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Comparison of neural network and hadronic model predictions of the two-photon exchange effect
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Predictions for the two-photon exchange (TPE) correction to the unpolarized ep elastic cross section, obtained
within two different approaches, are confronted and discussed in detail. In the first one the TPE correction is
extracted from experimental data by applying the Bayesian neural network statistical framework. In the other the
TPE is given by box diagrams, with the nucleon and the P33 resonance as the hadronic intermediate states. Two
different form factor parametrizations for both the proton and the P33 resonance are taken into consideration.
Proton form factors are obtained from the global fit of the full model (with the TPE correction) to the unpolarized
cross-section data. Predictions of the two methods agree well in the intermediate Q2 range of 1–3 GeV2. Above
Q2 = 3 GeV2 the agreement is at the 2σ level. Below Q2 = 1 GeV2 the consistency between the two approaches
is broken. The values of the proton radius extracted within the models are given. In both cases predictions for the
VEPP-3 experiment have been obtained and confronted with the preliminary experimental results.
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I. INTRODUCTION

Two-photon exchange (TPE) in elastic electron scattering
off the proton drew renewed attention of physicists about
ten years ago, when the new experimental technique for
measurement of the electromagnetic nucleon form factors
(FFs) had become available. In this method, later called
the polarization transfer (PT) technique, various polarization
observables are measured and the form factor ratio,

R1γ (Q2) = μp

GE(Q2)

GM (Q2)
, (1)

is estimated [1]. Here GE and GM are the electric and the
magnetic proton form factors, respectively, and μp = 2.793 is
the proton magnetic moment in units of the nuclear magneton.

The proton electromagnetic FFs are also extracted from
unpolarized cross-section (CS) data by applying Rosenbluth
[longitudinal-transverse (LT)] separation. As the result, the
electric and the magnetic FFs are obtained simultaneously. It
turns out that the ratio (1) estimated based on the Rosenbluth
FF data is inconsistent with the PT measurements at larger Q2

values.
It is generally widely accepted that an insufficient estimate

of the radiative corrections (RCs) applied in the Rosenbluth
data analysis is the main source of inconsistency. In particular,
it is argued that a lack of a so-called hard-photon TPE
contribution coming from the box diagrams drawn in Fig. 1 is
responsible for the disagreement1 [2–4].

In the old Rosenbluth data analyses the cross-section
measurements were corrected by the RCs obtained by Mo
and Tsai (MT) [5]. In this approach the TPE corrections were
calculated within a soft-photon approximation. Supplementing
this contribution with the hard-photon correction changes the
results of the Rosenbluth separation and makes them nearly
consistent with the PT measurements [2,7].

*kgraczyk@ift.uni.wroc.pl
1We notice an explanation proposed by Bystritskiy et al. [6].

Recently, several theoretical calculations of the TPE cor-
rection have been performed [2,4,7–18]. They have been done
within various approaches. (For a review see Refs. [19–21].)
The predictions of the TPE effect turn out to be mostly model
dependent at larger values of Q2.

Simultaneously to the theoretical activity phenomenologi-
cal investigations have been carried out as well. An effort has
been made to extract the proton FFs and the TPE term directly
from the experimental data [22–35].

The TPE effect can be studied experimentally. The TPE
correction for elastic positron-proton scattering has an oppo-
site sign but the same absolute value as the corresponding term
in electron-proton scattering. Hence the measurement of the
cross-section ratio,

R+/− =
dσ
d�

(e+p → e+p)
dσ
d�

(e−p → e−p)
≈ 1 − 2(TPE), (2)

gives a direct way to possibly estimating the TPE correction.
At present two dedicated R+/− measurement experiments are
operating [36,37]. There is also a proposal of a new project,
called OLYMPUS, at DESY [38].

In this report we would like to confront the phenomenologi-
cal estimation of the TPE effect, obtained in our previous paper
[33], with the theoretical predictions. In Ref. [33] a global
Bayesian analysis of the world elastic ep data was performed.
The major idea was to build a statistical model based on
the experimental measurements with the ability to make
predictions of the electromagnetic proton FFs and the TPE
term. This was achieved by adapting a Bayesian framework
for feed-forward neural networks (BNNs) [39]. This formalism
allows one to perform the analysis as model independent as
possible. However, because of the incompleteness of the data
some additional assumptions had to be made. We applied
constraints coming from C parity and the crossing symmetry
invariance of the ep scattering amplitude [40–42]. But the most
important assumption was that for the PT data the TPE effect
can be neglected and is only relevant for the cross-section
data. This statement is supported by both general arguments
[3] and calculations [7,14]. Indeed, the TPE corrections to
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(a)

(b)

FIG. 1. (Color online) Direct (a) and exchange (b) TPE box
diagrams for elastic ep scattering [Eq. (1)]. The intermediate states
(thick double lines) are given by either the nucleon or the P33(1232)
resonance.

the unpolarized cross-section and the PT ratio R1γ data are
comparable. But their inclusion in the Rosenbluth analysis
affects significantly the results of the FF extraction, while in
the case of PT measurements TPE correction is of the order of
statistical errors.

The comparison of the BNN and the theoretical predictions
allows one to verify the validity of the model assumptions and
to confront, in a nondirect way, theoretical model predictions
with the data represented by the BNN.

In this paper the TPE corrections are computed in a way
similar to that of Refs. [2,7–10], in a quantum-field-theory
approach, called later the hadronic model (HM). Hadronic
intermediate states in the box diagrams (Fig. 1) are given by the
nucleon and the P33(1232) resonance. Heavier resonances are
not included because it was shown that their total contribution
is negligible for the given kinematics [10] and their inclusion
introduces additional model dependence into the discussion.

Our approach should work well at low and intermediate Q2

range. Its input includes proton and P33(1232) electromagnetic
FFs. For the proton we consider two different types of
parametrizations. In contrast to the BNN analysis the FF
parameters are established from a global fit of the HM
to the unpolarized cross-section data only. For the N →
P33 electromagnetic transition we consider vertex and FF
parametrizations different than those in Ref. [9].

In a wide Q2 domain the BNN and the hadronic model
predictions agree well. The discrepancy appears at low Q2.
However, the value of the proton radius extracted from the
BNN fit is consistent with the recent atomic measurement by
Pohl et al. [43]. It is shown that the low-Q2 inconsistency
between the BNN and the HM is induced by one of the model
assumptions mentioned above (with the TPE correction to the
PT data neglected).

Eventually, we compare the predictions of the R+/− ratio
obtained within the BNN and the HM approaches with the
preliminary VEPP-3 measurements [37]. The theoretical and
the phenomenological predictions are in agreement with the
new available data.

The paper is organized as follows. In Sec. II the basic
formalism is introduced. In Sec. III the Bayesian neural
network approach is briefly reviewed. The hadronic model
is described in Sec. IV. A detailed comparison of the BNN
and the theoretical predictions is presented in Sec. V. We
summarize our results in Sec. VI. Some technical details of
the theoretical calculations are enclosed in Appendix A, while
Appendix B contains the definition of the χ2 function used in
the data analysis.

II. BASIC FORMALISM

We consider elastic electron-proton scattering,

e(k) + p(p) → p(p′) + e(k′). (3)

where k and k′ and p and p′ denote the initial and final electron
and proton four-momenta, respectively. A four-momentum
transfer is defined as q = k − k′ and q2 = (k − k′)2 = −Q2.

