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Nuclear “pasta” formation
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The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with
molecular dynamics (MD) simulations containing 51200 nucleons. A phenomenological nuclear interaction is
used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an
initial density of 0.10 fm−3 and then the density is decreased by expanding the simulation volume at different
rates to densities of 0.01 fm−3 or less. An originally uniform system of nuclear matter is observed to form
spherical bubbles (“swiss cheese”), hollow tubes, flat plates (“lasagna”), thin rods (“spaghetti”) and, finally,
nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing
density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are
obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate.
This indicates nonequilibrium effects. We use this to determine the best ways to obtain lower energy states of the
pasta system from MD simulations and to place constraints on the equilibration time of the system.
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I. INTRODUCTION

During a supernova, the core of a massive star undergoes
an extraordinary transformation, from 1055 separate nuclei to a
single gigantic nucleus that forms the proto-neutron star. This
transformation likely involves a series of nuclear pasta phase
transitions that occur at densities somewhat below nuclear
saturation density, n0 � 0.16 fm−3, and a range of exotic
nuclear shapes. Knowing how matter organizes itself as its
density increases from n � 0.1n0 to ∼ n0 has been a long
standing problem in nuclear physics [1,2]. The description
of nuclear matter at these subnuclear densities is relevant for
a variety of problems such as determination of the structure
and properties of neutron stars [1,3,4], the equation of state
of nuclear matter [2,5], and neutrino transport in supernovae
[6,7].

It is well established that at low densities, n � 0.1n0,
attractive short-range strong interactions correlate nucleons
into (almost) spherical nuclei. The size and shape of these
nuclei are limited by Coulomb repulsion between protons and
the surface energy of the system [8]. Also well established is
the fact that at high densities, n � n0, nuclear matter saturates
and becomes uniform. However, in between these two limits
the picture is much less clear and considerable effort has been
devoted to determine the phase transitions of matter as it goes
from one extreme to the other.

Works using a liquid-drop model for the nuclei showed that
a system with fixed temperature and proton fraction favors the
formation of large nuclei, Z > 100, as the density increases
[1,5]. Lamb et al. [5] then showed that when the fraction
of volume occupied by nuclei reached ∼ 1/2 matter would
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“turn inside out” and the system would then be composed
of dense matter with bubbles of less-dense matter immersed
in it. Later on, pioneering work by Ravenhall et al. [8] and
Hashimoto et al. [9] showed that, at densities just below
nuclear saturation density, matter organizes itself into other
complex shapes besides spheres and spherical holes. This
collection of shapes which includes rods, slabs, and cylindrical
holes is caused by frustration of the system and is now referred
to as nuclear pasta. The reason for frustration, the inability
of a system to minimize all its fundamental interactions, is
the competition between short-range nuclear attraction and
long-range Coulomb repulsion [3].

Many works based on a compressible liquid-drop model
[4,8–10] have explicit assumptions about the geometrical
shapes of nuclear pasta. Some even include more exotic
phases such as gyroid and double-diamond morphologies [11].
Approaches to the problem that do not explicitly assume
any shape for the nuclear pasta have also been considered.
They include calculations based on the Thomas-Fermi approx-
imation [2,12–14], Hartree-Fock methods [15–17], density-
functional theory [18], relativistic mean field approximation
[10,19], quantum molecular dynamics (QMD) [20–26], and
semiclassical molecular dynamics (MD) [6,7,27–30].

All the works described in the paragraph above conclude
that matter just below nuclear saturation density forms unusual
structures with geometrical shapes that depend on temperature,
proton fraction, and density. Some of these works, mainly the
ones using a liquid-drop model and Thomas-Fermi approxi-
mation, use a Wigner-Seitz cell approximation to determine
the periodicity of the pasta shapes [4,8,10,11,14,18] while
other works use a unit cell to account for the periodicity of
the system [2,9,13,15–17]. Meanwhile, works based on QMD
and MD methods use larger volumes and do not assume any
periodicity in the pasta shapes besides the one imposed by
periodic boundary conditions [6,7,20–30]. Still, some QMD
simulations were able to achieve some degree of periodicity
within their simulation volumes [23–26]. Recently Okamoto
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et al. used the Thomas-Fermi approximation to calculate pasta
shapes not limited to a single unit cell [12] and also obtained
periodic configurations smaller than their simulation volume.

One reason for so many studies on the pasta phase is its
relevance for properties of neutron stars and core collapse
supernovae. For example, neutrino-pasta scattering helps
determine the neutrino opacity in core collapse supernovae
[6,7]. This is because supernova neutrinos have wavelengths
comparable to pasta sizes and can scatter coherently from
the pasta. Furthermore, electron-pasta scattering is important
for determining the shear viscosity, thermal conductivity [28]
and electrical conductivity. The electrical conductivity of the
pasta may be relevant for the decay of neutron star magnetic
fields [31].

Possible hysteresis in pasta shapes with changes in density
will contribute to the bulk viscosity. This could be important
for the damping of collective r-mode oscillations of rapidly
rotating neutron stars. The excitation spectrum is important
for the pasta heat capacity; see also Ref. [27]. Meanwhile, the
shear modulus of the pasta is important for the speed of shear
waves and crustal oscillation frequencies of neutron stars. The
breaking strain of the pasta helps determine the maximum
sized mountain that can be supported on a neutron star [32]. It
may also be relevant for star quakes and crust breaking models
of magnetar giant flares. In general the strength increases with
increasing density and, therefore, the pasta is expected to make
a significant contribution to the strength of the neutron star
crust because of its high density.

In the next sections, we will discuss some properties of
the pasta phases at different densities obtained from molecular
dynamics (MD) simulations. We use the molecular dynamics
formalism of Horowitz et al. [6,7,27,28]. However, while their
main focus was transport properties of the pasta, our focus
here is the study of the equilibration mechanisms and the
topological structures formed by the pasta phases as they
transition from low to high densities. As the initial conditions
are much simpler when the system is nearly uniform we
start our simulations at high densities, near half the nuclear
saturation density, and then slowly expand the simulation
volume to obtain lower densities.

To study the pasta and its phase transitions it is helpful to
provide some simple metrics that quantify their geometrical
shapes. This can be achieved by making use of integral-
geometric formulas [33] often referred to as Minkowski
functionals [34]. Minkowski functionals are a robust way to
describe complex structures. They were first used to describe
the topology of nuclear pasta structures by Watanabe et al. in
the context of quantum molecular dynamics [22,23,25]. More
recently Dorso et al. calculated the Minkowski functionals for
pasta structures obtained from classical molecular dynamics
[30] while Schuetrumpf et al. did the same using a time-
dependent Hartree-Fock approach [16].

In this work we use Minkowski functionals to quantify how
the pasta shapes change as a function of the expansion rate.
We believe this allows us to address some questions related
to the equilibration time of the pasta and its transition from
one phase to the other. A couple of papers by Watanabe et al.
have already explored the mechanisms of pasta phase transi-
tions and their equilibration or transition times using QMD

[25,26]. In these papers Watanabe et al. started their simula-
tions from low density and compressed the system adiabati-
cally or isothermally to determine the time scale of transitions
between different pasta shapes. As we will see the time scales
they find using QMD are significantly faster than the ones we
obtain with MD.

