs, and
the iterative procedure is finished when convergence is found
(typically, the difference between two consecutive iterations in
the three independent functions Dij along the LHC is required
to be less than one per thousand).

It can be shown straightforwardly that unitarity is ful-
filled in our coupled-channel equations, solved in the way
just explained, if |S11(A)|2 = |S22(A)|2 = cos2 2εJ for A >
0. Because Imt12 = ν12|t12|2, according to Eq. (71), and
sin 2εJ = 2ρ|t12|n12/|n12| (the latter equality is valid only
when convergence is reached), the phase of t12 is δ1 + δ2, as
required by unitarity [Eq. (69)]. By construction, the phase
shifts are equal to one-half of the phase of the S-matrix
diagonal elements when convergence is achieved, so that
Eq. (69) is satisfied if |S11| = |S22| = cos 2εJ .

For the initial input one can use, e.g., the results given by
unitarity ChPT [46], the LO results obtained from Ref. [27]
or some put-by-hand phase shifts and mixing angle. For the
latter case, a good choice is to take as initial input for δ1

and δ2 the resulting phase shifts obtained by treating t11 and
t22 as uncoupled waves. We find no dependence in our final
unitary results regarding the initial input taken for the iterative
procedure.

XIII. COUPLED WAVES: 3S1-3D1

For the 3S1-3D1 system, we write a once-subtracted DR
for the partial wave 3S1 and twice-subtracted DRs for the 3D1

and mixing partial wave, to guarantee that the position of the
deuteron pole is the same in all of the three partial waves. The
explicit expressions for the 3S1 partial wave are

D11(A) = 1 − ν1Ag11(A,0)

+A

π

∫ L

−∞
dk2 �11(k2)D11(k2)

k2
g11(A,k2), (86)

N11(A) = ν1 + A

π

∫ L

−∞
dk2 �11(k2)D11(k2)

k2(k2 − A)
,

where the function gij (A,k2) is defined as

gij (A,k2) = 1

π

∫ ∞

0
dq2 νij (q2)

(q2 − A)(q2 − k2)
. (87)

The subtraction constant ν1 is fixed in terms of the ex-
perimental 3S1 scattering length, at = 5.424 ± 0.004 fm [4],
analogously to the way we did already for the 1S0 in Sec. IV,

ν1 = −4πat

m
. (88)

For the mixing partial wave, �12 = 1, and 3D1 with �22 = 2,
we have

Nij (A) = A�ij

π

∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2 − A)(k2)�ij
,

Dij (A) = 1 − A

k2
d

+ A
(
A − k2

d

)
π

∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2)�ij

× g
(d)
ij (A,k2), (89)
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with the new integration along the RHC,

g
(d)
ij (A,k2) = 1

π

∫ ∞

0
dq2 νij (q2)(q2)�ij −1

(q2 − A)(q2 − k2)
(
q2 − k2

d

) .

(90)

The functions gij (A,k2) and g
(d)
ij (A,k2) were already intro-

duced in Ref. [27]. Notice that these functions have to be
evaluated numerically. In Eq. (89) one extra subtraction is
taken at k2

d , which is the three-momentum squared of the
deuteron pole position obtained for the 3S1 wave from Eq. (86).
In other words, k2

d is the value of A at which D11(k2
d ) = 0

in each step in the iterative process for solving Eqs. (86)
and (89). No extra subtraction constants are introduced
because we require D12(k2

d ) = D22(k2
d ) = 0, so that all three

coupled partial waves have the deuteron at the same position,
A = k2

d .
We solve Eqs. (86) and (89) with different input, which is

provided by the results of Ref. [46] by varying the parameter
g0 in that reference. We observe some dependence in the
outcome solutions so that we require a criterion of maximum
stability under changes in g0. For example, let us take the slope
at the threshold of the mixing angle ε1, denoted by aε and
defined by

aε = lim
A→0+

sin 2ε1

A
3
2

= 1.128M−3
π , (91)

as the value obtained from the Nijmegen PWA phase shifts.
This quantity has a minimum as a function of the input used
that indeed gives the closest value to the experimental one in
Eq. (91). We obtain aε = 1.10M−3

π –1.14M−3
π . Precisely the

mixing angle is by far the most sensitive quantity to the input
data for obtaining the final solution by iteration. Then, it is
certainly a welcome fact that the best results are obtained for
the input that generates most stable results under changes of
itself. The results obtained by solving Eqs. (86) and (89), with
ν1 fixed from the experimental 3S1 scattering length [Eq. (88)]
are shown by the (red) solid line in Fig. 17. We see that these
curves tend to follow data quite closely already, especially
below

√
A 	 100 MeV. Let us notice as well the clear and

noticeable improvement in the reproduction of data compared
with the OPE results of Ref. [27].

