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Proton root-mean-square radii and electron scattering
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The standard procedure of extracting the proton root-mean-square radii from models for the Sachs form factors
Ge(q) and Gm(q) fitted to elastic electron-proton scattering data is more uncertain than traditionally assumed. The
extrapolation of G(q), from the region qmin < q < qmax covered by data to momentum transfer q = 0 where the
rms radius is obtained, often depends on uncontrolled properties of the parametrization used. Only when ensuring
that the corresponding densities have a physical behavior at large radii r can reliable rms radii be determined.
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Introduction. Accurate knowledge of the proton root-mean-
square (rms) radii is important for both an understanding of
proton structure and the interpretation of the extremely precise
data on transition energies in the hydrogen atom. Traditionally,
the rms radii have been derived from data on elastic electron-
proton scattering at low momentum transfer q. The best
determinations are based on parametrizations of the Sachs
form factors Ge(q) and Gm(q) with the parameters directly
fitted to the observables, i.e., cross sections and polarization
transfer data. The slope of the parameterized form factors at
q = 0 yields the charge and magnetic rms radii, respectively.

This topic of the proton radii has recently become a subject
of intense discussion with the publication of the charge rms
radius determined from the Lamb shift in muonic hydrogen [1].
This radius, 0.8409 ± 0.0004 fm, disagrees by many standard
deviations with the value 0.8775 ± 0.005 fm from the world
data on electron scattering [2], and it also disagrees with the
recent value extracted from the transition energies in electronic
hydrogen [3], 0.8758 ± 0.0077 fm. This disagreement has led
to a large number of studies dealing with problems with the
determination of the radii, or new physics [4–12].

The discrepancy has also led to renewed scrutiny of the
procedure used to extract rms radii from electron-scattering
data. Problematic in particular is the fact that the (e,e) data
sensitive to proton finite size are the ones in the region of
momentum transfer q = 0.6–1.2 fm−1 [13]; the determination
of the rms radius involves an (implicit or explicit) extrapolation
to q = 0.
Difficulties due to large-r tail. The extrapolation from finite
q to q = 0 is much more difficult for the proton than for
nuclei with mass number A > 2. The proton charge and
magnetization distributions are of roughly exponential shape,
as the form factors Ge(q) and Gm(q) are roughly described
by dipole distributions. The exponential tail at large radii r
leads to a very slow convergence of the proton rms radius as
a function of the upper cutoff rcut when calculated from the
integral over the charge density ρ(r). This is demonstrated in
Fig. 1, which compares the convergence to the one obtained
for a heavy nucleus. In order to get 98% of the proton radius,
one has to integrate out to an rcut of three times the rms radius.
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The uncertainty of this large-r tail, which is poorly fixed by the
(e,e) data, corresponds to uncertainties in the shape of G(q) at
very low q; this in turn complicates the standard extrapolation
of G(q) from the momentum transfers covered by data to q = 0
where the radius is determined from the q = 0 slope.

We illustrate the difficulties of this extrapolation with
several recent results of form-factor fits. For this qualitative
discussion—carried out to understand what happens rather
than to derive numerical results—we ignore complications
such as relativistic effects or two-photon exchange and take
the density (charge or magnetic) ρ(r) as the Fourier transform
of the corresponding Sachs form factor G(q) and vice versa.

As a first example, we consider fits to the (e,e) data
recently measured by Bernauer et al. [14,15] covering the
region between qmin = 0.55 fm−1 and qmax = 5.1 fm−1. These
authors used different parametrizations of Ge(q) and Gm(q)
to fit the data and extract the q = 0 slopes. They showed in
particular the results for fits using an inverse polynomial (IP)
parameterization and different orders N of the polynomial. A
curious result was found for the magnetic rms radius, which
jumped between order N = 7 and N = 10 from 0.76 to 0.96 fm
[14]. The strange behavior of the N = 10 result (which,
incidentally, has the best χ2 per degree of freedom) turns out
to be due to the fact that at q > qmax the N = 10 IP form factor
has a pole. The density corresponding to such a G(q) has an
(oscillatory) tail that extends to extremely large radii (r = ∞).
This large-r density implies structure of G(q) at very low q,
below q = qmin, and the curvature at very small q falsifies the
extrapolation to q = 0 where the radius is extracted.

We must point out that the situation for the rms radius from
the IP fit of order N = 7 (selected by Ref. [15]) is not much
better; Gm has a pole as well, although at larger momentum
transfer with consequences for the density and radius that are
less severe.

