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We calculate thermal conductivity and shear viscosity of nucleons in the dense nuclear matter of neutron star
cores in the nonrelativistic Brueckner-Hartree-Fock framework. The nucleon-nucleon interaction is described
by the Argonne v18 potential with addition of the Urbana IX effective three-body forces. We find that this
three-body force leads to a decrease of the kinetic coefficients with respect to the two-body case. The results
of calculations are compared with electron and muon transport coefficients as well as with the results of other
authors.
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I. INTRODUCTION

Kinetic coefficients of neutron star cores are important
ingredients in modeling various processes in neutron stars. As
the most dense stars in the Universe (with densities exceeding
nuclear density ≈2.8 × 1014 g/cm3) neutron stars are widely
considered as unique laboratories for studying properties of
superdense matter under the extreme conditions unavailable
in terrestrial laboratories. Due to this reason studies of neutron
stars attract constant interest.

It is believed that a neutron star consists of the dense core
filled with uniform asymmetric nuclear matter surrounded by a
thin crust (for example, [1]). The outer part of the core contains
neutrons with a small admixture of protons, and electrons and
muons as charge-neutralizing components. The equation of
state and composition of the inner parts of neutron stars are
poorly known. The different possibilities, apart from nuclear
matter, are a hyperon core, kaon or pion condensates, or a
quark core. It is possible that all or some neutron stars are
in fact so-called strange stars containing self-bound strange
quark matter.

In what follows we restrict ourselves to the simplest model
of the nucleon neutron star core which consists of neutrons (n),
protons (p), electrons (e), and muons (μ). The nuclear matter
is in an equilibrium state with respect to β processes, which is
commonly called β-stable nuclear matter.

In the present paper we consider shear viscosity and
thermal conductivity of the neutron star cores. The thermal
conductivity is needed for modeling thermal structure and
evolution of such stars. It is especially important for studying
the cooling of young neutron stars (age �100 yr) in which
internal thermal relaxation is not yet complete (e.g., [2,3]).
Shear viscosity is important for studying the decay of the
oscillations of neutron stars and the stability of rotating stars
(e.g., [4]).

The diffusive kinetic coefficients are governed by particle
collisions. The first detailed studies of the kinetic coefficients
in neutron star cores were made by Flowers and Itoh [5].
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They considered n-p-e matter, taking into account collisions
between all particle species. Flowers and Itoh constructed
the exact solution of the multicomponent system of transport
equations. The small amount of protons and small magnitude
of the electron-neutron interaction led to the conclusion
that the kinetic coefficients can be split into two almost
independent parts—neutron kinetic coefficients mediated by
nucleon-nucleon collisions and electron kinetic coefficients
mediated by the collisions between charged particles; the
proton kinetic coefficients are small. The up-to-date electron
and muon contribution to kinetic coefficients of neutron star
cores was calculated by Shternin and Yakovlev in [6] (for
thermal conductivity) and in [7] (for shear viscosity). Here we
will focus on the neutron kinetic coefficients.

Flowers and Itoh [5] based their calculations on the free
nucleon scattering amplitudes, which were derived from
the experimentally determined phase shifts. They neglected
Fermi-liquid effects and nucleon many-body effects. The
results of Flowers and Itoh [5] were later reconsidered in
Refs. [7–9]. In later works it was assumed that the main
medium effects are incorporated in the effective masses, while
the free-space nucleon potential was used.

However, in strongly interacting dense matter many-body
effects play a significant role. These effects in the context
of transport coefficients of pure neutron matter were first
addressed in Refs. [10,11]. In Ref. [10] an attempt at a
consistent many-body consideration of the kinetic coefficients
on the basis of Fermi-liquid theory was made. The authors of
Ref. [11] used the concept of the thermodynamical T matrix,
neglecting Fermi-liquid effects.

A decade later medium modifications of the neutron
star matter transport coefficients were reconsidered in
Refs. [12–15] on the basis of modern realistic nucleon
interactions. Different approaches were used. In Ref. [12] the
correlated basis function (CBF) formalism was incorporated
to obtain the shear viscosity of pure neutron matter. Later the
same group [15] compared the transport coefficients obtained
from the CBF formalism and the Brueckner-Hartree-Fock
(BHF) G-matrix formalism in pure neutron matter and found
good agreement between the results of the two approaches;
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Carbone and Benhar [13] used the CBF formalism to calculate
transport coefficients of β-stable nuclear matter, which is
directly related to the neutron star properties. Zhang et al. [14]
calculated the transport coefficients in the framework of the
BHF theory.

The general result of Refs. [12–15] is that medium effects
strongly increase the values of kinetic coefficients.

In the present paper we reconsider the problem of the
nucleon kinetic coefficients in dense mater in β equilibrium in
the BHF framework. Generally, our approach is similar to that
used by Zhang et al. [14]. The difference within the approaches
will be emphasized below.

The paper is organized as follows. We start by outlining
the formalism for calculating the kinetic coefficients in a
multicomponent Fermi liquid (Sec. II). In Sec. III we discuss
the adopted model of the nucleon interaction and calculate the
in-medium nucleon-nucleon cross sections. We discuss the
results and compare them with those of other authors in
Sec. IV. Our conclusions are presented in Sec. V.

II. KINETIC COEFFICIENTS

Let us shortly describe the expressions needed to obtain
the kinetic coefficients. The transport properties of strongly
interacting matter are customary described in the framework
of Landau Fermi-liquid theory (e.g., [16]). Consider a mul-
ticomponent Fermi liquid which consists of quasiparticles
of different species c with distribution functions Fc(pc),
where pc is the quasiparticle momentum. In equilibrium, the
quasiparticle distribution functions are given by the Fermi-
Dirac function

Fc(pc) = fc(pc) =
[

1 + exp

(
εc(pc) − μc

kBT

)]−1

, (1)

where εc(pc) is the quasiparticle energy, μc is its chemical
potential, T is the temperature, and kB is the Boltzmann
constant. When perturbations, such as gradients of temperature
or a hydrodynamical velocity V, are applied to the system, the
distribution functions start to deviate from the equilibrium
ones. It is convenient to present a perturbed distribution
function in the form

Fc = fc − �c

∂fc

∂εc

, (2)

where functions �c describe this deviation. These functions
depend on quasiparticle quantum numbers and on the type
of perturbation applied to the system. In order to find �c

one solves a multicomponent system of linearized kinetic
equations, which has the following form for the problems of
thermal conductivity κ and shear viscosity η:

κ: (ε1 − μ1)v1∇T/T

η:
(
v1αp1β − 1

3δαβv1p1
)
Vαβ

}
∂f1

∂ε1
=

∑
i

Ici(12; 1′2′), (3)

where v1 is the quasiparticle velocity and Vαβ is the rate of
strain tensor. The latter tensor is defined as [17]

Vαβ = 1

2

(
∂Vα

∂xβ

+ ∂Vβ

∂xα

)
, α, β = x, y, z, (4)

where it is assumed that divV = 0. The right-hand side in
Eq. (3) contains the sum of the linearized Boltzmann collision
integrals describing collisions of quasiparticles of species c
and i:

