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We examine how the universality of two-nucleon interactions evolved using similarity renormalization group
(SRG) transformations correlates with T -matrix equivalence, with the ultimate goal of gaining insight into
universality for three-nucleon forces. With sufficient running of the SRG flow equations, the low-energy matrix
elements of different realistic potentials evolve to a universal form. Because these potentials are fit to low-energy
data, they are (approximately) phase equivalent only up to a certain energy, and we find universality in evolved
potentials up to the corresponding momentum. More generally we find universality in local energy regions,
reflecting a local decoupling by the SRG. The further requirements for universality in evolved potential matrix
elements are explored using two simple alternative potentials. We see evidence that in addition to predicting the
same observables, common long-range potentials (i.e., explicit pion physics) is required for universality in the
potential matrix elements after SRG flow. In agreement with observations made previously for Vlow k evolution,
regions of universal potential matrix elements are restricted to where half-on-shell T -matrix equivalence holds.
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I. INTRODUCTION

A wide variety of realistic potentials are available for the
low-energy nuclear two-body problem, including both phe-
nomenological interactions [1,2] and interactions motivated
from systematic expansions, such as chiral effective field
theory (χEFT) [3–5]. The ability of these different potentials
to reproduce the same low-energy observables (e.g., see the
phase shifts in Fig. 1) is one type of universality. However, this
universality does not generally extend to their Hamiltonian
matrix elements, which can vary drastically, reflecting the
broad freedom to redefine interactions without changing S-
matrix elements.

These realistic potentials lead to computational difficulties
in most many-body calculations, because requiring them to re-
produce elastic phase shifts up to the pion-production threshold
leads to strong coupling between low- and high-momentum
matrix elements. (The exceptions are χEFT potentials with
low cutoffs and J -matrix-based inverse scattering potentials
[6].) For many-body methods using basis expansions, for
example, this coupling requires matrix sizes that become
prohibitively large for accurate microscopic calculations of
nuclei. Thus we must face the problem of restrictions to
smaller Hamiltonian matrices while maintaining the accuracy
of predicted observables.

To address this problem, Lee-Suzuki transformations were
applied in free space to integrate out high-energy degrees
of freedom and soften an initial realistic potential, generat-
ing phase-equivalent “low-momentum” or “Vlow k” potentials
[7,8]. This can be done in one step or using a renormalization
group (RG) equation for the potential [9]. Bogner and collab-
orators observed that a wide variety of realistic potentials have
very similar low-momentum matrix elements after softening,
which they termed the model independence of Vlow k potentials
[7,10]. The diagonal Vlow k potential matrix elements were
found to match in regions of phase equivalence of the realistic
potentials while the off-diagonal matrix elements matched in

regions of half-on-shell (HOS) T -matrix equivalence [7]. They
suggested that differences in the HOS T -matrix and thus the
off-diagonal Vlow k potential matrix elements occur because of
different treatments of pion physics [7].

Subsequently, similarity renormalization group (SRG)
unitary transformations have been used to soften nuclear
potentials while preserving observables [8,11–15]. Like Vlow k

transformations, the SRG decouples high-energy from low-
energy physics, allowing one to truncate the matrices above
some decoupling scale [8,16,17]. Further, the low-energy
matrix elements of initial realistic potentials also flow to the
same form, but differ in detail from Vlow k transformations.
There is preliminary evidence that the SRG flow to common
matrix elements extends to three-body forces [18,19], which
are important ingredients for consistent treatments of nuclei
with RG methods [15,20].

In analogy to the behavior of other Hamiltonians under
RG transformations, this model independence is naturally
interpreted as a flow to universality in the evolved potential
matrix elements. This form of universality can have powerful
consequences if it can be understood and exploited. It suggests
that for low-energy problems, a broad class of starting
potentials that fits data will be equally effective after evolution
[21,22]. If realized for many-body forces, it may be possible to
more easily construct accurate potentials (choosing operators
based solely on the ease of use, then fitting constants to data),
if they flow to a universal form after running the SRG.