As a second example we mention the form factor fits
to the same data [15] made by Lorenz et al. [16] using a
continued fraction (CF) parametrization. It turns out that the
five-parameter CF fit [17] to the full data set also has a pole
with correspondingly large values of the density at large r , so
the value of the rms radius cannot be relied upon either.

As a third example, we discuss a fit we have made while
exploring the role of the cutoff qmax in the determination of the
rms radius. For sake of easier comparison, we use the same
data, but only up to qmax = 2 fm−1; this is entirely sufficient
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FIG. 1. [
∫ rcut

0 ρ(r)r4dr/
∫ ∞

0 ρ(r)r4dr]1/2 as a function of the
upper integration limit rcut. Both axes are normalized to the rms
radius R.

as the data below 2 fm−1 are the only ones sensitive to the rms
radii [13]. The data have been fitted with a four-parameter Pade
parametrization for Ge and Gm. The fit gives an excellent χ2 of
1.06 per degree of freedom, as low as a spline fit to the data [14].
The fitted G(q) has no pole but yields a charge rms radius
of 1.48 fm! As for the previous examples, the problem is a
consequence of an uncontrolled behavior of the form factor for
q > qmax which, together with G(qmin < q < qmax), implies a
shape of ρ(r) that has a tail to extremely large r .

This unreasonable result can be understood by looking at
Fig. 2, which shows the form factor Ge(q) in the region q <
qmin. The solid curve represents the Pade fit, and the dotted
curve corresponds to a usual parameterization yielding an rms

FIG. 2. Pade fit to the data q < 2 fm−1 of Ref. [15] (solid curve)
yielding an rms radius of 1.48 fm. A “standard” fit to the same data,
producing an rms radius of ∼0.88 fm, is given by the dotted curve.
[Note that the normalization of the data (not shown) is floating, so
both fits give excellent χ 2 when compared to data normalized to the
respective fit.] The form factor G1(q) corresponds to the solid curve
for q2 > 0.06 fm−2, supplemented for q2 < 0.06 fm−2 by the dashed
curve. G2(q) corresponds to the difference between the solid curve
and G1(q).

radius of ∼0.88 fm from a correspondingly smaller q = 0
slope. One can conceptually split the Pade curve into two
additive contributions, G1 and G2. G1(q) corresponds to the
Pade fit for q2 > 0.06 fm−2, supplemented for q2 < 0.06 fm−2

by the dashed curve; G2(q) corresponds to the difference of
the Pade form factor and G1(q). The form factor G1(q) has a
norm of ∼0.995 and a “normal” slope at q = 0 corresponding
to an rms radius of ∼0.88 fm. The G2(q) term looks, roughly
speaking, like a Gaussian e−q2/a2

with a2 ∼ 0.02 fm−2 and a
norm of ∼0.005. In r space, this G2 corresponds to a density of
Gaussian shape, proportional to e−r2/(200 fm2). This term extends
to extremely large values of r . Its contribution at large r leads,
despite the small overall norm, to the unreasonable rms radius
of 1.48 fm.

From these examples it becomes clear that the usual way
of determining the proton rms radii by extrapolating the data
from qmin < q < qmax to q = 0 via a parameterization of G(q)
is unreliable. Even for standard parameterizations such as the
Pade parametrization, with no obvious faults such as poles
at q > qmax or a divergence at large q such as present in
the popular expansions of G(q) in terms of powers of q2,
unreasonable results can be generated. Such procedures cannot
be trusted to yield the physical rms radius.

Density at large r. In order to better understand the origin
of the difficulty, it is helpful to confront the approaches used
for the determination of rms radii for nuclei with mass number
A > 2 and A � 2. For A > 2 the density is parameterized, the
observables are calculated via a solution of the Dirac equation,
and the parameters are adjusted for good χ2. The rms radius is
obtained from an integral over ρ(r) or, equivalently, from the
q = 0 slope of the corresponding Born approximation form
factor. For A � 2, on the other hand, the form factors G(q) in
general are parameterized directly in q space, the observables
are calculated with or without corrections beyond first Born
approximation and the parameters adjusted for the best χ2.
The slope of G(q) at q = 0 gives the rms radius.

These two approaches are not equivalent. When parame-
terizing ρ(r) using, e.g., Fermi densities, sum of Gaussians
(SOG), or Fourier-Bessel (FB) series, an implicit assumption
is made that ρ(r) = 0 outside some radius r0, or that ρ(r)
falls off exponentially at large r . This assumption reflects our
physics understanding of nucleon and nuclear wave functions:
The density at large enough r must approach zero.