In this paper we use MD to simulate nuclear matter for
densities of ∼ 0.010 to 0.10 fm−3 for a proton fraction of
Yp = 0.40 at a temperature of T = 1 MeV. This temperature
and proton fraction are roughly comparable to those in the
collapsing dense core of a supernova, before the matter is
heated further by a shock wave. We start Sec. II reviewing
the formalism used to describe nucleon-nucleon interactions,
Sec. II A, and then move on to explain the methods used to
obtain the topological properties of the pasta, Sec. II B. In
Sec. III we present the main results of our simulations with
Sec. III A devoted to a description of our runs and Sec. III B
to a discussion of how the topology of the pasta changes as a
function of density. We conclude in Sec. IV.

II. FORMALISM

In Sec. II A we review our MD simulation formalism.
Section II B is devoted to the methods used to obtain the
topology of the pasta while Sec. II C describes an algorithm to
determine which nucleons belong to which nuclei.

A. Semiclassical nuclear pasta model

Here we briefly describe the formalism used in our MD
simulations. It is essentially the same as the one used by
Horowitz et al. and others in previous works [6,7,27–30].
The simulated systems are composed of neutrons, protons
and electrons. The electrons are assumed to be noninteracting
and, thus, are described as a degenerate free Fermi gas.
Meanwhile, the nucleons are treated as mass M = 939 MeV
point-like particles that interact via an “elementary” two-
body force. The interaction between any two nucleons i and
j can be separated into nuclear, vn

ij , and electromagnetic
(Coulomb) vc

ij , components; that is

vij = vn
ij + vc

ij . (1)

The nuclear component of the interaction is

vn
ij = ae−r2

ij /� + [b + cτz(i)τz(j )] e−r2
ij /2�. (2)

Here, rij = |r i − rj | is the distance between particles i and j
and τz = +1 (−1) is the isospin projection of the particle
if it is a proton (neutron). The constants a, b, c, and �
describing the two-body potential are the same ones used in
Ref. [6]. Their values are given in Table I and were adjusted to

TABLE I. Nuclear interaction parameters. The parameter a

defines the strength of the short-range repulsion between nucleons,
b and c the strength of their intermediate-range attraction, and � the
length scale of the nuclear potential.

a (MeV) b (MeV) c (MeV) � (fm2)

110 −26 24 1.25
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approximately reproduce some bulk properties of pure neutron
matter and symmetric nuclear matter as well as the binding
energies of selected nuclei. This parametrization predicts a
value L = 40.7 MeV for the nuclear symmetry energy and
K = 372 MeV for the nuclear compressibility.

The Coulomb component of the interaction is

vc
ij = α

rij

e−rij /λτp(i)τp(j ), (3)

where α is the fine structure constant, τp ≡ (1 + τz)/2 the
nucleon charge, and λ is the screening length that results from
the slight polarization of the background electron gas [35].
The relativistic Thomas-Fermi screening length is given by

λ = π1/2

2α1/2

(
kF

√
k2
F + m2

e

)−1/2
(4)

where kF = (3π2ne)1/3 is the Fermi momentum of the elec-
trons with ne the electron density and me the electron mass.
However, to be consistent with previous works, we fix λ at
a constant value λ = 10 fm. This is somewhat smaller than
Eq. (4) and allows us to decrease the size of our simulations
without introducing large finite-size effects.

All of our simulations have a fixed number of particles
N = 51 200, a proton fraction of Yp = 0.40, and a temperature
of T = 1 MeV. We use periodic boundary conditions where
a nucleon interacts only with the nearest periodic image of
the other nucleons. We also use a cutoff radius of 8λ for the
Coulomb part of the potential and 11.5 fm for the nuclear
potential. Both potentials are assumed to be zero for distances
larger than their cutoff radius.

Knowing the positions of each particle along with the
interparticle potentials allows us to calculate the total force
on each nucleon. The new particle positions and velocities
are then obtained using a velocity Verlet algorithm [36].
After every time step �t we increase each side li of the box
(i = x, y, z) by �l = li(0)ξ̇i�t . That is, the side li of the box
at a time t is

li(t) = li(0)(1 + ξ̇i t) (5)

where li(0) is the initial length of the box and ξ̇i is the expansion
rate along direction i. Since in all of our simulations the
boxes are assumed to be cubic and the expansion rates are
assumed to be the same along every direction we will omit the
subscript i from now on. Particle positions are not adjusted
artificially, but rather are allowed to respond dynamically to
the changing simulation volume. Also, particle velocities are
unaffected by the stretching. This contrasts with Ref. [37]
where the velocities of particles are affected by the expansion
rate and periodicity of the system. As explained in the next
paragraph, our choice to not rescale the velocities to account
for the expanding periodic boundary conditions should not
affect the dynamics of the system due to the strong overall
binding of particles in our system, the slow expansion rates
(ξ̇ � 10−5 c/fm), and temperature (T = 1 MeV) that we used.

As discussed by Holian and Grady in Ref. [37], Newton’s
laws for an expanding system with periodic boundary condi-
tions imply that the velocities of particles that leave the box on
one side and reenter the box on the other side are affected by the
expansion of the box. The contribution that should be added to

TABLE II. Minkowski functionals in three dimensions, adapted
from Ref. [16]. K is the domain where the functionals are evaluated
while κ1 and κ2 are the principal curvatures on ∂K .

V Volume

A = ∫
∂K

dA Surface area

B = ∫
∂K

(κ1 + κ2) /4π dA Mean breadth

χ = ∫
∂K

(κ1κ2) /4π dA Euler characteristic

or subtracted from the total velocity of the particle as it crosses
one of the box boundaries is of order l̇ = l0ξ̇ . However, since
the temperature T = 1 MeV used in our simulations implies
an average velocity for nucleons of 0.057 (in units of c = 1),
the correction l̇ to the velocities of particles that cross any of
the box boundaries would be on average of order 1.4% for the
fastest expansion rate used in this work, ξ̇ = 105 c/fm. Though
we expect such small corrections to not affect the dynamics of
the system, in future works they should be implemented into
our algorithm.

B. Topology

A powerful and general method to quantify the topological
structures present in a system is provided by the Minkowsky
functionals. In N dimensions there are N + 1 Minkowski
functionals which completely describe the morphological
properties of an object. In three dimensions the Minkowski
functionals are quantities proportional to the volume V , surface
area A, mean breadth B, and Euler characteristic χ ; see
Table II.

Though there are four Minkowski functionals, two are
sufficient to characterize the shapes of the pasta: the mean
breadth B and the Euler characteristic χ . The mean breadth
B is a measure of the average curvature of the structures that
form the pasta and is proportional to the surface integral of the
mean curvature (κ1 + κ2)/2. Here, κ1 and κ2 are the principal
curvatures on the surface ∂K that defines the pasta. Recall
that for a concave system the curvatures are negative while
for convex systems the curvatures are positive. The Euler
characteristic χ , though proportional to the surface integral
of the Gaussian curvature (κ1κ2), is related to the number of
structures in the system. In the three-dimensional case it can
be shown to be given by the number of connected components
plus the number of cavities minus the number of tunnels in the
system [34], that is,

χ = (no. connected components)

+ (no. cavities) − (no. tunnels). (6)

The eight possible structures according to their curvatures are
discussed in Table III. For images of these structures see Fig. 1
of Ref. [16].

In our simulations we considered nucleons to be point par-
ticles. However, this makes the problem of calculating the four
Minkowsky Functionals intractable as point particles do not
define a surface. To circumvent this we change our treatment of
the particles from point-like to normal distributions centered at
the position determined by the simulations. Thus, the number
density of a nucleon i and, similarly, the charge density of a
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TABLE III. Description of the possible pasta phases according
to the values of the mean breadth B and Euler characteristic χ ,
adapted from Refs. [16,30]. Shapes include nearly spherical nuclei
(sph), three cylindrical or spaghetti phases classified according to
their connectivity (rod-1, -2, and -3), a flat sheet phase (slab), two
hollow-tube or anti-spaghetti phases (rod-1 b and rod-2 b), and a
nearly spherical bubble phase (sph b).