This improvement is also clear in the value obtained for the
deuteron binding energy, Ed = −k2

d/m. At NLO we obtain
Ed = 2.35–2.38 MeV, a value much closer to experiment Ed =
2.22 MeV than the one obtained at LO in Ref. [27], Ed =
1.7 MeV. A similar situation also occurs for the 3S1 effective
range, rt . Proceeding similarly as done in Sec. IV for rs , we
derive an integral expression for calculating rt :

rt = − m

2π2at

∫ L

−∞
dk2 �11(k2)D11(k2)

(k2)2

{
1

at

+4πk2

m
g11(0,k2)

}
− 8

m

∫ ∞

0
dq2 ν11(q2) − ρ(q2)

(q2)2
. (92)

The last integral on the r.h.s. of the previous equation was
not present in Eq. (37) because it is a coupled-wave effect,
owing to the mixing between the 3S1 and 3D1 partial waves.
This equation also exhibits the correlation between at and

rt , although in a more complicated manner than for the 1S0

partial wave [Eq. (39)] because ν11(A) depends nonlinearly on
D11(A). We obtain the value

rt = 1.36 − 1.39 fm, (93)

to be compared with its experimental value, rt = 1.759 ±
0.005 fm. At LO, Ref. [27] obtained the much lower result
rt = 0.46 fm when only at was taken as experimental input.

It is also interesting to diagonalize the 3S1-3D1 S matrix
around the deuteron pole position. This allows us to obtain two
interesting quantities [47], apart from the deuteron binding
energy. One of them is the asymptotic D/S ratio η of the
deuteron. To evaluate this quantity, we diagonalize the 3S1-3D1

S matrix by an orthogonal matrix O,

O =
(

cos ε1 − sin ε1

sin ε1 cos ε1

)
, (94)

such that

S = O
(

S0 0

0 S2

)
OT , (95)

with S0 and S2 the S-matrix eigenvalues. The parameter η can
be expressed in terms of the mixing angle ε1 as [47,48]

η = − tan ε1. (96)

We also evaluate the residue of the eigenvalue S0 at the
deuteron pole position,

S0 = N2
p√

−k2
d + i

√
A

+ regular terms. (97)

We obtain numerical values,

η = 0.029, N2
p = 0.73 fm−1, (98)

that are close to the calculations η = 0.0271(4) [49], η =
0.0263(13) [50], and η = 0.0268(7) [51], as well as to the
Nijmegen PWA results [52]

η = 0.025 43(7), N2
p = 0.7830(7) fm−1. (99)

Apart from the IEs in Eqs. (86) and (89) we also tried other
ones by including more subtractions, so that more experimental
input could be fixed, namely, fixing simultaneously (i) at and
aε or (ii) at , rt , and Ed or (iii) at , rt , Ed , and aε . However, either
the coupled-channel iterative process does not converge or we
end with the solution corresponding to the uncoupled-wave
case.

We also consider here analogous integrals along the LHC
to those used in Sec. XI to quantify the different contributions
to �(A),

�11 = 0 :
A2

π2

∫ L

−∞
dk2 �11(k2)

(k2)2

∫ ∞

0
dq2 ν11(q2)

(q2 − A)(q2 − k2)
,

�12 = 1 :
A

(
A − k2

d

)
π2

∫ L

−∞
dk2 �12(k2)

(k2)2

×
∫ ∞

0
dq2 ρ(q2)q2

(q2 − A)(q2 − k2)
(
q2 − k2

d

) ,
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FIG. 17. (Color online) (From top to bottom and left to right) Phase shifts for 3S1, 3D1, and the mixing angle ε1, respectively. The (red)
solid lines correspond to the results obtained from Eqs. (86) and (89) with the 3S1 scattering length as experimental input. The OPE results
from Ref. [27] are represented by the (blue) dotted line. The Nijmegen PWA analysis is represented the (black) dashed lines.

�22 = 2 :
A

(
A − k2

d

)
π2

∫ L

−∞
dk2 �22(k2)

(k2)2

×
∫ ∞

0
dq2 ν22(q2)q2

(q2 − A)(q2 − k2)
(
q2 − k2

d

) , (100)

where two subtractions are required to have convergent
integrals in Eq. (100), as already pointed out in the uncoupled-
wave case. For the mixing partial wave, we have taken the inte-
gration along the RHC as if it were elastic, using ρ(q2) instead
of ν12(q2), because the latter would require the actual function
D12(k2) because it is very sensitive to coupled-channel effects.
From the left panels of Fig. 18 we see that the total integral
is dominated by OPE in all cases. Nevertheless, for 3S1 the
individual contributions of the reducible and irreducible TPE
are sizable but of different sign, so that they cancel to a large
extent and the dominance of the OPE contribution results. We
see that, as a whole, the reducible and irreducible contributions
are of similar absolute size but with opposite signs.

