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In this work, we propose a new description of nuclear spectroscopy based on the analysis of a rather complete
set of observables, using the multiparticle-multihole configuration mixing and the D1S Gogny interaction. The
application to the even-even sd-shell nuclei, for both ground and 0+

2 , 1+
1 , 2+

1 , 2+
2 , 3+

1 , 3+
2 , 4+

1 excited states,
clearly shows the pertinence of this approach. The standard deviation to experiment is ∼500 keV for two-nucleon
separation energies and ∼400 keV for excitation energies. The calculated magnetic dipole moments and B(M1)
transition probabilities are in a very good agreement with experiment. Concerning the spectroscopic quadrupole
moments and B(E2) transition probabilities, the experimental trends are systematically reproduced. Only a lack
of quadrupole collectivity appears. A solution to improve this expected defect is suggested.
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Introduction. In nuclear physics, the mean-field (MF) type
[1–13] and the shell-model (SM) [14–16] methods are the two
most common and powerful approaches to the many-body
problem. The MF approaches are based on approximate self-
consistent solutions using the symmetry breaking/restoration
and implying all the nucleons. They are almost applicable to
the whole chart of nuclei being effective predominantly for
the description of ground states. Conversely, the SM solution
preserves the symmetries of the nuclear Hamiltonian, allowing
a natural contribution of all types of correlations and describing
spectroscopic observables. However, an inert core plus valence
particles decomposition is assumed, reducing its domain of
applicability.

Following the old dream of the unified model of Bohr and
Mottelson in order to reunify the two pictures, and keeping
their specific advantages (self-consistency, symmetry preser-
vation, etc.), we have recently proposed a multiconfiguration
description of the many-body systems [17,18], using the D1S
Gogny interaction [24]. In the present work, we investigate for
the first time the ground- and excited-state energies as well
as the magnetic dipole and electric quadrupole collectivities
of the 25 even-even sd-shell nuclei [8 < (N,Z) < 20] using
the newly proposed mp-mh configuration mixing (CM) ap-
proach. The analysis is done in the same spirit as previous MF
and SM studies [19–23].

The multiparticle-multihole (mp-mh) configuration mixing
(CM) constructs an energy density functional F(ρ) with a trial
wave function |�〉 corresponding to a superposition of Slater
determinants built as multiple particle-hole (p-h) excitations
on this reference state:

F(ρ) = 〈�|Ĥ (ρ)|�〉 − λ〈�|�〉 −
∑

i

λiQi, (1)

where λ and λi are Lagrange multipliers and Qi possible
additional constraints (e.g., deformation) left out in the present
Rapid Communication.

In Eq. (1), Ĥ (ρ) is the effective Hamiltonian defined as a
functional of the one-body density ρ

Ĥ (ρ) = K̂ + V̂ (ρ), (2)

containing a kinetic term K̂ and a two-body density-dependent
interaction term V̂ (ρ) including the Coulomb potential. One-
body and two-body center-of-mass corrections are implicit.

The trial wave functions |�〉 appearing in Eq. (1), that
describes nuclear stationary states, are expressed as linear
combinations

|�〉 =
∑

απ αν

Aαπ αν
|φαπ

φαν
〉 (3)

of direct products

|φαπ
φαν

〉 = |φαπ
〉 ⊗ |φαν

〉 (4)

of proton and neutron Slater determinants, |φαπ
〉 and |φαν

〉
respectively, containing a priori any multiple p-h excitations
that respect conserved quantum numbers. The one-body
density ρ entering the effective Hamiltonian Ĥ (ρ) is the
correlated one, ρ = 〈�|ρ̂|�〉.

A variational principle applied to F(ρ) allows to determine
both the mixing coefficients of the wave function and the opti-
mal single-particle orbitals consistently with the correlations.
The minimization of F(ρ) with respect to the Aαπ αν

leads
to a nonlinear secular equation equivalent to a diagonalization
problem of a Hamiltonian matrixH in the multiconfigurational
space,

∑

α′
π α′

ν

Hαπ αν,α′
π α′

ν
Aα′

π α′
ν
= λAαπ αν

. (5)

The matrix H contains contributions of both the Hamiltonian
Ĥ (ρ) and rearrangement terms R that come from the density
dependence of the interaction.