B < 0 B ∼ 0 B > 0

χ > 0 sph b sph
χ ∼ 0 rod-1 b slab rod-1
χ < 0 rod-2 b rod-3 rod-2

proton transform as

δ(r − r i) → 1

(2πσ )3/2 exp

(
− (r − r i)2

2σ 2

)
, (7)

where σ is the standard deviation of the distribution.
With this in mind we follow the recipe laid out by

Langet al. [33] to obtain the four Minkowski functionals. A
short explanation of the method follows.

We start by dividing each side l(t) of our cubic system
into n segments of edge length �, that is, l(t) = n�. Now
that the system has been divided into n3 cubes with vertices
at r = (i�, j�, k�) with i, j, k = 0, ..., n − 1, we fold a
Gaussian over each proton to determine the charge density
nijk at the vertex of each cube. Our choice for charge density
over nuclear density was made as there is more contrast in
the former than the latter. If the charge density nijk is larger
than a predefined threshold value nth that vertex is considered
occupied and assigned a value bijk = 1. Otherwise the vertex is
considered unoccupied and bijk = 0. Thus, we have a discrete
binary image of our system.

Once all voxels, values of bijk , are determined we analyze
its 2 × 2 × 2-neighborhood configuration. The neighborhood
consists of eight voxels: bijk , bij+1k , bijk+1, bij+1k+1, bi+1jk ,
bi+1j+1k , bi+1jk+1, and bi+1j+1k+1. Due to our choice of
periodic boundary conditions if i = n − 1 then i + 1 = 0. The
same is valid for j and k. This analysis consists of applying
a filter to determine the grey-tone gijk of each voxel. The
filter is chosen so that gijk = ∑1

l,m,n=0 2l+2m+4nbi+l,j+m,k+n.
While the voxels bijk define a 2-bit image as bijk = 0 or 1 the
grey-tones gijk compose an 8-bit image as gijk can assume
any value from 0 to 255. A simple histogram hl of the values
of gijk is enough to obtain the four Minkowski functionals.
For example, the occupied volume V of the system is simply
given by

V = �3
127∑
l=0

h2l+1 (8)

while the Euler characteristic χ is given by

χ = �3 π

6

255∑
l=0

νlhl (9)
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FIG. 1. (Color online) Normalized Minkowski functionals as a
function of the threshold charge density nth for systems at ten different
nucleon densities n indicated by the lines at the top. Configurations
analyzed were obtained by stretching the pasta system from 0.10
to 0.01 fm−3 at a rate of ξ̇ = 1.0 × 10−7 c/fm. From top to bottom
the figures show (a) occupied volume fraction V/Vtot, (b) surface
area per unit volume A/Vtot, (c) average mean curvature B/A, and
(d) average Gaussian curvature χ/A.

for a suitable choice of vector νl . For a more in-depth
discussion and expressions for the surface area A and the
mean breadth B see Ref. [33].

In our analysis we set the value of σ , which can be thought of
as the nucleon radius, to 1.5 fm. Though this value for σ may
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seem rather large, it fulfills our main requirement described
below. At low densities, n � 0.010 fm−3, the system forms
clusters that can be identified to be (almost) spherical nuclei.
We want these clusters to be bound by a single isosurface
with n = nth and all regions inside those isosurface to have
n > nth. If σ is too small, our algorithm will find regions of low
charge density inside the clusters, which would be equivalent
to holes inside a nucleus. We clearly should avoid that when
determining the topology of the system. Moreover, we want
the value of χ in Eq. (6) to match the number of clusters
determined by the MST algorithm discussed in Sec. II C, and
this depends on a fine tuning of σ and nth.

Next we determine the threshold charge-density isosurface
nth which will be used to to obtain the Minkowski functionals.
A comparison of normalized values for the four Minkowski
functionals as a function of nth for one of our simulations
is shown in Fig. 1. The volume V and surface area A were
normalized to the total volume of the system Vtot while the
mean breadth B and the Euler characteristic were normalized
to the total surface area A. The procedure described by
Michielsen and De Raedt in Ref. [34] was shown to provide
somewhat similar qualitative (though quantitatively different)
results for our choice of σ .

In order to chose a value for nth we describe what sort
of behavior we expect from the topology analysis of a low
density system, n � 0.010 fm−3. We want nth small enough
that at these low densities, when nuclei can be clearly separated
from each other, the charge isosurfaces n = nth determines
a closed surface that contains all of the protons in a given
cluster. However, nth should also be large enough so that none
of the protons in nearby clusters are contained within these
isosurfaces. Both requirements are equivalent to matching at
low densities the number of clusters Nclusters obtained from the
MST algorithm described in Sec. II C to the value of χ obtained
from the analysis described in this section. For these reasons
we choose a threshold proton density of nth = 0.030 fm−3

as this value satisfies the above requirement, Nclusters = χ at
low densities, within 2% or less. This value also makes the
nuclei surfaces smooth enough that the Minkowski functionals
converge for � � 0.5 fm using the method outlined above. We
note that this procedure contrasts with the work of Watanabe
et al. in Ref. [22] where they choose the isosurface n = nth,
which defines the shape of nuclear structures, to be based on
nuclear density and as a function of the quantities A and V .

C. Cluster algorithm

Now we explain two algorithms, MST and MSTE, used
to determine the number of neutrons and protons in each
cluster formed in the system. The first algorithm is very similar
to the standard “minimum spanning tree” (MST) described
in Refs. [7,30,38] while the second one is the “minimum
spanning tree in two-particle energy space” (MSTE) described
in Ref. [38].

Our MST algorithm starts by looking for correlations in
coordinate space between the positions of protons. A proton i
is said to be part of a cluster C if it is within a cutoff distance
rpp of at least one proton j that is part of C. That is, if nucleons
i and j are protons then i ∈ C if and only if ∃j ∈ C such that
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FIG. 2. (Color online) Nucleon pair-pair autocorrelation function
as a function of pair distance for our five constant-density runs. See
Sec. III A for description of the five runs. From top to bottom the
plots show (a) proton-proton correlations gpp(r), (b) neutron-proton
correlations gnp(r), and (c) neutron-neutron correlations gnn(r).

|r i − rj | � rpp. Note that, to take into account the periodicity
of the system, the distance |r i − rj | is defined as the distance
between proton i and the closest periodic image of proton
j . We set rpp = 4.5 fm as this is is very close to the first
nonzero minimum of the proton-proton correlation function
gpp(r). Note that the position of this minimum does not
appear to depend on the density of the system, as can be seen
on Fig. 2(a).

After separating the protons into clusters we count the
neutrons in each of the clusters. We say a neutron is part
of cluster C if it is within a distance rnp of at least one proton j
that is part of C. That is, if i is a neutron and j is a proton then
i ∈ C if and only if ∃ j ∈ C such that |r i − rj | � rnp. Again
the periodicity of the system is taken into account by defining
|r i − rj | as the smallest distance between neutron i and all
the periodic images of proton j . We set the cutoff distance
rnp = 3 fm, approximately the first nonzero minimum of the
neutron-proton correlation function gnp(r) as seen on Fig. 2(b).
For completeness we also plot the neutron-neutron correlation
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function gnn(r) on Fig. 2(c). Neutrons that are not part of any
cluster are considered free neutrons.