XIV. COUPLED WAVES: 3P2-3F2

In this section we consider the coupled-wave system 3P2-3F2

making use of Eqs. (82) and (83) with �11 = 1, �12 = 2,

and �22 = 3. In the following, we always take C = −M2
π

in Eq. (82) and instead of the coefficients δ
(ij )
p we directly

use D
(n)
ij (C), n = 0, . . . ,�ij − 2, as the free parameters. As

discussed in Sec. VI, it is enough to take D
(�ij −2)
ij (C) as the

only active free parameter for every partial wave.
We find that the results are all quite insensitive to

D22(−M2
π ) and D′

22(−M2
π ), as one would expect because

F waves are expected to be perturbative, as discussed in
Sec. VIII. This is another confirmation of this conclusion. The
fitted parameter D′

22(−M2
π ) becomes negative and of several

units of size, but essentially the same results are obtained as
long as D′

22(−M2
π ) < −1M−2

π . Regarding D22(−M2
π ) we fix

it to 1. Our results are then only sensitive to D12(−M2
π ) with

the best-fit value

D12
(−M2

π

) = 1.1. (101)

From these results we can calculate the P -wave scattering
volume, which is just given by the first derivative at A = 0
of the function N11(A). This is straightforwardly worked out
from Eq. (83), with the result, aV = 0.12M−3

π , that is 20%
off its phenomenological value aV = 0.0964M−3

π obtained
from Ref. [34]. To improve this situation we employ a twice-
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FIG. 18. (Color online) (Left panels) Different contributions to the integrals in Eq. (100). (Right panels) Contributions to �(A). From top
to bottom, we show the results for 3S1, 3D1, and mixing wave, respectively. The meanings of the lines are the same as in Fig. 11.

subtracted DR by taking n = 2 in Eqs. (78) and (79) for the two
subtractions in the function N11(A) at C = 0 with ν

(11)
1 = 0 and

ν
(11)
2 = 4πaV

m
, (102)

in terms of the experimental value of aV . Now D11(−M2
π ) is

also a free parameter fitted to data,

D11
(−M2

π

) = 0.1, (103)

while for D12(−M2
π ) and D′

22(M2
π ) the same values as in

the case of the once-subtracted DR for 3P2 are employed,
because no improvement in the reproduction of data results
by varying them. The resulting phase shifts and mixing angle
are shown in Fig. 19. As we see there, the 3F2 phase shifts
and mixing angle ε2 are reproduced quite well, independently
of the number of subtractions taken for the 3P2 partial wave.
Concerning the 3P2 phase shifts, when the scattering volume
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FIG. 19. (Color online) (From top to bottom and left to right) Phase shifts for 3P2, 3F2, and the mixing angle ε2, in order. The (red) solid
lines correspond to the results obtained with twice-subtracted DRs for 3P2, while once-subtracted DRs are used for the latter partial wave to
obtain the (green) dash-dotted lines. The (blue) dotted lines represent the results with only OPE from Ref. [27]. The Nijmegen PWA phase
shifts are given by the (black) dashed lines.

is fixed to its experimental value a better reproduction of data
is achieved at low three-momenta (red solid line), than when
it is not imposed (green dash-dotted line). In all these coupled
partial waves we observe a noticeable improvement of the
OPE results of Ref. [27].

At the practical numerical level it is interesting to remark
that for the coupled waves the mixing angle is small. Then, as
a first approximation, one can study separately the waves with
orbital angular momentum J − 1 and J + 1 as if they were
uncoupled. In this way, it is more efficient numerically to fit
the free parameters present in them than if the full iterative
process of coupled waves were taken. Once this is done, the
mixing is included but we first keep the values obtained in the
uncoupled-wave limit for the free parameters fitted then, so
that it only remains to determine those present in the mixing
partial wave. Afterwards, we vary around the parameters
fixed by the uncoupled-wave case until the full results
are stable.

With regard to the integrals along the LHC to quantify the
different contributions to �(A), we have now, according to the
number of subtractions taken in the DRs for each partial wave,

the following expressions:

�11 = 1 :
A

(
A + M2

π

)
π2

∫ L

−∞
dk2 �11(k2)

(k2)2

×
∫ ∞

0
dq2 ν11(q2)q2

(q2 − A)(q2 − k2)
(
q2 + M2

π

) ,

�12 = 2 :
A

(
A + M2

π

)
π2

∫ L

−∞
dk2 �12(k2)

(k2)2

(104)

×
∫ ∞

0
dq2 ρ(q2)q2

(q2 − A)(q2 − k2)
(
q2 + M2

π

) ,

�22 = 3 :
A

(
A + M2

π

)2

π2

∫ L

−∞
dk2 �22(k2)

(k2)3

×
∫ ∞

0
dq2 ν22(q2)(q2)2

(q2 − A)(q2 − k2)
(
q2 + M2

π

)2 .
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FIG. 20. (Color online) (Left panels) Different contributions to the integrals in Eq. (104). (Right panels) Contributions to �(A). From top
to bottom, we show the results for 3P2, 3F2, and mixing wave, respectively. The meanings of the lines are the same as in Fig. 11.

For 3F2 and the mixing partial wave the situation is as
usual, so that the OPE contribution dominates the respective
integral along the LHC. However, for the 3P2 the reducible
TPE contribution is much larger than the OPE one. We
consider that this situation is very specific for this partial
wave. This is manifest by the fact that the OPE contribution
in this wave is in absolute value more than one order of
magnitude smaller than in the other P waves, namely, 1P1,

3P0, 3P1, and the mixing wave in the 3S1-3D1 system. This
can be easily checked by comparing the two panels in
the first row of Fig. 20 with Fig. 12 and the two panels
in the last row of Fig. 18. On the other hand, we also
observe that the reducible and irreducible TPE contributions
have typically similar size in absolute value, taking a whole
picture of all the partial waves involved in the 3P2-3F2

system.
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FIG. 21. (Color online) (From top to bottom and left to right) Phase shifts for 3D3, 3G3, and the mixing angle ε3, respectively. The (red)
solid lines correspond to our NLO results, the (blue) dotted lines represent the results with only OPE from Ref. [27], and the Nijmegen PWA
phase shifts are given by the (black) dashed lines.