When parameterizing G(q) directly in q space, this
condition on ρ(r) at large r is not used. Depending on
the parametrization chosen for G(q) totally unreasonable
behaviors of G(q > qmax) and the corresponding ρ(r) at large
r may occur, and these are responsible for the erroneous
rms radii. This is clearly a serious deficiency that calls for
a different approach.

The problem induced by an uncontrolled behavior of G(q >
qmax) is less severe for fits that use the data up to the largest
momentum transfers where cross sections and polarization
transfer data are available. In these cases, the values of the fitted
G(q > qmax) are strongly constrained by the small values of the
G(q)’s near the top end of the q range covered by experiment.
Parameterizations that enforce in addition a fall of at least 1/q4

as required to get a regular density at the origin then help to
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ensure that the values of G(q > qmax) remain small and that
the data constrain the shape of ρ(r) (including its tail) as much
as possible.

From the parametrization of G(q) alone it is very difficult to
judge the behavior ρ(r) other than by looking simultaneously
at the corresponding density [provided the parametrization of
G(q) does have a Fourier transform]. As a matter of fact,
most published fits to e-p data have not been checked for the
large-r behavior of ρ and often yield unreasonable behavior,
as the above examples show.

Of the parametrizations that have been used in the past to
fit the e-p scattering data, there are basically only two types
that constrain the large-r behavior of the density: On the one
hand side there are the fits based on the vector dominance
model (VDM) supplemented by 2π exchange [16–22]. They
implicitly constrain the large-r falloff through the masses of
the exchange particles that are assumed to mediate the photon-
nucleon interaction. These VDM-type fits, however, have in
general produced values of χ2 that are significantly larger than
those achieved by more phenomenological parametrizations
and they show systematic deviations from the data at low
momentum transfer; the model seems to lack the freedom
required for a good fit of the e-p data. The radii extracted from
a poor fit obviously cannot be trusted.

The other approach that ensures a good behavior of the
large-r density is the one involving fits with SOG densities
fitted to both the e-p data and a calculated shape of the large-r
density [23].

To remedy the unsatisfactory situation with extrapolation
of G(q) to q = 0 one can proceed as described below. This
procedure, unfortunately, is more involved than a simple fit of
(e,e) data using a convenient parameterization for G(q), but it
helps to avoid the pitfalls discussed above.

In order to guarantee a sensible behavior of the density at
large radii, one should employ parametrizations that have an
easily accessible form in both r and q space. One then can
easily check the r space behavior while fitting the parameters
directly in q space without taking too literally the form factor
as a Fourier transform of the density.

For the proton (and the same is true for the deuteron; see
Ref. [24]) the pronounced sensitivity of the rms radius to the
tail of the density can be reduced by using a physical model for

the large-r density. At large distances, the density of any bound
multiconstituent system is dominated by the least-bound Fock
component, in the case of the proton the π+ from the
neutron + pion (n + π+) configuration. The corresponding
(relative) density can be easily calculated; sophistications such
as inclusion of relativistic effects or two-photon exchange
(which affect the relation between density and form factor),
pion finite size, � + π components, etc., can be incorporated
(their numerical effect on the tail shape has been found to be
relatively small [23]). The resulting density can be used in the
fit to constrain the shape of ρ(r) at very large r where the
density is safely in the asymptotic regime. In this approach
the most dangerous aspect of the model dependence—implicit
assumptions on the large-r behavior due to the choice of the
model density or model form factor which affect the curvature
of G(q) below qmin—is replaced by a tail constraint that
is explicitly stated and can be included with appropriately
specified uncertainties.

When using this type of approach one can employ rather
general multiparameter expansions of the density and form
factors such as Hermite and Laguerre polynomials times their
weight function, or SOG densities; these fit with good χ2

the data over the full q range where data are available. As
we have discussed above, this is most desirable in order to
also constrain as much as possible the shape of the density,
including the large-r tail, by the e-p data themselves.

A fit of the world data following the above procedure has
been carried out in Ref. [23] and yielded an rms radius of
0.886 ± 0.008 fm.

Conclusions. While the standard parametrizations of the
nucleon form factors Ge(q) and Gm(q) fitted to e-p scattering
data are valid representations of the data in the q region
where they have been measured, they are not suitable for an
extrapolation to q = 0 where the proton rms radii are extracted.
These parametrizations of the G(q)’s lack the constraint that
the corresponding densities must approach zero at large r in a
way that is compatible with our physics understanding of the
proton. Most published fits do not respect this constraint and
often produce unreliable radii.

Constraining the large-radius tail of the density using
physical arguments is bound to yield a more reliable value
for the physical rms radius.
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