Ici = 1

(1 + δci)kBT

∑
σ1′σ2σ2′

∫∫∫
dp1′dp2dp2′

(2πh̄)9
wci(12; 1′2′)

×f1f2(1 − f1′ )(1 − f2′ )(�1′ + �2′ − �1 − �2), (5)

where wci(12; 1′2′) is the differential transition rate. Here
by labels 1 and 2 we, as usual, denote quasiparticle states
before collisions, while the labels with primes correspond
to the final states. Once the functions �c are found, the
thermal conductivity and shear viscosity are obtained from
the expressions for the heat current and the dissipative part
of the stress tensor, respectively. These coefficients can be
written as

κc = π2T ncτ
(κ)
c

3m∗
c

, (6)

ηc = ncp
2
Fcτ

(η)
c

5m∗
c

, (7)

where nc is the number density of particles of species c, m∗
c

is their effective mass at the Fermi surface, and we introduce
effective relaxation times τ (κ)

c and τ
(η)
c , which are determined

by �c functions.
In the limit of low temperatures, all quasiparticles can be

placed on the Fermi surface where possible. In addition is it
assumed that the transition probability is independent of the
energy transferred in the collision event. The exact solution
of the kinetic equation for a one-component Fermi liquid in
the form of a rapidly converging series was constructed by
Brooker and Sykes [18,19] and Højgård Jensen et al. [20].
For a multicomponent system the exact solution was given
by Flowers and Itoh [5]. Later this approach was further
developed in Ref. [21]. However, in order to study the general
behavior of kinetic coefficients it is enough to employ a much
simpler variational solution of the system of kinetic equations
and introduce correction factors needed to obtain the exact
solution. Mathematically, a variational solution corresponds to
the first term in the series expansion of the full solution [16].
Below we show that for nuclear matter the difference between
exact and variational solutions is of the order of 20% for
thermal conductivity and less than 5% for shear viscosity.

Now let us present the expressions for a simple variational
solution of Eqs. (3)–(5) for neutron-proton matter. Below
we closely follow the formalism of Refs. [7,8]. In this
approximation the effective relaxation times are obtained from
the 2 × 2 system of algebraic equations∑

i=n,p

νciτi = 1, c = n, p, (8)

where effective collision frequencies νci are expressed in terms
of some effective cross sections. For thermal conductivity one
writes [8]

ν
(κ)
ci = 64m∗

cm
∗2
i (kBT )2

5m2
Nh̄3 Sκci, (9)
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while for shear viscosity one obtains [7]

ν
(η)
ci = 16m∗

cm
∗2
i (kBT )2

3m2
Nh̄3 Sηci, (10)

where mN is the bare nucleon mass.
The quantities Sκci and Sηci with the dimension of area

are the effective cross sections given by angular averaging
of the transition probability with the corresponding angular
weight functions. Due to momentum conservation and the
fact that all quasiparticles are placed on the Fermi surface,
the relative positions of the four momenta (two initial and
two final) involved in the collision are determined only by
two angles. Therefore the transition probability depends on
two angular variables. In Fermi-liquid theory, traditionally,
so-called Abrikosov-Khalatnikov angles are used. However,
they are not so convenient when dealing with collisions of
particles of different kind [21]. It is possible to use any two
variables which are suitable for a given problem and which
fix the relative positions of momenta. Instead of Abrikosov-
Khalatnikov angles we selected transferred momentum q (q =
p′

1 − p1) and total colliding pair momentum P (P = p1 + p2).
It turns out that this choice is most convenient for the BHF
calculations. We note that the variable q is connected with the
c.m. scattering angle θc.m. as

cos θc.m. = 1 − q2

2p2
, (11)

where p is the absolute value of the colliding pair c.m.
momentum p ≡ (p2 − p1)/2. At the Fermi surface the latter is
connected with P via the relation 4p2 + P 2 = 2(pFc + pFi).

By utilizing these variables, the effective cross sections Sci

are

Sκcc = m2
N

128π2h̄4p3
Fc

∫ 2pFc

0
dP

×
∫ qm(P )

0
dq

(
4p2

Fc − P 2
)

√
q2

m − q2
Qcc(P, q), (12)

Sκci = m2
N

128π2h̄4p3
Fc

∫ pFc+pFi

|pFc−pFi|
dP

×
∫ qm(P )

0
dq

(
4p2

Fc + q2
)

√
q2

m − q2
Qci(P, q), c �= i, (13)

Sηcc = 3m2
N

128π2h̄4p5
Fc

∫ 2pFc

0
dP

×
∫ qm(P )

0
dq

q2
(
4p2

Fc − P 2 − q2
)

√
q2

m − q2
Qcc(P, q), (14)

Sηci = 3m2
N

128π2h̄4p5
Fc

∫ pFc+pFi

|pFc−pFi|
dP

×
∫ qm(P )

0
dq

q2
(
4p2

Fc − q2
)

√
q2

m − q2
Qci(P, q), c �= i, (15)

where

q2
m(P ) = 4p2

Fcp
2
Fi − (

p2
Fc + p2

Fi − P 2
)2

P 2
(16)

is the square of the maximum possible momentum which can
be transferred in a collision at a given value of P . In the case
of collisions of identical particles (when pFc = pFi), Eq. (16)
reduces to the much simpler relation qm = 2p, and θc.m. ranges
from 0 to π for any P . In the general case, there exists a
global maximum c.m. scattering angle which is realized when
p ⊥ P. This maximum angle can be found from the relation
tan θmax

c.m. /4 = pFi/pFc.
Note that here we slightly changed the definition of Ref. [7],

by doubling Sηci in Eq. (15) and correspondingly saving a
factor of 2 in Eq. (10).

The quantities Qci in Eqs. (12)–(15) are the squared
matrix elements of the transition amplitude, summed over
spin variables Qci = 1/4

∑
spins |〈12|T |1′2′〉|2 [8], where the

momentum-conserving delta function is already taken out.
More precisely, it is connected to the differential transition
rate by the expression∑

spins

wci(12; 1′2′)

≡ 4
(2π )4

h̄
δ(ε1 + ε2 − ε1′ − ε2′ )δ(P − P′)Qci . (17)

Let us stress at this point that the averaged transition probabil-
ity W commonly used in Fermi-liquid theory [16] is given by
W = πQci .

If the quantities Qci are known, then the expressions
(6)–(15) are sufficient for calculating the kinetic coefficients
in the variational approximation. We have also calculated
the exact solution by solving the system of kinetic equations
numerically.

III. TRANSITION PROBABILITY
IN BRUECKNER THEORY

Two central ingredients needed for the transport theory
are the squared quasiparticle transition amplitude Qci [or
wci(12; 1′2′)] and the quasiparticle effective mass m∗

c . In what
follows we obtain both these quantities in the framework of
the nonrelativistic Brueckner-Hartree-Fock approximation.