XV. COUPLED WAVES: 3D3-3G3

The orbital momenta attached to the 3D3-3G3 system are
� = 2, 3, and 4 for the 3D3, mixing wave and 3G5 coupled
waves, in this order. These values are used in Eqs. (82) and (83)
to provide the appropriate IEs.

The fit is not able to fix a definite value for D11(−M2
π ),

which is always given with large uncertainties and very much
dependent on the upper limit of the energy taken in the fit.
Then, we fix it to 1 and the curves are basically the same.
For the mixing wave we also have D12(C) = 1. Regarding
the first derivative D′

12(C) a slightly negative value, e.g.,
−0.1M−2

π , offers the best results. This corresponds basically
to the situation with the perturbative values for the mixing
wave. For the 3G3 wave the fit is also consistent with a
smooth behavior for the D22(A) function for A < 0. In this
case, D22(C) = 1, D′

22(C) = 0, and D
(2)
22 (C) > 1M−4

π , that
is, only the highest-order derivative is different from zero
with the value of the function at C equal to 1, according
to the rule given in Sec. VI. The resulting phase shifts
and mixing angle are shown in Fig. 21 by the (red) solid
line. We already see that the phase shifts for 3G3 and the

mixing angle ε3 are fairly well reproduced. With respect to
the phase shifts for 3D3, there is an improvement compared
with the OPE results of Ref. [27], but still the data are not
well reproduced.

To quantify the different contributions to �(A) we evaluate
the corresponding integrals along the LHC,

A
(
A + M2

π

)�ij −1

π2

∫ L

−∞
dk2 �ij (k2)

(k2)�ij

×
∫ ∞

0
dq2 μij (q2)(q2)�ij −1

(q2 − A)(q2 − k2)
(
q2 + M2

π

)�ij −1 , (105)

where �ij = 2, 3, and 4; μ11 = ν11; μ22 = ν22; and μ12 = ρ.
The results are shown in Fig. 22. We see that for 3G3 and the
mixing wave the integral is dominated by OPE. However, for
3D3 the irreducible and reducible TPE contributions are large,
indeed each of them is larger than OPE, though they have
opposite signs so they cancel mutually to a large extent. This
is why OPE is still the most important contribution to the total
result, but we then expect for this wave that the higher-order
contributions will play a more prominent role. Indeed, 3D3 is
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FIG. 22. (Color online) (Left panels) Different contributions to the integrals in Eq. (105). (Right panels) Contributions to �(A). From top
to bottom, we show the results for 3D3, 3G3, and mixing wave, respectively. The meanings of the lines are the same as in Fig. 11.

the wave for which the reproduction of data is still poor in
Fig. 21.

XVI. COUPLED WAVES: 3F4-3H4

In this case, the direct use of Eqs. (82) and (83) does
not provide a stable solution for the 3H4 wave. We have to
perform an extra subtraction in the 3H4 partial wave to end
with meaningful (convergent) results. The resulting IEs to be

solved are

ij = 11,12 : Dij = 1 +
�ij∑

p=2

δ(ij )
p A(A − C)p−2

+ A(A − C)�ij −1

π2

∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2)�ij

× gij (A,k2,C; �ij − 1),
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ij = 22 : D22 = 1 +
6∑

p=2

δ(22)
p A(A − C)p−2

+ A(A − C)5

π2

∫ L

−∞
dk2 �22(k2)D22(k2)

(k2)6
g22(A,k2,C; 5),

(106)

with the Nij (A) functions given by

ij = 11,12 : Nij (A) = A�ij

π

∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2)�ij (k2 − A)
,

ij = 22 : N22(A) = ν
(22)
6 A5 + A6

π

∫ L

−∞
dk2 �22(k2)D22(k2)

(k2)6(k2 − A)
.

(107)

We can obtain ν
(22)
6 by making use of a once-subtracted DR

for the 3H4 partial wave, which has a large orbital angular
momentum, so that this DR provides accurate results. Recall
our results for the once-subtracted DR in the uncoupled partial
waves with � � 3 presented by the (cyan) double-dotted lines
in Figs. 8–10. For A → 0 one has that T (A) → N (A) →

ν
(22)
6 A5, so that this counterterm is directly related with the

behavior of the phase shifts at threshold. In this way, we obtain

ν
(22)
6 = 0.079M−12

π . (108)

The coefficients δ
(ij )
p are expressed in terms of the functions

Dij (A) and their derivatives at A = C, according to Eq. (84),
with C = −M2

π as we always take. For 3F4 we use D11(C) = 1
and D′

11(C) = 0, because other values different from the pure
perturbative ones do not improve the reproduction of data.
For the 3H4 one can also think of the pure perturbative values
D22(C) = 1 and D

