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Chiral condensate at finite density using the chiral Ward identity
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To study partial restoration of the chiral symmetry at finite density, we investigate the density corrections of
the chiral condensate up to the next-to-leading order of density expansion using the chiral Ward identity and an
in-medium chiral perturbation theory. In our study, we assume that all the in-vacuum quantities for the pion, the
nucleon, and the πN interaction are determined in vacuum and focus on density expansion of the in-medium
physical quantities. We perform diagrammatic analysis of the correlation functions which provide the in-medium
chiral condensate. This density expansion scheme shows that the medium effect to the chiral condensate beyond
the linear density comes from density corrections to the πN σ term as a result of the interactions between pion
and nucleon in nuclear matter. We also discuss that higher-density contributions beyond the order of ρ2 cannot
be fixed only by the in-vacuum πN dynamics and we encounter divergence in the calculation of the ρ2-order
corrections of the chiral condensate. To remove the divergence, we need NN two-body contact interaction, which
can be fixed in vacuum.
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I. INTRODUCTION

Dynamical breaking of chiral symmetry (DBχS) is one
of the important phenomena of QCD for low-energy hadron
spectrum and dynamics of light hadrons. The light pseu-
doscalar mesons, π , K , and η, are identified as the Nambu-
Goldstone bosons of DBχS, and the quark mass generation
is also explained by DBχS. The quark condensate 〈q̄q〉 is
one of the order parameters of DBχS and its magnitude
characterizes the QCD vacuum. Because DBχS is a phase
transition phenomenon, such dynamically broken symmetry is
expected to be restored in extreme environments, such as high
temperature and/or high baryonic density. It is very significant
to confirm phenomenologically that DBχS really takes place
in the QCD vacuum.

One of the proofs of DBχS is to make sure of partial restora-
tion of chiral symmetry in nuclear matter. The partial restora-
tion of chiral symmetry is an incomplete restoration of chiral
symmetry with sufficient reduction of the magnitude of the
quark condensate. Recent observations of pionic atom spectra,
especially precise measurements of the isotope dependence on
deeply bound pionic atoms [1] and low-energy pion-nucleus
scattering [2,3] have found that the b1 parameter appearing in
the pion optical potential is substantially enhanced in nuclei.
With this fact and theoretical examination [4,5], it turns out
that the magnitude of the quark condensate does decrease about
30% at the saturation density.

The reduction of the quark condensate in nuclear medium
also leads to various phenomena, for instance, attractive
enhancement of scalar-isoscalar ππ correlation in nuclei [6–8]
and the suppression of the spectrum difference between the
chiral partners, such as ρ-a1 [9,10] and N -N (1535) [11–14].
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The experimental observations of these phenomena can be
further confirmation of partial restoration of chiral symmetry
in nuclear medium. For instance, one could observe the re-
duction of the N -N (1535) mass difference from the formation
spectrum of the η mesonic nuclei [15–17]. The mass difference
between the η and η′ mesons is also responsible for the quark
condensate through the UA(1) anomaly effect [18,19].

These phenomena are caused by substantial quark dy-
namics, but because we have quark-hadron duality in the
description of hadron dynamics, these phenomena should be
also described in terms of hadron dynamics, such as nuclear
many-body theories. This means that if one could describe the
suppression of the spectrum difference of the chiral partners
in a nuclear many-body theory, this does not rule out partial
restoration of chiral symmetry. To a greater extent, once one
could understand hadronic phenomena in terms of quark-gluon
dynamics, one would have more substantial and deeper insight
of hadron dynamics, which will bring us its more systematic
understanding in terms of QCD.

Theoretically, the reduction of the quark condensate in the
nuclear medium is naturally expected according to the model-
independent low-density relation [20], in which the ratio of
the in-medium and in-vacuum quark condensates is given by
the πN σ term together with the in-vacuum pion mass and
pion decay constant. This relation is derived under the linear-
density approximation. The sign of the σ term determines the
fate of the in-medium quark condensate. Because the σ term
extracted from πN scattering data has a positive sign, the quark
condensate should be reduced, at least, in the low-density limit.
However, one does not know up to which density one can
apply the linear-density approximation. For further detailed
understanding, one needs calculation beyond the linear density
based on effective theories.

Because the quark condensate is not a direct observable in
experiments, one needs theoretical examination to conclude
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partial restoration of chiral symmetry phenomenologically. In
Ref. [5], an exact sum rule which relates the quark condensate
and hadronic observables has been derived by using the
chiral Ward identity. In the linear-density approximation,
the in-medium quark condensate can be written in terms of
the in-medium temporal pion decay constant and the pion
wave function renormalization constant. The importance
of the wave-function renormalization in in-medium chiral
effective theories has been also discussed in Refs. [4,7]. With
this relation, the reduction of the quark condensate has been
phenomenologically confirmed by using the in-medium pion
decay constant extracted from pion-nucleus dynamics [1]
and the wave-function renormalization constant extracted
from pion-nucleon scattering [5]. Because this proof of the
partial restoration of chiral symmetry in the nuclear medium
is based on the linear-density approximation of in-medium
quantities, precise determination of the density dependence of
the quark condensate both in theory and in experiment [21,22]
is strongly desired.

The in-medium quark condensate has been discussed in
various approaches. The in-medium correction of the conden-
sate is given by the pion-nucleon σ term model independently
at the first order in nucleon density [20,23] and higher
orders are evaluated with mean-field calculations using the
Nambu-Jona-Lasinio and Gell-Mann-Levy models [23] and
the relativistic Brueckner approach [24,25]. In Ref. [21], the
in-medium condensate has been obtained beyond the linear
density based on the Hellman-Feynman theorem, in which
they have calculated the energy density in nuclear matter
based on a chiral effective theory and taken its derivative with
respect to the quark mass to obtain the quark condensate.
The pion self-energies in asymmetric nuclear matter were
calculated based on chiral perturbation theory in Ref. [26].
Reference [27] developed systematic framework of chiral
perturbation theory in nuclear matter and calculated the
equation of state of isospin-symmetric nuclear matter. In
Ref. [28], a novel formulation of chiral perturbation theory in a
nuclear background was proposed and the self-energy and the
nuclear optical potential of the charged pion were calculated.
In Ref. [29] hadronic quantities, such as pion optical potential,
have been calculated beyond the linear density.

The goal of this paper is to examine higher-density
correction beyond linear density and to show a systematic way
to calculate the in-medium quantities based on chiral effective
theory. For this purpose, we use the formulation proposed in
Ref. [30] and developed in Ref. [31]. In this formalism, one
calculates matrix elements in the free Fermi nuclear matter,
which are defined by the path integral under the action of
the system. All the interaction between nucleons in matter
and pions are assumed to be described in the interaction
Lagrangian. In this formulation, one can make a double
expansion in terms of Fermi see insertion and chiral-order
counting. Thus, the expansion scheme is clear.