The MSTE algorithm looks for correlations in two-particle
energy space and works the following way: for any pair of
nucleons i and j nucleon i ∈ C if and only if ∃ j ∈ C such
that eij < 0. Here, the two-particle energy eij is defined as
eij = vij + | pi − pj |/4μ, where μ is the reduced mass of
nucleons i and j . This method, thus, takes into account the
relative momenta of nucleons when determining whether they
are part of a cluster or not. As will be shown in Sec. III B5, we
obtain similar results with both algorithms.

As noted by Dorso et al. in Ref. [30], the low temperatures
and small momentum transfers in stellar crusts guarantee that
the MST and MSTE algorithms yield accurate results for the
clusterization of the system. Thus, they are preferred over more
robust algorithms such as the “early cluster recognition algo-
rithm” (ECRA), which takes into account relative momenta
and binding energies beyond two particles [39].

III. RESULTS

This section is devoted to the results of our simulations.
In Sec. III A we detail the initial conditions and aspects of the
different runs performed using the MD formalism. Meanwhile,
in Sec. III B we describe the differences in pasta shapes
at densities of 0.010, 0.025, 0.050, 0.075, and 0.090 fm−3

according to the type of simulation from which they were
obtained. We finish the section with a comparison of the
Minkowski functionals as a function of density followed by a
discussion of the equilibration time of the pasta.

A. Simulations

Every simulation described here has 51 200 particles, a
proton fraction Yp = 0.40, and is evolved at a temperature of
1 MeV. Two types of simulation were performed in this work:
stretching or expansion runs and constant-density runs.

For all of our expansion runs we set an initial density of
0.10 fm−3. This makes our initial simulation volume a cube
80 fm on a side. Each particle is given an initial random
position inside the box and a velocity randomly selected from
a Boltzmann distribution such that its temperature is 1 MeV.
The system is equilibrated at constant density for a total
time of 10 000 fm/c using a time step of �t = 1 fm/c. The
temperature is kept approximately constant by rescaling the
velocities of nucleons every one hundred time steps. Though
the topological characteristics of these short equilibration
runs do not change much after 10 000 fm/c compared to
much longer runs, 500 000 fm/c, it is not clear whether the
system has equilibrated. Further simulations, possibly starting
at nuclear saturation density or above and slowly expanded
to 0.10 fm−3, are needed in order to study the equilibrium
configuration of the system. This will be done in future works.

After the short equilibration time the final configuration is
evolved using three different stretching rates, ξ̇ = 10−5, 10−6,
and 10−7 c/fm, until it reaches a density slightly lower than
0.010 fm−3. Like in the equilibration phase, the temperature
during the expansion is also kept approximately constant by
rescaling the velocities every one hundred time steps. Though
this simple choice was made solely in order to avoid the

TABLE IV. Linear fit parameters, T (t) = α + βt , for the temper-
ature as a function of time for systems stretched at rates ξ̇ = 10−5

and 10−6 c/fm. In every fit α = 1 within 1 part in 1 000 or less and
β and its percentage error are shown below. The fits were performed
for four different frequencies of temperature rescaling �tnorm = 1,
100, 10 000, and ∞ (no rescaling performed). The values for β and
its uncertainty show that T (t) is consistent with T = 1 MeV for the
time scales of the runs, (ξ̇ )−1.

ξ̇ (c/fm) �tnorm (fm/c) β (10−10 MeV c/fm) �β/β (%)

10−5 1 −1.04829 197.1
10−5 100 32.8097 57.62
10−5 10 000 5.94086 119
10−5 ∞ 20.3109 33.1

10−6 1 −0.286657 184.2
10−6 100 −0.914527 186.7
10−6 10 000 2.16478 81.52
10−6 ∞ 0.491453 370

temperature from drifting away from the desired temperature,
later simulations showed that temperature rescaling was not
necessary to keep the temperature close to its desired value;
see Table IV. For the two fastest stretching rates, ξ̇ = 10−5

and 10−6 c/fm, the temperature drift was very small. In the
worse-case scenarios, temperature drifts were less than 1 part
in 1 000 for a time scale of order ξ̇−1. We expect the same to
hold true for even slower stretch rates.

During the runs an output file with the positions and
velocities of all particles in the system is written every
1000 fm/c and its topological characteristics, as explained in
Sec. II B, are obtained. An expansion run without the Coulomb
interaction and a stretching rate of ξ̇ = 1.0 × 10−6 c/fm was
also performed following the same procedure as the runs
described above.

Five constant-density runs were performed at fixed densities
of 0.010, 0.025, 0.050, 0.075, and 0.090 fm−3. Initially we
assign each particle a random position inside a cubic box with
sides l = 3

√
N/n. Each particle is also given an initial velocity

randomly selected from a Boltzmann distribution such that
the system has a temperature close to 1 MeV. The system is
evolved at constant density for a total time of 500 000 fm/c
using a time step of 1 fm/c. The velocities of the nucleons
are rescaled every one hundred time steps to keep a 1 MeV
temperature. The topological characteristics of the system are
obtained every 1000 fm/c for the last 100 000 fm/c of the run
and are observed to not change significantly during that time.

With the exception of our slowest expansion run, ξ̇ =
1.0 × 10−7 c/fm, all of our simulations were performed on the
BigRed supercomputer at Indiana University using typically
128 cores for a few days to about a week. The expansion
run with ξ̇ = 1.0 × 10−7 c/fm was performed on the Kraken
supercomputer [40] using about 1152 cores for a total of about
150 hours.

B. Discussion

In Fig. 3 we compare the isosurfaces of charge density for
four different runs at densities of 0.010, 0.025, 0.050, 0.075,
and 0.090 fm−3. For the constant-density run we show the
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Runs

n (fm)−3
ξ̇ = 1.0 × 10−6 c/fm Constant Density ξ̇ = 1.0 × 10−5 c/fm ξ̇ = 1.0 × 10−7 c/fm

No Coulomb

0.090

0.075

0.050

0.025

0.010

FIG. 3. (Color online) Side by side comparison of charge density isosurfaces of configurations with densities of 0.010, 0.025, 0.050, 0.075,
and 0.090 fm−3 obtained from four different runs. The golden surfaces represent isosurfaces of charge density with nch = 0.03 fm−3 while the
cream color shows regions such that nch > 0.03 fm−3. The first “Runs” column shows configurations obtained neglecting Coulomb interactions
while the second Runs column shows constant density runs. Finally, the third and fourth Runs columns show respectively configurations obtained
with the fastest stretching rate, ξ̇ = 1.0 × 10−5 fm/c, and the slowest stretching rates, ξ̇ = 1.0 × 10−7 fm/c. This figure was generated using
PARAVIEW [41].

isosurfaces obtained for the configuration at 500 000 fm/c.
For the two stretching runs including Coulomb potential, ξ̇ =

1.0 × 10−5 c/fm and ξ̇ = 1.0 × 10−7 c/fm, and for the run that
does not include the Coulomb potential, ξ̇ = 1.0 × 10−6 c/fm,

065807-7



SCHNEIDER, HOROWITZ, HUGHTO, AND BERRY PHYSICAL REVIEW C 88, 065807 (2013)

TABLE V. Values for the normalized mean breadth B/A for our
simulations at densities of 0.010, 0.025, 0.050, 0.075, and 0.090 fm−3.

n B/A (fm−1)

(fm−3) No Coulomb Constant ξ̇ = 10−5 ξ̇ = 10−7

0.090 −2.7 × 10−2 −9.3 × 10−2 −1.2 × 10−1 −1.1 × 10−1

0.075 −1.5 × 10−2 −4.3 × 10−2 −8.0 × 10−2 −5.3 × 10−2

0.050 −1.1 × 10−2 +3.8 × 10−2 +6.2 × 10−3 +3.8 × 10−3

0.025 −1.4 × 10−5 +1.2 × 10−1 +1.0 × 10−1 +1.1 × 10−1

0.010 −4.8 × 10−5 +2.1 × 10−1 +1.5 × 10−1 +1.5 × 10−1

we show the configuration closest to the desired density.
Values for the normalized Minkowski functionals B/A and
χ/A for the configurations shown in Fig. 3 are listed in
Tables V and VI, respectively. These values can be used
to describe the predominant phase of each configuration as
discussed in Table III.