(n)
22 (C) = 0, n = 1, . . . ,4. However, we have

realized that a little change in ν
(22)
6 requires a change of O(1)

in δ
(22)
6 , keeping only negative values. In this way, we have

fixed the latter coefficient to a negative value of O(1) and
then adjust slightly ν

(22)
6 with respect to the value calculated in

Eq. (108). Typically, we find just a slightly smaller value for
ν

(22)
6 than that in Eq. (108), ν(22)

6 	 0.078M−12
π . Regarding the

mixing wave we find that no improvement in the reproduction
of data is accomplished when the numbers D

(n)
12 (C), n = 0,1,2,
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FIG. 23. (Color online) (From top to bottom and left to right) Phase shifts for 3F4, 3H4, and the mixing angle ε4, in order. The (red) solid
lines correspond to our calculation at NLO and the (blue) dotted lines represent the results from OPE. The Nijmegen PWA phase shifts are
given by the (black) dashed lines.
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FIG. 24. (Color online) (Left panels) Different contributions to the integrals in Eq. (109). (Right panels) Contributions to �(A). From top
to bottom, we show the results for 3F4, 3H4, and mixing wave, respectively. The meanings of the lines are the same as in Fig. 11.

take values different from the pure perturbative ones, which
are the ones finally employed. We show our NLO results
in Fig. 23 by the (red) solid line, with a correction in the
right direction compared to the LO results. Nonetheless, one
observes that still an improvement (higher orders) is needed
to reproduce the 3F4 phase shifts, and such deviation is also
observed in ChPT potential approaches; see, e.g., Ref. [23].
For the 3H4 and ε4 the reproduction is much better. The (blue)

dotted line corresponds to the OPE results that run close to the
NLO ones.15

15No OPE results for the 3F4-3H4 and 3G5-3I5 are worked out in
Ref. [27]. We obtain them by employing the same IEs as in NLO but
keeping only in �ij (A) the OPE contribution.
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FIG. 25. (Color online) (From top to bottom and left to right) Phase shifts for 3G5, 3I5, and the mixing angle ε5, in order. The (red) solid
lines correspond to NLO and the (blue) dotted lines represent the results from OPE. The Nijmegen PWA phase shifts are given by the (black)
dashed lines.

As usual, we also study the size of the different contributions to �(A) by evaluating the pertinent integrals along the LHC,

�ij = 3,4 :
A

(
A + M2

π

)�ij −1

π2

∫ L

−∞
dk2 �ij (k2)

(k2)�ij

∫ ∞

0
dq2 μij (q2)(q2)�ij −1

(q2 − A)(q2 − k2)
(
q2 + M2

π

)�ij −1 ,

(109)

�22 = 5 :
A

(
A + M2

π

)5

π2

∫ L

−∞
dk2 �22(k2)

(k2)6

∫ ∞

0
dq2 ν22(q2)(q2)5

(q2 − A)(q2 − k2)
(
q2 + M2

π

)5
,

with μij defined after Eq. (105). The results are shown in Fig. 24. We see that for all the waves the total result of the integrals is
dominated by OPE. Though for the 3F4 the independent contributions of reducible and irreducible TPE are not small, they cancel
each other almost exactly.

XVII. COUPLED WAVES: 3G5-3I5

In the 3G5-3I5 system we have �11 = 4, �12 = 5, and �22 = 6. However, the resulting IEs from Eqs. (82) and (83) do not provide
convergent results because the 3I5 partial wave requires an extra subtraction, so that we can finally obtain results independent of
the limits of integration. We then have

ij = 11,12 : Dij = 1 +
�ij∑

p=2

δ(ij )
p A(A − C)p−2 + A(A − C)�ij −1

π2

∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2)�ij
gij (A,k2,C; �ij − 1),

(110)

ij = 22 : D22 = 1 +
7∑

p=2

δ(22)
p A(A − C)p−2 + A(A − C)6

π2

∫ L

−∞
dk2 �22(k2)D22(k2)

(k2)7
g22(A,k2,C; 6),
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with the Nij (A) functions given by

ij = 11,12 : Nij (A) = A�ij

π

∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2)�ij (k2 − A)
,

ij = 22 : N22(A) = ν
(22)
7 A6 + A7

π

∫ L

−∞
dk2 �22(k2)D22(k2)

(k2)7(k2 − A)
. (111)

We can predict ν
(22)
7 by employing a free-parameter once-

subtracted DR for an uncoupled 3I5, as we did in the previous
section to calculate ν

(22)
6 for the 3H4 wave. In this way we

obtain the number

ν
(22)
7 = −0.178M−14

π . (112)

We have also tried fits to data by releasing this number and
the results obtained confirm this prediction. Regarding the
coefficients δ

(ij )
p the same quality in the reproduction of data

is obtained by taking δ
(ij )
p = 0 except for the coefficient with

the highest p for every ij , namely, p = 4 for ij = 11, p = 5
for ij = 12, and p = 7 for ij = 22, which are fitted to data.
Then, the coupled-wave system 3G5-3I5 illustrates again the
rule of Sec. VI on the maximal smoothness of the function
Dij (A) for higher partial waves. For the fitted coefficients we
have |D(2)