A. Brueckner-Hartree-Fock approximation

Brueckner theory proved itself as one of the most successful
approaches for treating many-body effects in constructing
the equation of state of nuclear matter. The concept of the
Brueckner G matrix is described elsewhere (e.g., [22]). Here
we outline it briefly, focusing on the explicit expressions
used. Within this approach the infinite series of certain terms
(diagrams) in the perturbation expansion for the total energy of
the system is encapsulated in the so-called G-matrix operator
to be used then instead of the bare nucleon interaction in
the remaining terms (with care taken for double counting of
the same contributions). The main advantage of the G-matrix
approach is that G-matrix matrix elements do not diverge,
as could happen when using a bare nucleon potential. In the
total angular momentum (partial wave) representation the G
matrix depends on the nucleon pair total momentum P , spin
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S, and angular momentum J . All these quantum numbers are
conserved during the interaction. In addition, the G matrix
depends on the c.m. momentum and the orbital momentum of
the pair before (p, l) and after (p′, l′) interaction, respectively,
and is not diagonal in these variables. Finally, the G matrix
depends on the type of collision α (nn, np, or pp) or,
equivalently, on the total isospin projection onto the z axis
in isospin space.

The G matrix is determined from the Bethe-Brueckner-
Salpeter equation, which in the J lS representation reads

GαJS
ll′ (P, p, p′; z) = V αJS

ll′ (p, p′)

+
∑
l′′

∫
k2dkV αJS

ll′′ (p, k)
Q(P, k)

z − E(P, k)

×GαJS
l′′l′ (P, k, p′; z), (18)

where V αJS
ll′ (p, p′) is the matrix element of the bare nucleon

potential, and Q(P, k) and E(P, k) are the Pauli operator and
energy of the nucleon pair, respectively, both averaged over the
direction of the total momentum P. It can be shown that the
use of angle-averaged operators here is a good approximation
[23,24]. The parameter z in Eq. (18) is the so-called starting
energy, which originates from the energy denominators of the
perturbation expansion.

The particle spectrum in Brueckner theory is given by

ε(p) = p2

2mN

+ U (p), (19)

where U (p) is the auxiliary self-consistent potential. Origi-
nally, this potential was selected to be zero above the Fermi
surface p > pF and to be determined self-consistently below
the Fermi surface by the expression

U (p1) =
∑

p2<pF2

〈12|G(z = ε1 + ε2)|12〉A, (20)

where |12〉A means that the wave function is properly antisym-
metrized. It was shown, however, that the so-called continuous
choice of the single-particle potential, which is given by
Eq. (20) also above the Fermi surface (p1 > pF1), minimizes
the contribution from the three-hole lines diagrams (the next
terms in the cluster expansion for the total energy) [25]. We
will adopt the continuous choice of U (p) throughout the paper.
The final result of the BHF approximation is the expression
for the total energy per nucleon:

E/A=Ekin + 1

2

∑
α

∑
p1<pF1;p2<pF2

〈12|Gα(z = ε1 + ε2)|12〉A,

(21)

where Ekin is the kinetic energy part. In Eq. (21) the summation
is carried our over all nucleon Fermi seas.

The BHF approximation is generated by the bare two-body
interaction VNN. It is well known that there exist essential three-
body nucleon interactions VNNN (which cannot be reduced to
the two-body ones). The three-body interactions are required
to obtain the correct binding energies of few-body systems
as well as the correct position of the symmetric nuclear
matter saturation point. The three-body interaction is included

in the BHF equations by means of an effective two-body
interaction V

(3)
NN, which results from averaging of VNNN over

the third particle. It was argued that the contribution from
the three-body potential should be introduced in different
forms (with different symmetry factors) into Eqs. (21) and (20)
[26,27]. However, we follow the method of Refs. [28–35] and
assume that the three-body forces arise from the inclusion of
non-nucleonic degrees of freedom. The force is reduced to a
density-dependent two-body force by averaging on the nucle-
onic line along which such degrees of freedom are excited. The
average is weighted by the probability of the particle to be at a
given distance from the other two particles. This probability is
calculated at the two-body level, and it takes into account the
effect of antisymmetry and Pauli blocking, as well as of the
repulsive core, which forces the probability to be vanishingly
small at short distance. In this way only the two particles are
equivalent and of course they are then antisymmetrized. The
criticism of Refs. [26,27] on the symmetry factors, needed
at the Hartree-Fock level, looks to be not pertinent for this
scheme. Furthermore, the procedure avoids possible double
counting in the self-consistent procedure for the single-particle
potential.

The question can be raised whether one should go beyond
the standard BHF approximation and include higher order
terms in the expansion of the single-particle potential: so-
called rearrangement terms. However, this would require a
careful reconsideration of the equation of state. In fact, ac-
cording to the Bethe-Brueckner-Goldstone (BBG) expansion,
additional contributions to the single-particle potential require
an accurate examination of the higher order terms beyond
BHF, at least of the three hole-line diagrams (see, e.g.,
Refs. [36–39] and references therein). It has to be stressed
that the present BHF equation of state is compatible with the
known phenomenological constraints [39].

In the described context, nuclear matter in the BHF
approximation with a continuous choice of the single-particle
potential can be understood as a Fermi sea of “particles” placed
in a self-consistent field U (p). These “particles” have the
momentum-dependent (and density-dependent) effective mass

m∗(p) =
(

1

p

dε(p)

dp

)−1

, (22)

and their scattering is governed by the Brueckner G matrix.
In our calculations we do not distinguish between the quasi-
particles of Fermi-liquid theory (Sec. II) and these “particles”
in the vicinity of the Fermi surface. Correspondingly, we will
use m∗(pF ) as the quasiparticle effective mass and the on-shell
G matrix at the Fermi surface as the quasiparticle scattering
amplitude.

B. Transition probability

It is straightforward to derive the expression for the spin-
averaged squared matrix elements Qci in Eq. (17) from the
G-matrix matrix elements in the J lS representation. The
quantitiesQci depend on two angular variables (Sec. II), and in
this representation they are naturally expanded in the Legendre
polynomials PL(cos θc.m.) of the cosine of the c.m. scattering
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angle θc.m.:

Qci(q, P ) =
∑

L

Q(L)
ci (P )PL(cos θc.m.). (23)

Applying standard angular momentum algebra leads to the fol-
lowing expression for the coefficients in the above expansion:

Q(L)
ci (P ) = 1

16π2

∑
i�

′−�+�̄−�̄′
���′ �̄�̄′�2

J J̄

×CL′0
�′0�̄′0C

L0
�0�̄0

{
�̄ S J̄

J L �

} {
�̄′ S J̄

J L �′

}

×GJS
��′ (P, p, p; z)

(
GJ̄S

�̄�̄′ (P, p, p; z)
)∗

, (24)

where terms in curly brackets are 6j symbols, CL0
�0�̄0 is the

Clebsch-Gordan coefficient, �ab ≡ √
(2a + 1)(2b + 1), and

the summation is carried out over all angular momenta and spin
variables, except L. The G-matrix amplitudes GJS

��′ (P, p, p; z)
(where collision type index α = ci is omitted for brevity)
must be taken on shell [z = ε(p)] and on the Fermi surface.
This ensures that they depend only on the P variable. For
the collisions of like particles, an additional symmetrization
factor

[1 − (−1)S+�+1][1 − (−1)S+�̄+1] (25)

should be included in Eq. (24) to account for the interference
between indistinguishable scattering channels 12 → 1′2′ and
12 → 2′1′.