In applications of RG to local quantum field theory, univer-
sality is a proven tool. When different theories are decomposed
into relevant, marginal, and irrelevant interactions according
to their behavior under RG flow, universality arises naturally
among theories that share the same relevant and marginal
local interactions. That is, if they differ only in the strength
of their irrelevant couplings, RG transformations reveal the
universality as the RG flow rapidly eliminates any irrelevant
differences. In nonrelativistic many-body theories that employ
nonlocal interactions, the possibility of universality in the form
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FIG. 1. (Color online) Phase shifts of various realistic potentials (see text) in the (a) 1S0, (b) 3S1, and (c) 1P 1 partial waves. The shaded
regions show the range between the largest and smallest phase shifts. The vertical bands indicate the region where phase shift equivalence
between the potentials ends, as defined by Eqs. (3) and (4).

of phase equivalence is not a surprise; inverse scattering theory
and effective field theory imply that infinitely many potentials
will yield the same low-energy results. But the emergence of
universal Hamiltonians (i.e., universal matrix elements) from
RG flow is not obvious without an operator classification
that isolates irrelevant differences between potentials. To
make progress in the absence of such a classification, we
focus here on understanding the prerequisites for universality
in SRG-evolved matrix elements, starting with two-body
interactions.

We re-examine for the SRG the conclusions of Ref. [7] for
Vlow k potentials, that the potentials must be phase equivalent
up to a certain resolution scale but also have consistent, explicit
handling of the long-range pion physics [8]. We use an inverse
scattering separable potential (ISSP) to test if universality
in potential matrix elements emerges at high energies and
without explicit pion-exchange terms. The ISSP can reproduce
all observables in the two-nucleon problem, and we will see
explicitly that this is not enough for all low-momentum matrix
elements to flow towards a universal form at finite cutoff. Also,
when creating the ISSP we are free to choose a binding energy
independent of the phase shifts; thus we can see the effect of
differences in the binding energy on evolved low-momentum
matrix elements.

To test the idea that the same explicit long-range treatment
is required for flow to a universal form, we introduce a second
simple potential that is phase equivalent at low energies and
includes explicit one-pion exchange (OPE). We use the model
proposed by Navarro Pérez et al. [23,24], which combines the
OPE potential with a sum of δ-shell potentials. This potential
replaces the short-range physics with simple terms to be fit to
phase shifts, while preserving the long-range force.

In Sec. II, we briefly review the SRG and decoupling,
and comment on similarities with the Vlow k RG. We discuss
universality in matrix elements of modern realistic potentials
in Sec. III. The main focus will emerge in Sec. IV, where we
provide a working description of the ISSP formalism, examine
universality in ISSP’s, and discuss the resulting insight into the
prerequisites for universality. Section V gives a description of
the δ-shell plus OPE potential and examines the SRG flow of
this potential to a universal form. We also comment on the SRG
flow of the JISP16 potential. Finally, we conclude in Sec. VI
with a summary and the outlook for the three-body problem.
Although this is a study of universality only for two-nucleon

interactions, it serves as a step toward more efficient handling
of the three- and many-nucleon interactions.

II. SIMILARITY RENORMALIZATION GROUP

The similarity renormalization group is a continuous series
of infinitesimal unitary transformations acting on the Hamil-
tonian. The simplest SRG transformations can be expressed in
differential form as a flow equation:

dHs

ds
= [ηs,Hs] = [[Gs,Hs],Hs], (1)

where s is a flow parameter [8,11,12]. For most nuclear
applications to date, the operator Gs is the kinetic energy
operator, denoted T . (We will refer to Gs in this work as the
SRG “generator.”) The most commonly used diagonalizing
generator for non-nuclear applications is known as the Wegner
generator [25]. It uses the diagonal of the Hamiltonian, Hd

s ,
instead of T for Gs . Flows using the Wegner generator are
indistinguishable from T for the range of evolution in the
present study but can differ drastically if the SRG cutoff
becomes very low [26] or if a large-cutoff chiral potential
is used [27].

The goal of the SRG is to decouple high-energy from low-
energy degrees of freedom in the Hamiltonian by driving far
off-diagonal matrix elements to zero. Instead of s, we usually
refer to the decoupling scale, λ = s− 1

4 for T and Hd
s , where

λ is chosen to have the same units as momentum. In the SRG
flow with the T generator, the dominant term of Eq. (1) for far
off-diagonal matrix elements is the term linear in the potential,
[[T ,Vs],T ], where Vs ≡ Hs − T . If we keep just this term, the
flow equation is immediately solved for these matrix elements,
yielding (with mass m = 1)

Vs(k,k′) � Vs=0(k,k′)e−( k2−k′2
λ2 )2

. (2)

Thus λ2 is roughly the maximum difference between kinetic
energies of nonzero matrix elements. Once the Hamiltonian
is sufficiently evolved to exhibit decoupling, low-energy
observables can be obtained from a truncated Hamiltonian
[16] or one finds naturally that a smaller expansion basis is
needed for a desired degree of convergence.

