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Explanation of the simplicity of the quadrupole moments recently observed
in Cd isotopes from covariant density functional theory
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The simplicity in the nuclear quadrupole moments reported recently in 107−129Cd, i.e., a linear increase of the
11/2− quadrupole moments, is investigated microscopically with the covariant density functional theory. Using
the newly developed functional PC-PK1, the quadrupole moments as well as their linear increase tendency with
the neutron number are excellently reproduced without any ad hoc parameters. The core polarization is found to
be very important and contributes almost half of the quadrupole moments. The simplicity of the linear increase is
revealed to be due to the pairing correlation which smears out the abrupt changes induced by the single-particle
shell structure.
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The electric and magnetic moments are fundamental
observables in understanding matter structure ranging from
physics to chemistry. In nuclear physics, thanks to the simple
and well-known structure of the electromagnetic interaction,
the study of electric and magnetic moments and transition
probabilities provides unique opportunity for detailed under-
standing of nuclear structure and has attracted the attention of
nuclear physicists since the early days [1].

The electric quadrupole moment is the most important
multipole expansion of a nuclear electric moment, reflecting
the extent to which the nuclear charge distribution deviates
from sphericity and representing the most important collective
excitations of the nucleus. In fact, the electric quadrupole
moment in deuteron [2] provides the first evidence for the
need of a tensor term in the nuclear interaction [3], which
turns out to be essential in understanding the variation of the
nuclear shell structure [4]. Many hot topics in nuclear physics
including exotic deformation [5], shape coexistence [6], and
shell evolution [7] are rooted in the study of the nuclear electric
quadrupole moment.

In a recent paper [8], the quadrupole moments of neutron-
rich isotopes of cadmium up to the N = 82 shell closure were
investigated by high-resolution laser spectroscopy, and a linear
increase of the 11/2− quadrupole moments was found to act
well even beyond the h11/2 shell. A similar phenomenon has
also been discussed for the i13/2 isomers of lead and mercury
isotopes previously [9]. However, it is the first in Ref. [8] to
demonstrate that the linear behavior can persist even beyond
a single shell, and the high experimental precision achieved
provides a rigorous calibration for theories. As mentioned in
Ref. [10], the result reported by Yordanov et al. [8] is a success
for the shell model and the concept of pairing of neutrons and
of protons to produce a simple and persistent structure in a
long isotopic chain. The challenge to the theorists now is to
explain this simplicity in a microscopic level.

The extreme single-particle shell model, which has played
a major role in clarifying nuclear structure [11], is widely used
to describe nuclear quadrupole moments. In this model, the
quadrupole moment of an odd-proton (neutron) nucleus with

spin I is determined by the unpaired proton (neutron) in the
orbital with the total angular momentum j = I . For a nucleus
with one particle or hole around the doubly magic nucleus, e.g.,
208Pb [12], a good agreement with the experimental quadrupole
moments can be achieved with the introduction of the effective
charges. In such a way, the interaction between the valence
nucleons and the core nucleons or the core polarization can be
effectively taken into account.

For a nucleus with n valence particles (holes) in an orbital
j coupled to a total spin I , the shell model predicts that the
quadrupole moments of nuclear states described by such a
pure configuration would follow a simple linear relation with
respect to the number of valence protons [11] or neutrons [13].
In general, the corresponding formalism can be given in the
seniority scheme as [14]

〈jn|Q̂|jn〉 = 2j + 1 − 2n

2j + 1 − 2ν
〈jν |Q̂|jν〉, (1)

with ν being the number of the unpaired valence nucleons. Due
to this very characteristic linear behavior with respect to the
number of valence nucleons, the electric quadrupole moment
is believed to provide a stringent test of the model.

Density functional theory (DFT) plays a very important
role in describing the many-body problems in a microscopic
way. It has achieved great success in all quantum mechanical
many-body systems, e.g., in Coulombic systems. In nuclear
physics, with spin and isospin degrees of freedom, the situation
is much more complicated due to the strong nucleon-nucleon
forces. Because Lorentz invariance is one of the underlying
symmetries for the quantum chromodynamics of the strong
interaction, the covariant density functionals [15–18] are of
particular interest in nuclear physics. This symmetry not only
provides us a consistent treatment of the spin degrees of
freedom, but also puts stringent restrictions on the number of
parameters in the corresponding functionals without reducing
the quality of the agreement with experimental data [19].