In this paper we calculate the Ward identity, which connects
the quark condensate and hadronic quantities, based on this
in-medium chiral perturbation formulation. This paper is or-
ganized as follows. We explain the chiral Ward identity which
relates the chiral condensate with the correlation function
of the chiral currents in Sec. II. In Sec. III, we introduce

the in-medium chiral perturbation theory and the in-medium
chiral counting scheme. In Sec. IV, we show the result of
the calculation of the in-medium chiral condensate 〈q̄q〉∗, and
finally we devote Sec. V to the conclusion of the present paper.

II. CHIRAL WARD IDENTITY

To calculate the density dependence of the in-medium
quark condensate, we take the chiral Ward identity approach
proposed by Ref. [5]. In this approach, we consider the
correlation function of the axial-vector current Aa

μ(x) and the
pseudoscalar density P a(x),

�ab
5 (q) =

∫
d4xeiq·x∂μ〈	|T Aa

μ(x)P b(0)|	〉, (1)

where |	〉 is the nuclear-matter ground state normalized as
〈	|	〉 = 1 and is characterized by the proton and neutron
densities, ρp and ρn, respectively. The axial-vector current
Aa

μ(x) is associated with the SU(2) chiral transformation
whose generators are given by Qa

5 = ∫
d3xAa

0(x). The pseu-
doscalar density P a(x) is defined in terms of the quark field by
P a(x) ≡ q̄iγ5τ

aq(x) with the Pauli matrix τ a for the isospin
space and transforms under the SU(2) chiral transformation as
[Qa

5,P
b(x)] = −iδabq̄q(x).

Using the operator identity ∂μ[T Aa
μ(x)P b(0)] =

δ(x0)[Aa
0(x),P b(0)] + T [∂μAa

μ(x)P b(0)] and performing the
integral in the soft limit qμ → 0, we obtain the in-medium
quark condensate as

−iδab〈ūu + d̄d〉∗ = �ab
5 (0) − mqD

ab(0), (2)

where we have written the expectation value 〈	|O|	〉 as 〈O〉∗
for operator O, and �ab

5 (0) and Dab(0) are defined as

�ab
5 (0) ≡ lim

qμ→0
−iqμ

∫
d4xeiq·x 〈Aa

μ(x)P b(0)
〉∗

, (3)

Dab(0) ≡ lim
qμ→0

∫
d4xeiq·x〈P a(x)P b(0)〉∗. (4)

Here we have used the partially-conserved-axial-current
(PCAC) relation ∂μAa

μ = mqP
a with the quark mass mq .

Equation (2) implies that the in-medium quark condensate
is written in terms of the Green’s functions in the soft limit.

We can evaluate the in-medium chiral condensate by
calculating this correlation functions �ab

5 (q) and Dab(q) in
the soft limit q → 0. Up to next-to-leading order, we confirm
that �ab

5 (0) vanishes out of the chiral limit in the soft limit
when there are no massless pionic modes that coupled to the
axial current Aa

μ(x). In the chiral limit, the quark condensate
can be calculated by

δab〈ūu + d̄d〉∗ = lim
qμ→0

qμ

∫
d4xeiq·x 〈Aa

μ(x)P b(0)
〉∗

, (5)

as discussed in Ref. [5]. We note that both methods are
equivalent when one calculates 〈q̄q〉 in the chiral limit.

III. IN-MEDIUM CHIRAL PERTURBATION THEORY

Chiral effective theories are powerful theoretical tools to
describe hadron dynamics based on chiral symmetry and
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its spontaneous breaking [32–35]. In this work, we use
the in-medium extension of the chiral perturbation theory
developed by Refs. [30,31]. In this method, first one defines
the generating functional of the correlation functions by
taking noninteracting Fermi gas of nucleons as the asymptotic
state and assumes all the interaction between nucleons and
other internal fields are described by the chiral effective
Lagrangian. The in-medium correlation functions are cal-
culated by taking functional derivatives of the generating
functional.

Let us consider the noninteracting nucleon system at
asymptotic times t → ±∞, |	out〉 and |	in〉 as usual scattering
theory. Here we assume the unpolarized nuclear matter for
simplicity. The in and out states are described in terms of the
nucleon creation operators a†(pn) with the nucleon momentum
pn as

|	in,out〉 ≡
N∏
n

a†(pn)|0〉,

where the nucleon Fermi gas states are occupied up to the
Fermi momentum kF . The proton and neutron densities are
given by the Fermi momenta k

(p,n)
F as

ρi = 1

3π2
ki3
F , (6)

for i = p,n.

The generating functional is given by

Z[J,η,η†] = eiW [J,η,η†] = 〈	out|	in〉J,η,η† (7)

under the presence of the external fields J = (s,p,v,a), η,
and η′. Here, s, p, v, and a represent the scalar, pseudoscalar,
vector, and axial-vector sources, respectively, and η and η† are
the nucleon external sources. We also define the generating
functional for the connected Green’s functions W [J,η,η†] in
Eq. (7). The path integral is to be performed for the fields in
the Lagrangian, such as the chiral field U and the nucleon
field N ,

Z[J,η,η†] =
∫

DUDNDN †〈	out|N (+∞)〉

× ei
∫

dx(Lπ +LπN +η†N+N †η)〈N (−∞)|	in〉, (8)

where Lπ is the pion chiral Lagrangian and we take the π -N
chiral Lagrangian with the nucleon bilinear interaction A given
by the πN chiral Lagrangian LπN = N̄ (iγ μ∂μ − mN − A)N .
The operator A is written by the pion fields and its derivatives
together with the external fields and is subject to chiral-order
counting, and N = (p,n)T is the nucleon field with p and n
for proton and neutron, respectively. In Appendix A, the
detailed expression of A is summarized. The parameters of
the Lagrangian are to be fixed in vacuum.

The integral in terms of the nucleon field can be done easily
by using the Gauss integral formula if the Lagrangian has
the bilinear form for the nucleon interaction. As shown in
Ref. [30], the generating functional is characterized by double
expansion of Fermi sea insertions and chiral orders. The Fermi
sea insertion is seen as

Z[J ] =
∫

DU exp

(
i

∫
dx

{
Lππ −

∫
dp

(2π )32E(p)
FT Tr[i
(x,y)( 	p + mN )n(p)]

− i

2

∫
dp

(2π )32E(p)

dq
(2π )32E(q)

FT Tr[i
(x,x ′)( 	q + mN )n(q)i
(y ′,y)( 	p + mN )n(p)] + · · ·
})

, (9)

where FT denotes Fourier transformation of the spacial
variables except x, E(p) is the relativistic nucleon energy
E(p) =

√
p2 + m2

N , and the nonlocal vertex 
(x,y) is defined
by 
 ≡ −iA[14 − D−1

0 A]−1, which is given only by the
in-vacuum interactions A and the free nucleon propagator
D−1

0 . The matrix n(p) in the isodoublet space is defined to
restrict the momentum integral up to the Fermi momentum as

n(p) =
(

θ
(
k

p
F − |p|) 0

0 θ
(
kn
F − |p|)

)
. (10)

Figure 1 shows the diagrammatic structure of the Fermi sea
insertion of the generating functional (9). In the figure, the
thick line represents nucleon propagation in the Fermi sea.
The chiral expansion is given by the expansion of the nonlocal
vacuum vertices,

i
 = A + AD−1
0 A + AD−1

0 AD−1
0 A + · · · , (11)

together with the chiral expansion for the bilinear local vertex
A. Using the generating functional (9), we can define the in-
medium pion Lagrangian L̃ππ as Z[J ] = exp[i

∫
d4xL̃ππ ].