A nondiagonalizing alternative for G(s) is the block
generator, Hbd

s , defined in Ref [28]. Hbd
s matrix elements are

the block diagonal elements of the evolved Hamiltonian Hs ,
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FIG. 2. (Color online) Diagonal matrix elements V (k,k) of various unevolved realistic potentials (see text) in the (a) 1S0, (b) 3S1, and
(c) 1P 1 partial waves. The shaded regions show the range of values and the vertical bands are from Fig. 1.

separated at a fixed chosen cutoff parameter �. (That is, the
generator Hbd

s in a momentum basis is obtained from Hs(k,k′)
by setting to zero the matrix elements where k < � and k′ > �
or k > � and k′ < �.) This is the same pattern of decoupling
achieved with Vlow k Lee-Suziki transformations [7,8,23]. In
fact, the Vlow k and SRG block diagonal transformations have
been shown to result in very similar Hamiltonians for the
lower energy block if the SRG transformation is run to
λ � � [28]. For Hbd

s , λ = s− 1
2 and represents the maximum

difference in energy for coupling between the blocks above
and below �. It has been shown that SRG with the T
generator [17] and Vlow k [7,8,23] each drive realistic potentials
to separate low-energy universal forms, and we will show
that Hbd

s also drives potential matrix elements to a different
universal form. Because a nondiagonalizing transformation
exhibits universality in low-energy potential matrix elements,
universality cannot simply be a consequence of the generator
ηs = [T ,Hs] driving potentials toward the diagonal.

III. MODERN REALISTIC POTENTIALS

We have chosen a representative phenomenological po-
tential and a set of χEFT potentials to evolve and examine
in various partial waves. The phenomenological potential
is Argonne v18 (AV18), which employs basis operators in
position representation and fits the coupling constants to
elastic scattering data [1,2]. We use the next-to-next-to-next-
to-leading order (N3LO) χEFT potential from Entem and
Machleidt with a cutoff of 500 MeV [3] and then five N3LO

χEFT potentials with various cutoffs from Epelbaum et al.
[4]. These χEFT potentials have different regularization and
phase shift fitting schemes, which creates differences in the
matrix elements of the potentials.

From Fig. 2 one can see that the diagonals of the initial
potentials in momentum representation are quite different (the
differences are particularly evident in lower partial waves,
so we focus on those). In making these comparisons, we do
not single out individual potentials but use a shaded region to
highlight the range of matrix element variation. As advertised,
after evolution the matrix elements collapse at low momentum
to a universal dependence on momentum (the result at fixed
λ = 1.5 fm−1 is shown in Fig. 3). This feature is not restricted
to the diagonal elements; low-energy off-diagonal matrix
elements of the potentials also evolve to universal values (see
Fig. 15 below). At higher momentum, the potential matrix
elements deviate.

Following Ref. [7], we compare phase shift and matrix
element deviations to identify the correlations between phase
equivalence and matrix element universality. In Fig. 1, we
have identified vertical bands within which the phase shift
equivalence among the various potentials ends and significant
deviation begins. While identifying an exact point marking
this deviation will be somewhat arbitrary, we can roughly
choose a normalized width description that is consistent with
visual assessments of the phase shift plots. In particular, for
each partial wave, the vertical band represents the region
characterized by

0.03 < ε(k) < 0.1, (3)

FIG. 3. (Color online) Diagonal matrix elements of various realistic potentials in the (a) 1S0, (b) 3S1, and (c) 1P 1 partial waves evolved by
the SRG to λ = 1.5 fm−1. The shaded regions show the range of values and the vertical bands are from Fig. 1.
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FIG. 4. (Color online) Diagonal matrix elements of various realistic potentials in the 1S0 partial wave evolved by the SRG to λ = (a)
5.0 fm−1, (b) 3.0 fm−1, (c) 2.0 fm−1, and (d) 1.5 fm−1 (marked by the vertical dashed line). The shaded regions show the range of values and
the vertical bands are from Fig. 1.

where

ε(k) ≡ δhigh(k) − δlow(k)

�
. (4)

The numerator is the range of phase shifts at a fixed k while � is
the range of phase shifts for the entire universality region. Our
studies imply that the precise definition of ε is not important;
as long as it consistently identifies the regions where phase
equivalence ends it can be used to consistently compare to the
regions where the universality of matrix elements end.