The minimization ofF(ρ) with respect to the single-particle
orbitals leads to inhomogeneous Hartree-Fock (HF) equations,
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which depend on correlations contained in |�〉,
[h(ρ,σ ),ρ] = G(σ ), (6)

where the irreducible (connected) two-body correlation matrix
is given by

σij,kl = 〈�|a+
i a+

k alaj |�〉 − ρjiρlk + ρjkρli . (7)

In Eq. (6), h(ρ,σ ) is the one-body mean-field Hamiltonian
built with the one-body density ρ and the connected part σ :

hij (ρ,σ ) = 〈i|K|j 〉 + 
ij (ρ) + ∂
ij (ρ) + ∂
ij (σ ). (8)

Explicit expressions for the Hamiltonian matrix H, the source
term G(σ ), and for the fields 
ij (ρ), ∂
ij (ρ) and ∂
ij (σ ) are
given in Refs. [17,18].

A fully self-consistent solution is obtained by solving
simultaneously Eqs. (5)–(6). The only parameters of the model
are those of the Gogny interaction. Analogous methods are
well known in various fields of physics, as atomic physics
or quantum chemistry [25,26]. They provide a very accurate
description of the spectroscopy.

The present work has been performed in the same numerical
framework as in Ref. [18]. In particular, even though the
formalism has been developed in axial symmetry, the mp-mh
CM calculations have been performed at the spherical point in
order to generate correlated solutions with a good total angular
momentum. Axial and spherical descriptions coincide for
〈Qi〉 = 0. Thus, the found eigenfunctions become laboratory
solutions rather than intrinsic frame solutions. In this work
the CM has been restricted to the sd-shell, including all
possible configurations and only the first equation (5) has been
considered. The fully self-consistent solution is beyond the
scope of this paper. Then, the HF single-particle orbitals have
been used to solve Eq. (5). Besides, the single-particle orbitals
have been expanded on an axial harmonic oscillator basis with
eleven major shells ensuring convergence. Finally, in order to
quantify the accuracy of the results, the average difference 〈x〉
and the standard deviation σ (x) of a given observable x are
considered,

〈x〉 = 1

Nx

Nx∑

i=1

|xi | and σ (x) =
√

〈x2〉 − 〈x〉2.

Ground- and excited-state energies. We first discuss the
binding energy (BE) behavior for the Ne, Mg, Si, S, and Ar
nuclei. Including nuclear long-range correlations in a beyond
MF approach is expected to wash out the structures displayed
by the BE and dictated by shell effects [3,27]. On Fig. 1, the
differences �BE from experimental BE [28], calculated in the
spherical HF and mp-mh CM approximations, are presented
for all selected isotopes. No data is available for 28Ar. The
quantity �BE is found essentially constant with an average
difference 〈�BE〉 = 8.532 MeV in the mp-mh CM approach.
In the HF case, it is equal to 3.352 MeV. These large values of
�BE are expected. Indeed, the D1S Gogny force has been
fitted in order to reproduce experimental masses of a few
doubly magic nuclei at the restricted HF approximation [29].
Besides, the mp-mh CM approach provides a non-negligible
amount of correlations even in doubly magic nuclei, which
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FIG. 1. (Color online) Difference to the experimental values of
theoretical BE (in MeV) calculated at the HF and the mp-mh CM
approximations.

explains the larger overbinding 〈�BE〉. At the HF level, strong
variations are found along isotopic chains. On the contrary, a
very flat behavior is obtained when using the mp-mh CM
approach. The most striking feature concerns the standard
deviations σ (�BE), equal to 0.824 MeV in the mp-mh CM
approach and 1.727 MeV in the HF approximation. The
treatment of the nuclear long-range correlations reduces by
itself the dispersion of BE in a significant way, without any
change in the effective interaction. The results obtained from
HFB (spherical or deformed) and 5DCH calculations [3] using
the same effective interaction for �BE exhibit similar behavior
as the spherical HF ones, presented in Fig. 1.