The connected n-point Green’s functions can be evaluated
by taking functional derivatives of iW [J ] defined in Eq. (7)
with respect to the external sources J i ,

〈	out|TO1 · · ·On|	in〉 = (−i)n
δ

δJ1
· · · δ

δJn

iW [J ], (12)

FIG. 1. Schematic diagram for the generating functional (9) in
the expansion of the Fermi sea insertion. The thick line denotes the
nucleon propagation in the Fermi sea and 
 is the nonlocal vertex
given by the in-vacuum πN interaction.
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where Oi is the corresponding current operator to the external
source Ji . The current operator Oi can be represented in terms
of the corresponding quark current, such as the pseudoscalar
current P i = q̄iγ5τ

iq and the axial-vector current Ai
μ =

q̄γμγ5
τ i

2 q.
The in-vacuum chiral perturbation theory has the chiral

expansion scheme in which the pion energy momentum and the
small quark mass are counted as small quantities. In addition to
these quantities, in the in-medium chiral perturbation theory
the Fermi momentum is also regarded as a small quantity,
because the Fermi momentum at the normal nuclear density
kF = 270 MeV is as small as 2mπ . According to Ref. [31],
chiral order ν for a specific diagram is given by

ν = 4Lπ − 2Iπ +
Vπ∑
i=1

di +
Vρ∑
i=1

dρi � 4, (13)

dρ = 3n +
n∑

i=1

ν
i
− 4(n − 1), (14)

where Lπ is the number of pion loops, Iπ is the number of
the pion propagators, di is the chiral dimension coming from
the pion chiral Lagrangian Lππ , dρ is the chiral dimension
of the nonlocal in-medium vertex with n Fermi sea insertions,
and ν
 is the chiral dimension of the 
 vertex. This counting
rule is called standard case in Ref. [31] in which the nucleon
propagator is counted as O(p−1). We note that ν is larger
than 4, so that leading-order contribution to the in-medium
chiral condensate appears from O(p4). In this formalism,
we can calculate any processes in which pions interact with
Fermi gas using this method. If one follows strictly the chiral
expansion scheme, one has to expand also in-vacuum terms and
renormalize them order by order. This kind of the expansion is
useful in theoretical consideration, while it is not convenient
in practical use because expanded quantities are not direct
observables. Here we consider that all the in-vacuum quantities
for the πN dynamics are already fixed by experiments. This

FIG. 2. A one-nucleon loop diagram in the nuclear medium.
The thick and thin lines represent the nucleon propagations in the
Fermi sea and in free space, respectively. The double lines denote the
nucleon propagator G(p) given in Eq. (15).

implies that the renormalization procedure for in-vacuum
values are already done and we do not have to evaluate
in-vacuum loop diagrams. This is also consistent with having
taken det(D0 − A) = 1 to obtain Eq. (9).

The expansion scheme of the generating functional in terms
of the Fermi sea insertion given in Eq. (9) is equivalent to the
conventional nuclear many-body calculation using the Pauli-
blocked nucleon propagator in the Fermi gas,

iG(p) = iD−1
0 (p) + iD−1

m (p), (15)

iD−1
0 (p) = i( 	p + mN )

p2 − m2
N + iε

, (16)

iD−1
m (p) = −2π ( 	p + mN )δ

(
p2 − m2

N

)
θ (p0)n(p). (17)

To see the equivalence, we examine a one-nucleon loop
diagram with two interaction operators A (see Fig. 2). In the
conventional approach, this diagram can be calculated using
the Pauli-blocked nucleon propagator G by

i

2

∫
d4p

(2π )4

d4q

(2π )4
Tr{[−iA(q − p)]iG(q)[−iA(p − q)]iG(p)}.

Using Eq. (15), this can be written as

i

2

∫
d4p

(2π )4

d4q

(2π )4
Tr

[
(−iA)iD−1

0 (q)(−iA)iD−1
0 (p)

] + i

∫
d3p

(2π )32E(p)

d4q

(2π )4
Tr

[
(−iA)iD−1

0 (q)(−iA)i( 	p + mN )n(p)
]

+ i

2

∫
d3p

(2π )32E(p)

d3q
(2π )32E(q)

Tr[(−iA)i( 	q + mN )n(q)(−iA)i( 	p + mN )n(p)]. (18)

Here we have integrated out in terms of p0 for D−1
m (p):∫

d4p

(2π )4
2πδ

(
p2 − m2

N

)
θ (p0)n(p) =

∫
d3p

(2π )32E(p)
n(p).

(19)

The first term of Eq. (18) is the nucleon loop in vacuum
and should be renormalized into the in-vacuum Lagrangian.
The second term can be obtained from the one Fermi sea
insertion as appearing in the second term of the argument
of exp in Eq. (9) after replacing the nonlocal vertex 
 to
AD−1

0 A which is the second term of the chiral expansion of 

in Eq. (11). The third term can be obtained in the two Fermi
sea insertion by replacing 
 to A which is the first term of the

chiral expansion. In the same way, one can show that Eq. (9)
contains all the terms of one nucleon loop diagram with three
interaction operators given by the conventional approach as

i

3

∫
d4p

(2π )4

d4q

(2π )4

d4k

(2π )4
Tr{[−iA(q − p)]iG(q)

× [−iA(k − q)]iG(k)[−iA(p − k)]iG(p)},

with the correct factor except the free nucleon loop. Therefore,
calculation with the in-medium nucleon propagor G is equiv-
alent to use the expansion scheme of the generating functional
given in Eq. (9).
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IV. RESULTS

To evaluate the in-medium condensate 〈q̄q〉∗ with Eq. (2),
we calculate the current-current correlation functions in the
soft limit, �ab

5 (0) and Dab(0) defined in Eqs. (3) and (4),
by using the in-medium chiral perturbation theory. From
Eq. (12), Dab(0) is expressed by the generating functional
W [J ],

Dab(0) = lim
q→0

∫
d4xeiqx〈	out|T P a(x)P b(0)|	in〉 (20)

= lim
q→0

∫
d4xeiqx(−i)2 δ

δpa(x)

δ

δpb(0)
iW [J ]. (21)

Here P a(x) and pa(x) are the pseudoscalar density and the
corresponding external field, respectively. Similarly, �ab

5 (0) is
expressed in terms of the generating functional W [J ].