By comparing Figs. 2 and 3, we see that while diagonal
matrix elements of the initial potentials differ significantly in
the region where phase equivalence ends, this same region
corresponds to where the matrix elements have collapsed to
universal values by λ = 1.5 fm−1. This suggests the hypothesis
that a prerequisite for matrix element universality is phase
equivalence. Namely, if there are local regions in energy in
which potentials are not phase equivalent, then there is no
universality in those regions (this is tested further in Sec. IV).
Examining the diagonals of the potentials more closely, we
observe that for the 1S0 and 3S1 channels, the lowest matrix
elements are not exactly the same. This may be a consequence
of not evolving λ further. From the T generator curves in Fig. 5,
we can see that the slight width of the band decreases as we
evolve chiral potentials to λ = 0.5 fm−1. Also, as we will see
below, differences in the binding energy of the deuteron play
an important role in the low-energy matrix elements of the 3S1

potential.
How low must λ be before we see universality?

Figure 4 shows the diagonals of the 1S0 potential evolved to
four different λ values. The vertical bands correspond to the
same region where phase equivalence ends for the 1S0 channel
as in Fig. 1, while the vertical dashed line shows the value
of λ. We see in this partial wave (and in others not shown as
well) that universality in the matrix elements does not occur
until λ approaches the vertical band. A natural hypothesis is
that the matrix elements will not fully collapse to universal
form until λ reaches the region of phase equivalence. There
may be an intrinsic low-energy scale common to each of these
potentials that determines at which λ universality in potential
matrix elements will appear. A possibility is that this scale is
a consequence of explicit treatment of pion physics in each of
the modern realistic potentials. To test the latter explanation,
a potential with phase equivalence at much higher momenta

and no explicit pion physics is required, which we consider in
the next section.

As described earlier, the block-diagonalizing generator Hbd
s

will drive the potential matrix elements to a different universal
form than T . This is illustrated in Fig. 5 with a set of χEFT
potentials in the 1S0 channel. When evolved to λ � 2 fm−1 with
the T generator, the universal form of diagonal potential matrix
elements emerges over the full region of phase equivalence. For
the block diagonal generator with � � 2 fm−1, however, only
diagonal matrix elements below � become universal and with
a different flow than the matrix elements evolved with T . The
universality is only up to � because this SRG only decouples
one block from the other, so matrix elements at momenta above
� still couple to matrix elements in phase inequivalent regions
and therefore do not collapse to a universal form. (Note that in
the Vlow k RG, the higher block is set to zero.) We will discuss
only Gs = T in the rest of this study but emphasize that the
ideas about universality apply to both generators, although
only in the low-momentum block for the Hbd

s SRG.
The region of phase equivalence for the realistic potentials

is limited by the energies to which they can be fit to
elastic scattering phase shifts. Because of this, if we wish
to investigate different regions of universality, we must use a
method that can “fit” the phase shifts in a controlled range
of energies. One of the simplest approaches is solving the
inverse scattering problem with a separable potential, which
we consider in the next section.

IV. SEPARABLE INVERSE SCATTERING POTENTIAL

Instead of fitting coupling constants for predetermined
operators to the phase shifts, an inverse scattering procedure
constructs a potential directly from the phase shifts. Separabil-
ity is just a constraint to define a unique potential, chosen here
due to its simplicity. For instance, when solving the Lippmann-
Schwinger equation, a separable potential reduces the problem
of solving an integral equation to simply evaluating an integral.
The three-body Faddeev equations also simplify for a separable
potential, as one of the integrals over internal momenta
becomes trivial. A key feature of the ISSP for this study is
that the potential is entirely created from the phase shifts and
binding energy of the deuteron; no explicit pion exchange
or other physics is imposed. This allows us to determine
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FIG. 5. (Color online) The spread of diagonal matrix elements of various χEFT potentials (see text) in the 1S0 partial wave are shown as
shaded regions for the unevolved potential and then after evolution to λT = 2.5, 2.0, 1.5, 1.0, and 0.5 fm−1 with the T generator (red [light
gray]). These are compared to the spread of the corresponding matrix elements for the Hbd

s generator with � = 2.5, 2.0, 1.5, 1.0, and 0.5 fm−1,
all evolved to λ = 0.5 fm−1 (blue [medium gray]). The vertical bands are from Fig. 1 and the vertical dashed lines mark λT or �.

whether or not universality requires extra physics, such as
explicit long-range pion terms or other phenomenological
considerations. We start with a brief summary of the inverse
scattering separable potential for two nucleons.