11 (C)| > 0.5, D
(3)
12 (C) < −0.5, and D

(5)
22 (C) 
= 0, in

appropriate powers of M−2
π . For the last constant, one has to

take into account that a change in D
(5)
22 (C) of O(1) can be

reabsorbed in slight changes of ν
(22)
7 around the value given in

Eq. (112), similar to that in Sec. XVI for the 3F4-3H4 system.
The resulting phase shifts are shown in Fig. 25 in which, for

definiteness, we take the values D
(2)
11 (C) = −1M−4

π , D(3)
12 (C) =

−1M−6
π , and D

(5)
22 = −2M−10

π . The NLO phase shifts are
shown by the (red) solid line. We see that they follow closely
the NN phase shifts of Ref. [34]. For the 3I5 partial-wave phase
shifts the reproduction is perfect. The LO results, given by the
(blue) dotted line, are also obtained with the same values for
the δ

(ij )
p . We observe that the reproduction of the 3G5 phase

shifts is worse than in the NLO case and only slightly worse
for the 3I5 phase shifts. For ε5 the LO result is similar to the
NLO one. We have also varied the δ(11)

p (p = 2,3,4) for the
LO calculation to improve the reproduction of the 3G5 phase
shifts but no gain is obtained.

It has been already noticed in Refs. [3,23] that the 3G5

phase shifts, even with a chiral N3LO potential, are not
well reproduced after solving the corresponding Lippmann-
Schwinger equation, either with finite [4] or infinite three-
momentum cutoff [23], as well as by calculating them in
perturbation theory [3,29]. Our results in Fig. 25 for the 3G5 are
closer to data than the ones in those references, despite that our
calculation is only a NLO one. However, our nonperturbative
approach already includes one free parameter exclusively for
the 3G5, which is not the case in Refs. [3,4,23].

As usual, we also study the size of the different contribu-
tions to �(A) by evaluating the appropriate integrals along the
LHC according to the number of subtractions taken in each of

the IEs used [Eq. (110)]:

�ij = 4,5 :
A

(
A + M2

π

)�ij −1

π2

∫ L

−∞
dk2 �ij (k2)

(k2)�ij

×
∫ ∞

0
dq2 μij (q2)(q2)�ij −1

(q2 − A)(q2 − k2)
(
q2 + M2

π

)�ij −1 ,

�22 = 6 :
A

(
A + M2

π

)6

π2

∫ L

−∞
dk2 �22(k2)

(k2)7

×
∫ ∞

0
dq2 ν22(q2)(q2)6

(q2 − A)(q2 − k2)
(
q2 + M2

π

)6 . (113)

The results are shown in Fig. 26. We see that for all the waves
the total result of the integrals is dominated by OPE. However,
for the 3G5 the iterated and irreducible TPE contributions are
not small. Nevertheless, they cancel almost exactly so that the
net contribution is mostly given by OPE.

Now we show in Table I the minimum number of subtrac-
tion constants that are fitted to data for every partial wave
in our present study at NLO. That is, the number of free
subtraction constants that we have once the minimum number
of subtractions is taken to have a well-behaved IE for the
D(A) function in the corresponding partial wave. When the
free parameter is only determined within broad intervals (its
order of magnitude is not even fixed), then we do not consider it
as a free parameter, but better as having a constraint. We do not
consider either as free parameters those subtraction constants
that take their expected perturbative values. In the space next
to the right of the one with the name of the partial wave we give
the minimum number of free parameters for this partial wave,
in the explained sense. We have, in total, 14 free parameters.
One should be aware that the number of free parameters does
not necessarily increase with the accuracy up to which �(A) is
calculated in ChPT. There is no such close connection between
the minimum number of subtraction constants and the chiral
order in the calculation of �(A) as the situation between the
number of chiral counterterms and the chiral order in which

TABLE I. The minimum number of free parameters for each
partial wave in our study at NLO is given in the space to the right of
the wave.

1S0 1 3P0 0 3S1-3D1 1
3P1 3 1P1 0 3P2-3F2 1
1D2 0 3D2 1 3D3-3G3 1
1F3 0 3F3 1 3F4-3H4 1
1G4 1 3G4 0 3G5-3I5 1
1H5 1 3H5 1
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FIG. 26. (Color online) (Left panels) Different contributions to the integrals in Eq. (113). (Right panels) Contributions to �(A). From top
to bottom, we show the results for 3G5, 3I5, and mixing wave, respectively. The meanings of the lines are the same as in Fig. 11.

the NN potential is calculated [1]. For example, we have one
free parameter for the 1S0 and 3S1-3D1 waves both at LO [26,27]
and now at NLO.

Finally, we give in Table II the values of the free parameters
employed in the different partial waves. If for a given partial
wave we employ DRs with different number of subtractions,
this is distinguished. In the table we use the notation mDR

with m = 1,2, . . ., and it should be read as m-time-subtracted
DR. For the higher NN partial waves we use the abbreviation
LTS to indicate that � subtractions have been taken to satisfy
the threshold behavior, following the standard formalism
explained in Sec. II. For the coupled-channel case we use
also the same abbreviation LTS when �ij -time-subtracted DRs
are used for the coupled partial waves, for the same reason
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TABLE II. In the columns from left to right we show, in order, the partial wave, the type of DRs employed to study the
corresponding partial wave, and the (interval of) values for the free parameters involved.