In Sec. IV A, we present the Feynman graphs for the
calculation of Dab(0) based on the density-order counting and
evaluate it up to the next-to-leading-order (NLO) corrections.
We also present the Feynman diagram for �ab

5 (0) and evaluate
it in Sec. IV B. We find that �ab

5 (0) vanishes out of the chiral
limit within the NLO corrections by taking the soft limit.
In Sec. IV C, we show the density dependence of the chiral
condensate within the NLO corrections. In Sec. IV D, we
discuss higher-order corrections beyond NLO. We find that
some diagrams are divergent and show the necessity of the
NN contact terms to renormalize the higher-order corrections.
In the following, we consider the symmetric nuclear matter for
simplicity.

A. Calculation of Dab(0)

We calculate Dab(0) in the soft limit with the finite quark
mass. In the following, 〈P a(x)P b(0)〉∗ denotes the in-medium
expectation value 〈	out|P a(x)P b(0)|	in〉.

First of all, let us evaluate Dab(0) in the vacuum using the in-
vacuum chiral LagrangianLπ . We draw the Feynman diagrams
for the 〈P a(x)P b(0)〉 correlation function in Fig. 3 based on

FIG. 3. Feynman diagrams contributing to the Dab(0) correlation
function in vacuum. The wavy lines denote the pseudoscalar density
and the solid circles represent the tree vertex for the pions. The dashed
lines stand for the pion propagation. The diagram in (a) is for the tree
level and the diagrams shown in (b) are examples of the radiative
correction.

the chiral counting scheme. In the diagrams the wavy lines
denote the pseudoscalar density and the solid circles represent
the tree vertex for the pions. Feynman graph (a) shows the
leading-order graph counted as O(p2) in the chiral counting,
while the diagrams (b) are the radiative corrections in the
higher order of the chiral expansion. Calculating 〈P a(x)P b(0)〉
in vacuum and taking the soft limit q → 0 in the momentum
space, we obtain Dab(0) and the in-vacuum chiral condensate
through Eq. (2),

Dab
0 (0) = (−i)2δab lim

q→0
(2if B0)iDπ (q)(2if B0) + · · ·

= −4if 2B2
0

1

m2
π

δab + · · · , (22)

where f is the pion decay constant in the chiral limit, B0

is one of the low-energy constants in the chiral Lagrangian
L(2)

π given in Appendix B, iDπ (q) = i(q2 − m2
π + iε)−1 is

the free pion propagator and mπ is the pion mass. The first
term is the leading-order contribution of the in-vacuum chiral
condensate and the dots mean higher-order loop corrections,
such as those given as the diagrams in Fig. 3(b). Using the
relation between the pion and the quark masses in the chiral
perturbation theory, m2

π = 2mqB0 + · · · , we obtain the in-
vacuum chiral condensate 〈ūu + d̄d〉0:

mqD
ab
0 (0) = i(−2f 2B0 + · · · ) = iδab〈ūu + d̄d〉0. (23)

In this work we presume that the in-vacuum quantities appear-
ing in the Lagrangian are already fixed by the experimental
data.

Second, we consider the density corrections. According to
the chiral counting in Eq. (13), the leading-order contributions
start from O(p4). In Fig. 4(a), we show all the O(p4) diagrams.
In these graphs, the thin solid lineare the free nucleon
propagators represented by the first term of Eq. (15) and the
thick solid lines are the Fermi sea insertions represented by
the second term in Eq. (15) for accounting the Pauli blocking
effect. The open circless are the vertices coming from the
in-vacuum subleading πN chiral LagrangianL(2)

πN . It is notable
that all the O(p4) contributions to the correlation function
Dab(p) vanish in the soft limit. To see it, we evaluate the
central diagram in Fig. 4(a), as an example, with the external
momentum qμ using the in-medium propagator (15) and the
vertices given in Appendix B:

(−i)2 lim
q→0

(2if B0)2[iDπ (q)]2(−1)

×
∫

d4p

(2π )4
Tr

[(
−i

gA

2f
i 	qγ5τ

a

)

× iD−1
m (p + q)

(
−i

gA

2f
i 	qγ5τ

b

)
iD−1

m (p)

]
= 0.

Having taken the soft limit in the final equality, we find that
the contribution of this diagram vanishes because the term in
the trace becomes zero in the limit, while the pion propagator
D−1(q) is finite thanks to the nonzero denominator. Because
the other diagrams in Fig. 4(a) have the same structure, we
find that all the O(p4) terms vanish in the soft limit and do not
contribute to the in-medium chiral condensate. The reason that
these terms vanish is that the pion is not a zero mode out of
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FIG. 4. Feynman diagrams contributing to the in-medium chiral
condensate. The wavy lines denote the pseudoscalar densities, the
solid lines are the free nucleon propagators appearing as the first
term of Eq. (15), and the thick solid lines denote the Fermi sea
insertions, which are represented by the second term in Eq. (15)
for the Pauli blocking effect. The solid circles represent the vertices
in the leading order, while the open circles are the vertices coming
from the in-vacuum subleading πN chiral Lagrangian L(2)

πN . (a) The
Feynman diagrams for O(p4). (b) The Feynman diagrams for the
linear-density order O(ρ). (c) The Feynman diagrams for the NLO in
density O(ρ4/3). Three diagrams at the bottom row give the double-
scattering term.

the chiral limit and the interaction between pion and nucleon
is p wave in the leading order. We see that �ab

5 (0) also has the
same momentum dependence as the leading term of Dab(0)
up to the NLO corrections in Sec. IV B. Thus, �ab

5 (0) does not
contribute to the in-medium chiral condensate.