A. Formalism

The form of a rank-n separable potential is

V =
n−1∑
i,j=0

|νi〉�ij 〈νj | . (5)

For our purposes a rank-1 separable potential will be sufficient,
but future studies may benefit from a higher-rank potential. A
rank-1 potential in momentum representation takes the form

V (k,k′) = σν(k)ν(k′), (6)

where σ is simply ±1. Details of the rank-1 separable inverse
scattering problem are well documented [29,30]; here, we
simply state the main results, some limitations, and how to
work around the limitations. The solution to the separable
inverse scattering problem is [29]

σν2(k) = −k2 − k2
b

k2

sin[δ(k)]

k
e−�(k), (7)

�(k) = 1

π
P

∫ ∞

0

dk′δ(k′)
k′ − k

, (8)

Eb = �
2k2

b

2m
, (9)

where kb is zero if there is no bound state and equal to the
binding momentum for a single bound state with binding

energy Eb (for a rank-1 separable potential there can be at
most one bound state).

Once ν(k) is determined, the entire potential is known from
Eq. (6). The binding energy Eb can be tuned independently
of the phase shifts. A limitation of rank-1 separable potentials
is that if the phase shift as a function of momentum cross
zero, then so too must the potential, and a rank-1 ISSP as
defined thus far can never change signs if ν is real. This point
is clear from Eq. (10), which follows from the Lippmann-
Schwinger equation for a separable potential (with standing
wave boundary conditions):

1

k
tan[δl(k)] = − Vl(k,k)

1 + 2
π
P ∫

dp p2Vl (p,p)
p2−k2

. (10)

A zero-crossing in δ(k) corresponds to a zero crossing on
the right side of this equation, which can only be achieved
by the numerator crossing zero if the denominator remains
finite.

Because some of the phase shifts for nucleon-nucleon
partial waves exhibit zero crossings, we need an inverse
scattering potential that allows this feature. We can still use
the same rank-1 formalism, however, if we split the problem
into two energy regimes, above and below the zero crossing
[30]. Then we can define

δ<(k) ≡ δ(k)θ (k0 − k), (11)

δ>(k) ≡ δ(k)θ (k − k0), (12)

V (k,k′) = V<(k,k′) + V>(k,k′), (13)
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FIG. 6. (Color online) Phase shifts using the AV18 potential and the ISSP up to high laboratory momentum klab in the (a) 1S0, (b) 3S1, and
(c) 1P 1 partial waves.

and determine V< and V> separately using the rank-1 formal-
ism with δ< and δ> as input, respectively. We have confirmed
numerically that potentials created with this prescription
accurately reproduce the input phase shifts.

The method described thus far works directly for uncoupled
channels, but for NN scattering we must also account for
coupled channels, where some further formalism is required.
For this purpose, we use the Blatt-Beidenharn (BB) convention
for phase shifts in the coupled channel [30,31]. (In the plots
we employ the more typically used Stapp-N convention for
the phase shifts [32].) The BB convention can be summarized
as

S(k) = U†(k)�̂(k)U(k), (14)

�̂(k) =
(

e2iδ0(k) 0
0 e2iδ1(k)

)
, (15)

U(k) =
(

cos[ε(k)] sin[ε(k)]

− sin[ε(k)] cos[ε(k)]

)
. (16)

Here, S(k) is the scattering matrix define in Ref. [31], with k
the momentum corresponding to the interaction energy. Then
the inverse scattering potential can be written as

V(k,k′) = U†(k)V̂(k,k′)U(k′), (17)

where

V̂(k,k′) =
(

V̂0(k,k′) 0

0 V̂1(k,k′)

)
. (18)

To proceed, one uses the inverse scattering method for uncou-
pled channels to find V̂0(k,k′) from δ0(k) and V̂1(k,k′) from
δ1(k). The complete potential is then found by a rotation by the
mixing parameter, ε(k). With this complete separable inverse
scattering formalism, we can now create a phase-equivalent
potential at all energies in any given partial-wave channel.

B. Universality in separable inverse scattering potentials

We use phase shifts from Argonne v18 to create the
phase-equivalent ISSP. In Fig. 6, we see that the elastic phase
shifts are quantitatively reproduced well above the inelastic
threshold. We choose Argonne v18 specifically because it
has phase shifts that extend to this high energy, but any
realistic potential could be used for starting phase shifts. (Note:
for simplicity we treat the problem nonrelativistically with
only elastic scattering because we are interested in testing
universality and low-energy effects, not to have a realistic
description of high-energy physics.) The ISSP’s from chiral
potentials exhibit similar behavior, except that the internal
cutoffs drive matrix elements and phase shifts to zero at high
energies, which is less useful for the present investigations. The
accuracy of the ISSP in reproducing phase shifts can be further
increased simply by using more grid points and increasing the
maximum momentum if the phase shifts are nonzero above
this momentum.