To compute the TPE correction we apply a typical approach
to account for the radiative corrections in ep scattering [2,44],
using quantum electrodynamics (QED) extended to include
the hadronic degrees of freedom, such as the proton and the
P33(1232) resonance. The proton and nucleon electromagnetic
vertices are expressed in terms of transition FFs.

The matrix element for ep scattering can be written as a
perturbative series in α = e2/4π ≈ 1/137. The first element of
the series, M1γ , describes an exchange of one photon between
the electron and the proton target, and it gives the lowest order
contribution of the differential cross section, dσ1γ ∼ |M1γ |2.
The M1γ matrix element is a contraction of the one-body
leptonic with hadronic currents,

iM1γ = i
e2

Q2
jμhμ. (4)

The leptonic and hadronic currents read

jμ(q) = u(k′)γ μu(k), (5)

hμ(q) = u(p′)�μ(q)u(p). (6)

�μ is the on-shell proton electromagnetic vertex, given by

�μ(q) = γ μF1(Q2) + iσμνqν

2Mp

F2(Q2). (7)

F1 and F2 are the Dirac and the spin-flip proton form factors,
respectively, while Mp = 938 MeV/c2 is the proton mass. It
is useful to express the above FFs in terms of the electric and
the magnetic proton FFs:

F1(Q2) = 1

1 + τ
{GE(Q2) + τGM (Q2)}, (8)

F2(Q2) = 1

1 + τ
{GM (Q2) − GE(Q2)}, (9)

where τ = Q2/4M2
p.

We keep the normalization GE(0) = 1, GM (0) = μp; hence
F1(0) = 1, F2(0) = κp ≡ μp − 1.

In ep scattering data analysis it is convenient to consider the
reduced cross section, σR (dσ/d� ∼ σR), which in the Born
approximation is given by the formula

σR,1γ (Q2,ε) = τG2
M (Q2) + εG2

E(Q2), (10)
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where

ε =
[

1 + 2

(
1 + Q2

4M2
p

)
tan2

(
θ

2

)]−1

(11)

is the photon polarization and θ is the angle between the initial
and the final electron momenta.

The next order terms of the cross section are given by the
interference between M1γ and the second-order amplitude
M(2). In the complete calculation, in order to remove the
infrared (IR) divergences, the inelastic Bremsstrahlung con-
tribution must be also taken into account,

dσ (2) ∼ 2Re
[
(iM1γ )∗iM(2)

] + dσ
(1)
Brem. (12)

In this paper we focus on the TPE box diagrams (Fig. 1),
which describe an exchange of two photons between the
electron and the proton target. The intermediate hadronic state
is the off-shell nucleon or a resonance. Because the off-shell
electromagnetic form factors are not known [45] we make a
common ansatz and consider the on-shell vertices instead.

The leading TPE contribution reads

I2γ ≡ 2Re{(iM1γ )∗iM2γ }. (13)

The box diagrams contributing to M2γ are drawn in Fig. 1.
In the old ep data analysis, to account for higher order

radiative corrections, the MT approach [5] was usually applied.
In this approach the TPE box contribution was computed in
the soft-photon approximation. As was pointed out by Blunden
et al. [2] to properly correct the cross-section data by using
the “full” TPE term, one has to subtract first the MT box
contribution. Then the redefined TPE correction reads

�2γ = δ2γ (full) − δ2γ (MT), (14)

where

δ2γ = I2γ

|iM1γ |2 , (15)

and it is given by some integral (see Eq. (23) of Ref. [7]).
The inclusion of the TPE correcting term modifies the form

of the reduced cross section to

σR,1γ+2γ (Q2,ε) → σR,1γ (Q2,ε) + �C2γ (Q2,ε), (16)

where �C2γ = �TPE · σR,1γ .

III. NEURAL NETWORK APPROACH

Artificial neural networks (ANNs) have been used in
particle and nuclear physics for many years. ANNs are
perfectly dedicated to particle or interaction identification and
have been applied in experimental data analyses [46]. Study of
the properties of ANNs is an interesting topic by itself. Neural
networks have also been investigated within the methods of
statistical physics [47].

The feed-forward neural network is a type of ANN and
can be applied to interpolating data, parameter estimation, and
function approximation problems.

The ANN methodology can be a powerful approach
for approximating the physical observables based on mea-
surements if it is difficult to make predictions (based on
the theoretical model) of the analyzed quantities or if the

theoretical predictions are model dependent but there exist
informative experimental data. Then one can construct a
model-independent representation (given by a neural network)
of the physical observables favored by the measurements. As
an example let us mention the parton distributions functions
(PDFs), which are parametrized by feed-forward neural
networks [48].

As in the case of PDFs, computing the nucleon FFs and
the TPE correction from first principles is a difficult task.
On the other hand, unpolarized cross-section ratio, R+/−, as
well as PT ratio data are distributed over a wide kinematical
range. Global analyses of these measurements provide reliable
information about the FFs and the TPE [27,33].

The BNN approach was adapted by us [33,39] to approx-
imate the nucleon FFs and TPE correction. In the next four
sections a short review of the main features of this approach is
presented.

A. Multilayer perceptron

The FFs and TPE correction are going to be approximated
by using feed-forward neural networks in a multilayer per-
ceptron (MLP) configuration. From the mathematical point of
view the MLP, denoted as N , is a nonlinear function, which
maps a subset of Rni (an input space) into Rno (an output
space), where ni,no ∈ N. The given MLP consists of several
layers of units, namely, input, hidden, and output layers (see
Figs. 2 and 3).

A unit [Fig. 2(a)] is a single-valued real function called
an activation function (fact.). For the argument it takes the

Σ

(a)

(b)

FIG. 2. (Color online) Top: Single unit connected with n units
from the previous layer and with one bias unit (ω0 weight). Bottom:
Simple MLP with one hidden layer, used to fit the electric proton
form factor data.
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FIG. 3. (Color online) NetworkN3,2, comprising two input units,
one layer of hidden units, and three output units. The FF sector is
shown by blue filled units and connections; the TPE sector is shown
by green units and connections. Each line corresponds to one weight
parameter.

weighted sum of outputs from the the previous layer units,

fact.

(
n∑

i=0

wif
i
act.(previous layer)

)
, (17)

where wi (i = 1,2, . . . ,n) is the weight parameter.
An example of a typical unit is drawn in Fig. 2(b). The

weight parameters are established during the training, i.e.,
a process of finding the optimal weight configuration. In
reality the optimal weight configuration minimizes some error
function.

In our analysis the sigmoid

fact(x) = 1

1 + exp(−x)
(18)

is taken for the activation functions in the hidden layer. But
in the case of the output units we consider linear activation
functions. The above choice is motivated by the Cybenko
theorem [49], which states that it is enough to consider the
MLP with one hidden layer and sigmoid-like functions there
as well as linear activation functions in the output layer to
approximate any continuous function.2

Notice that the effective support of (18) is limited. It is
a useful feature in the case of numerical analysis (in which
the weights are randomly initialized at the beginning of every
training).

For a more detailed description of MLP properties, the
training process, learning algorithms, etc. see Sec. 2 of
Ref. [39].