In Fig. 4(b), we show all the diagrams of the leading
order (LO) contribution in the density expansion, in which
there are three diagrams. We write the LO contribution
for the in-medium chiral condensate as 〈ūu + d̄d〉∗LO and
evaluate the diagrams in Fig. 4(b) by the expansion of 1/mN

at the final state. In the following we first calculate the
left diagram in Fig. 4(b) in the soft limit of the external
momentum qμ:

Dab
LO1(0) = (−i)2 lim

q→0
[(2if B0)iDπ (q)δab](−1)

×
∫

d4p

(2π )4
Tr

[
iD−1

m (p)
8ic1B0

f

]
(24)

= −16ic1B
2
0

m2
π

δab
[
�1

p(0) + �1
n(0)

]
(25)

= −16ic1B
2
0

m2
π

δabρ

(
1 − 3k2

F

10m2
N

)
. (26)

Here we have used the result of the tadpole nucleon loop �1
Ni

(k)
given in Eq. (C1), in which we have expanded the result in
terms of 1/mN and taken the first two terms, and assumed the
symmetric nuclear matter by taking k

p
F = kn

F = kF .
Next we calculate the middle and right graphs in

Fig. 4(b). These contributions denote Dab
LO2(0) and Dab

LO3(0),

respectively:

Dab
LO2(0) = (−i)2 lim

q→0
(2if B0)2[iDπ (q)]2δab(−1)

×
∫

d4p

(2π )4
Tr

{
iD−1

m (q)(−i)

×
[

8B0c1mq

f 2
+ 4c2

f 2m2
N

(q · p)2 − 2c3

f 2
q2

]}

= −32iB3
0c1mq

m4
π

δab

∫
d4p

(2π )4
Tr

[
iD−1

m (q)
]

(27)

= 16iB2
0c1

m2
π

δabρ

(
1 − 3k2

F

10m2
N

)
. (28)

Here we have used again the calculation of the tadpole nucleon
loop (C1) and the kF expansion has been made up to k5

f .
We have also used the relation m2

π = 2mqB0. It is important
to notice that the contributions coming from the c2 and c3

low-energy constants do vanish in the soft limit. Dab
LO3(0) can

be calculated in the same way as Dab
LO1(0)

Dab
LO3 = Dab

LO1 = −16ic1B
2
0

m2
π

δabρ

(
1 − 3k2

F

10m2
N

)
. (29)

The leading contribution in the density expansion Dab
LO is

given by the sum of Dab
LO1,D

ab
LO2,D

ab
LO3. We obtain the linear-

density contribution of the in-medium condensate together
with the Fermi motion correction up to k5

f :

Dab
LO = Dab

LO1 + Dab
LO2 + Dab

LO3 (30)

= −16iB2
0c1

m2
π

δabρ

(
1 − 3k2

F

10m2
N

)
. (31)

With this result we obtain the in-medium condensate in the
normalization of the in-vacuum condensate as

〈ūu + d̄d〉∗LO

〈ūu + d̄d〉0
= 4c1

f 2
ρ

(
1 − 3k2

F

10m2
N

)
. (32)

Here c1 is one of the low-energy constants (LECs) in L(2)
πN and

can be determined by the πN σ term σπN .
As we mentioned before, we presume that the quantum

corrections in vacuum are already accounted for in the LECs
and the renormalization procedure is supposed to be done.
Thus, the loop contributions are renormalized into the LECs
in the Lagrangian that we consider and we do not have to
calculate the in-vacuum loop contributions in the in-medium
calculation. For instance, we show in Fig. 5 two diagrams that
have ultraviolet divergences and are to be counted as higher
chiral orders but with the same density counting. The left
diagram is the loop correction for the nucleon mass and the

FIG. 5. Two examples of the diagrams which have ultraviolet
divergences and are counted as higher chiral orders but with the
linear-density order.
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right accounts the vertex correction. Both loop corrections
are calculated by the in-vacuum quantities. Therefore, we
suppose that these loop corrections should be accounted for
in the nucleon mass and the vertex, respectively, and we use the
observed values for these quantities. If one would follow the
chiral counting scheme strictly, one would expand the physical
quantities in terms of the chiral order and discard corrections
of higher order than the order which one considers. Here we do
not take the strict rule for the chiral counting. We exploit the
observed value, in which all orders of the corrections should
be included.

In this way, we fix the c1 parameter by the observed πN σ
term as

σπN = −4c1m
2
π , (33)

admitting that the loop corrections for the πN σ term are taken
into account into the physical value, and we do not calculate
further the in-vacuum loop contribution, most of which are
divergent. Therefore, the LO contribution of the in-medium
chiral condensate in the density expansion is given by the
in-vacuum physical quantities as

〈ūu + d̄d〉∗LO

〈ūu + d̄d〉0
= − σπN

f 2
π m2

π

ρ

(
1 − 3k2

F

10m2
N

)
. (34)

The second term is a 1/mN correction to the linear density
and it is counted as next-to-next-to-leading order (NNLO)
O(p7) ∼ O(ρ5/3). To complete the O(ρ5/3) contributions, we
have to calculate further higher orders in the density expansion,
as we see later. Here it is important to emphasize again that
we take the observed values. The values which we use in
this work are the σ term σπN = 45 MeV [36], the pion decay
constant fπ = 92.4 MeV, the pion mass mπ = 138 MeV, and
the nucleon mass mN = 938 MeV. The result (34) coincides
the well-known linear-density approximation result [20,23].

Now we evaluate the NLO density corrections 〈ūu +
d̄d〉∗NLO. The relevant diagrams for the next leading order
are shown in Fig. 4(c). These diagrams contain two loops
coming from the nucleon in the Fermi sea and a free pion. The
diagrams in which one of the nucleon propagators is the free
propagator is already accounted as higher chiral-order terms
in the renormalized πN vertex, because the diagram contains
a loop written by only the free propagators, which is divergent
and should be renormalized into the in-vacuum vertex. Here
we use such a parametrization of the chiral field U in terms
of the pion field that the naive perturbative expansion can be
done. The details are written in Appendix A. The leftmost
diagram in third row in Fig. 4 is calculated as

1

2
(−i)2 lim

q→0

∑
ij

(−1)
∫

d4k

(2π )4

d4p

(2π )4
(2if B0)iDπ (q)

×
[
−2iB0

5f
(δaiδbj + δaj δib + δabδij )

]
(iDπ (k))2Tr

[(
igA

2f
i 	kγ5τ

i

)
iD−1

m (p + k)

(
− igA

2f
i 	kγ5τ

j

)
iD−1

m (p)

]

= δab

∫
d4k

(2π )4

−ig2
AB2

0

f 2m2
π

(
1

k2 − m2
π + iε

)2

�2
N (k)

= −2ig2
AB2

0

f 2m2
π

δab k4
F

6π4
F

(
m2

π

4k2
F

)
,

where the factor 1/2 comes from the symmetric factor for the
loop. The calculation of the nucleon one loop in the Fermi sea
is given in Eq. (C3). We have defined

F (a2) =
∫ 1

0
dx

(
x2

x2 + a2

)2
1

2
(1 − x)2(x + 2)

= 3

8
− 3a2

4
− 3a

2
arctan

1

a
+ 3a2

4
(a2 + 2) ln

a2 + 1

a2
.

(35)

After we evaluate the other diagrams in the third row in Fig. 4,
we obtain

〈ūu + d̄d〉∗NLO1

〈ūu + d̄d〉0
= g2

Ak4
F

4f 4
π π4

F

(
m2

π

4k2
F

)
. (36)

Here, we also take the physical value of the axial coupling
gA = 1.27. This term is a density correction to the πN σ term
through the pion loop and is proportional to ρ4/3.