Once the Bethe-Brueckner-Salpeter equation (18) is solved
and matrix elements GJS

��′ are found, the effective cross sections
Sci and, therefore, the kinetic coefficients are obtained by
introducing Eqs. (23) and (24) in Eqs. (12)–(15). Note that the
integration over q in these expressions can be done analytically,
leaving one with a single numerical integration over P
(see Appendix A).

C. In-medium cross section

It is common to illustrate the many-body effects on
particle collisions by calculating the in-medium cross section.
However, the in-medium cross section is not a very well
defined quantity. The reason is that Pauli blocking invalidates
the usual form of the optical theorem for the in-medium
scattering matrix. In order to construct the correct in-medium
unitary relations a generalized density of states which includes
Pauli blocking should be used [40]. In addition, the cross
section depends on the motion state of the colliding pair
with respect to the medium. To avoid these complications it is
customary to use effective cross sections defined in a certain
way (see, for example, [41]). In the context of transport theory
all particles are placed on the Fermi surface. It is clear that the
inclusion of Pauli blocking in the outgoing channel will lead
to zero cross section at T = 0 (due to diminishing phase space
for the collision). Therefore the differential in-medium cross
section (for the unpolarized scatterers) can be defined as

dσci

d�c.m.

≡ m∗2
ci

16π2h̄4 Qci , (26)

taken at the Fermi surface. This definition includes the effect
of Pauli blocking in the intermediate states only. In addition,
the reduced effective mass m∗

ci describes the in-medium
phase-space modification. The reduced effective mass is
defined as

m∗
ci = 2m∗

cm
∗
i

m∗
c + m∗

i

. (27)

A more rigorous definition would have come from the depen-
dence of the total energy of the pair, ε(p) = εc(p1) + εi(p2),
on the pair c.m. momentum p [40]:

m∗
ci =

(
1

2p

dε

dp

)−1

. (28)

This definition coincides with Eq. (27) in the case when the
momenta of the colliding particles are equal and differs from
it otherwise. For simplicity we will always use Eq. (27).

Similarly, we define the (effective) total in-medium cross
section as

σci = 1

1 + δci

∫
(4π)

d�c.m.

dσci

d�c.m.

, (29)

where the factor in front of the integration takes into account
double counting of the final states in the case of like particles.

Note that while Eqs. (23) and (24) are formally defined
for all values of θc.m., there exists a maximum possible
c.m. scattering angle leaving particles on the Fermi surface
[see Eq. (16)]. All values of the scattering angle are possible
only in the particular case of particles with the same Fermi
momenta. Therefore the total cross section given by Eq. (29)
should be treated with caution.

IV. RESULTS AND DISCUSSION

In our calculations we use the full Argonne v18 two-body
potential [42], which is designed to accurately reproduce
the experimental nucleon scattering phase shifts. When con-
sidering proton-proton scattering the electromagnetic part is
ignored. The effective three-body interaction is based on
the Urbana [43,44] model. The parameters of the Urbana
interaction are adjusted to give the correct value of the
symmetric nuclear matter saturation point. Particularly, we
use the Urbana IX version of this three-body interaction.

The Bethe-Brueckner-Salpeter equation with this input was
solved numerically in an iterative process of obtaining a self-
consistent potential until convergence was reached. Below we
present the results of calculations, paying separate attention to
the effects of the inclusion of three-body forces on the kinetic
coefficients.

A. Energy and in-medium cross sections

To begin with, we calculate the total energy per nucleon of
nuclear matter, E/A, in our model. It is shown in Fig. 1 as a
function of baryon density. Energies calculated for symmetric
nuclear matter and pure neutron matter are shown by solid and
dashed lines, respectively. In both cases the results calculated
with two-body forces only are shown with thin lines in
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FIG. 1. (Color online) Energy per nucleon in dense matter as
a function of baryon density for three states of nuclear matter:
symmetric nuclear matter (SNM, solid lines), pure neutron matter
(PNM, dashed lines), and β-stable nuclear matter (BSM, dash-dotted
line). Thick lines are calculated including two-body and three-body
nucleon interactions, while thin lines are obtained using two-body
forces alone. Circles show positions of the saturation points on the
SNM curves; the experimental position of the saturation point is given
by a filled rectangle.

Fig. 1. The filled area shows the experimental position of the
saturation point of symmetric nuclear matter. The calculated
positions of the saturation point, which are the minima on the
symmetric nuclear matter energy curves, are shown by small
circles. Thus Fig. 1 illustrates the well-known conclusion that
two-body forces alone do not produce a correct saturation
point.

The proton fraction in β-stable nuclear matter can be
obtained by utilizing the quadratic approximation for the
energy per nucleon,

E = E0 + Sb(1 − 2xp)2. (30)

This approximation is known to be very accurate up to xp = 0.
The proton fraction resulting from our calculations is shown
in Fig. 2 with a solid line. The dashed line in the same figure
corresponds to the proton fraction obtained with two-body
forces only. It is seen that inclusion of three-body forces
increases the proton fraction. In what follows in all calculations
(including those which are referred to as “two-body alone”)
we always use xp obtained with both two-body and three-body
forces. The energy per nucleon corresponding to this proton
fraction is shown in Fig. 1 with a dash-dotted curve.

The effective masses at the Fermi surface are calculated
in accordance with Eq. (22). It turns out that the numerical
differentiation of the single-particle potential produces some
fluctuations in the dependence of the effective masses with
density. We thus interpolated the numerical values by smooth
functions of density within 2% accuracy. The values obtained
in this way are shown in Fig. 3. The neutron effective masses as
a function of density for β-stable, symmetric, and pure neutron

FIG. 2. Proton fraction in β-stable nuclear matter as a function of
baryon density. The dashed line shows results obtained with two-body
forces only.

matter are shown with solid, short dashed, and dot-dashed
lines, respectively. The dashed lines show the proton effective
mass in β-stable nuclear matter. The thin lines correspond to
the results obtained with the two-body interaction alone. We
see that the medium effects generally decrease the effective
masses from the bare value, but inclusion of the three-body
forces significantly increases the effective masses with respect

FIG. 3. (Color online) Effective masses at Fermi surfaces for three
states of nuclear matter. Thin lines are obtained with two-body forces
alone, while thick lines are calculated including two-body and three-
body contributions. Solid, short dashed, and dot-dashed lines show
m∗

n in BSM, SNM, and PNM, respectively, while longer dashed lines
show m∗

p in BSM.
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FIG. 4. (Color online) Differential neutron-neutron cross sections as a function of the c.m. angle at density ρ = 0.35 fm−3 and c.m.
energy Ec.m. = 75 MeV in symmetric nuclear matter (a), pure neutron matter (b), and β-stable nuclear matter (c). Dash-dotted lines show the
free-space cross sections. Solid lines are calculated with two-body and three-body interactions; dashed lines show the results of calculations
with a two-body potential only. Thin lines correspond to the m∗ = 1 case.

to the two-body level. Different results were obtained by
Zhang et al. [14,45], who included an additional rearrangement
contribution to the effective mass. The authors report that this
term, resulting mainly from the strong density dependence
of the effective three-body force V

(3)
NN, leads to a significant

decrease of the effective masses. In what follows we do not
include the rearrangement contribution (see the discussion in
Secs. III A and IV C).