B. Overfitting problem

A simple example of a one-hidden layer MLP configuration,
used to approximate the electric proton FF [39], is shown in

2According to the Cybenko theorem the discontinuous functions
can be approximated well by an MLP with two hidden layers of
units.

Fig. 2(b). The input and output are the one-dimensional vectors
(Q2) and (GE), respectively. In this case the error function is
postulated to be

Sex(D, 	w) = χ2 =
N∑

i=1

(
GE

(
Q2

i ; 	w) − G
exp .
E,i

�G
exp .
E,i

)2

, (19)

where N denotes the number of experimental points, and
(Gexp .

E,i ,�G
exp .
E,i ) is the ith experimental point (its best value

and error). D denotes the experimental data set (or sets).
It is obvious that increasing the number of units (degrees of

freedom) improves the ability of the network for representing
the data. An MLP with a large enough number of weight
parameters may fit the data exactly but in this case the statistical
fluctuation of the measurements is reproduced. Such a model
has no predictive power and adding new data to the fit spoils
its quality. This kind of network overfits the data (or it is said
that the network is overlearned). Such a fit is characterized by
unrealistic prediction of the uncertainties (see the discussion
in Sec. 2.1 and Figs. 3 and 4 of Ref. [39]).

One of the methods for facing the overfitting problem and
finding the optimal network configuration is to implement
Occam’s razor principle. Then in a natural way simpler
network configurations are preferred. The simplest idea is to
consider a penalty term

αEw, where Ew = 1

2

W∑
i=1

w2
i . (20)

Including in the error function the above expression may
prevent one from getting absolute values of the weight
parameters that are too large and as a result overlearned
networks.3

The parameter α in Eq. (19) is introduced to regularize
the penalty term. In general one would consider several α
parameters (one each for every distinct class of weights); see,
e.g., Sec. 3.2 of Ref. [39] or Chap. 9 of Ref. [50].

The major difficulty is in finding an optimal value of the α
parameter. The Bayesian framework offers a mathematically
consistent method for getting such α’s. Indeed in this approach
the penalty term has a natural probabilistic interpretation and
α is computed within the objective Bayesian algorithm.

C. Bayesian neural networks

The Bayesian framework for MLPs [50,51] was developed
to provide consistent and objective methods, which allow one
to

(i) establish the optimal structure of the MLP (number of
the hidden units and layers);

(ii) find optimal values of the weights and the α parameters;
(iii) establish optimal values of the learning algorithm

parameters;
(iv) compute the neural network output uncertainty and

uncertainties for the weight and α parameters; and

3Usually the MLP that overfits the data contains at least one weight
parameter of large absolute value.
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(v) classify and compare models quantitatively.

The BNN approach requires minimal input from the user.
Indeed, the idea of the approach was to replace the user’s
common sense by mathematical objective procedures [50].
Obviously, some user input is necessary.

Below we briefly review the BNN approach. For a more
detailed description of the BNN see Refs. [39] (Sec. III) and
[33] (Sec. III) as well as [50,52].

1. Model comparison

Let us consider a set S, which contains MLPs with different
numbers of hidden units. Without lose of generality of the
approach we can restrict the set S to MLPs with only one
hidden layer (the choice supported by the Cybenko theorem).
Each network Nβ ∈ S (β = 1,2, . . . ) approximates some
physical quantities based on the dataD. The models (networks)
can be classified by a conditional probability

P (Nβ |D). (21)

The BNN approach gives a recipe for how to construct and
compute the above function.

Beyes’ theorem connects the probability (21) with the so-
called evidence

P (Nβ |D) = P (D|Nβ)P (Nβ)

P (D)
, (22)

where P (D) is the normalization factor, which does not depend
on the model Nβ , and P (Nβ) is the prior probability. However,
at the beginning of any analysis there is no reason to prefer a
particular model (network); therefore it is natural to assume
that

P (N1) = P (N2) = P (N3) = · · · . (23)

Hence the evidence differs from P (Nβ |D) by only a constant
normalization factor and it can be used to qualitatively classify
the statistical hypotheses.

We apply the so-called hierarchical approach [52] to
construct and then to compute the evidence. The procedure
entails several steps, as described in the next four sections.

2. First step

In the first step of the approximation the posterior proba-
bility distribution P ( 	w|D,α,Nβ) is computed. According to
Bayes theorem it reads

P ( 	w|D,α,{IPhys},Nβ)

= P(D| 	w,α,{IPhys},Nβ)P( 	w|α,{IPhys},Nβ)

P(D|α,{IPhys},Nβ)
, (24)

where P( 	w|α,{I }Phys,Nβ) is the prior probability, and {I}Phys

denotes the set of initial physical assumptions.
The likelihood function P (D| 	w,α,{IPhys},Nβ

)
does not

depend on α but in our analysis it is modified due to the
physical constraints {I}Phys:

P(D| 	w,Nβ,{I}Phys)

= 1

nβ

exp[−Sex(D, 	w) − SPhys({IPhys}, 	w)]. (25)

The normalization factor nβ is computed in the Hessian
approximation (see Eq. (3.8) of Ref. [39]).

The functions Sex(D, 	w) and SPhys({IPhys}, 	w) are given by
some χ2 distributions. SPhys({IPhys}, 	w) is introduced to force
the MLP to properly reproduce the form factors at Q2 = 0. (see
Sec. III of Ref. [33]). It may also account for other physical
constraints.

The prior P( 	w|Nβ) describes only the initial ANN assump-
tions about the weights. A reasonable approximation is to
assume that it is given by the normal distribution, centered at
	w0 = 	0,

P( 	w|α,Nβ) = 1

na

exp[−αEw], (26)

na =
∫

dWβ w exp[−αEw]. (27)

The optimal configuration of weights 	wMP maximizes the
posterior probability (24). In reality it minimizes the following
error function:

Sex(D, 	w) + SPhys({IPhys}, 	w) + αEw. (28)

Notice that in this step of the approximation the α parameter
is assumed to be known.

The 1σ error of any physical observable O, which depends
on the network response, is the square root of the variance,

(〈�O〉)2 = 〈O2〉 − 〈O〉2,

〈O〉 =
∫

dWβ wO(Nβ)P ( 	w|D,α,{IPhys},Nβ). (29)

The above integral is computed in the Hessian approximation.

3. Second step

The optimal value of the α parameter (αMP) maximizes the
posterior probability,

P(α|D,{IPhys},Nβ)

= P(D|α,{IPhys},Nβ)P(α|{IPhys},Nβ)

P(D|{IPhys},Nβ)
(30)

(where the denominator of the above expression is obtained in
the previous step of the approximation).

The necessary condition which must by satisfied by αMP

reads

∂

∂α
P(α|D,Nβ)

∣∣∣∣
α=αMP

= 0. (31)

It can be shown that in the Hessian approximation the above
equation can be written as

2αMPEw( 	wMP) =
Wβ∑
i=1

λi

λi + αMP
≡ γ (αMP), (32)

where λi are the eigenvalues of Hkj = ∇k∇j (Sex + SPhys), with
k,j = 1, . . . ,Wβ and ∇k ≡ ∂/∂wk .

In practice, the λi’s depend on α. Hence to get the optimal
αMP, the value of α is iteratively changed during the training,
αk+1 = γ (αk)/2Ew. This means that the optimal weights and
α parameter are established during the same training process.
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The initial value of the α parameter is taken to be large,
which corresponds to the prior assumption that at the beginning
of the analysis almost all relevant values of weights are
probable.