Wave Type of DRs Parameters

1S0 1DR ν1 = 30.69

2DR ν1 = 30.69, ν2 = 0.24
3P0 1DR nfp

2DR ν2 = 0.562, δ2 = −0.30
3P1 3DR ν2 = −0.343, δ2 = 2.5–3.0, δ3 = 0.2–0.3
1P1 1DR nfp
1D2 LTS δ2 � 0
3D2 LTS δ2 = −0.18
1F3 LTS D(2)(0) > 0
3F3 LTS D(2)(0) 	 0.014
1G4 LTS D(3)(0) = −0.031
3G4 LTS nfp
1H5 LTS D(4)(0) = −0.6
3H5 LTS D(4)(0) = 0.7 × 10−2

3S1-3D1 1DR 3S1, 2DR 3D1, and mixing ν
(11)
1 = −7.01

3P2-3F2 LTS D12(−M2
π ) = 1.1, D

(1)
22 (−M2

π ) < −1

2DR for 3P2 and LTS for the others ν
(11)
2 = 0.061, D11(−M2

π ) = 0.1, D12(−M2
π ) = 1.1,

D
(1)
22 (−M2

π ) < −1
3D3-3G3 LTS D

(1)
12 (−M2

π ) � 0, D
(2)
22 (−M2

π ) > 1
3F4-3H4 6DR for 3H4 and LTS for the others ν

(22)
6 = 0.078

3G5-3I5 7DR for 3I5 and LTS for the others |D(2)
11 (−M2

π )| > 0.5, D
(3)
12 (−M2

π ) < −0.5, ν
(22)
7 = −0.178

as before, extended to the coupled-wave case in Sec. XII. We
indicate separately the case in which more subtractions are
needed for some specific wave. According to the principle of
maximal smoothness only the highest derivative D(n)(C) is not
fixed to its perturbative value (1 for n = 0 and 0 for n 
= 0) and
released, if appropriate. When no free parameters enter in the
DR for the partial wave we indicate it by the abbreviation nfp.
The units are always given in the the appropriate power of M2

π ,
though this power is not explicitly indicated to abbreviate. In
this way, if a subtraction constant is small in these units then
we could interpret it as having mostly an origin owing to
short-distance physics.16

XVIII. CONCLUSIONS

We have applied the N/D method to study NN scattering
within ChPT. The basic input in this method is the imaginary
part along the LHC of a given NN partial wave, which
we denote by �(A). This is calculated within ChPT up to
some order in the chiral expansion. Here we have included
OPE and leading TPE contributions, extending the results
of Refs. [26,27], which only considered OPE. The standard
ChPT counting clearly establishes that OPE is O(p0), while
the irreducible TPE is O(p2). We have also discussed that

16For the νi coefficients one has to extract out the normalization
factor 4π/m 	 1.8M−1

π , which indeed is O(1) in units of powers
of Mπ .

increasing the pion ladders in NN reducible diagrams is
suppressed because it gives rise to contributions to �(A) for
A deeper in the LHC and further away from the low-energy
physical region. We have employed suitable integrals along the
LHC to properly quantify the different contributions to �(A),
which is better than just to compare numerical values directly
from this quantity. It follows that OPE is indeed the dominant
contribution to �(A), while irreducible and reducible TPEs
are subleading. We have shown by explicit evaluation that the
reducible TPE contribution to �(A) is typically of the same
size in absolute value as the irreducible TPE contribution,
because the latter is enhanced by numerical factors. We then
count both of them in the chiral expansion for �(A) as O(p2),
as the irreducible TPE part does.

Our reproduction of the Nijmegen PWA phase shifts and
mixing angles [34] is already quite good for most of the partial
waves. Typically, it is as good or better than the one achieved
with an NLO calculation of the NN potential, which is then
employed to solve a Lippmann-Schwinger equation (either ex-
actly or performing a distorted wave approximation) [4,14,21].
It is also important to stress that we have demonstrated that
when �(A) is given by the imaginary part of OPE along the
LHC, then the resulting IEs have always a unique solution
because they are Fredholm IEs of the second kind with a
squared integrable kernel and inhomogeneous term. We have
also established correlations between the S-wave effective
ranges and scattering lengths based on unitarity, analyticity,
and chiral symmetry.
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Giving these promising results, N2LO and N3LO
calculations of �(A) should be pursued in the future to
fully ascertain the power of the method in the study of NN
scattering, here applied up to NLO. In particular, we would
like to answer the question of whether it is still possible
to achieve T matrices with only one free parameter for the
1S0 and 3S1-3D1 systems and, if so, how much improvement
would be obtained by calculating �(A) with more precision.
The same question could be asked regarding the uncoupled
P waves that allow a one-parameter description. Of course,
according to our necessary conditions for having a convergent
solution, the first question is driven by the sign of �(A) when
A → −∞. Another point that requires further consideration
is the fact that in the triplet coupled waves our reproduction
of the phase shifts is not satisfactory for the lowest coupled
partial wave with �11 = 1, 2, and 3, so that an interesting point
is whether an improvement would arise in the description of
these waves once a N2LO study is performed, similar to what
has already occurred within the potential scheme of Ref. [4].
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APPENDIX: �(A) FROM ONE-PION EXCHANGE