Figure 7 shows the diagonal matrix elements of Argonne
v18 and the ISSP for three different partial waves before and
after SRG evolution. We observe that after SRG evolution to
λ = 1.5 fm−1, universality in the diagonal matrix elements
also extends to the full range of energies. In fact, the only

FIG. 7. (Color online) Diagonal matrix elements of the AV18 potential and the ISSP up to high laboratory momentum klab in the (a) 1S0,
(b) 3S1, and (c) 1P 1 partial waves. Cutoff λ is in units of fm−1.
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FIG. 8. (Color online) Initial and evolved diagonal matrix ele-
ments in the 3S1 channel for AV18 and an ISSP with a binding energy
of 0 MeV.

discernible difference in the evolved potential diagonals is
below the SRG cutoff. Above λ the matrix elements in the
region shown are completely collapsed to universal values.

Because the binding energy in the ISSP formalism is
independently tuned from the phase shifts, we can investigate
in the deuteron 3S1-3D1 coupled channel how universality
in potential matrix elements is affected by differences in
the bound-state energy. Figures 8 and 9 show the effects of
phase-equivalent potentials having the wrong binding energy.
In Fig. 8, the ISSP is created from the phase shifts of the
Argonne v18 potential in the deuteron channel, but with a
binding energy of 0 MeV instead of 2.224 MeV. It is evident
that the effect on diagonal matrix elements is substantial. The
low-energy matrix elements of the bare ISSP tend towards
zero as the momentum decreases. As the potentials evolve, the
diagonal matrix elements are driven to universal values except
that the ISSP is constrained by its binding energy to approach
zero as momentum approaches zero.

FIG. 9. (Color online) Initial and evolved diagonal matrix ele-
ments in the 3S1 channel for AV18 and an ISSP with a binding energy
of 5 MeV.

A similar effect can be seen in Fig. 9 where instead of 0 MeV
as input binding energy, the ISSP is created with input binding
energy of 5 MeV. The ISSP reproduces this energy better than
100 eV. This potential is overbound and its lowest momentum
matrix elements are forced lower than if it had the physical
deuteron binding energy. Again, the higher momentum matrix
elements flow towards a universal form because of phase
equivalence. Together these plots show that phase equivalence
is not the only prerequisite for universality in the diagonal
potential matrix elements, but a correct binding energy is also
necessary. (That is, we need S-matrix equivalence for negative
energies as well.) This may account for the small deviations
in the potentials at lowest momenta in Fig. 2. The 3D1 partial
wave plots of the corresponding ISSP potentials with different
binding energies are indistinguishable. This effect only appears
in the 3S1 potentials. It is possible that a virtual bound state
in the 1S0 partial wave has a similar effect on the evolved
low-momentum potential matrix elements, but the ISSP cannot
tune virtual bound states and residues in the same way it
accommodates bound states; thus we do not investigate this
point further.

Next we turn to off-diagonal matrix elements. Figure 10
shows the potential matrix elements V (k0,k) for k0 = 0.1 fm−1

as a function of k for the ISSP and all of the realistic potentials
evolved to λ = 1.5 fm−1. We can see that although these off-
diagonal cuts for the modern potentials agree at λ = 1.5 fm−1,
the ISSP matrix elements do not. By using a diagonalizing SRG
transformation (that is, Gs = T ), the off-diagonal potential
matrix elements are exponentially suppressed. Because of this,
it appears that the ISSP approaches a universal form, but unlike
the realistic potentials, there is no finite λ at which the ISSP
collapses to universal form. Figure 10 shows low-energy half-
on-shell (HOS) T matrices from each of the unevolved realistic
potentials and the ISSP. We observe that the realistic potentials,
which will evolve to a universal form, have essentially the
same low-momentum, low-energy HOS T -matrix elements,
while the ISSP does not. This is consistent with carrying
over to the SRG the suggestion from Ref. [7] that HOS
T -matrix equivalence is required for off-diagonal universality
in Vlow k RG-evolved matrix elements, much like phase shift
equivalence is required for universality of diagonals. We only
show the 1S0 partial waves, but the same pattern holds for all
partial waves. Clearly, matching observables is not enough to
produce fully universal potentials after evolution, and in the
next section we will examine if matching observables and also
including the same explicit one-pion exchange potential will
be enough for potentials to evolve to a low-energy universal
form.