4. Third step

In this step the evidence is computed. Notice that it is
the denominator of the right-hand side of Eq. (30). Careful
calculations lead to the following expression for the natural
logarithm of the evidence (see Sec. 3.1 of Ref. [39]):

lnP(D|{IPhys},Nβ)

= −Sex(D, 	wMP) − SPhys({IPhys}, 	wMP) (33)

−αMPEw( 	wMP) − 1

2
ln detA + W

2
ln αMP − 1

2
ln

γ

2
(34)

+ (g + t) ln(2) + ln(g!) + ln(t!), (35)

A = H ( 	wMP) + αMPI .
Expression (33) is the misfit of the approximated data. It

is usually of low value. Terms (34) and (35) contribute to
Occam’s factor. Indeed, (34) takes large values for the models,
which overfit the data. In a typical MLP some hidden units, in
the given layer, can be reordered without affecting the values of
the network output. This means that for every MLP there exist
several equivalent indistinguishable network configurations.
This gives rise to an additional normalization factor (35),
which must be included to properly define the evidence. The
symmetry factor presented above concerns the MLP used in the
extraction of the TPE correction from the data [see Sec. III D
and Eq. (39)].

5. General scheme

Schematically, the approach discussed above can be sum-
marized as follows:

Step 1: → P ( 	w|D,α,{IPhys},Nβ), (36)

Step 2: → P(α|D,{IPhys},Nβ), (37)

Step 3: → P(D|{IPhys},Nβ). (38)

We see that the evidence and the other posterior probabil-
ities may depend on physical assumptions. Obviously, their
impact on the final results must be carefully discussed.

D. Extraction of the TPE correction

The formalism discussed above was applied to extract the
proton FFs and TPE correction [33] from the world elastic
e−p and e+p scattering data. We utilized the unpolarized
cross-section ratio, R+/−, and PT data. The first two types
of observables depend on two input variables Q2 and ε, while
the last one depends only on Q2.

On the other hand the TPE correction is a function of two
input variables, but the FFs depend on Q2 only. This property
was encoded in the network configuration by dividing the
MLP into two sectors (see Fig. 3). In the first there are g units
connected with only the Q2 input, while in the other there are t

units connected with both input units. We denote this network
as

Ng,t

((
Q2

ε

)
; 	w

)
=

⎛
⎜⎝

GN
E

GN
M

�C̃N
2γ

⎞
⎟⎠ . (39)

The BNN formalism seems to be well suited for performing
a model-independent analysis but because the utilized data
turned out to be not informative enough some model assump-
tions had to be made.

The main constraint was induced by the following assump-
tion:

(A) The PT data are less sensitive to the TPE correction
than the cross-section measurements [3]; hence the
TPE contribution to R1γ can be neglected.

As a consequence the TPE correcting term was considered
only in the case of the unpolarized cross-section and R+/−
data. Its extraction was induced by the presence of the PT
measurements in the fit. Certainly, it is an approximation;
therefore we distinguish between �C2γ as is defined by theory
and �C̃2γ as given by the BNN analysis. Both quantities
enter the reduced cross-section formula in the same way [see
Eq. (16)], but the latter is needed to get a consistent fit of the
CS, R+/−, and PT.

To get the FFs properly behaved at Q2 = 0 and the TPE
term at ε = 0 (as suggested by C invariance [40–42]), we
introduced SPhys [Eq. (28)]. This is a χ2 function containing
three artificial points (for details see Sec. III of Ref. [33]).

In order to find the optimal MLP configuration 45 different
configurations4 of MLPs were trained. The largest evidence
was obtained for the model N5,6.

In general, the optimal fit should be given by an average
(weighted by evidence) over all hypothetical models. In this
case the physical observable F , which is a function of the FFs
and the TPE, reads

〈F(GE,GM,�C̃2γ )〉 =
∫
S

DNF(
GN

E ,GN
M,�C̃N

2γ

)P(N |D).

(40)

In reality, the above integral can be written as a discrete series,

〈F(GE,GM,�C̃2γ )〉

=
M∑

m=1

g+t=m∑
g=1,t=1

F(
G

Ng,t

E ,G
Ng,t

M ,�C̃
Ng,t

2γ

)P(Ng,t |D), (41)

where M ∈ N.
It turned out that the evidence for the N5,6 model was much

larger than for the other analyzed configurations of networks.
Hence expression (41) contains only one dominant term,

〈F(GE,GM,�C̃2γ )〉 ≈ F(
G

N5,6

E ,G
N5,6

M ,�C̃
N5,6

2γ

)
. (42)

4The number of units in the hidden layer (g and t) was varied.
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IV. HADRONIC CALCULATIONS

A. Box diagrams

The TPE correction is computed in a way similar to that
in Refs. [2,7–9,16,44]. Four box diagrams contribute to the
2γ amplitude (see Fig. 1): two with the nucleon intermediate
hadronic state [denoted as �(N )] and two with the P33(1232)
hadronic intermediate state [denoted as �(P33)]. The TPE
contribution (13) reads

I2γ = 2
e2

Q2
Im{w‖

N + w×
N + w

‖
� + w×

�}, (43)

where w
‖
N,� and w×

N,� are the one-loop integrals represented
by direct and exchange �(N ) and �(P33) diagrams, respec-
tively:

w
‖
N,� = e4

∫
d4l

(2π )4

L
αμν
‖ HN,�

αμν

D(−k′)
, (44)

w×
N,� = e4

∫
d4l

(2π )4

L
αμν
× HN,�

αμν

D(k)
, (45)

where

D(x) = [(q + l)2 + iε][l2 + iε][(l + x)2 − m2 + iε]

× [
(p′ + l)2 − M2

p,� + iε
]
. (46)

We keep a nonzero electron mass m = 0.510 MeV/c2.
M� = 1232 MeV/c2 denotes the P33 resonance mass. The
numerators of the integrals in Eqs. (44) and (45) are given
by the contraction of three-dimensional leptonic and hadronic
tensors.

The leptonic tensor is defined as follows:

L
αμν
‖,× ≡

∑
spin

jα∗jμν
‖,×, (47)

where

j
μν
‖ = u(k′)γ μ(k̂′ − l̂ + m)γ νu(k), (48)

j
μν
× = u(k′)γ μ(k̂ + l̂ + m)γ νu(k), (49)

x̂ = xμγ μ. (50)

Four-vector jα is given by Eq. (5).
We distinguish two types of hadronic tensors, one for the

nucleon and another for the P33 intermediate state:

HN,�
αμν ≡

∑
spin

h∗
αhN,�

μν , (51)

where hα is given by Eq. (6) and

hN
μν = u(p′)�ν(−l)(p̂′ + l̂ + Mp)�μ(q + l)u(p). (52)

The proton electromagnetic vertex �μ is defined by Eq. (7).
The hadronic tensor for the �(P33) diagrams has the form

h�
μν = u(p′)��,in

μξ (−l,p′ + l)(p̂′ + l̂ + M�)

×�ξη(p′ + l)��,out
νη (q + l,p′ + l)u(p). (53)

��,out
νμ (q�,P ) and ��,in

νμ (q�,P ) denote the vertex for the
γ ∗N → � and � → Nγ ∗ transitions. For more detailed
definitions see Sec. IV C.