We list here the explicit formulas for the imaginary parts
over the left cut of the NN partial waves, �(A), coming
from OPE. For the case of the uncoupled partial waves, these
read

�1S0 (A) = πg2
AM2

π

16f 2
π A

, (A1)

�3P0 (A) = −πg2
AM2

π

16f 2
π A

, (A2)

�1P1 (A) = −3πg2
AM2

π

(
M2

π + 2A
)

32f 2
π A2

, (A3)

�3P1 (A) = −πg2
AM4

π

64f 2
π A2

, (A4)

�1D2 (A) = πg2
AM2

π

(
3M4

π + 12M2
πA + 8A2

)
128f 2

π A3
, (A5)

�3D2 (A) = 3πg2
AM4

π

(
M2

π + 3A
)

64f 2
π A3

, (A6)

�1F3 (A) = −3πg2
AM2

π

(
5M6

π + 30M4
πA + 48M2

πA2 + 16A3
)

256f 2
π A4

, (A7)

�3F3 (A) = −πg2
AM4

π

(
15M4

π + 80M2
πA + 96A2

)
1024f 2

π A4
, (A8)

�1G4 (A) = πg2
AM2

π

(
35M8

π + 280M6
πA + 720M4

πA2 + 640M2
πA3 + 128A4

)
2048f 2

π A5
, (A9)

�3G4 (A) = 3πg2
AM4

π

(
14M6

π + 105M4
πA + 240M2

πA2 + 160A3
)

1024f 2
π A5

, (A10)

�1H5 (A) = −96πg2
AM2

π

(
63
32M10

π + 315
16 M8

πA + 70M6
πA2 + 105M4

πA3 + 60M2
πA4 + 8A5

)
4096f 2

π A6
, (A11)

�3H5 (A) = −5πg2
AM4

π

(
21
32M8

π + 63
10M6

πA + 21M4
πA2 + 28M2

πA3 + 12A4
)

256f 2
π A6

. (A12)
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In the case of the coupled partial waves we have

�3S1 (A) = πg2
AM2

π

16f 2
π A

, (A13)

�3D1 (A) = πg2
AM2

π

(
3M2

π + 8A
)

64f 2
π A2

, (A14)

�3S-D1 (A) =
√

2πg2
AM2

π

(
3M2

π + 4A
)

64f 2
π A2

, (A15)

�3P2 (A) = −πg2
AM2

π

(
3M2

π + 8A
)

320f 2
π A2

, (A16)

�3F2 (A) = −πg2
AM2

π

(
5M4

π + 24M2
πA + 24A2

)
640f 2

π A3
, (A17)

�3P -F2 (A) = −
√

6πg2
AM2

π

(
5M4

π + 18M2
πA + 8A2

)
640f 2

π A3
, (A18)

�3D3 (A) = 3πg2
AM2

π

(
5M4

π + 24M2
πA + 24A2

)
896f 2

π A3
, (A19)

�3G3 (A) = 3πg2
AM2

π

(
35M6

π + 240M4
πA + 480M2

πA2 + 256A3
)

7168f 2
π A4

, (A20)

�3D-G3 (A) = 3
√

3πg2
AM2

π

(
35M6

π + 200M4
πA + 288M2

πA2 + 64A3
)

3584f 2
π A4

, (A21)

�3F4 (A) = −πg2
AM2

π

(
35M6

π + 240M4
πA + 480M2

πA2 + 256A3
)

9216f 2
π A4

, (A22)

�3H4 (A) = −5πg2
AM2

π

(
63
80M8

π + 7M6
πA + 21M4

πA2 + 24M2
πA3 + 8A4

)
1152f 2

π A5
, (A23)

�3F -H4 (A) = −
√

5πg2
AM2

π

(
63M8

π + 490M6
πA + 1200M4

πA2 + 960M2
πA3 + 128A4

)
9216f 2

π A5
, (A24)

�3G5 (A) = 15πg2
AM2

π

(
63
80M8

π + 7M6
πA + 21M4

πA2 + 24M2
πA3 + 8A4

)
1408f 2

π A5
, (A25)

�3I5 (A) = 105πg2
AM2

π

(
33
40M10

π + 9M8
πA + 36M6

πA2 + 64M4
πA3 + 48M2

πA4 + 384
35 A5

)
11264f 2

π A6
, (A26)

�3G-I5 (A) = 3
√

30πg2
AM2

π

(
231
32 M10

π + 567
8 M8

πA + 245M6
πA2 + 350M4

πA3 + 180M2
πA4 + 16A5

)
2816f 2

π A6
, (A27)

where �3X-YJ
stands for the imaginary part over the left cut of the mixing matrix element of the X and Y waves.
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