We now describe the differences between the four systems
shown in Fig. 3 for each of the five densities mentioned. This
is intended to enlighten the reader about how the equilibration
time affects our simulations. We will then discuss the evolution
of the Minkowski functionals as a function of density and
stretch rate.

1. Systems at n = 0.090 fm−3

At a density of 0.090 fm−3 the four systems being com-
pared, first line of Fig. 3, have a negative value for B/A
and a positive value for χ/A; see Tables V and VI. This is
typical of systems formed mostly by spherical bubbles, see
Table III, and it happens because over most of the isosurface
defined by nth both principal curvatures are negative, that is,
κ1 < 0 and κ2 < 0. Another thing to notice is how different the
simulation that does not include the Coulomb potential looks
from the simulations that include Coulomb potential. While the
runs that include the Coulomb potential are mostly uniform
with several spherical and cylindrical bubbles, the system
without Coulomb is formed by two phases: one uniform matter
phase and one large spherical bubble. References [42,43]
using MD simulations without Coulomb also found two-phase
nonuniform structures. These differences can also be noted in
the much smaller absolute values for B/A and χ/A for the run
without Coulomb system when compared to the others.

Focusing on the simulations that include the Coulomb
potential, we note that the one simulation run at constant

TABLE VI. Values for the normalized Euler characteristic χ/A

for our simulations at densities of 0.010, 0.025, 0.050, 0.075, and
0.090 fm−3.

n χ/A (fm−2)

(fm−3) No Coulomb Constant ξ̇ = 10−5 ξ̇ = 10−7

0.090 +5.8 × 10−5 +2.6 × 10−4 +9.0 × 10−4 +7.3 × 10−4

0.075 +1.0 × 10−10 −7.1 × 10−4 +4.0 × 10−5 −4.1 × 10−4

0.050 +4.0 × 10−11 −1.1 × 10−3 −7.6 × 10−4 −1.2 × 10−4

0.025 +2.4 × 10−11 +3.4 × 10−4 −5.2 × 10−4 +0.0 × 10−5

0.010 +2.9 × 10−12 +3.2 × 10−3 +8.0 × 10−4 +1.8 × 10−3

density has smaller absolute values for B/A and χ/A than the
ones obtained from stretching the box; see Tales. V and VI.
This is explained by the fact that the bubbles in this system
are more elongated than the ones in the systems obtained
from stretching the box from a higher density. Also, the
simulation ran at a constant density contains some hollow
tubes, cylindrical holes that stretch over the whole length of the
box, while the others do not. Comparing just the two systems
obtained from stretching we observe that the slower the stretch
rate the smaller the absolute values for B/A and χ/A. This is
because the system stretched at a rate of ξ̇ = 1.0 × 10−7 c/fm
has had more time to equilibrate and, thus, some of the
spherical bubbles that existed in that system at a higher density
had enough time to merge and form more elongated bubbles
and even some tunnels.

2. Systems at n = 0.075 fm−3

As the density decreases to 0.075 fm−3 the value of the
Euler characteristic χ in the four systems decreased. In the
stretched systems this is due to the spherical bubbles merging
to form tunnels. In the system run at a constant density the
change of sign in χ happens because the system is formed of
several interconnected tunnels, the rod-2 b phase in Table III.
This also explains its large value of |χ/A| when compared
to the other runs. Again the simulation run without Coulomb
potential has only two phases, and the absolute values for
both average curvatures is much smaller than in the other
simulations.

The configuration obtained from stretching the box quickly,
ξ̇ = 1.0 × 10−5 c/fm, could be identified by looking up the
average curvatures and from Table III as a system of hollow
tubes, rod-1 b phase. However, a glance at Fig. 3 shows that
is not the case. The system structure, besides hollow tubes,
χ/A < 0, contains spherical bubbles, χ/A > 0 and is, thus,
a mixture of the sph and rod-2 b structures. As both of these
phases contribute similarly to the Euler characteristic χ/A at
this density a small value for this quantity is observed; see
Eq. (6). This is an indication that this stretch rate is too fast
and does not allow enough time for the system to equilibrate.

The simulation that was stretched slowly, ξ̇ = 1.0 ×
10−7 c/fm, is mainly formed of tunnels that stretch over the
whole length of the box. Like the constant-density run it can
also be identified as a rod-2 phase, despite their different values
for the average curvatures. In this case the smaller absolute
value for χ/A implies a lower interconnectivity between the
tunnels.

3. Systems at n = 0.050 fm−3

At 0.050 fm−3 the run without Coulomb potential exhibits
the same behavior it does at 0.075 fm−3. Meanwhile, all
simulations with Coulomb interactions change from being
mostly concave to mostly convex as show by the change in
sign for the values of B/A. The slowly stretched simulation,
1.0 × 10−7 c/fm, has formed sheets that are almost parallel to
each other, “lasagna phase”, with some connectivity between
the slabs. Thus we have the very small value of |χ/A| when
compared to the fast stretched or constant density simulations.
The system stretched at a rate of 1.0 × 10−5 c/fm also
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exhibits plane-like structures. However, since the planes in
this system have more connectivity amongst themselves than
the slowly stretched system, the value of |χ/A| is much larger.
The constant-density run, though, has much larger values for
B/A and |χ/A| than the stretched systems. The reason is
that, unlike the other two stretched systems, this one does
not have plane-like structures and is formed of elongated
nuclei connected to each other, rod-3 phase. This behavior
that produces slab or rod-3 phases depending on the initial
condition has already been observed by Schuetrumpf et al. in
Ref. [16]. As they had already observed, in these two phases
the liquid and gas phases have structures that are symmetrical
complements of each other.

4. Systems at n = 0.025 fm−3

At even lower densities, n = 0.025 fm−3, the simulation
run without Coulomb potential has transitioned to a single
liquid phase with nearly flat surfaces that have little curvature.
Therefore, both the mean and Gaussian average curvatures
B/A and χ/A are very close to zero. The configurations
obtained for the other three simulations have similar values for
the average mean breadth B/A. This is because the systems
with Coulomb interactions are formed of elongated nuclei,
known as the “spaghetti phase”, of about the same thickness.
However, their values for χ/A differ by large amounts. The
reason for this is discussed below.