From the BE, we have deduced the two-neutron S2n and
the two-proton S2p separation energies. The differences �S2n

(a) and �S2p (b) between theory and experiment [28] are
plotted on Fig. 2. The theoretical results are deduced at both
HF and mp-mh CM levels. As the mp-mh CM calculations
have been restricted to nuclei with 8 < (Z,N ) < 20, the S2n

of N = 10 isotones as well as the S2p of Ne isotopes have
not been calculated. As seen from Fig. 2, the mp-mh CM
S2n and S2p are found in a much better agreement with
experiment than the HF ones due to the low standard deviation
σ (�BE). Concerning the S2n, 〈�S2n〉 is equal to 0.613 MeV
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FIG. 2. (Color online) Differences �S2n (a) and �S2p (b) be-
tween experiment and theory calculated at the HF and mp-mh CM
approximations (in MeV).
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FIG. 3. (Color online) Comparison of experimental and theoret-
ical excitation energies E∗ (in MeV).

and σ (�S2n) to 0.587 MeV with the mp-mh CM approach.
In the HF case, the corresponding values are 1.741 MeV
and 0.866 MeV. Concerning the S2p, the values are found
similar to the S2n ones, 0.732 MeV and 0.504 MeV with
the mp-mh CM approach, 1.711 MeV and 1.011 MeV in the
HF case. As a consequence, the mp-mh CM approach is able
to reproduce with a good accuracy the detailed experimental
structures of the evolution of two-nucleon separation energy. In
agreement with experiment, the mp-mh CM predicts that three
isotopes (26S, 28Ar, and 30Ar) are not bound using S2p criteria.
Consequently, they have been excluded in the following.

The analysis of the excited spectra focuses on the 0+
2 , 1+

1 ,
2+

1 , 2+
2 , 3+

1 , 3+
2 , and 4+

1 low-lying states known experimentally
[30–36]. As mentioned in the Introduction, the CM occurs
only in the sd shell. Hence, all states with an experimental
excitation energy E∗ at least lower by 1 MeV than the first
experimental negative parity state have been kept. The results
are shown in Fig. 3. A global shift of ∼2.5 MeV was obtained
on the spectrum of 30Si linked to uncontrolled T = 0 properties
of the D1S Gogny force [18]. The same pathology is found
here for its mirror nucleus 30S and therefore they have been
removed from Fig. 3. In total, our analysis is based on 48
excited states.

Quite satisfactory results are obtained for all isotopic
chains. Indeed, 〈�E∗〉 = 464 keV and σ (�E∗) = 397 keV
(�E∗ denotes the difference from experiment). For the
2+

1 states, the agreement is even better, with 〈�E∗(2+
1 )〉 =

196 keV and σ [�E∗(2+
1 )] = 168 keV. A previous study [37]

using the same interaction has pointed out that quadrupole col-
lective models are able to describe 2+

1 states only qualitatively
in these mass regions. The mp-mh CM approach is expected
to systematically improve the description of 2+

1 states in light-
and medium-mass nuclei.

Magnetic dipole and electric quadrupole properties. The
calculation of overlap functions as magnetic moments μ,
spectroscopic quadrupole moments Qs , B(M1) and B(E2)
reduced transition probabilities is a stringent test of the
magnetic dipole and electric quadrupole correlation content
of the mp-mh CM wave functions. In Fig. 4(a) a comparison
between experimental and theoretical μ is plotted (in μN unit).
Almost all predicted μ(2+

1 ) values are in excellent agreement
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FIG. 4. (Color online) Comparison of experimental and theoret-
ical (a) magnetic moments μ (in μN unit) and (b) quadrupole
spectroscopic moments Qs (in efm2).

with experimental data. The situation is unclear only for
the 26Mg isotope. Our prediction is compatible with the old
experimental value (2.6 μN ) that has been later reevaluated
[1.0(3) μN ] [33–35]. Our calculation reproduces well the only
existing μ(2+

2 ) data (24Mg). For the 4+
1 states, the calculated

values are within the experimental error bars. However, as the
error bars are large, it is still not possible to conclude on the
accuracy of the theoretical predictions for these states.

In Fig. 4(b), experimental and theoretical Qs(2
+
1 )are com-

pared. The theory systematically underestimates experimental
values. A linear fit provides a slope of ∼0.4. This behavior
was expected since a limited valence space is used in the
present calculations, which do not allow us to fully describe
the quadrupole collectivity properties of these states. This point
will be discussed further in more detail. An interesting feature
is that, in the large majority of cases, the experimental sign
of Qs(2

+
1 ) is obtained. Only the theoretical signs for 32Si and

34S differ from experiment. Concerning the 30Si isotope, two
different data are reported in Ref. [30]: −5(6) and +1(6) efm2.
Our calculation provides a value of +2 efm2, compatible with
the second experimental data.