Now we turn to the in-medium cross sections calculated
in accordance with Eqs. (26) and (29). The cross sections are
parametrized by the quantity Ec.m. ≡ p2/mN , which would
be the c.m. energy in free space. As an example we selected
a density value of ρ = 0.35 fm−3, approximately twice the
nuclear saturation density.

In Figs. 4(a), 4(b), and 4(c) we show the neutron-neutron
differential cross section as a function of the c.m. scattering
angle for symmetric nuclear matter, pure neutron matter,

and β-stable nuclear matter, respectively. In each panel the
free-space cross section is shown by a dot-dashed line. Thick
dashed lines show the cross sections obtained with the two-
body potential only. These cross sections are smaller than the
free ones. The in-medium suppression is higher in symmetric
nuclear matter than in either pure neutron matter or β-stable
neutron matter. The thin lines in Fig. 4 show the cross sections
obtained from Eq. (26) with a bare nucleon mass used in place
of the effective mass. Comparison between thin and thick lines
shows that it is the effective mass that is responsible for the
suppression of the cross section. The situation changes when
three-body forces are included (solid curves in Fig. 4). The
inclusion of three-body forces increases the cross sections
from the two-body level. making them comparable to and
even higher than the free-space cross sections. The situation is
qualitatively similar for the neutron-proton cross section. The
latter is shown in Figs. 5(a) and 5(b) for symmetric nuclear

FIG. 5. (Color online) Differential neutron-proton cross sections as a function of the c.m. scattering angle at density ρ = 0.35 fm−3 and
c.m. energy Ec.m. = 75 MeV in symmetric nuclear matter (a) and β-stable nuclear matter (b). Notations are the same as in Fig. 4.
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FIG. 6. (Color online) Differential neutron-neutron (a) and neutron-proton (b) cross sections as a function of the c.m. scattering angle at
density ρ = 0.35 fm−3 and c.m. energy Ec.m. = 75 MeV in different states. Dot-dot-dashed lines show the free-space cross section. Solid lines
correspond to β-stable nuclear matter, dashed lines to symmetric nuclear matter, and dot-dashed lines to pure neutron matter. Thin lines show
the results obtained with a two-body potential alone.

matter and β-stable nuclear matter, respectively. Trivially,
there is no np cross section in pure neutron matter.

Zhang et al. [14,45], in contrast, found that inclusion of
three-body forces decreases the in-medium cross section from
the two-body level. There are two main reasons for this. First,
the three-body force used by the authors of Refs. [14,45] differs
from ours. We have checked that the inclusion of the three-
body force of that type indeed decreases the cross section.
However, the three-body force model used in [14,45] faces
some difficulties in reproducing the saturation point [35,46].
The second reason is because of the different approaches to the

effective masses. The strong decrease of the effective masses
due to rearrangement term leads to a corresponding decrease
of the in-medium cross sections.

In Fig. 6 we compare the in-medium cross sections in
matter with different nuclear asymmetry. Neutron-neutron
cross sections are shown Fig. 6(a), and neutron-proton ones in
Fig. 6(b). Double dot-dashed lines show the free-space cross
sections. Dot-dashed, dashed, and solid lines are for PNM,
SNM, and BSM, respectively. Thin lines show the two-body
results. We see that the in-medium nn cross sections in pure
neutron matter and β-stable neutron matter are close. The

FIG. 7. (Color online) Total neutron-neutron (a) and neutron-proton (b) cross sections at density ρ = 0.35 fm−3 as a function of c.m. energy
Ec.m. in different states. Notations are the same as in Fig. 6.
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reason for that is the small proton fraction xp. However, this
does not necessarily mean that the kinetic coefficients in PNM
and β-stable matter will be close (see below).

Finally, in Fig. 7 we plot the total neutron-neutron
[Fig. 7(a)] and neutron-proton [Fig. 7(b)] cross sections,
calculated in accordance with Eq. (29). Line styles are the same
as in Fig. 6. Both neutron-neutron and neutron-proton cross
sections are suppressed by in-medium effects at smaller values
of Ec.m. (or, equivalently, c.m. momentum p) and become
higher than the free-space cross sections at higher values
of energy. Note that the neutron-proton total cross section
in Fig. 7(b) makes sense only for symmetric nuclear matter
(recall the discussion in Sec. III C).

B. Transport coefficients

Figures 8 and 9 show the neutron shear viscosity and ther-
mal conductivity, respectively, in β-stable nuclear matter. Both
quantities are given by temperature-independent combinations
ηT 2 and κT . The results of full calculations, including two-
body and three-body forces, are shown by solid lines. Note that
here the exact solutions of the corresponding systems of kinetic
equations are presented. The results obtained neglecting the
three-body contribution are given by dash-dotted lines in
Figs. 8 and 9, and the results of free-space calculations are
given by thin solid lines. The behavior of shear viscosity
and thermal conductivity is similar. We find that in-medium
effects on the two-body level increase the kinetic coefficients,
while inclusion of the Urbana IX three-body force works in

FIG. 8. (Color online) Shear viscosity of neutrons vs density in β-
stable nuclear matter. The solid line is calculated including all effects
discussed in the text. The dash-dotted line represents the contribution
of two-body forces alone. The thin solid line shows the free-space
result, while the dashed line is for free-space matrix elements, with
inclusion of in-medium effective masses. Lines marked eμ show
the electron and muon contribution for three values of temperature
T = 107, 108, and 109 K (with the logarithm of temperature noted
near the curves).

FIG. 9. (Color online) Thermal conductivity of neutrons vs
density in β-stable nuclear matter. Notations are the same as in Fig. 8.

the opposite direction, reducing the values back close to the
free-space results. To track the effect of effective mass we
also plot in Figs. 8 and 9 the results of calculations with
in-medium effective masses but free-space scattering matrix
elements. These curves extend considerably higher than the
results of full calculations. Therefore, the in-medium effects
on the scattering matrix are as important as the effects of
effective mass. In addition, in Figs. 8 and 9 we plot the
electron and muon shear viscosity ηeμ and κeμ, respectively,
in accordance with Refs. [6,7]. These quantities have a
nonstandard temperature dependence (ηeμ ∝ T −5/3 and κeμ ∝
T −1 in the leading order); therefore, the combinations ηeμT 2

and κeμT are no longer temperature independent [6,7]. We
consider three values of temperature: T = 107, 108, and 109 K,
where the value of log10 T [K] is shown near the corresponding
curves. We see that neutron shear viscosity in our model
is much smaller than the electron and muon one for all
densities and temperatures of consideration. This is due to the
suppression effect of three-body forces. Our result contradicts
the results of other authors [12,14,15]. This issue will be
discussed separately below. For the thermal conductivity, the
situation is opposite. The relation κn � κeμ is valid for all
temperatures, except for the highest T ∼ 109 K where neutron
and electron-muon contributions become comparable.