The configuration obtained by quickly stretching the box
has a large negative value for χ/A. This value can be explained
by a system made of one large nucleus that splits and
reconnects several times, rod-2 phase. Because of the many
splits and reconnections the value of χ is negative and large.1

According to our MST clustering algorithm this system is
formed of a nucleus with A ∼ 47 000 and about 15 smaller
nuclei with mass number in the range of A = 2 to A ∼ 2 000.
On the other hand, the simulation run at constant density has
a large positive value for χ/A as it is formed of several
elongated nuclei with little to no splits and reconnections.
Again using the MST clustering algorithm we see that the
final configuration of the constant-density run is formed of
47 nuclei with mass number A in the range of A ∼ 150
to A ∼ 3200. In between these two extremes is the system
obtained from slowly stretching the box which has a value for
χ/A close to zero. Because of periodic boundary conditions,
this system is formed by only three large spaghetti-like nuclei
with A ∼ 7000, 17 000, and 27 000. Since these nuclei do not
curve or split/reconnect and are for the most part parallel to
each other, one of its principal curvatures will always be close
to zero. Thus, we have the small value for χ/A for the slowly
stretched system when compared to the other two systems.

1To understand this better we recall that an orientable surface R

has an Euler characteristic given by χ (R) = 2 − 2g(R). Here g(R)
is the genus of that surface, that is, the number of “handles” in the
surface. Thus, while a nucleus in empty space with g(R) = 0, or a
cavity in uniform matter also with g(R) = 0, has χ = 2, a torus with
g(R) = 1 has χ = 0 and a double-torus or “pretzel” with g(R) = 2
has χ = −2.

5. Systems at n = 0.010 fm−3

At a density of 0.010 fm−3 both the system obtained
from slowly stretching, ξ̇ = 1.0 × 10−7 c/fm, and the system
obtained from constant-density equilibration exhibit only (al-
most) spherical nuclei. This is known as the “gnocchi phase”.
Meanwhile, the system stretched at a fast rate ξ̇ = 1.0 ×
10−5 c/fm exhibits spherical nuclei as well as elongated nuclei.
Finally, for the simulation without Coulomb interactions, the
single liquid phase now occupies a smaller fraction of the total
simulation volume than at a density of 0.025 fm−3. These
differences can be seen from the configurations shown in the
last row of Fig. 3.

In order to quantify some of the differences between the
low density systems we use our MST and MSTE algorithms
to determine the size of clusters present in the different
simulations at densities of n = 0.010 fm−3 and less. In Fig. 4
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FIG. 4. Mass fraction WA obtained from the MST algorithm
discussed in Sec. II C. WA is the mass fraction of the system composed
of nuclei with mass number A at a densities of 0.010 fm−3 and less
for three different runs: one from (a) stretching the box at a rate
ξ̇ = 1.0 × 10−7 c/fm, one obtained from (b) stretching the box at
ξ̇ = 1.0 × 10−5 c/fm, and, finally, one obtained from (c) letting the
system equilibrate at a constant density.
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we plot the mass fraction

WA = NAMA

Mtot
(10)

of the system that is formed by clusters with nuclear number A
obtained with the MST algorithm. Above, Mtot = ∑

A NAMA

is the total mass of the system, NA is the number of clusters
with mass number A, and mass MA = AMN . We recall that
the nucleon mass is set to MN = 939 MeV. For the stretched
systems, Figs. 4(a) and 4(b), we plot WA averaged over
configurations with densities of n = 0.010 fm−3 and less. For
the constant density run, Fig. 4(c), we plot WA averaged over
the last one-third of the run.

We now discuss the difference in results for the systems
and, in the end of this section, the results obtained from the
MSTE algorithm. First we note that, due to the classical nature
of our simulation, protons and neutrons are often knocked out
of a cluster and end up being absorbed by another cluster.
This leads to nuclei not being of constant size throughout the
simulation even though no major topological phase transition
happens at n � 0.010 fm−3.

Figures 4(a) and 4(c) show us that there is a significant
difference in the size of the spherical nuclei formed in the
slowly stretched system and in the simulation at a constant
density. While the system stretched at ξ̇ = 1.0 × 10−7 c/fm
has in its final configuration about 260 spherical nuclei with
atomic numbers in the range of A ∼ 120 to 300, the final
constant-density run configuration has about 550 nuclei mostly
in the range A ∼ 40 to 150. We note that there are barely
any free neutrons in these systems and, therefore, the mass
number and charge are related by A ∼ 5Z/2. Meanwhile, the
system stretched at a fast rate ξ̇ = 1.0 × 10−5 c/fm exhibits
about 650 nuclei in its final configuration. Figure 4(b) shows
that most of these nuclei are spherical nuclei of small to
large sizes, A from 1 to ∼300, while a few are elongated
nuclei, A � 300 (not shown). The largest nuclei for the final
configuration of the system expanded at ξ̇ = 1.0 × 10−7 c/fm
has A ∼ 1000.

As mentioned, the system obtained from stretching the box
at a slow rate has very few small nuclei A � 10, while most
have mass number in the range A ∼ 120 to 300. Also, the
nuclei form a solid-like structure, possibly a bcc lattice. One
of the planes of the lattice can be seen clearly in Fig. 5.
A reason to believe the lattice has a bcc structure is its
temperature T , average charge 〈Z〉, and the ratio κ = a/λ of
the inter-ion spacing a to screening length λ. At 0.010 fm−3 the
system has an average of 〈Z〉 � 78, temperature of 1 MeV and
inter-ion spacing a = (3/4πnion) � 16.7 fm. The ion density
nion is obtained from nion = Ypn/〈Z〉. Thus, κ � 1.67 and the
Coulomb parameter � is

� = 〈Z〉2e2

aT
� 530. (11)

According to Fig. 1 of Ref. [44] a system with these
parameters should form a bcc lattice, provided we ignore the
free energy of mixing of ions of different charges [45]. We note
here that the definitions of κ and λ in Ref. [44] are slightly
different from ours. Vaulina et al. define a = n−1/3 so our
value of κ (�) should be multiplied (divided) by a factor of

FIG. 5. (Color online) System at a density of 0.010 fm−3 obtained
from stretching the box at a rate of ξ̇ = 1.0 × 10−7 c/fm from
0.10 fm−3. The golden surfaces represent isosurfaces of charge
density with nch = 0.03 fm−3 while the cream color shows regions
such that nch > 0.03 fm−3. The system is shown at an angle that
makes it easier to see that the nuclei form some type of lattice. This
figure was generated using PARAVIEW [41].

(3/4π )1/3 in order to be compared to theirs. This, however,
does not change our conclusion.

The system obtained from a random start and evolved at
constant density also has very few small nuclei A � 10, while
most nuclei are in the range A ∼ 40 to 150; see the bottom
plot of Fig. 4. The nuclei in this sytem do not form a lattice
structure, but rather form a liquid-like structure as its average
charge 〈Z〉 = 35.7 implies a value of � � 142 and κ � 1.29.
Clear differences between this system and the one generated
from slowly stretching the box can be seen by comparing
Figs. 5 and 6. The system run at constant density forms
smaller nuclei than the slowly stretched system because of
the effects of the Coulomb barrier. From their initial random
positions nucleons start to correlate to form nuclei. However,
as they group together the charge of the nuclei they form
reaches a value that makes it increasingly difficult for other
small nuclei to merge with it. This may be a disadvantage of
treating the system classically because quantum tunneling is
neglected.