To complete our study on magnetic dipole and electric
quadrupole collectivities, we have investigated the transition
probabilities, 13 B(M1) and 51 B(E2). The experimental and
theoretical B(M1) are presented in Table I. An overall good
agreement is obtained. The orders of magnitude, that range
from 10−6 to 10−1 in Weisskopf units, are systematically
reproduced by our calculations. This emphasizes once more
the ability of the mp-mh CM approach in reproducing the
experimental trends. The worst discrepancy corresponds to a
factor ∼5 for the 1+

1 → 2+
1 transition in 30Si.

The whole set of experimental and theoretical values
for B(E2) is displayed in Fig. 5. One observes that the
experimental B(E2) values are systematically underestimated
by the theory. They are distributed along a line with a slope
of ∼0.25. As for the Qs , this behavior is expected since the
CM is used in a limited valence space. A similar behavior
is seen in SM studies [16,23]: if no effective charge is used,
the B(E2) are reproduced within a ∼0.3 factor. The answer
proposed by the mp-mh CM is to introduce at least part of the
missing collectivity by determining the optimized orbitals [see
Eq. (6)].
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TABLE I. Comparison between experimental and theoretical
B(M1) transition probabilities (in Weisskopf units).

Nucleus Transition Experiment mp-mh

24Mg 2+
2 → 2+

1 9 × 10−6 (8) 7 × 10−6

3+
1 → 2+

1 2.1 × 10−5 (1.1) 4.6 × 10−5

3+
1 → 2+

2 3.5 × 10−4 (1.7) 2.5 × 10−4

26Mg 2+
2 → 2+

1 0.097 (12) 0.066
3+

1 → 2+
1 0.00102 (15) 0.00375

3+
1 → 2+

2 0.0159 (23) 0.0260
3+

2 → 2+
1 0.0067 (14) 0.0041

3+
2 → 2+

2 0.032 (7) 0.055
26Si 2+

2 → 2+
1 0.10 (3) 0.07

30Si 2+
2 → 2+

1 0.09 (3) 0.19
1+

1 → 2+
1 0.091 (23) 0.457

34S 2+
2 → 2+

1 0.052 (3) 0.059
34Ar 2+

2 → 2+
1 0.058 (12) 0.030

A complementary analysis of the 22 B(E2,2+
1 →0+

1 ) have
been performed in terms of isotopic and isotonic chains.
Examples are presented in Fig. 6 for the Ne and S isotopes
as well as for the N = 14 and N = 18 isotones. The mp-mh
CM reproduces in a very satisfactory way the experimental
trends. The analysis of the mp-mh CM wave functions reveals
that, in 28S and 34S, the 0+

1 and 2+
1 states have similar

structures dominated by the 0p-0h component. Since 30S and
32S are closed subshell nuclei, the 0+

1 and 2+
1 states exhibit

very different structures, characterized by the absence of a
0p-0h component in the 2+

1 states whose major configuration
is a 1p-1h excitation. The weight of the main component
is typically ∼60% in the 0+

1 states and ∼45% in the 2+
1

states, producing a too flat B(E2) behavior as compared
to experiment. Concerning the Ne isotopes, the 0+

1 and 2+
1

states display similar structures with a 0p-0h main component.
However, the heaviest ones are more closed than the lightest
ones, in agreement with the B(E2) decreasing experimental
trend. The weight of the 0p-0h component is ∼47% in the 0+

1
state and ∼37% in the 2+

1 state for 20Ne whereas it reaches
∼87% and ∼85%, respectively, for 28Ne.

Discussion. To conclude the analysis, we discuss how to
account for the quadrupole collectivity beyond the sd shell.
A global factor F applied to all values (see Fig. 6) cannot
account accurately for the electric quadrupole collectivity. For
example, in the case of S isotopes, even if predictions are
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FIG. 6. (Color online) Examples of reduced transition probabil-
ities B(E2,2+

1 →0+
1 ) for isotopic (left) and isotonic (right) chains.

Theoretical (experimental) values are in red (black).

multiplied by F = 3.6 in order to match with the experimental
values of 28S and 34S, a non-negligible lack of collectivity
is still present in 30S and 32S. An inspection of the 32S
axial potential energy curves (PECs) shows that a second
minimum develops at a large value of the axial deformation
parameter β, around 1.2. The minimum is produced by the
opening of a deformed gap due to the 1f7/2 shell. In the 30S
case, an inflection of the PECs is observed around the same
deformation. These theoretical results are in agreement with
many other studies. Besides, the existence of superdeformed
states as well as α clustering are expected at a similar
deformation [38–40] in 32S and in the neighbor nuclei [41].
The prolate softness of these PECs may modify partly the
collective structure of the 2+

1 in both 30S and 32S. For the Ne
isotopes, applying a factor F = 2.8 to the theoretical B(E2)
leads to the same conclusion. In the lightest Ne isotopes, a
different neutron collectivity is expected to induce an increase
of the quadrupole softness of the PEC.