As a further test, we created ISSP’s using altered phase
shifts in localized regions of energy to see if the flow to
universal diagonal matrix elements is disturbed only locally.
We use the 1P 1 channel for clarity. Figure 11(a) shows the
1P 1 phase shifts for Argonne v18 and for an ISSP that is phase
equivalent except for a Gaussian bump that we impose by
hand at low energy. In Fig. 11(b) we see that the potentials
evolve to the same diagonal values everywhere but at low
energy. Another potential was constructed by creating low-
and high-energy regions of phase equivalence, and imposing a
Gaussian bump (around klab = 4.0 fm−1) to create a difference
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FIG. 10. (Color online) (a) Off-diagonal SRG evolved potential matrix elements V (k,k0) with k0 = 0.1 fm−1 and (b) unevolved half-on-shell
T matrices T (k,k0; k2

0). In both figures, the thick line is from the ISSP while the bands are various realistic potentials.

in the intermediate energy phase shifts; see Fig. 12(a).
In Fig. 12(b) the evolution to common diagonal values
again works everywhere except near where the phase shifts
disagree.

We conclude from these figures (and other tests not shown)
that the SRG evolved diagonal potential matrix elements
are altered only in a region localized near the altered phase
shifts. This suggests that an SRG softened potential is locally
decoupled such that the integral in the Lippmann-Schwinger
(LS) equation for the on-shell T matrix can be truncated as

Tl(k,k; k2)

= Vl(k,k) + 2

π
P

∫ k+�

k−�

dp p2 Vl(k,p)Tl(p,k; k2)

k2 − p2
, (19)

where the lower limit of the integral is taken to be zero if
k − � < 0. In Eq. (19), � represents the local decoupling
scale, which we will set to SRG λ. (In fact λ appears to be
a conservative upper bound for � to quantitatively reproduce
phase shifts.)

Figure 13 shows phase shifts calculated from Eq. (19) with
� = 4.0 fm−1 in the 1S0 channel for the Argonne v18 potential
evolved to three different SRG λ’s. These are compared to
the actual phase shifts of the unevolved potential. We see
that with this large value of �, the truncated phase shifts
for even the unevolved potential are largely reproduced and
the low-momentum phase shifts from evolved potentials are
indistinguishable from the actual phase shifts. (The periodicity
at high momentum for λ = 1.5 fm−1 is a numerical grid
artifact.) In Fig. 14 we more severely truncate the integral

FIG. 11. (Color online) Low-energy phase difference effects on universality: (a) phase shifts and (b) diagonals of potentials.
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FIG. 12. (Color online) Intermediate-energy phase difference effects on universality: (a) phase shifts and (b) diagonals of potentials.

in the LS equation to � = 1.5 fm−1. We see clearly that the
potential evolved to λ = 4.0 fm−1 is not decoupled enough to
reproduce the original phase shifts, but the potential evolved
to λ = 1.5 fm−1 has phase shifts identical to the previous plot.
This suggests that evolution with T does locally decouple
energy scales.

V. OPE PLUS δ SHELL

Here we further test the suggestion that explicit treatment
of the longest-ranged physics is a requirement for potentials
to evolve to a universal form [7]. In particular, we develop a
simple test potential that is (approximately) phase equivalent
in the same momentum regions as the realistic potentials but
also has the same explicit long-range forces. We use the model

FIG. 13. (Color online) Phase shifts of Argonne v18 potential and
truncated phase shifts of evolved potentials with � = 4.0 fm−1. Cutoff
λ is in units of fm−1.

from Pérez et al. that combines the one-pion exchange (OPE)
potential with a sum of N δ-shell potentials [23,24] in each
partial wave:

Vl(r) = V OPE
l (r) +

N∑
i=1

gl
iδ(r − ri). (20)

The explicit form of the OPE potential can be found in
Ref. [33]. We choose the {ri} as short-range lengths (under
2 fm−1) and fit the {gl

i} to match low-momentum phase shifts.
We choose a different regulator than Ref. [23,24], instead
regulating the potential in momentum representation with a
separable form factor:

freg(k,k′) = e−(k/�)4
e−(k′/�)4

, (21)

FIG. 14. (Color online) Phase shifts of Argonne v18 potential and
truncated phase shifts of evolved potentials with � = 1.5 fm−1. Cutoff
λ is in units of fm−1.
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FIG. 15. (Color online) (a) Off-diagonal SRG evolved potential matrix elements. (b) Unevolved half-on-shell T matrices. In both figures,
the thick line is the δ shell plus OPE potential while the bands are from realistic modern potentials.

for which we choose � = 3 fm−1. We now have a potential
with explicit long-range pion terms and adjustable short-range
terms, which is phase equivalent at low momentum to the
realistic potentials.