The Feynman diagrams in the fourth row in Fig. 4 also
contribute to the NLO, representing the Ericson-Ericson
double-scattering correction [37]. For example, the middle
diagram of the fourth two in Fig. 4 can be calculated as

− lim
q→0

(2if B0)2[iDπ (q)]2

(
4B0c1mq

f 2

)2 ∫
d4k

(2π )4

d4p

(2π )4

× Tr
[
iD−1

m

(
q − p

2

)
iD−1

m

(
q + p

2

) ]
iDπ (p + k)

(37)

= 2B2
0σ 2

πNk4
F

3f 2
π π4m4

π

�4
N (0) (38)

= −8iB2
0σ 2

πNk4
F

3f 2
π π4m4

π

G

(
m2

π

4k2
F

)
, (39)

where G(a) is given as

G(a2) = 3

8
− a2

4
− a arctan

1

a
+ a2

4
(a2 + 3) ln

∣∣∣∣1 + a2

a2

∣∣∣∣ .
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The detail calculations are summarized in Appendix C. In
Eq. (37) we have understood that the terms with c2 and c3

vanish at the soft limit because they are proportional to the
pion momentum qμ. Including the rest of the diagram for the
double-scattering correction, we obtain

〈ūu + d̄d〉∗NLO2

〈ūu + d̄d〉0
= 2σ 2

πNk4
F

3f 4
π π4m2

π

G

(
m2

π

4k2
F

)
. (40)

In this way, we obtain NLO contributions of in-medium
chiral condensate:

〈ūu + d̄d〉∗NLO

〈ūu + d̄d〉0
= 〈ūu + d̄d〉∗NLO1

〈ūu + d̄d〉0
+ 〈ūu + d̄d〉∗NLO2

〈ūu + d̄d〉0

= g2
Ak4

F

4f 4
π π4

F

(
m2

π

4k2
F

)
+ 2σ 2

πNk4
F

3f 4
π π4m2

π

G

(
m2

π

4k2
F

)
.

(41)

From Eqs. (34) and (41), we obtain the in-medium chiral
condensate within NNLO corrections [O(ρ5/3)]

〈ūu + d̄d〉∗
〈ūu + d̄d〉0

= 1 − σπN

f 2
π m2

π

ρ

(
1 − 3k2

F

10m2
N

)

+ g2
Ak4

F

4f 4
π π4

F

(
m2

π

4k2
F

)
+ 2σ 2

πNk4
F

3f 4
π π4m2

π

G

(
m2

π

4k2
F

)
.

(42)

Let us comment on the � resonance contribution up to
O(ρ5/3). The � resonance contributes to the in-medium
amplitudes through the �-hole excitation in these orders.
Nevertheless, the �-hole excitation in the left diagram of
Fig. 4(a) vanishes in the soft limit because of the p-wave nature
of the πN� coupling as we have seen in the nucleon-hole
excitation. The �-hole excitation in the diagrams of Fig. 4(c)
should be accounted for in the in-vacuum PπNN vertex,
because the loop contribution of the pion and � in this diagram
appears in the higher-order calculation of the PπNN vertex
in the chiral expansion. Therefore, up to NLO there are no
explicit � contributions to the in-medium chiral condensate.

B. Cancellation of �ab
5 (0)

According to Eq. (2), �ab
5 (0) can also contribute to the

in-medium condensate. Nevertheless, the correlation function
�ab

5 (q) gives a null value in the soft limit out of the chiral
limit. In this section, we confirm the cancellation of �ab

5 (q) in
the soft limit.

In vacuum the correlation function �ab
5 (q) should vanish

in the soft limit because there is no zero-mode propagation
out of the chiral limit and the coupling of the axial current to
pseudoscalar modes is proportional to the external momentum
q, which is taken to be zero in the soft limit. This can be seen
in the LO calculation of the in-vacuum contribution as

�ab
50(q) = qμi(iqμf )

i

q2 − m2
π + iε

i(2f B0)

→ 0 for q → 0. (43)

For the in-medium contributions of the correlation function
�ab

5 (q) we show the Feynman diagram �ab
5 (p) in Fig. 6. In

FIG. 6. Feynman diagrams for the �ab
5 (q) correlation function:

the leading density contribution (a) and the NLO density corrections
(b). The left and right wavy lines express the axial and pseudoscalar
currents, respectively, the dashed lines denote the pion propagation,
and the solid dots stand for the leading vertices given by the chiral
Lagrangian L(2)

π .

this figure, the left and right wavy lines express the axial
and pseudoscalar currents, respectively, and the dashed lines
denote the pion propagation. In the linear-density order, we
also find that �ab

5 (q) vanishes in the soft limit. For example,
we evaluate the top left diagram in panel (a),

�ab
5LO1(0)

= lim
q→0

qμiDπ (q)(2if B0)(−1)
∫

d4p

(2π )4
Tr

[(
igAiγμγ5

τ a

2

)

× iD−1
m (p + q)

(
−i

gA

2f
i 	qγ5τ

b

)
iD−1

m (p)

]

= lim
q→0

Dπ (q)(−i)g2
AB0δ

ab�2
N (q) = 0,

where we have used the one-nucleon loop function given in
Eq. (C3); in the last equation we have used the fact that the pion
propagator is finite in the soft limit owing to the finite pion mass
and the nucleon one-loop vanishes. This cancellation comes
from two reasons; the one is that pion is not a zero mode and the
other is that interaction between pion and the axial current is
derivative interaction; in other words, explicit and spontaneous
symmetry breaking leads to this cancellation. In addition, the
interactions between pion and nucleon is proportional to the
pion momentum because of spontaneous symmetry breaking,
and it causes the same result. In the same manner one can
confirm that contributions coming from the other diagrams
give null value in the soft limit.

Up to the NLO density order, we find that the �ab
5 (0)

correlation function vanishes. Generally speaking, there exist
zero modes which couple with the axial current such as
one-particle one-hole excitation as discussed in Ref. [5].
Nevertheless, up to the NLO corrections we find that such
zero modes do not contribute.
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FIG. 7. The density dependence of the ratio of the chiral conden-
sates, 〈ūu + d̄d〉∗/〈ūu + d̄d〉0, as a function of ρ/ρ0 in symmetric
nuclear matter. The dashed, dotted, and solid lines represent the
linear-density result in the chiral limit, the linear-density result out of
the chiral limit, and the result up to the NLO of the density expansion
out of the chiral limit, respectively.

We note that in the chiral limit the �ab
5 (0) correlation

function contributes the in-medium chiral condensate, while
the Dab(0) correlation function vanishes. One can find easily
that the momentum dependence of the pion propagator cancels
to the external momentum in the soft limit and �ab

5 (0) remains
finite. The in-medium chiral condensate in the soft limit
calculated by the �ab

5 correlation function reads

〈ūu + d̄d〉∗LO

〈ūu + d̄d〉0
= 4c1

f 2
π

ρ

(
1 − 3k2

F

10m2
N

)
(44)

for the LO of the density expansion and

〈ūu + d̄d〉∗NLO

〈ūu + d̄d〉0
= 3g2

A

32π2f 4

(
3π2

2

) 1
3

ρ
4
3

for the NLO. These are equivalent to the result obtained
from Dab(0) out of the chiral limit by taking the chiral limit
afterwards.