In this Rapid Communication, the quadrupole moments of
the Cd isotopes together with their linear simplicity shown in
the most up-to-date data will be investigated in the framework

0556-2813/2014/89(1)/011301(5) 011301-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.89.011301


RAPID COMMUNICATIONS

P. W. ZHAO, S. Q. ZHANG, AND J. MENG PHYSICAL REVIEW C 89, 011301(R) (2014)

of covariant DFT (CDFT) in a self-consistent and microscopic
way. The major advantages of the present framework include
(1) the core polarization effects are fully taken into account
and there is no need to introduce a factitious effective charge,
(2) the pairing correlation is treated self-consistently by the
corresponding pairing functional, (3) the density functional is
universal for all nuclei throughout the periodic chart, and the
present investigation is expected to be reliable and to have
predictive power, and (4) a microscopic picture of the nuclear
quadrupole moments can be provided in terms of intrinsic
shapes and single-particle shells self-consistently.

Covariant density functional theory starts from an effective
Lagrangian, and the corresponding Kohn-Sham equations have
the form of a Dirac equation:

[α · p + β(m + S) + V ]ψk = εkψk, (2)

with effective potentials S(r) and V (r) derived from this
Lagrangian, which are connected in a self-consistent way
to the densities; for details, see Refs. [15–18]. The iterative
solution of this equation yields the single-particle energies
and wave functions, binding energies, quadrupole moments,
etc. It should be noted that the calculations here are carried out
in the intrinsic frame, and the measured quadrupole moment
Q for an axially symmetric nucleus is related to the intrinsic
quadrupole moment Q0 through the relation

Q = 3K2 − I (I + 1)

(I + 1)(2I + 3)
Q0, (3)

where K is the projection of the total spin I onto the symmetry
axis of the deformed nucleus. Note that the moment in Eq. (3)
includes only the collective part associated with the average de-
formation of the intrinsic state [1]. Further investigation should
go beyond the mean field level such as including the configu-
ration mixing and is beyond the scope of the present work.

The Dirac equation (2) is solved on the basis of an axially
symmetric harmonic oscillator potential [20] with 14 major
shells. The point-coupling functional PC-PK1 [21] is used for
the Lagrangian without any additional parameters, and the
pairing correlations are taken into account by the Bardeen-
Cooper-Schrieffer (BCS) method with a zero-range δ force.
The pairing strength in Ref. [21] is adopted, which is adjusted
together with PC-PK1 in a smooth cutoff pairing window. By
carrying out calculations with the triaxial degree of freedom,
it is found that the triaxiality for the present Cd isotopes is
negligible. Therefore, the effective potentials S and V are
considered to be axially deformed.

Since we are focusing on the 11/2− quadrupole moments
of the odd-A Cd isotopes observed in Ref. [8], the last
unpaired neutron will block its occupied level in the BCS
calculations, i.e., the Pauli principle prevents this level
from the scattering process of nucleon pairs by the pairing
correlations. In practical calculations, the single-particle
orbital h11/2 with the third projection of the total angular
momentum jz = 11/2 is always blocked in order to obtain
the nuclear states with K = 11/2. Meanwhile, the time-odd
fields are neglected in the calculations since they have little
influence on the quadrupole moments.

Concretely, we adopt the standard blocking method [22],
where the ground state of an odd system is described by the

wave function

a
†
k1

|BCS〉 = a
†
k1

∏

k �=k1

(uk + vka
†
k|a†

−k|0〉). (4)

Here, |0〉 denotes the vacuum state, and k1 the blocked single-
particle orbit (here the orbit jπ

z = 11/2−). This orbit has to
be excluded in the calculation of pairing energy. Meanwhile,
the Fermi energy λ is determined by N = 1 + 2

∑
k �=k1>0 v2

k

with N being the neutron number and v2
k being the occupation

probability of the single-particle orbit k.
In the upper panel of Fig. 1, the calculated quadrupole mo-

ments in CDFT with and without pairing correlation are shown
in comparison with the data [8]. One can see that when the

(a)

(b)