A. Universality in OPE plus δ shell

We can see from Fig. 15 that the OPE plus δ-shell
off-diagonal potential elements evolve to the same universal
form as the modern realistic potentials. Also, Fig. 15 shows
the corresponding unevolved HOS T matrices. We see that
the OPE plus δ-shell potential has the same low-energy
low-momentum HOS T matrix and shows a corresponding
low-momentum universality in off-diagonal matrix elements.
This behavior is not unique to the 1S0 partial wave, but
appears for all partial waves. This simple potential explicitly
contains only the longest range OPE potential and has very
simple short-range terms, but it collapses to the same universal
low-momentum potential after SRG evolution. Combined with
the ISSP results, this is strong evidence that the same explicit
inclusion of the longest-range contributions to the potential,

which is reflected in low-energy HOS T -matrix equivalence,
is required for collapse to a universal form.

B. JISP potential

In principle, a good test of our observations about univer-
sality is the JISP16 potential, which is a realistic potential
constructed using the J -matrix version of inverse scattering
theory [6,34]. Because there is no explicit incorporation of
a pion-exchange tail in the functional form of the potential,
we might expect the Hamiltonian to exhibit nonuniversal
evolution with the SRG for off-diagonal matrix elements. In
fact, the unevolved JISP potential is already soft and changes
only slightly under SRG evolution. But as shown in Fig. 16
in the 1S0 channel for a set of off-diagonal matrix elements
(and true for the diagonal and other partial waves), JISP16
is already close to the universal form reached by the chiral
N3LO potentials. There are still differences, but they are small.
However the JISP HOS T matrix is also close to the others
(perhaps as the result of additional adjustments of the potential

FIG. 16. (Color online) Off-diagonal matrix elements of (a) chiral N3LO potentials and the JISP16 potential in the 1S0 channel and the
same potential evolved by the SRG to (b) λ = 2.0 fm−1 and (c) λ = 1.5 fm−1.
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using the freedom of the inverse scattering framework [34]),
so there is no inconsistency with our general conclusions.

VI. CONCLUSION

Modern realistic two-nucleon potentials exhibit a flow to
universal potential matrix elements under the similarity RG.
High and low momenta are decoupled in this universal matrix,
allowing us to truncate the matrix and drastically simplify
low-energy bound state and reaction calculations. Any initial
interaction that yields this universal matrix after SRG evolution
is equally effective. This is of little practical importance
for the two-nucleon potential, but it could be extremely
useful if many-nucleon potentials display this same type
of universality. Producing accurate realistic many-nucleon
potentials is extremely difficult. Our results suggest that any
convenient potential that includes long-range pion exchange
interactions can be used to produce universal many-nucleon
interactions when evolved with an SRG transformation.

Our study of universality for two-body potentials yields the
following observations:

(i) Inverse scattering separable potentials, with no ex-
plicit consideration of long-range pion exchange, ex-
hibit a universal collapse of diagonal matrix elements
after evolution in regions of phase equivalence.

(ii) If an intermediate region of phase inequivalence is
imposed, the collapse does not occur in this region
but still occurs in every region of phase equivalence.
This implies that SRG softened potentials are actually
locally decoupled in energy and momentum.

(iii) An incorrect binding energy has a strong effect on
the lowest potential matrix elements and will prevent
flow towards a universal form.

(iv) While phase equivalence and correct binding energies
(i.e., S-matrix equivalence) are apparently require-
ments for universality in two-body potential matrix
elements, the ISSP example shows that these are
notsufficient to guarantee a potential that will flow to

the same off-diagonal values as conventional realistic
potentials.

(v) However, a potential that reproduces low-energy
observables and contains explicit long-range (OPE)
terms does flow to universal form, which is consistent
with observations made for Vlow k evolution in Ref. [7].

(vi) To the extent that low-energy HOS T-matrix equiva-
lence indicates long-range equivalence of potentials,
it signals off-diagonal universality in evolved poten-
tial matrix elements.

(vii) For universality to appear, the SRG decoupling
parameter must be sufficiently low so that potential
matrix elements in the low-momentum region of
HOS T -matrix equivalence are decoupled from high-
momentum matrix elements.

These considerations address the onset of universality for
the two-body part of the inter-nucleon potential but for a
complete discussion we have to consider the full many-body
Hamiltonian. It is well established that the evolution to smaller
values of λ induces many-body forces of increasing importance
[8,15] and the SRG transformations will only be approximately
unitary if they are omitted. This entails a lower limit to
the region of universality in practical applications. In future
work we will test whether our observations of universality
for two-nucleon interactions carry over to three-body forces
and seek a practical operator classification procedure that
will allow the full power of the RG to be applied to nuclear
problems.
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