ε
0 0.2 0.4 0.6 0.8 1

γ2Δ

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

=0.22Q
=0.52Q
=12Q
=22Q
=32Q
=62Q
=122Q

FIG. 4. (Color online) �2γ [Eq. (14)] computed for the �(N )
TPE contribution. The form factors from Ref. [7] are used. The values
of Q2 are in units of GeV2.

For the Rarita-Schwinger 3/2 spin field propagator we take

S�
μν = − i(p̂ + M�)

p2 − M2
� + i��M�

�μν(p). (54)

Similarly as in Kondratyuk et al. [9] we set �� → 0.5 With this
simplification the dominant contribution to the loop integrals
comes from the P33 resonance mass pole. Hence the choice of
on-shell projection operator

�μν(p) = gμν − 1

3
γμγν − 2pμpν

3M2
�

+ pμγν − pνγμ

3M�

(55)

leads to the same results as the off-shell projection operator
discussed by Kondratyuk et al. Taking into consideration this
approximation for the projector operator simplifies and also
accelerates the algebraic decomposition of the integrals in
Eqs. (44) and (45). The procedure for computing the integrals
in Eqs. (44) and (45) is described in Appendix A.

B. Nucleon form factors

For the nucleon FFs we consider two parametrizations:

(i) parametrization I, the sum of three monopoles,

Fk(Q2) =
3∑

i=1

f k
i

mk
i + Q2

, (56)

where f 1
3 = m1

3(1 − f 1
1 /m1

1 − f 1
2 /m1

2) and f 2
3 =

m2
3(κp − f 2

1 /m2
1 − f 2

2 /m2
2);

(ii) parametrization II, the sum of three dipoles,

Fk(Q2) =
3∑

i=1

f k
i

(
1 + Q2(

mk
i

)2

)−2

, (57)

where f 1
3 = 1 − f 1

1 − f 1
2 and f 2

3 = κp − f 2
1 − f 2

2 .

5Recently, Borisyuk and Kobushkin [18] performed calculations in
which the impact of the nonzero value of �� is discussed.
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Parametrization I was previously discussed by Blunden
et al. [7] (BMT05). In order to cross-check our algebraic and
numerical procedures we repeat and check the calculations
done in Ref. [7]. In Fig. 4 we present predictions for �2γ

obtained for the same kinematics and form factors as in BMT05
(for comparison see the plots in Figs. 2 and 3(a) of Ref. [7]).
We notice the excellent agreement between our hadronic model
and the BMT05 predictions.

The �2γ (or D2γ ) function depends weakly on the proton
form factor parametrization. Small differences between TPE
predictions based on parametrizations I and II appear for larger
values of Q2 (see Figs. 5 and 6). But this is the region where
the validity of the theoretical approach can be questionable.

C. P33(1232) form factors

The hadronic vertex ��,out
μν (q,P�) for the γ ∗p → �++

transition is obtained by assuming that the P33 resonance is
described by the Rarita-Schwinger 3/2 spin field,

�
ν
(P )��,out

μν (q,P )u(p), q = P − p. (58)

One of the commonly discussed vertex parametrizations is the
following [55]:

��,out
μν (q ≡ P − q,P )

=
[

CV
5

M2
(gμνp · q − pμqν)

+ CV
4

M2
(gμνq · P − Pμqν) + CV

3

M
(gμνq̂ − γμqν)

]
γ5, (59)

where P is the four-momentum of the outgoing P33 resonance,
while p denotes the four-momentum of the incoming proton.

The �++ → γ ∗p vertex reads [9]

��,in
μν (p,P�) = γ0

(
��,out

μν (p,P�)
)†

γ0. (60)

For the N → P33 transition form factors we consider two
scenarios:

(i) P33[SU(6)] model: There is only one vector form factor
CV

3 ; two others are obtained by assuming SU(6) quark
model relations [56], namely,

CV
5 (Q2) = 0, CV

4 (Q2) = − M

M�

CV
3 (Q2). (61)

γ2
D

-0.02

0.00

0.02

0.04

0.06

BNN
ABGG

33
fit I, N+P
fit II, N

33
fit II, N+P

=0.012(a)     Q

ε
0 0.2 0.4 0.6 0.8 1

γ2
D

-0.05

-0.04

-0.03

-0.02

-0.01

0.00 =12(d)     Q

=0.12(b)     Q

ε
0 0.2 0.4 0.6 0.8 1

=1.52(e)     Q

=0.52(c)     Q

ε
0 0.2 0.4 0.6 0.8 1

=22(f)     Q

FIG. 5. (Color online) Predictions of D2γ [Eq. (65)] based on the BNN and HM (fits I and II) as well as ABGG approaches for Q2 ≤ 2.
The TPE correction includes either elastic (N ) or elastic and P33 resonance (full-model) contributions. The values of Q2 are in units of GeV2.
The shaded areas show 1σ error computed from the covariance matrix.
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γ2

D

-0.06

-0.04

-0.02

0.00

BNN
ABGG

33
fit I, N+P
fit II, N

33
fit II, N+P

=2.52(a)     Q

ε
0 0.2 0.4 0.6 0.8 1

γ 2
D

-0.15

-0.10

-0.05

0.00
=42(d)     Q

=32(b)     Q

ε
0 0.2 0.4 0.6 0.8 1

=52(e)     Q

=3.52(c)     Q

ε
0 0.2 0.4 0.6 0.8 1

=62(f)     Q

FIG. 6. (Color online) Predictions of D2γ [Eq. (65)] based on the BNN and HM (fits I and II) as well as ABGG approaches for Q2 > 2.
The TPE correction includes either elastic (N ) or elastic and P33 resonance (full-model) contributions. The values of Q2 are in units of GeV2.
The shaded areas show 1σ error computed from the covariance matrix.

In this case we parametrize the CV
3 (Q2) form factor as

follows [57]:

CV
3 (Q2) = 2.05(

1 + Q2

0.54 GeV2

)2 . (62)

(ii) P33(full) model: We apply the form factors from
Ref. [58], namely,

CV
i (Q2) = cV

i

(
1 + Q2

aiM
2
V

)−1

GD(Q2), (63)

where a3 = a4 = 4, a5 = 0.776, cV
3 = 2.13, cV

4 =
−1.51, cV

5 = 0.48, and

GD(Q2) =
(

1 + Q2

M2
V

)−2

, with MV = 0.84 GeV.

(64)

Over a wide Q2 range (for Q2 > 0.1 GeV2) the form factors
given by Eq. (63) take values similar to the MAID07 form
factors [59].

The P33(full) model is different from the one applied by
Kondratyuk et al. [9] (denoted as KBMT05). However, in the

intermediate Q2 range the predictions are comparable (as seen
by comparing our Fig. 7 with Fig. 2 from Ref. [9]). We notice

ε
0 0.2 0.4 0.6 0.8 1

γ2Δ

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

=1, N2Q

33
=1, N+P2Q

=3, N2Q

33
=3, N+P2Q

FIG. 7. (Color online) �2γ [Eq. (14)] computed for either �(N )
or �(N + P33) TPE contributions. The form factors from Ref. [7] are
applied. The inelastic TPE correction, given by �(P33), is computed
within the P33(full) model. The values of Q2 are in units of GeV2.
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-0.005

 0

 0.005

 0.01

 0.015

 0  0.2  0.4  0.6  0.8  1

Δ 2
γ

ε 

Q2=1

Q2=2

Q2=3

P33(Full)
P33(SU(6))

FIG. 8. (Color online) �2γ [Eq. (14)] given by the resonance
P33 contribution only. Calculations are done for the P33[SU(6)] and
P33(full) models. The values of Q2 are in units of GeV2.

also a qualitative agreement with predictions of the Borisyuk
and Kobushkin model [13]. In both approaches the TPE �(P33)
correction is positive in the low and intermediate Q2 range and
it reduces the total TPE correction.