In Figs. 8 and 9 the results of the exact solution of the
2 × 2 system of kinetic equations for the neutron-proton
subsystem are presented. It is instructive to compare the
exact solution to simpler variational calculations which solve
a simpler algebraic system (8). This is done in Fig. 10,
where the ratio between exact and variational solutions is
given by a thick solid line for κ and a thin solid line for
η, respectively. We see that it is enough to employ simple
variational expressions with correction factors Cκ = 1.2 and
Cη = 1.05. In the same figure with dash-dotted lines we
compare the exact result with the variational approximation
in which only protons are considered as scatterers. In this case
the 2 × 2 system (8) reduces to one equation for the neutron
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FIG. 10. (Color online) Ratio between exact and variational
values of the kinetic coefficients (solid lines). Thick lines are for
thermal conductivity, while thin lines are for shear viscosity. Dashed
lines show the relative contribution of protons. Dash-dotted lines give
the ratio between the exact values and those obtained in the variational
approximation with only neutrons as carriers.

effective relaxation time. In this case the correction coefficients
are higher. Finally, we investigate the proton contribution to
the kinetic coefficients by plotting the ratios (ηn + ηp)/ηn and
(κn + κp)/κn with thin and thick dashed lines, respectively.
It is clear that the proton contribution to shear viscosity can
always be neglected. For the thermal conductivity the proton
contribution can reach 15% at the highest considered density
and can be included in the calculations.

Finally, in Figs. 11 and 12 the total thermal conductivity
κn + κp and shear viscosity ηn + ηp, respectively, are plotted
for three states of matter: pure neutron matter, symmetric

FIG. 11. (Color online) Total thermal conductivity (κn + κp) as a
function of density for pure neutron matter (dash-dotted curves),
symmetric nucleon matter (dashed curves), and β-stable nucleon
matter (solid curves).

FIG. 12. (Color online) Total shear viscosity (ηn + ηp) as a
function of density for pure neutron matter (dash-dotted curves),
symmetric nucleon matter (dashed curves), and β-stable nucleon
matter (solid curves).

neutron matter, and β-stable neutron matter. We see that even
a small amount of protons (as occurs in β-stable matter;
see Fig. 2) leads to a considerable reduction of kinetic
coefficients. This effect is more pronounced for thermal
conductivity (Fig. 11). This means that the neutron-neutron
collision frequencies and neutron-proton collision frequencies
are comparable despite the low proton fraction. The reason
for that lies in the different kinematical restrictions for
neutron-neutron and neutron-proton collisions, as well as in
the different behavior of neutron-neutron and neutron-proton
cross sections [8]. Indeed, at small proton fractions pFp � pFn,
neutron-proton scattering occurs at small c.m. angles
[q < qm(P ≈ pFn) � p; see Eqs. (13) and (15)]. In this case
the forward-scattering part of the np cross section plays the
major role. In contrast, the neutron-neutron collisions occur in
the whole range of c.m. angles [q < qm(P ) = 2p in Eqs. (12)
and (14)]. In this case effective collision frequencies are
determined mainly by the nn cross section at large angles.
Let us recall that, due to inclusion of the Tz = 0 isospin
channel, the np cross section is larger than the nn one. In
addition, the np cross section at small scattering angles is
considerably increased in comparison to that at large angles.
Finally, smaller values of energy give the main contribution
to np scattering in comparison with energies relevant for nn
scattering, which additionally increases the contribution from
np scattering. We illustrate the importance of neutron-proton
scattering by plotting in Fig. 13 the ratios κ/κPNM and η/ηPNM

of total neutron and proton thermal conductivity and shear
viscosity to the same quantities, calculated for pure neutron
matter, as a function of the proton fraction xp at the baryon
density ρ = 0.16 fm−3. For simplicity, in Fig. 13 we used
in-vacuum scattering probabilities and effective masses. One
can indeed observe that for very small proton fractions neutron-
proton scattering still contributes significantly to the thermal
conductivity. For the shear viscosity this effect is weakened due
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FIG. 13. (Color online) Ratios κ/κPNM (solid lines) and η/ηPNM

(dashed lines) of kinetic coefficients in nucleon matter to correspond-
ing quantities in pure neutron matter as a function of proton fraction
xp at density ρ = 0.16 fm−3. Free-space scattering probabilities and
bare masses are used.

to the additional factor q2 in expressions for effective collision
frequencies [compare Eq. (15) and Eq. (13)]. In both cases, at
xp > 0.1 the use of kinetic coefficients of pure neutron matter
as an estimate of true values can lead to an error by a factor of
more than 2.

C. Comparison with results of other authors

Let us compare our results with the most recent calculations
by Zhang et al. [14] and Benhar and co-workers [12,13,15].
Figure 14 shows the shear viscosity ηT 2 for β-stable nuclear
matter as presented by these groups in comparison with the
present work (solid line). The results from Ref. [13] are given
by a dashed line and results from Ref. [14] by a dash-dotted
line. For comparison ηeμT 2 is shown for T = 108 K. Apart
from the fact that all authors use different equations of state
and therefore different proton fractions and that the methods
of calculation are different, the results in Fig. 14 disagree
with each other. A similar situation is observed in case of the
thermal conductivity, as shown in Fig. 15.

Unfortunately, the calculations of Benhar and co-workers
for the thermal conductivity in β-stable nuclear matter are not
available. However, the Zhang et al. [14] results (dot-dashed
curve in Fig. 15) lie much higher than the present calculations.

In an attempt to find the source of this huge discrepancy
we analyzed in detail the models used in the series of papers
[12,13,15] and [14,45]. To begin with we consider the simpler
case of pure neutron matter. In this case it is possible to
construct approximate expressions for the shear viscosity and
thermal conductivity which depend only on the total neutron-
neutron cross section at the c.m. energy on the Fermi surface,
Ec.m. = p2

Fn/mN (see Appendix B for details). It is important
that these approximate expressions provide an independent
test of the calculations for the free-scattering case, where the

FIG. 14. (Color online) Comparison of the shear viscosity in β-
stable nuclear matter obtained by different groups. Solid line: present
calculations; dashed line: calculations by Carbone and Benhar [13];
dash-dotted line: those by Zhang et al. [14]. Thin solid line shows
electron and muon shear viscosity at T = 108 K.

in-vacuum cross section is used. As the total in-vacuum nn
cross section is known relatively well, the “free” result of
any calculation must lie close to the values obtained from
the approximate expressions. The results of our calculations,
as well as those in Refs. [8,9], satisfy this criterion. Zhang
et al. [14] present both shear viscosity and thermal conductivity
in the PNM free case, while Benhar and co-workers [12,15]
show only the shear viscosity for the free case. The results of
both groups, at first glance, strongly disagree with the results
presented here, and they do not agree with the approximate
expression (see Figs. 16 and 17). A careful examination of
the expressions in Refs. [12,14,15] shows that in the free case

FIG. 15. (Color online) Comparison of the thermal conductivity
in β-stable nuclear matter obtained by different groups. Notations are
the same as in Fig. 14.
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FIG. 16. (Color online) Comparison of the shear viscosity in
PNM in the free scattering approximation as reported by different
groups. The solid line shows the results of the present calculations,
the dotted line corresponds to the approximate expression, and thin
dashed and dash-dotted lines show the results of Refs. [12] and [14],
respectively. Thick lines of the corresponding type show the corrected
results (see text for details).