FIG. 1. (Color online) Calculated quadrupole moments (a) and
the occupation neutrons in the h11/2 shell (b) in the CDFT with
(full lines) and without (dashed lines) the pairing correlation for Cd
isotopes. The data (solid dots) are taken from Ref. [8]. The dotted
line in (b) represents a linear occupation assumption proposed in [8].
Inset (a): Calculated quadrupole moments in CDFT with a pairing
correlation for the 3/2+ states in comparison with the data [8]. Inset
(b): Comparison between the observed quadrupole moments [8] and
the calculated ones with Eq. (1), in which the number of neutrons n

is either the CDFT results with (full line) or without (dashed line) the
pairing correlation or from the linear occupation assumption [8].
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pairing correlations are taken into account, the experimental
quadrupole moments together with the corresponding linear
increase tendency are excellently reproduced in a microscopic
and self-consistent way. Without pairing, however, one can
clearly find two distinct features: for nuclei with N � 71, the
calculated quadrupole moments are slightly smaller than the
observed ones but still hold the linear increase tendency; for
nuclei with N � 71, the calculated results deviate not only
from the data but also from the linear tendency. This indicates
that the mechanism for the linear increase of the quadrupole
moments may be different for nuclei with their neutron number
smaller and larger than 71.

In the lower panel of Fig. 1, similar features can also be seen
for the neutron occupation number in the h11/2 shell. Without
pairing, there is always one neutron sitting in the h11/2 shell
for nuclei with N � 71, and this number starts to increase
linearly from one for 119Cd to 11 for 129Cd. As a result, in
the case without pairing, the increase of the neutrons in the
h11/2 shell shows a clear inflexion point at the nucleus 119Cd,
which is consistent with the varying features of the quadrupole
moments as shown in Fig. 1(a). Such an abrupt inflexion point
can be smoothed admirably by the pairing effects. Obviously,

the neutron occupation number in the h11/2 shell with the
pairing correlation does not follow the linear occupation
assumption [dotted line in Fig. 1(b)] proposed in Ref. [8].

In the inset of Fig. 1(b), adopting the linear occupation
assumption, the experimental quadrupole moments together
with the corresponding linear increase tendency can also
be reproduced by Eq. (1). In the calculation, the single-
particle quadrupole moment 〈jν |Q̂|jν〉|ν=1 of the h11/2 shell
in Eq. (1) is estimated by −ef 〈r2〉(2j − 1)/(2j + 2) with
the effective charge ef = 2.5e and 〈r2〉 being calculated in
CDFT, and it is found to be nearly constant for all the Cd
isotopes. This explanation, however, is based on the linear
occupation assumption shown as a dotted line in Fig. 1(b).
By replacing this fictitious occupation with the microscopic
and self-consistent occupation obtained from CDFT, one can
easily find that the calculated results fail to reproduce the data,
as shown in the inset of Fig. 1(b), no matter whether the pairing
correlation is included or not. It should be mentioned that the
calculated quadrupole moments here, similarly as in Ref. [8],
have been scaled with a small offset term Qconst around 150 mb.

In the microscopic CDFT calculation, the quadrupole
moment comes from all the protons in a nucleus. To understand

FIG. 2. (Color online) Occupied particle numbers for single-particle orbitals with K , the third component of the angular momentum in
the neutron νh11/2 shell (left panels) and the proton πg9/2 shell (right panels), obtained from the CDFT calculations with and without pairing
correlation.
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the microscopic origin for the observed linear behavior of
the quadrupole moments, we show in Fig. 2 the occupied
particle numbers for single-particle orbitals with K the third
component of the angular momentum in the neutron νh11/2

shell and the proton πg9/2 shell. Note that the degeneracy of
each orbital here is 2, since an orbital with K has the same
energy as that with −K .

Without pairing correlation, since the neutron orbital
K = 11/2 is blocked, there is always one neutron in this
orbital. The occupation of neutrons in other orbitals can be
classified into two distinct cases. For nuclei with N � 71, the
increasing neutrons occupy other low j shells instead of the
h11/2 shell. Due to the occupation of the high K = 11/2 orbital,
these nuclei have their neutron density distributions of oblate
shapes. Moreover, because there is a closure of the positive
parity subshell at N = 70, the neutron density distributions
are driven toward a spherical shape with the increase of
the neutron number. Because of the attractive proton and
neutron interaction, the proton density distributions evolve in a
similar manner as the neutron ones with the increasing neutron
number, and thus the quadrupole moments will approach zero
smoothly.