In contrast to �2γ (N ), the function �2γ (P33) depends on
the details of the hadronic model. Indeed, there are small but
noticeable differences between the predictions of KBMT05
and the P33(full) model. To illustrate the model dependence
of �2γ (P33) the predictions of the TPE correction obtained
within P33[SU(6)] and P33(full) models are plotted in Fig. 8.
There is a clear discrepancy between predictions of the two
approaches.

V. NEURAL NETWORK VERSUS HADRONIC MODEL

The electromagnetic FFs of the proton are the input of
the hadronic model used in this paper. For comparison of the
self-consistency the proton FFs of HM are obtained from the
fit of the HM to the same unpolarized cross-section data as in
the BNN (for details see Appendix B). The PT and R+/− data
are not taken into consideration, and the constraint coming
from assumption (A) does not affect the results. The TPE
correction contains either �(N ) or �(N + P33) contributions.
The obtained FF parameters are given in Tables I (fit I) and

TABLE I. Form factor parameters for fit I (56) for the hadronic
model with elastic (N ) (left panel) and elastic and resonance P33

(right panel) TPE contributions. Mass parameters are in the units of
GeV2.

k = 1 k = 2 k = 1 k = 2

mk
1 1.234 0.321 mk

1 1.221 0.327

mk
2 0.181 4.298 mk

2 0.173 4.019

mk
3 1.085 4.641 mk

3 1.097 4.450

f k
1 −6.569 0.694 f k

1 −7.934 0.713

f k
2 0.055 −13.44 f k

2 0.051 −10.16

II (fit II), while the values of χ2
min/NDF (where NDF is the

number of degrees of freedom) are reported in Table III.
It is interesting to notice that the mass parameters of fit

I are not well spaced. For instance, the parameters m1
1 and

m1
3 take quite similar values. The same feature characterizes

the fits from Ref. [7], where parametrization I was also
discussed but it was fitted to the FFs from Ref. [60]. Indeed,
this parametrization at large Q2 behaves as 1/Q2, while it
is expected (based on theoretical arguments [61,62]) that
GE,M ∼ 1/Q4.

The above observations may suggest that parametrization
I is too simple to describe accurately the FFs over a wide
Q2 range. In order to verify this statement we make two
fits. In the first we consider the data below Q2 = 1 GeV2,
while in the other we use the data below Q2 = 0.5 GeV2.
For the first case we get the mass parameters m1

1 = 2.59,
m1

2 = 0.95, and m1
3 = 0.18 and for the other we get m1

1 = 1.70,
m1

2 = 0.21, and m1
3 = 9.16. We see that for low-Q2 data fits

the mass parameters are well separated. However, because
of the problems noted above, in further discussion the HM
with the FFs given by fit I is treated as a toy model, discussed
to present the systematic properties of the hadronic approach.

At low Q2 there is a visible discrepancy between the
BNN and the hadronic model FF fits. This is illustrated in
Fig. 9, where the ratio μpGE/GM is plotted. There is a
satisfactory agreement between fits I and II. In contrast, the
ratio μpGE/GM predicted by the BNN approach is more
consistent with the recent PT measurements [54] (whose data
were not included in the BNN fit).

The low-Q2 discrepancy between the HM and BNN
approaches is the result of different treatments of the TPE
corrections. This is illustrated in Fig. 5, where we plot the
function

D2γ = �2γ

1 + �2γ

= �C2γ

σR,1γ+2γ

. (65)

It can be seen that the BNN and HM predictions are
inconsistent for Q2 ∈ (0.02,1) GeV2. In contrast, below Q2 <
0.02 GeV2 and at low ε there is a good agreement between
TPE predictions obtained within the two methodologies as well
as other theoretical calculations [63]. This low-ε and low-Q2

behavior of the BNN fit seems to be a systematic property of
all BNN-based parametrizations. This is illustrated in Fig. 10,
where the R+/− values predicted by the BNN models, rejected
due to too small values of the evidence (see Table V), are
plotted. In the limit of ε → 0, with Q2 very low but fixed, σR,1γ

TABLE II. Form factor parameters for the II (57) for the hadronic
model with elastic (N ) (left panel) and elastic and resonance P33 (right
panel) TPE contributions. Mass parameters are in the units of GeV.

k = 1 k = 2 k = 1 k = 2

mk
1 0.7732 1.0595 mk

1 0.7866 1.0247

mk
2 0.9489 1.5629 mk

2 0.9641 1.4914

mk
3 0.8457 0.5474 mk

3 0.8550 0.5082

f k
1 3.9833 1.2645 f k

1 4.3360 1.4592

f k
2 3.9334 −0.269 f k

2 3.7328 −0.3175
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TABLE III. χ 2
min/NDF values.

FF (N ) (N + P33)

fit I 389/403 397/403
fit II 386/403 395/403

[Eq. (10)] is dominated by the magnetic contribution, and the
main constraint comes from the fact that GM (Q2 = 0) = μp.
As a result the TPE fit is affected by several data points present
in the low-Q2 and low-ε domain.

For completeness of the low-Q2 comparison we report the
values of the proton radius obtained from the BNN and HM
fits in Table IV.

The value of
√
〈r2

E〉 computed from the BNN fit is con-
sistent with fit II and the recent atomic measurement [43]
[0.84087(39) fm]. However, it disagrees with the prediction
based on fit I. The latter is inconsistent with fit II as well.

There are two major reasons for the above inconsistency.
The first one is induced by the systematic differences between
the predictions of the TPE by the BNN and HM approaches
in the low-Q2 range. The discrepancy between the values of the
proton radius based on fits I and II is the result of the problem
of parametrization I (mentioned already above) with the proper
description of the FFs over a wide Q2 range. In general, the
low number of parameters in fits I and II limits the flexibility
of the FF parametrizations and their ability for simultaneous
description of the low- and high-Q2 data. Therefore the low-
and high-Q2 fit dependence can be affected by the high- and
low-Q2 data.

To summarize the low-Q2 discussion we would like to
emphasize that in both the present and the BNN data analyses

)2 (GeV2Q
0 0.2 0.4 0.6 0.8 1

M
/G

E
G pμ

0.7

0.8

0.9

1

1.1

BNN

, fit I33N+P

, fit II33N+P

<12fit II, N, Q

FIG. 9. (Color online) The ratio μpGE/GM calculated based on
fits I and II (N and resonance P33 contributions) as well as the
BNN fit. Additionally, the ratio μpGE/GM obtained based on the
fit (parametrization II) to the unpolarized cross-section data below
Q2 = 1 GeV2 is also plotted. The PT data (points with error bars)
are taken from Ref. [53] and Zhan et al. [54] (open diamonds). The
shaded areas show 1σ error computed from the covariance matrix.