C. Density dependence of chiral condensate

In Fig. 7, the density dependence of the ratio of the chiral
condensates, 〈ūu + d̄d〉∗/〈ūu + d̄d〉0, is plotted as a function
of ρ/ρ0 in symmetric nuclear matter. The solid line represents
the NLO result shown in Eq. (42). For comparison, we also
show the linear-density results in and out of the chiral limit as
the dashed and dotted lines, respectively. For the result in the
chiral limit, we have used chiral limit values of the c1 parameter
c1 ≈ 0.93 GeV−1 and the pion decay constant f ≈ 88 MeV.

We find that the linear-density result in the chiral limit
decreases more rapidly than the results out of the chiral
limit. The NLO correction amounts to about as small as
5% at ρ = ρ0, and becomes significant in higher density,
for instance, at ρ = 2ρ0 the NLO correction is around 10%.
Therefore, the linear-density approximation is good in low
densities, while in higher density the NLO contribution is
not ignorable. Numerically, we find that at normal nuclear

density up to LO 〈ūu + d̄d〉∗/〈ūu + d̄d〉0 ≈ 0.65 and up to
NLO 〈ūu + d̄d〉∗/〈ūu + d̄d〉0 ≈ 0.68. These values are close
to the value suggested by the recent precise pionic atom
determination 〈ūu + d̄d〉∗/〈ūu + d̄d〉0 ≈ 0.67 [1]. We note
that this experimental value is determined by linear-density
extrapolation under the assumption that the pion bound in
the 1s orbit is in a nuclear medium with an effective density
ρe ≈ 0.6ρ0. We also evaluate the quark condensate at ρ =
0.6ρ0 and find 〈ūu + d̄d〉∗/〈ūu + d̄d〉0 ≈ 0.78 for LO and
〈ūu + d̄d〉∗/〈ūu + d̄d〉0 ≈ 0.80 up to NLO. These values
are very close to the experimentally extracted value of the
ratio bfree

1 /b1 = 0.78 ± 0.05 [1], where b1 is a parameter
of the optical potential for the in-medium pion presenting
the in-medium isovector πN scattering length and bfree

1 is
the πN isovector scattering length. Under the linear-density
approximation and a small isoscalar πN scattering length,
the ratio of bfree

1 /b1 is equivalent to the ratio of the chiral
condensate. Thus, this implies that the density expansion might
be good in at least the low-density region.

We note that in-medium chiral perturbation theory (CHPT)
is a low-energy effective theory and this theory would be
applicable up to about 2 normal density because at twice the
normal nuclear-density Fermi momentum is about 340 MeV.
In a further higher-density region this theory would be beyond
applicability. Nevertheless we could estimate the density at
which chiral symmetry is restored. In the Fig. 7, we would
find that the NLO correction raises the symmetry restoration
density from 3ρ0 to 4ρ0, which would imply that the NLO
correction is not ignorable in high-density region.

D. Higher-order corrections and role of N N contact terms

When one considers further higher-order correction beyond
NLO, one encounters divergent amplitudes even though all
of the πN interactions are fixed in vacuum. For instance,
diagrams of multipion exchange in Fermi gas as shown in
Fig. 8 give divergent amplitudes. In the figure the solid lines
denote Fermi (see insertion) and the dashed line represents
pion propagation. These diagrams count as O(k6

f ), namely
O(ρ2). The upper diagram is proportional to∫

d4p′

(2π )4

d4p

(2π )4

d4k

(2π )4
Tr

[(−iA
(1)
πP

)
iD−1

m (p)
(−iA(1)

ππ

)
× iD−1

m (k)
(−iA(1)

ππ

)
iD−1

m (p)
]
iDπ (p′)iDπ (p + p′ − k).

In this expression the integral with respect to p′ for the pion
loop gives divergence. As pointed out in Ref. [30], we need

FIG. 8. Contact terms for renormalization of higher-order correc-
tions beyond NLO.

065204-9



SOICHIRO GODA AND DAISUKE JIDO PHYSICAL REVIEW C 88, 065204 (2013)

NN contact terms to control the divergence. This means that
one can proceed the in-medium calculation up to NLO by
using the πN dynamics, but if one considers O(ρ2) and higher
corrections, one needs also in-vacuum NN contact terms
obtained by the NN dynamics [38]. We emphasize that to
evaluate the in-medium chiral condensate quantitatively with
higher-density corrections, we need not only the πN dynamics
information but also NN dynamics. Recently, as a step in this
direction, a nonperturbative chiral effective theory has been
developed to improve the NN correlation by including NN
contact terms using a resummation method [39]. Moreover,
in Ref. [21] the �(1232) resonance contributions have been
evaluated and it has been found that � resonance effects,
which appears from the O(ρ2) contributions, are not small.
Therefore, we may need more sophisticated calculations for
the in-medium chiral condensate including NN and more
dynamics.

V. SUMMARY

We calculate the chiral condensate at finite nuclear density
〈ūu + d̄d〉∗ using the chiral Ward identity and the in-medium
chiral perturbation theory. We study diagrammatic structure
of the current-current Green’s functions 〈	|T Aa

μ(x)P b(0)|	〉
and 〈	|T P a

μ (x)P b(0)|	〉 and classify density corrections
to the chiral condensate. In our study we fix the πN
dynamics in vacuum and calculate the in-medium chiral
condensate with the in-medium chiral perturbation theory.
In this study, LO[O(ρ)] reproduces the well-known linear-
density approximation to the chiral condensate. This leading
density correction is proportional to the πN σ term σπN .
The NLO correction, NLO[O(ρ4/3)], represents in-medium
corrections of the σ term. As a result, we find that linear-
density approximation is rather good in the low-density region
such as a normal nuclear density. We have found that for higher
corrections the correlation function has divergence from the
pion loop even though all the in-vacuum quantities for the πN
dynamics are fixed. This means that the O(ρ2) corrections
cannot be determined only by the πN dynamics in vacuum
and the information of the NN dynamics is necessary to
control the divergence. It should be also emphasized that
for realistic nuclear matter one should incorporate the NN
dynamics and check that the matter satisfies the nuclear-matter
properties.
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APPENDIX A: PARAMETRIZATION
OF THE CHIRAL FIELD

The chiral perturbation theory successfully introduces the
chiral invariant Lagrangian in the spontaneous breaking of
chiral symmetry. The chiral field U transforming linearly under
the chiral rotation is written nonlinearly in terms of the pion
field. The parametrization of the chiral field in terms of the pion
field is not unique [40] and all of the correct parametrizations

provide the same physical result. However, one should realize
that the basic field for the nonlinear σ model to maintain chiral
symmetry is the chiral field U not the pion field as one can
see that the partition function of the chiral perturbation theory
is defined by the path integral with respect to the chiral field
U . Therefore, when one considers quantum corrections of the
pion field in perturbative calculations, one should be careful
with chiral invariance; naive perturbative calculations might
break chiral symmetry [41]. The perturbative expansion of
the pion fields is defined by the path integral with respect to
the pion field, so that one should make the integral measure
be chiral invariant [42]. One of the popular prescriptions is
the background field method as it was applied to the chiral
perturbation theory in Ref. [33].