Unlike the two systems just discussed at 0.010 fm−3, the
configuration obtained from stretching the box at a rate of
ξ̇ = 1.0 × 10−5 c/fm has both several small nuclei A � 20
and some large elongated nuclei, A � 300 with a peak in
mass number of A ∼ 150, see the Fig. 4(b). This difference
arises because this system did not have enough time to
equilibrate. The large elongated nuclei have not had time to
fission into smaller nuclei. It is likely that the equilibration
time for the pasta structures shown here is much larger than
the very roughly t ≈ 100 000 fm/c time scale for significant
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FIG. 6. (Color online) System at a density of 0.010 fm−3 obtained
from an initial random configuration of protons and neutrons at the
same density. The golden surfaces represent isosurfaces of charge
density with nch = 0.03 fm−3 while the cream color shows regions
such that nch > 0.03 fm−3. The system is shown from the same angle
as Fig. 5. This figure was generated using PARAVIEW [41].

density changes in a system stretching at a rate of ξ̇ =
1.0 × 10−5 c/fm.

All of the analysis above focused solely on the size of
nucleon clusters obtained using the MST algorithm. For
completeness, in Fig. 7 we compare the results of the mass
fraction WA obtained from the MST and the MSTE algorithms
for the system expanded at a rate of ξ̇ = 1.0 × 10−7 c/fm. As
shown in Fig. 7(a) the MSTE algorithm detects a significant
fraction of very small sized nuclei, A � 5, that are not observed
by the MST algorithm. These small nuclei are mostly formed
by nucleons that are at the surface of large clusters and,
because of their large relative momenta with respect to the
overall cluster, are not seen as bound by the MSTE algorithm.
These are most likely nucleons that are in the process of being
knocked out or absorbed by a larger cluster. Another feature
observed in Fig. 7(a) is that the mass fractions WA obtained
from the MST and MSTE for large nuclei are very similar,
though the former one seems to be shifted towards large A. This
becomes clear in Fig. 7(b), when we shift the mass fraction
distribution by three nucleon units, A → A − 3. Now both
distributions seem close to identical. A ratio between the mass
fraction distributions WMST

A−3 obtained from the MST algorithm
shifted by three nucleons and WMSTE

A obtained from the MSTE
algorithm is shown in Fig. 7(c). Note that this ratio is within
10% of unity for the region that describes most of the mass
of the system, A ∼ 120 to ∼ 250. Although the results for
cluster distribution found by both algorithms are similar, the
MST algorithm yields a much better agreement to the number
of topological structures in the system given by the value of
χ . This is because some nucleons seen as free by the MSTE
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FIG. 7. (Color online) (a) The mass fractions W MST
A and W MSTE

A

obtained from the MST and MSTE algorithms discussed in Sec. II C.
WA is the percentage of the system that is composed of nuclei
with mass number A for the system stretched at a rate of ξ̇ =
1.0 × 10−7 c/fm when at a density of 0.010 fm−3 or less. (b) The
same as (a) with the mass fraction W MST

A shifted by 3 nucleon units,
A → A − 3. (c) The ratio between W MSTE

A and W MST
A−3 .

algorithm still are within the isosurface defined by n = nth that
defines the topology of the system.

6. Simulation visualizations

Movies that show charge density isosurfaces versus density
for the simulations described in the text are available online
(see Supplemental Material [46]). A description of the movies
can be found in Table VII.

7. Minkowski functionals

The evolution of the normalized mean breadth B/A and
Euler characteristic χ/A as a function of the density n for three
runs done using different stretching rates, ξ̇ = 1.0 × 10−5,
1.0 × 10−6, and 1.0 × 10−7 c/fm, are shown in Figs. 8 and
9, respectively. Also shown in these figures are the results
obtained for the constant-density runs at 0.010, 0.025, 0.050,
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TABLE VII. Description of movies of simulations described in
the text. First column lists the file names, the second one the stretching
rate of the simulation, and the third column lists the file size in MB.
Visualizations files were generated using PARAVIEW software [41].

File ξ̇ (c/fm) Size (MB)

1e-7_720.avi 1.0 × 10−7 90.8
1e-6_720.avi 1.0 × 10−6 90.8
1e-5_720.avi 1.0 × 10−5 45.8
1e-6_720_no_coulomb.avi 1.0 × 10−6a 27.9

aDoes not include the Coulomb potential.

0.075, and 0.090 fm−3 and for a stretching run with ξ̇ = 1.0 ×
10−6 and no Coulomb interactions.

First we note that, by comparing the systems that include
and do not include the Coulomb potential, it becomes clear
that it is the competition between nuclear and Coulomb forces
that gives rise to the richness of the pasta shapes. Without
this competition the shapes accessible to the pasta phase are
very limited, as noted by the small values for the normalized
Minkowski functionals for the simulation that does not include
the Coulomb potential.

We also note that systems stretched at rates ξ̇ of 1.0 × 10−5

and 1.0 × 10−6 c/fm do not have enough time to equilibrate,
so that the transitions between shapes are not as sharp as in
the system stretched at ξ̇ = 1.0 × 10−7 c/fm. If the system
is stretched slowly enough, ξ̇ = 1.0 × 10−7 c/fm, the pasta
shapes have more time to equilibrate and the transitions
between shapes are more abrupt.

In the plot shown in Fig. 8 for the normalized mean breadth
B/A we see that the faster a system is stretched the smoother
is the mean breadth dependence on the density n. For a stretch
rate of ξ̇ = 1.0 × 10−5 c/fm, B/A increases almost linearly
as the density decreases. If the expansion rate is decreased to
ξ̇ = 1.0 × 10−6 c/fm some kinks in the curve of B/A appear.
The two most prominent ones are at 0.040 fm−3, the transition

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.02 0.04 0.06 0.08 0.10

10
B

/A
(f

m
−

1
)

n (fm−3)

ξ̇ = 1.0 × 10−5c/fm
ξ̇ = 1.0 × 10−6c/fm
ξ̇ = 1.0 × 10−7c/fm

ξ̇∗ = 1.0 × 10−6c/fm
Constant Density

FIG. 8. (Color online) Normalized mean breadth B/A as a
function of the density n for three complete calculations using stretch
rates ξ̇ = 10−5, 10−6, and 10−7 c/fm and one calculation with stretch
rate ξ̇ ∗ = 10−6 c/fm ignoring Coulomb interactions. Results are
compared to five computations done at constant densities of 0.010,
0.025, 0.050, 0.075, and 0.090 fm−3.
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FIG. 9. (Color online) Lines represent the normalized Euler
characteristic χ/A as a function of the density n for three complete
calculations using stretch rates ξ̇ = 10−5, 10−6, and 10−7 c/fm and
one calculation with stretch rate ξ̇ ∗ = 10−6 c/fm ignoring Coulomb
interactions. Results are compared to five computations done at
constant densities of 0.010, 0.025, 0.050, 0.075, and 0.090 fm−3.

region from the lasagna to the spaghetti phase, and 0.015 fm−3,
the transition region from the spaghetti to the gnocchi phase.

When the expansion rate is decreased further, ξ̇ = 1.0 ×
10−7 c/fm, the kinks in the curve of B/A become even larger
and are displaced to slightly higher densities. The mean breadth
B in the region from 0.040 fm−3 to 0.060 fm−3 is close to zero
indicating that the pasta shapes have almost zero curvature in
all directions. This is characteristic of the lasagna phase as it
is formed of nearly flat sheets of nuclear matter. At a density
of 0.040 fm−3 the transition region from the lasagna to the
spaghetti phase becomes even sharper than before. Also, the
transition from the spaghetti to the gnocchi phase happens at
a higher density, 0.015 fm−3, than for the system stretched at
ξ̇ = 1.0 × 10−6 c/fm, 0.012 fm−3.