TABLE IV. Values of the proton radius
√

〈r2
E〉 obtained from the

BNN and HM fits in femtometers.

BNN fit I fit II

0.85 ± 0.01 0.898 ± 0.001 0.867 ± 0.002

our attention was not particularly focused on the Q2 → 0 limit.
Certainly, accurate calculations of the proton radius require
more careful discussion, as is reported in Refs. [54,64–68].

Above Q2 = 1 GeV2 the BNN FF ratio μpGE/GM ,
on the qualitative level, is comparable with the hadronic
model predictions (Fig. 11). All fits agree well with the PT
measurements [53]. As could be expected, the inclusion of
the �(P33) contribution into the hadronic model increases the
value of the electric form factor at larger values of Q2 (see
Fig. 11).

Excellent consistency between predictions of the TPE effect
by the BNN and HM approaches appears for Q2 ∈ (1,3) GeV2

(see Figs. 10 as well as 5 and 6). Above Q2 = 3 GeV2 the
agreement is at the 2σ level only.

In order to show the strength of the BNN approach we
confront its predictions of the TPE effect with our previous
global analysis (ABGG) [29] made in the conventional way
(see Figs. 5, 6, and 10). In this approach, following the
proposal of Ref. [28], some functional form of the TPE term
was postulated. But the same cross-section and PT data as in
the case of the BNN were analyzed. The constraint (A) was
also imposed. Although both the electric and the magnetic
FF fits of the ABGG analysis are very similar to those
obtained within the BNN and the other phenomenological
approaches [34], the predictions of the TPE correction agree
with the HM only for Q2 around 3 GeV2 (see Fig. 10). In
the ABGG approach the model dependence of the final fits
was not discussed. The successful fits were characterized
by a reasonable value of χ2

min/NDF. However, in the BNN
analysis the models rejected, due to too low evidence, were
characterized also by a reasonable χ2

min/NDF (see Table V).
But the TPE corrections predicted based on these fits, similarly
to those for the ABGG analysis, are inconsistent with the best
BNN fit and the hadronic model calculations.

The results of our paper are complementary to the conclu-
sions of Ref. [27] (AMT), where a global analysis of the world
ep data was also performed. The TPE correction was given
by the sum of elastic �(N ) and inelastic contributions. The
latter was described by a phenomenological function, which

TABLE V. The minimum of χ 2 and the maximum of the evidence
obtained for the best BNN model (in bold) and the fits rejected because
of too small values of the evidence. The total number of points in the
fit is 529.

N4,2 N4,3 N6,2 N6,3 N6,4 N5,7 N5,6

χ 2
min 507 511 497 493 486 539 478

ln(evidence) −633 −630 −635 −624 −639 −699 −611
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FIG. 10. (Color online) The ratio R+/− computed based on the BNN (lines) and HM (squares and triangles) approaches as well as the
preliminary VEPP-3 measurements [37] (filled circles). The HM predictions are computed for the model (fit II) which contains either elastic
(N ) or elastic and resonance P33 TPE contributions. The triangle points are right-shifted by 0.02 GeV2. The shaded areas show 1σ error
computed from the covariance matrix.

approximates the resonance [10] and Generalized Parton
Distributions-based [14] fraction of the TPE effect. To compute

)2 (GeV2Q
0 1 2 3 4 5 6

M
/G

E
G pμ

0

0.2

0.4

0.6

0.8

1

BNN

N, fit I

N, fit II

, fit II33N+P

FIG. 11. (Color online) The ratio μpGE/GM computed based on
fits I and II as well as for the BNN. The HM fits include either elastic
(N ) or elastic and P33 resonance contributions. The PT data are taken
from Refs. [53,54]. The shaded areas show 1σ error computed from
the covariance matrix.

the elastic contribution the FFs (parametrization I) were fitted
to the electromagnetic FFs from [60]. The FFs (parametriza-
tion from [61]) were fitted to the unpolarized cross-section

 0.95

 1

 1.05

 1.1

 0  0.5  1  1.5  2

R
+

/-

Q2(GeV2)

VEPP-3
fit II, N+P33

fit II, N
BNN, ε=0.50
BNN, ε=0.95

FIG. 12. (Color online) Predictions of R+/− [Eq. (2)] computed
based on the BNN, HM (fit II), and ABGG approaches. The TPE
correction includes either elastic (N ) or elastic and P33 resonance
(full-model) contributions. Additionally, the plots of R+/− predicted
based on the BNN fits rejected due to too small values of the evidence
(see Table V) are presented (other BNNs). The shaded areas show 1σ

error computed from the covariance matrix.
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TABLE VI. R+/− predictions for the VEPP-3 experiment [37]
computed within the BNN and HM approaches. In the latter the
model contains either elastic (N ) or elastic and resonance P33 TPE
contributions (fit II).

Q2 (GeV2) 0.23 1.43 0.82 0.96
ε 0.95 0.50 0.42 0.29

1.009 1.017 1.037 1.043
BNN ±0.007 ± 0.010 ± 0.007 ± 0.008
�(N ) 0.999 1.026 1.020 1.028
�(N + P33) 1.001 1.020 1.019 1.027

data (corrected by the TPE) and the PT measurements. It was
shown that the cross-section data modified due to the TPE
effect are consistent with the PT measurements. An effort was
made to estimate uncertainties of the theoretical model for the
TPE effect.

In the AMT as well as in the ABGG approaches the analyses
were performed in the spirit of frequentist statistics (using the
least-squares method), while the neural network analysis was
done within Bayesian statistics (for the short review see [69]).
In both statistical approaches to find the best fit some error
function is minimized. But in the BNN approach the procedure
for finding the optimal model is more complicated. In the first
stage of the approach a large population of MLPs (more than
1000 networks of given architectures) is trained to find the
configuration of the weight parameters for which the error
function is at the local minimum. The best model favored by the
data maximizes the evidence. It is the probability distribution,
which only partially depends on the error function. It contains
Occam’s contribution6 [Eqs. (34) and (35)], which penalizes
too complex models and allows one to choose the fit with the
best predictive power.

The idea of the BNN formalism is to distinguish the
statistical model, describing the data, that is characterized
by good predictive power. To verify this property we make
an estimate of R+/− for the new measurements done in the
VEPP-3 experiment [37], which were not included in the
BNN analysis. It can be noticed that the BNN and the HM
predictions are consistent with the new data (see Fig. 12). For
future tests we provide reader with our predictions of R+/− for
two other kinematics regions, which are going to be explored
in the Novosibirsk experiment (see Table VI).

VI. SUMMARY

The TPE correction was computed within the hadronic
model. For the hadronic intermediate states the proton and
P33(1232) resonance were considered. The electromagnetic
proton form factor parameters were obtained from a global
fit to the cross-section data only. Two FF parametrizations
were discussed: the sum of monopoles and dipoles. The TPE
�(P33) contribution was computed by taking different forms
of transition vertex and form factors than discussed previously.

6It may happen that for the model with the highest evidence the
error function is not at a global minimum.

In particular, two parametrizations of the FFs for the N → P33

transition were considered.
The main goal of this paper was to confront the predictions

of the TPE effect coming from the hadronic model and the
Bayesian analysis of the ep scattering data. The latter was
performed by applying the neural network framework. The
BNN response was constrained by the assumption that the PT
data are not sensitive to the TPE effect. Hence this comparison
provides also a quantitative verification of this assumption.