the authors still incorporate some in-medium effects through
the Fermi velocities in the definitions of the kinetic coefficients
in Eqs. (2) and (3) in Ref. [14], Eq. (1) in Ref. [12], and Eq. (24)
in Ref. [15]. The factor v2

F leads to the appearance of a squared
effective mass in the expressions for the kinetic coefficients.
In addition, Eqs. (2)–(6) of Benhar and Valli [12] indicate
that these authors lost the factor π in the expression for the
averaged scattering probability [recall the remark at the end

FIG. 17. (Color online) Comparison of the thermal conductivity
in PNM in the free scattering approximation as reported by different
groups. Notations are the same as in Fig. 16.

of Sec. II and see Eq. (B5)]. Therefore, their result and the
results of the subsequent papers [13,15] are overestimated by
a factor of π . Therefore, we corrected the results of Ref. [14]
by the factor m∗2

n , where the neutron effective mass is taken
from Fig. 2 in [14], and the result of [12] for viscosity by the
factor m∗2

n /π . The latter effective mass is not available from
the references and we assumed m∗

n ≈ 0.8mN . This value is
consistent with the dot-dashed curve in Fig. 1(a) in Ref. [12],
which is reported to be obtained from Eqs. (43) and (46) of
Ref. [9] with the same effective mass as used elsewhere. Note
that expressions in Ref. [9] contain the fourth power of m∗

n as
those authors used the in-vacuum transition probability, while
authors of Ref. [12] use the in-vacuum cross section [their
Eq. (6)]. The discrepancy between the results of Benhar and
Valli [12] and Baiko and Haensel [9] for the “free scattering”
approximations is due to the different effective mass power and
the π factor, not due to the correction factor to the variational
solution as was incorrectly assumed by the authors of Ref. [12].
In fact, this correction, although small for the shear viscosity,
is included in Eqs. (43) and (46) in Ref. [9].

The “corrected” values of shear viscosities are shown
in Fig. 16 with a thick dashed line for Benhar and Valli
calculations and with a thick dash-dotted line for Zhang et al.
calculations. The uncorrected values are shown with thin lines.
The results of the present paper are shown with the solid
line, while the approximate result is shown by the dotted
line and nearly coincides with the exact result. Note that
we multiplied the approximate variational expression by the
correction factor 1.05. One observes that the results of Benhar
and Valli agree well with the approximate expression, while
the Zhang et al. curve has qualitatively the same behavior
but gives somewhat higher values. A different situation is
observed for the thermal conductivity, as shown in Fig. 17.
Again by the solid and dotted lines we show the result of the
present and approximate calculations. Now the approximate
expression (which is corrected by the factor 1.2) is less accurate
than in the case of shear viscosity. Nevertheless, the results of
Zhang et al. [14], corrected by the m∗2

n factor, still go much
higher. In order to check whether this can be the result of the
different models used, let us look at the cross sections reported
in Refs. [14,45]. In Ref. [45] the Argonne v14 potential was
used, while in Ref. [14] the authors used the Bonn-B potential.
The reported cross sections are close, as expected. However,
one can note that the nn cross sections (for free scattering) in
Refs. [14,45] are different from those obtained in the present
paper. One difference is that these authors clearly plot 1/2 of
the differential nn cross sections, so that the c.m. solid angle
would be 4π . Another difference is that the cross sections have
much stronger dependence on θc.m. at forward and backward
scattering than those obtained here or in other works (for
instance, [47,48]). Although the reason for this difference is
unknown to us, we found that we can reproduce well the
free-space nn cross sections in Refs. [14] and [45] (for the
corresponding potentials) if we omit the phase factor i�

′−�+�̄−�̄′

in Eq. (24). This factor comes from the partial wave expansion
of the plane waves. This affects only nondiagonal elements,
and therefore the total cross section does not change if this
phase factor is omitted. Hence the resulting kinetic coefficients
still should be close to the approximate expressions. We
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checked this explicitly, using the cross sections calculated
without the phase factor. This test allows us to check the
results of [14] irrespectively of whether the phase factor
omission is the real reason for such a cross sectional form
or whether it is a coincidence. We found that both shear
viscosity and thermal conductivity are still in agreement with
the corresponding approximate expressions, and we did not
find anything similar to the plot in Fig. 17. Therefore we
conclude that the thermal conductivity calculations in Ref. [14]
are incorrect and probably give overestimated values for this
kinetic coefficient, while the shear viscosity calculations of
Refs. [14] and [12,15] (if divided by π ) look plausible.

Now let us return to the shear viscosity in Fig. 14. The
results of the in-medium calculations by Zhang et al. [14] and
Carbone and Benhar [13], even corrected by π , are much
higher than our calculations. These groups used different
approaches, and we discuss them separately.

Zhang et al. [14] reported an approximately order of
magnitude increase of the shear viscosity due to medium
effects. The above analysis of their in-vacuum results (Fig. 16)
suggests that in both “free” and “in-medium” calculations
the same Fermi velocities were used. Therefore the increase
in the in-medium viscosity is solely due to the decrease in
the in-medium cross section. However, as follows from the
plots in Refs. [14] and [45] this decrease is lower, at most
by the factor of 2–3 in the high-energy region of interest.
Hence the increase in the shear viscosity if calculated properly
should be of the same order. Note that for shear viscosity
in PNM and SNM as well as for thermal conductivity in
all three states this increase is indeed reported to be 2–4
in Ref. [14]. Therefore we believe that the in-medium shear
viscosity for BSM in Ref. [14] is calculated inaccurately and
is overestimated by a factor of 3–5. The remaining difference
between our shear viscosity and the one of Zhang et al. [14]
would be still about a factor of 3–5, but the latter difference is
due to the different physical models used. Indeed, as already
stated before, they used a different model for the three-body
force, which led to the decrease of in-medium cross section,
while the three-body force we employ increases it. The second
source of the difference is the rearrangement modifications
of the effective masses. The inclusion of the rearrangement
in Zhang et al. [14,45] led to a strong reduction of the
effective masses, while in contrast we observe an increase
of effective masses due to three-body forces (see Fig. 3).
These factors again work in opposite directions. Nevertheless,
the use of the modified effective mass is cautioning. Indeed, the
origin of the rearrangement contribution lies in the functional
dependence of the G matrix on the occupation numbers. This
leads to a difference between the Landau quasiparticle energy
εL(p) given by the functional derivative of the total energy
of the system with respect to the distribution function and
the Brueckner self-consistent single-particle potential ε(p) in
Eq. (20). The two quantities would coincide provided that
the functional derivative acting on the G matrix is neglected.
Therefore the quasiparticle effective mass which is found
from εL(p) deviates from the Brueckner effective mass m∗.
Physically, including rearrangement corrections incorporates
to some extent the effects of the medium polarization.
However, for consistency, the same effects should be included

in the quasiparticle interaction. Therefore this interaction (and
the quasiparticle scattering amplitude as well) must differ
from the Brueckner G matrix on the same footing. With
strong modification of the effective mass one could expect
strong modification of the quasiparticle scattering amplitude
at the same level of approximation. The size and the direction
(increase or decrease) of this effect is unknown and requires
a separate consideration, which lies outside the scope of the
present paper. It is possible that it can suppress the kinetic
coefficients more or counter-compensate for the effective mass
effect.