Figure 9 shows the normalized Euler characteristic χ/A as
a function of density n. We note again that the curves become
smoother as the expansion rate increases, thus showing the
system does not have time to reach equilibrium when stretched
too fast. In this plot the transitions from the spaghetti to the
gnocchi phase becomes clearer for the slowest expansion rate.
Another important thing to note is that, when looking at both
plots, it is clear that for lower densities the topologies of the
systems obtained from expansion runs do not converge to the
values obtained from the constant-density runs. This suggests
that the constant-density runs (at least) have not equilibrated.

IV. CONCLUSIONS

In this paper we studied the dynamics of pasta phase
transitions using an MD formalism to isothermally expand
nuclear matter from densities of 0.100 fm−3 to 0.010 fm−3

or less. Expansions were performed at a temperature of
T = 1 MeV and proton fraction of Yp = 0.40 using stretching
rates of ξ̇ = 10−5, 10−6, and 10−7 c/fm; see Eq. (5). These
runs were then compared to constant-density runs at densities
of 0.010, 0.025, 0.050, 0.075, and 0.090 fm−3.
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For each run we obtained the Minkowski functionals as
a function of density and learned that, for MD simulations
such as ours, the methods used to prepare the pasta alter
the resulting pasta shapes significantly. First, we noticed that
the Coulomb force is essential for the formation of pasta-like
configurations. Without the Coulomb force, the pasta shapes
are confined to small values of both the mean breadth B and
Euler characteristic χ .

When the Coulomb potential is included, we obtain pasta
configurations similar to the ones obtained by other works
using several other methods as discussed in Sec. I. These
shapes are spherical holes, cylindrical holes, sheets (lasagna),
cylinders (spaghetti), and spheres (gnocchi). However, the
geometrical shapes accessible to the pasta phases in our
simulations as well as their arrangement were dependent
on the expansion rates. In the simulation with the slowest
expansion rate, ξ̇ = 10−7 c/fm, nearly periodic structures
are formed in the gnocchi, spaghetti, and lasagna phases in
addition to the periodicity imposed by the periodic boundary
conditions. Meanwhile the pasta shapes obtained from fast
expansion rates, ξ̇ = 10−5 and 10−6 c/fm, did not exhibit any
additional translational symmetry beyond the enforced ones.
We recall here that calculations that used volumes larger than
the Wigner-Seitz cell obtained these additional translational
symmetries for the pasta shapes [12,23–26] which had not
been observed by the larger MD calculations of Horowitz
et al. [6,7,27,28].

Another point to note is that the two simulations with
fastest expansion rates have not reached equilibrium. This
can be argued from the fact that the faster the expansion
rate the longer, as a fraction of total run time, different
pasta phases coexisted. However, for the slow expansion rate,
the coexistence of pasta shapes did not last as long, as a
fraction of total run time. Thus, for fixed temperature and
proton fraction, as the expansion rate gets closer to being
quasistatic the transition between phases become more abrupt.
This suggests that the transition between different pasta phases
is first-order. The plots of B/A and χ/A for the slowest
expansion run show that the transitions between lasagna to
spaghetti and spaghetti to gnocchi phases are much sharper
than in the fast expansion runs.

The sudden changes in pasta shapes, B/A and χ/A, as the
density of the system is decreased can help us place lower
limits on the density where each pasta phase occurs. Because
of the way the system is evolved a pasta phase may be kept
in a metastable state at a lower density than it would normally
exist. By this reasoning we claim that for a proton fraction
of Yp = 0.40 and temperature T = 1 MeV the lasagna phase
occurs for densities of n � 0.040–0.060 fm−3. The spaghetti
phase occurs for densities of n � 0.018–0.40 fm−3 while the
gnocchi phase occurs below a density of 0.018 fm−3.

These simulations also set a time scale for the transition be-
tween the lasagna/spaghetti phases and the spaghetti/gnocchi
phases. The transition from gnocchi to spaghetti phase happens
in the range n � 0.0145–0.018 fm−3 and takes a time of
approximately 1 300 000 fm/c. Meanwhile, the transition from
spaghetti to lasagna phase happens at n � 0.038–0.044 fm−3,
and takes a time of approximately 600 000 fm/c.

In Ref. [26] Watanabe et al. obtained the transition time
using QMD from adiabatic compression runs starting at a
temperature of T = 0.25 MeV for the transition between the
spherical (gnocchi) and cylindrical (spaghetti) phases for a
similar proton fraction, Yp = 0.39. In their work, the transition
between these two phases happened at n � 0.040–0.045 fm−3

and the transition time was of the order of 10 000 fm/c.
This much shorter transition time may be because of the
momentum-dependent QMD interactions that may increase
the nucleon momenta in comparison to our momentum-
independent interactions. Furthermore some of the difference
in transition time may arise because the QMD simulations
were for significantly smaller systems using fewer nucleons
than the 51 200 that we use.

We also observed that constant-density runs with nucleons
initially assigned random positions exhibit some pasta-like
shapes such as cylindrical holes, cylinders, and spheres. These
runs, however, were not able to produce spherical holes and flat
sheets as the expansion runs did. It is likely that the spherical-
hole phase appears at higher density for this type of simulation
while the lasagna phase may take a very long time to form
from the initial conditions chosen. Also, for the low density
run, n = 0.010 fm−3, the Coulomb barrier and the classical
character of our simulation prevented the formation of large
nuclei.

Our simulations explicitly demonstrate nucleation mech-
anisms for each of the observed pasta phase transitions.
First spherical holes were observed to nucleate from density
fluctuations in an originally uniform system. This is very
similar to the nucleation of vapor bubbles for a conventional
liquid-gas phase transition. However, the Coulomb interaction
keeps the spherical holes from growing to very large sizes, as
occurred in our simulation without Coulomb interactions.

These spherical holes were observed to merge, with a
further decrease in density, to form cylindrical holes (“anti-
spaghetti”). Next the anti-spaghetti became cross-linked and
finally quickly merged to form the lasagna phase. As the
density was decreased still further, holes appeared in the
lasagna planes and these holes grew to convert the lasagna
into a cross-linked network of spaghetti. These holes, in the
cross-linked network of spaghetti, lead to a negative excursion
in χ/A shown in Fig. 9 near n = 0.04 fm−3 for the run with
ξ̇ = 10−7 c/fm. The cross-links disappeared at lower density
to produce isolated nearly straight spaghetti strands. Finally, at
even lower densities these spaghetti strands rapidly fissioned
to form nearly spherical nuclei.

If the transition, with changing density, from spaghetti to
spherical nuclei is reversible, then the criteria for the first
formation of nonspherical pasta phases is related to when the
spaghetti strands become unstable to fission. This depends on
the sizes of the Coulomb and surface energies. Thus pasta
formation is related to nuclear fission.

In future work we will perform simulations with even
slower expansion rates starting above saturation density to
further determine when the pasta is equilibrated. Once the pasta
is equilibrated we may study the observed low energy bending
modes of the spaghetti and lasagna shapes that may contribute
significantly to the heat capacity even at low temperatures.
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In addition, we will explore finite size effects by performing
larger simulations with more than 51 200 nucleons. Finally,
we will perform simulations with a range of smaller proton
fractions. These simulations will then be used to calculate a
variety of observables. Neutrino opacities can be determined
using the formalism in Refs. [6,7] while the bulk viscosity
may be obtained by homogeneous periodic compressions and
expansions of the system [47]. We also intend to determine
the shear modulus and breaking strain of the pasta phases by
observing the response of the system to deformations of the
simulation volume.
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