For nuclei with N � 71, it shows that the neutrons favor
high K orbitals for nuclei with N � 75, while they favor low
K orbitals for nuclei with N � 77. This indicates that with the
increasing neutron number, the neutron density distribution
changes from an oblate shape to a prolate shape near N = 76.
Similar evolution appears for the protons as well. It leads
to an abrupt change of the single-proton level structure, and
accordingly an abrupt jump of the quadrupole moments near
N = 76 as shown in Fig. 1(a).

With the pairing correlation, however, the occupied particle
numbers for all orbitals vary smoothly. It shows that the proton
occupation of the low K orbitals increases smoothly, while
that of the high K ones declines. This is connected with the
nuclear shape evolution from an oblate to a prolate. As a result,
one can conclude that the pairing effects can smear out all
the abrupt changes in single-particle structure existing in the
results without pairing, and thus for the neutrons, it leads to
a smooth and gradual shape evolution from an oblate to a
prolate. Because the proton density distributions often tend to
have the largest overlap with the neutron ones so as to obtain
the lowest energy, the proton density distributions evolve in
a similar manner as the neutron ones with the increasing
neutron number, and thus the quadrupole moments increase
in an almost linear way with the increasing neutron number
and cross zero in the middle.

This is not the full story, however. To investigate the
importance of the core polarization effects, which are fully
taken into account in the present work, one can extract the
“corelike” quadrupole moments by excluding the contributions
of valence nucleons, as shown in Fig. 3, from the total
quadrupole moments. Since a full model space is taken in our
calculations, we do not need to introduce the effective charges.
Instead, the free charge is used in the present calculation, and
thus the quadrupole moments are completely from the protons.
Since Z = 40 is a typical subshell closure, it is straightforward
to regard the 48 protons in Cd isotopes as a Z = 40 core
coupled to 8 valence protons in the g9/2 shell.

FIG. 3. (Color online) Composition of the total quadrupole mo-
ments as a function of the neutron number for the Cd isotopes. It is
shown that the Z = 40 core contributes almost the same as the g9/2

valence protons to the total quadrupole moments.

In Fig. 3, the compositions of the total quadrupole moments
are shown as functions of the neutron number for the Cd
isotopes. It is found that the core contributes almost the same
as the valence protons to the total quadrupole moments. This
core polarization also explains the relatively large effective
charge 2.5e artificially introduced in Ref. [8]. Moreover, the
quadrupole moments from both the core and the valence
protons follow a linear increase behavior. This demonstrates
that the core is strongly polarized and its coupling with
the valence protons is very remarkable. Therefore, it is of
importance to emphasize that polarization effects play a very
important role in the self-consistent microscopic description
of nuclear quadrupole moments.

Finally, it should be mentioned that apart from the 11/2−

quadrupole moments, the five 3/2+ quadrupole moments
measured in Ref. [8] are also shown in the inset of the upper
panel in Fig. 1 in comparison with the calculated results. One
can see that the experimental data can be reproduced quite well,
except for the notable deviation for N = 73 which may be due
to the strong K mixing and needs to be investigated in further
detail in the future. For the magnetic moments, however, it is a
long-standing conundrum, which is essentially associated with
the treatment of the coupling to complex configurations such
as particle-vibration coupling (Arima-Horie effect [23,24]),
meson exchange current, and core polarization effects [25–27].

In summary, for the first time, the simplicity in the
nuclear quadrupole moments has been explained in a fully
self-consistent and microscopic way with the covariant density
functional theory. The newly observed quadrupole moments
data for 107−129Cd together with their linear increase tendency
with the neutron number are excellently reproduced without
any ad hoc parameters. Instead of the linear neutron occupation
mechanism in the h11/2 shell, the simplicity of the linear
increase is revealed to be due to the pairing correlation which
smears out the abrupt changes induced by the single-particle
shell structure, and thus leads to a smooth shape evolution.
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Furthermore, it is found that the core is strongly coupled with
the valence nucleons, and thus the core polarization effects
turn out to be essential and contribute almost half of the total
quadrupole moments.
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