It was demonstrated that the BNN and the hadronic model
predictions agree on a quantitative level over a wide Q2 range.
In particular, for Q2 between 1 and 3 GeV2 the TPE corrections
resulting from the two approaches are very similar. In the
intermediate Q2 range (Q2 > 3 GeV2) the agreement is at the
2σ level. This is the kinematical domain where the data are
limited. Obviously, the limited amount of data affect the BNN
predictions. On the other hand, in this kinematical limit the
applied hadronic model can be questionable.

For Q2 between 0.01 and 0.8 GeV2 the BNN and hadronic
model predictions are inconsistent. In this Q2 range assump-
tion (A) does not work effectively. A similar inconsistency
appears when one compares with the ABGG predictions of
the TPE. Indeed, in the ABGG approach assumption (A) also
played a crucial role in the analysis.

A next step to improve the BNN approach would be to
replace assumption (A) by a weaker statement and enlarge the
number of independent TPE functions from one to four. The
main problem is that the PT data seem to be not informative
enough about the ε dependence of the TPE effect.
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APPENDIX A: EVALUATION OF THE TPE TERM

We consider the proton electromagnetic FFs of the form

Fi(t) =
Li∑

k=1

Ni
k∑

ni
k=1

f
ni

k

i(
t − M2

i,nk

)k
, i = 1,2. (A1)

Every kth pole function can be written as a derivative,
1

(n − 1)!
∂n−1
x

1

t − x

∣∣∣∣
x=M2

= 1

(t − M2)n
. (A2)

We introduce the notation

Dn
Mf (M2) ≡ 1

(n − 1)!

∂nf (x2)

∂(x2)n

∣∣∣∣
x2=M2

, n = 1,2, . . . , (A3)

where D0
Mf (M2) ≡ f (M2). Then the form factor is written in

the form

Fi(t) =
Li∑

k=1

Ni
k∑

ni
k=1

Dk−1
M

ni
k

f
ni

k

i

t − M2
ni

k

. (A4)
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We decompose both wN,‖ and wN,× functions into four
components,

wN =
2∑

i=1

2∑
j=1

w
ij
N . (A5)

The ij component, due to its form factor, reads

w
ij
N =

Li∑
k=1

Ni
k∑

ni
k=1

Lj∑
l=1

N
j
l∑

n
j
l =1

f
ni

k

i f
n

j
l

j Dk−1
M

ni
k

Dl−1
M

n
j
l

E

× (
LαμνHN,ij

αμν ,Mni
k
,Mn

j
l
,Mp

)
, (A6)

where the leptonic tensor Lαμν is given by either

L
αμν
‖ = Tr((k̂ + m)γ α(k̂′ + m)γ μ(k̂′ − l̂ + m)γ ν) (A7)

or

L
αμν
× = Tr((k̂ + m)γ α(k̂′ + m)γ μ(k̂′ − l̂ + m)γ ν). (A8)

The hadronic tensor reads

HN,ij
αμν = Tr

(
(p̂ + Mp)�α(−q)(p̂′ + Mp)

×�i
μ(−l)(p̂′ + l̂ + Mp)�j

ν (q + l)
)
, (A9)

�1
μ(l) ≡ γμ, �2

μ(l) = iσμνq
ν

2Mp

. (A10)

E(N ,ma,mb,mh) is the one-loop integral defined as

E‖(N ,ma,mb,mh) =
∫

d4l

(2π )4

N[
l2 − m2

a

][
(q + l)2 − m2

b

]
[(q + l)2 + iε][l2 + iε][(k′ − l)2 − m2 + iε]

[
(p′ + l)2 − m2

h + iε
]

(A11)

for direct box diagram and

E×(N ,ma,mb,mh) =
∫

d4l

(2π )4

N[
l2 − m2

a

][
(q + l)2 − m2

b

]
[(q + l)2 + iε][l2 + iε][(k + l)2 − m2 + iε]

[
(p′ + l)2 − m2

h + iε
]

(A12)

for exchange box diagram.
In the case of the P33 intermediate state we proceed in a similar manner. For instance, for the P33(full) model we have

w� =
3∑

i=1

3∑
j=1

w
ij
�. (A13)

The components of the hadronic tensor read

H�,ij
αμν = Tr

(
(p̂ + Mp)�α(−q)(p̂′ + Mp)��,in

μξ,i (−l,p′ + l)[p̂′ + l̂ + M�]�ξη(p′ + l)��,out
ην,j (q + l,p′ + l)

)
, (A14)

where

�
�,in(out)
μν,i ≡ ��,in(out)

μν

(
CV

k → δki, k = 3,4,5
)
. (A15)

In the case of the P33(full) model, the resonance form factors
have the general form

CV
i (t) = −cV

i

aiM
2
V

t − aiM
2
V

M4
V(

t − M2
V

)2 . (A16)

They can be written in the form

CV
i (t) = c

1,1
i[

t − (
M

1,1
i

)2] + c
1,2
i[

t − (
M

1,2
i

)2] + c
2,1
i[

t − (
M

2,1
i

)2]2 ,

(A17)

where

C
1,1
i = −cV

i

aiM
2
V

(ai − 1)2
, M

1,1
i = √

aiMV , (A18)

C
1,2
i = cV

i

aiM
2
V

(ai − 1)2
, M

1,2
i = MV , (A19)

C
2,1
i = cV

i

aiM
4
V

(ai − 1)
, M

2,1
i = MV . (A20)

w
ij
� =

2∑
k=1

Nk∑
nk=1

2∑
l=1

Nl∑
nl=1

c
k,nk

i c
l,nl

j Dk−1

M
k,nk
i

Dl−1

M
l,nl
j

× I(
LαμνH�,ij

αμν ,M
k,nk

i ,M
l,nl

j ,M�

)
, (A21)

where N1 = 2, and N2 = 1, c
2,2
i = 0.

The algebraic calculations, such as computing the leptonic
(A7) and (A8) and hadronic (A9) and (A14) tensors and their
contractions, are done with the help of the FeynCalc package
[70,71].

The integrals in Eqs. (A11) and (A12) are expressed
(also with the help of routines in FeynCalc) in terms of
Veltman-Passariono scalar loop integrals [72,73]. Because of
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the complex structure of the the numerators of the integrals
in Eqs. (A11) and (A12) some prereduction of the numerator
with the denominator is necessary.

Once the analytic expressions for all integral components
are obtained, their numerical values are computed with the
LoopTool library [74,75].

APPENDIX B: χ 2

In order to get the FF parameters of parametrizations I (56)
and II (57) we analyze the same unpolarized cross-section data
as in Ref. [33].

We consider the following χ2 function:

χ2 =
N∑

k=1

[
nk∑

i=1

(
λkσ

th
ki − σ ex

ki

�σki

)2

+
(

λk − 1

�λk

)2
]

. (B1)

Here N = 28 is the number of independent data sets in the
fit, nk is a number of points in the kth data set, σ th

ki is the
reduced cross section given by Eq. (16), while σ ex

ki and �σex
ki

denote the experimental measurement and its error. By �λk’s
the systematic normalization errors are introduced. For every
data set the normalization parameter λk is established from the
fit. Our treatment of the systematic normalization errors is the
same as in Refs. [27,29,33,76]. For a statistical explanation of
this procedure see Ref. [77].
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