In a series of papers [12,13,15] the CBF formalism was
used, in contrast to the BHF approach. However, in Ref. [15]
the authors compared results obtained in CBF and G-matrix
approaches and obtained overall agreement. The reasons for
the huge in-medium increase of kinetic coefficients in these
works are different from those of Zhang et al. [14]. First of
all, we note that the three-body force effects are reported to
be small. In fact, a comparison of the results in Fig. 1(b) in
Ref. [12] and in Fig. 5 in Ref. [15], where the three-body
forces, as written, are not included, shows that the three-body
forces even slightly decrease the shear viscosity. Therefore the
strong in-medium increase of the shear viscosity (again by a
factor of ∼10) is due to the squared effective mass, which
gives a factor of 2, and due to the decrease of the cross section,
which is a factor of 5, according to Fig. 4 in Ref. [15] (but
note that the free-space cross section reported in the same
figure is underestimated by a factor of ∼1.5 with respect to
the true values). Let us note that we do not observe so strong a
decrease of the in-medium cross section at the two-body level
(Fig. 7). The same smaller decrease (factor of 2) is also found
by other authors (e.g., [47,48]), including Zhang et al. [45]. In
addition, the proton fraction used by Carbone and Benhar [13]
is slightly lower than the one we use.

Finally, we stress that inaccuracies in the recent calculations
of the two groups do not allow one to deduce which percentage
of the effect is due to the selection of the physical model and
which part is related to these inaccuracies.

V. CONCLUSIONS

We have calculated thermal conductivity and shear vis-
cosity of nuclear matter in β-equilibrium. The neutron and
proton interaction was described by the Argonne v18 potential
with inclusion of effective Urbana IX three-body forces.
The scattering of particles was treated in the nonrelativistic
Brueckner-Hartree-Fock approximation with a continuous
choice of the single-particle potential.

Our main results are as follows:

(i) Shear viscosity and thermal conductivity of nuclear
matter are modified by medium effects in comparison
with the values obtained from the free-space cross
sections. However, this modification is not as strong
as reported previously.

(ii) The medium effects of the renormalization of the
squared matrix element due to Pauli blocking in
the intermediate states and of the effective mass via
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the reduction of the density of states are comparable
and cannot be separated.

(ii) The Urbana IX three-body forces lead to an increase
of the scattering probabilities and, therefore, to a
considerable reduction of the kinetic coefficients in
comparison to the two-body case. The effect of three-
body forces is sizable at ρ � 0.15 fm−3.

The question remains how the kinetic coefficients would
depend on the particular model for the three-body force. It
is clear that they are more sensitive to change of the model
than the equation of state. The results of Ref. [14] suggest that
the inclusion of different three-body forces could lead to an
increase of the kinetic coefficients, in contrast to the results of
the present paper. The investigation of the model dependence
of the values of the kinetic coefficients is a good project for
the future.

In all our calculations we used the nonrelativistic BHF
framework. The nonrelativistic approach could be questioned,
especially at high density. However, it has been shown
[49] that the main relativistic effect, as included in the
Dirac-Brueckner-Hartree-Fock (DBHF) scheme, is equivalent
to the introduction of a particular three-body force at the
nonrelativistic level. Therefore the use of a three-body force
in BHF calculations incorporates the relativistic corrections in
an effective way.

Finally, let us note that we have neglected the possible
effects of superfluidity. It is believed that the neutrons and
protons in neutron star cores can be in a superfluid state.
The critical temperatures of the superfluid transition are
very model dependent and can vary as Tc ∼ (108−1010) K
(see, for example, [50]). The effects of superfluidity on the
kinetic coefficients were considered in an approximate way in
Refs. [7,8]. The investigation of these effects is outside the
scope of the present paper.
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APPENDIX A: ANGULAR INTEGRATIONS

We deal with the integrals of the form

Q(ij ) =
∫ pFc+pFi

|pFc−pFi|
dP

∫ qm(P )

0
Q(P, q)

P iqj dq√
q2

m − q2
, (A1)

where Q(P, q) is expanded in the Legendre polynomials

Q(P, q) =
∑
L

Q(L)(P )PL

(
1 − q2

2p2

)
. (A2)

Then the internal integral (over q) can be obtained analytically
as ∫ qm

0

qjdq√
q2

m − q2
PL

(
1 − q2

2p2

)

= q
j
m

2
B

(
j + 1

2
,

1

2

)

× 3F2

(
− L,L + 1,

j + 1

2
; 1,

j

2
+ 1;

q2
m

4p2

)
, (A3)

where B( j+1
2 , 1

2 ) is the β function, and 3F2 is the generalized
hypergeometric function. The latter function, in fact, reduces
to the (L − 1) th-order polynomial in q2

m/(4p2), as its first
argument, −L, is a negative integer.

APPENDIX B: APPROXIMATE EXPRESSIONS
FOR NEUTRON KINETIC COEFFICIENTS

The simplest variational expressions for the thermal con-
ductivity and the shear viscosity of a one-component Fermi-
liquid read [16]

κvar = 20π2p3
F

9m∗4〈W 〉
1

T
(3 − λκ )−1, (B1)

ηvar = 4p5
F

5m∗4〈W 〉
1

(kBT )2
(1 − λη)−1, (B2)

where λκ and λη encapsulate the kinematical factors, namely,

〈W 〉(1 − λκ ) = 4

〈
W sin2 θ

2

〉
, (B3)

〈W 〉(1 − λη) = 3

〈
W sin4 θ

2
sin2 φ

〉
. (B4)

The Abrikosov-Khalatnikov angle φ in the considered case is
equal to the c.m. angle θc.m., and angle θ is connected to the
c.m. momentum as p = pF sin(θ/2). The scattering amplitude
W is connected to the differential cross section as

W = πQ = 16π3h̄4

m∗2

dσ

d�c.m.

. (B5)

The Abrikosov-Khalatnikov averaging is defined as

〈W 〉 = 1

2π

∫ π

0
dθ sin(θ/2)

∫ 2π

0
dφ W (θ, φ). (B6)

One can observe that the main contribution to averages (B3)
and (B4) is given by the region of θ ≈ π due to powers
of sin(θ/2) in the kinematical factor. Therefore the result
will be mainly determined by the cross section in the
high-energy region p ∼ pF . Assuming also that the angular
structure of the cross section is flat (which is justified for
neutron-neutron scattering at the energies of interest) we can
substitute

dσ

d�c.m.

→ σtot

2π
. (B7)
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Note that for identical particles the possible scattering solid
angle is 2π , not 4π . Under these two approximation, the final
expressions are

κvar ≈ 5p3
F

106m∗2T
[σtot(p = pF )]−1, (B8)

ηvar ≈ p5
F

16π2m∗2(kBT )2
[σtot(p = pF )]−1. (B9)

For bare particles it is convenient to write Ec.m. = 2p2
F /m in

the argument of the total cross section instead of p = pF .
Note that the approximations (B8) and (B9) are good as long
as the total cross section does not change significantly in the
region of large θ . It is easy to write more general expressions,
by assuming only a flat angular dependence. In this case
the kinetic coefficients would be determined by integration
of the total cross section over the laboratory energy with
corresponding kinematical factors.
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