In order to understand the lack of electric quadrupole col-
lectivity, a quantitative analysis based on the axial deformation
properties of the HF PEC has been performed with the D1S
interaction and presented here for the Ne isotopes. At various
axial deformations β, we have calculated the neutron and
proton occupation probabilities p

ν,π
i of spherical orbitals i

from the filled deformed orbitals α defined as

pi(β) =
N∑

α=1

χ2
iα(β),

where χiα is the overlap between the deformed and spherical
HF orbitals. As an illustration, the axial PECs of 20,24,28Ne
are displayed in Fig. 7 (left panel) as well as the associated
quantity

P
ν,π
shell(β) =

∑

i∈shell

[
p

ν,π
i (β) − p

ν,π
i (0)

]
,

for each major shell (right panel). The PECs are found to
be soft against β. For the lightest isotopes (20−24Ne), the
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Ne isotopes.

absolute minima are either prolate (20,22Ne) or oblate (24Ne).
They are found spherical in 26,28Ne. The P π

shell(β) exhibit
similar behaviors according to β indicating that the proton
quadrupole collectivity is expected to be analogous for all
isotopes. In the central gray area Ac with β ∈ [−0.3,0.3],
the coupling between the proton sd shell and the others
is negligible as P π

shell(β) ≈ 0. One notes that the Ac area,
characterizing essentially the 0�ω configurations, does not
match well with the PEC patterns. In the lightest isotopes, the
prolate minima are clearly outside of Ac. In the Ao and Ap

areas where 2�ω configurations exist, the couplings appear,
in particular between the p and fp shells, the sd and fp
shells or the p and sd shells. For neutrons, the behavior of
P ν

shell(β) depends on the isotope. In 20,22Ne, the evolution of
P ν

shell(β) is similar to the one of P π
shell(β). For 24−28Ne, the

couplings between shells are found larger and strong variations
of P ν

shell(β) occur for smaller β values. The associated neutron
quadrupole collectivity that decreases from 20Ne to 28Ne leads
to a transition from deformed to spherical minima.

To conclude, the electric quadrupole collectivity of the mp-
mh CM wave functions, tested in the B(E2) calculation, are
expected to be corrected if the 2�ω excitations, corresponding
to (1p-1h)π,ν , (2p-2h)π,πν configurations built with other shells
than simply the sd shell are introduced, thus accounting for
core polarization. The contributions of the neutrons to the
B(E2) comes mainly from proton-neutron couplings. As these
couplings may differ in the various isotopes, this could explain
the missing collectivity in the B(E2) of 20Ne and 22Ne. Since
the M1 strength is exhausted with 0�ω configurations, the μ
and B(M1) are essentially well described within the present
limited valence space. This is a clear indication that the D1S
Gogny force has good magnetic properties in the sd shell.
Concerning other observables discussed in the present work,
the additional 2�ω configurations are expected to produce
an overall increase of the binding energies. Moreover, they
correspond to relatively high-energy configurations and they
are expected to add similar amount of correlations in ground
and excited states. Thus, the excitation energies are ex-
pected to stay rather stable when introducing these additional
configurations.

Conclusion. In the present study, a coherent and promising
description of many observables is highlighted in even-
even sd-shell nuclei, using the mp-mh configuration mixing
and the D1S Gogny interaction. The standard deviations σ
concerning binding energies, two-nucleon separation energies
and excitation energies are very good, considering that the
Gogny interaction was not derived a priori to be used
with such a general approach, which includes all kinds of
nuclear long-range correlations. The results associated with
magnetic dipole moments, spectroscopic quadrupole moments
as well as B(M1) and B(E2) reduced transition probabilities
are very encouraging. Indeed, the experimental trends are
systematically obtained. Only a lack of electric quadrupole
collectivity is observed, resulting from a limited valence space.
Work is in progress to improve the quadrupole correlation
description by completing the mp-mh configuration mixing
wave functions with 2�ω configurations.

N.P. acknowledges D. Gogny for valuable comments and
suggestions about this work as well as F. Nowacki for his
critical and helpful reading of the manuscript.
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