Here, instead of the celebrated Callan–Coleman–Wess–
Zumino (CCWZ) parametrization, we take the parametrization
of the U field which can be used for the naive perturba-
tive calculation. This was found in Refs. [41,42]. In this
parametrization the chiral field is written [42] as

U = exp

[
iπ iτ i y(π2)

2
√

π2

]
, (A1)

where the function y(π2) satisfies

y − sin y = 4

3

(
π2

f 2

) 3
2

. (A2)

For the calculation we expand the chiral field in terms of the
pion field [41] as

U = 1 + iπiτ i

f
− πiπi

2f 2
− iπiτ iπjπj

10f 3
− πiπiπjπj

40f 4
+ · · ·

(A3)

and take some first terms.

APPENDIX B: CHIRAL LAGRANGIAN AND π N
INTERACTION

In this section, we show the chiral Lagrangian and the πN
interaction which we use in this work. The chiral Lagrangian
for the pion sector is

L(2)
π = f 2

4
Tr(DμU †DμU + χ †U + χU †), (B1)

where the covariant derivative is defined with the vector
external fields as

DμU ≡ ∂μU − i(vμ + aμ)U + iU (vμ − aμ) (B2)

and the external scalar fields are given by

χ = 2B0(s + ip). (B3)

In the following we present the interaction Lagrangian relevant
for the present calculations. These terms are obtained from the
Lagrangian (B1) with the expansion (A3):

(i) π -P vertex,

L(2)
πP = 2f B0π

iP i ; (B4)
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(ii) πππ -P vertex,

L(2)
π3P

= − B0

5f
P iπiπjπj ; (B5)

(iii) ππππ vertex,

L(2)
π4 = − 1

10f 2
∂μπi∂μπjπkπl(δij δkl − 3δikδjl)

− mqB0

20f 2
πiπjπkπlδij δkl ; (B6)

(iv) πππ -aμ vertex,

L(2)
π3a

= 1

5f
ai

μ∂μπjπkπl(3δij δkl − 4δikδjl). (B7)

The chiral Lagrangian for the one-nucleon sector is

LπN = N̄ (iγ μ∂μ − mN − A)N, (B8)

where A represents all the chiral interaction with the nucleon
bilinear form and can be counted in terms of the pion
momentum:

A =
∑
n=1

A(n).

Here A(n) is counted as O(pn).
The explicit form of the leading term A(1) is

A(1) = −iγ μ
μ − igAγ μγ5�μ, (B9)

with the vector current


μ = 1

2
[u†,∂μu] − i

2
u†(vμ + aμ)u − i

2
u(vμ − aμ)u†

(B10)

and the axial current

�μ = 1
2 {u†[∂μ − i(vμ + aμ)]u − u[∂μ − i(vμ − aμ)]u†}.

(B11)

Here we define u = √
U . The explicit expression of the next

leading term A(2) is is given as

A(2) = −c1〈χ+〉 + c2

2m2
N

〈uμuν〉DμDν − c3

2
〈uμuμ〉

+c4

2
γ μγ ν[uμ,uν] − c5χ̂+ − ic6

8mN

γ μγ νF+
μν

− ic7

8mN

γ μγ ν〈F+
μν〉, (B12)

with

Dμψ = ∂μψ + 
μψ,

uμ = 2i�μ,

χ+ = uχ †u + u†χu†,

χ̂+ = χ+ − 1
2 〈χ+〉,

F+
μν = u†FR

μνu + uFL
μνu

†,

FR
μν = ∂μrν − ∂νrμ − i[rμ,rν], rμ = vμ + aμ,

FL
μν = ∂μlν − ∂νlμ − i[lμ,lν], lμ = vμ − aμ.

We present the vertices that we use in the calculation:

(i) aNN vertex,

A(1)
a = −gAγ μγ5a

i
μ

τ i

2
; (B13)

(ii) πaNN vertex,

A(1)
πa = i

2f
γ μ[π,aμ] = − 1

2f
γ μπiaj

μεijkτ k, (B14)

A(2)
πa = − 2c2

f m2
N

∂μπiai
ν∂

μ∂ν + 2c3

f
∂μπiaμi

− ic4

f
εijkτ k∂μπiaj

ν [γ μ,γ ν]; (B15)

(iii) πPNN vertex,

A
(2)
πP = −8c1B0

f
P iπi ; (B16)

(iv) πNN vertex,

A(1)
π = gA

2f
γ μγ5∂μπiτ i ; (B17)

(v) ππNN vertex,

A(1)
ππ = − i

8f 2
γ μ[π,∂μπ ] = γ μ

4f 2
πi∂μπjεijkτ k,

A(2)
ππ = 4B0c1mq

f 2
πiπi + c2

f 2m2
N

∂μπi∂νπ
i∂μ∂ν

− c3

f 2
∂μπi∂μπi + i

ic4

f 2
εijkτ kγ μγ ν∂μπi∂ν.

(B18)

APPENDIX C: IN-MEDIUM NUCLEON LOOPS

In this section we calculate the nucleon loop diagrams in
the Fermi sea. In these calculations we take the trace only in
the spin space, which is indicated by Trs, and the isospin is
considered in other places.

First of all, we calculate the nucleon tadpole �1
Ni

(k), which
appears in a panel (a) of Fig. 9:

�1
Ni

(k) = −
∫

d4p

(2π )4
Trs

[
iD−1

m (p)
]

=
∫

d3p

(2π )32E(p)
Trs[( 	p + mN )]θ

(
ki
F − |p|)

=
∫ k

(i)
F

0

p2dp

π2

mN

E(p)

≈
∫ kF

0

p2dp

π2

(
1 − p2

2m2
N

)

= ρi

(
1 − 3ki2

F

10m2
N

)
. (C1)

In Eq. (C1), we have taken the first two terms in the
1/mN expansion and the nucleon density is given by ρi =
2ki3

F /(3π2).
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(a) (b)

(c) (d)

FIG. 9. Nucleon loop diagrams. (a) The tadpole diagram, �1
Ni

(k).
(b) The one-loop diagram of nucleons in the Fermi sea, �2

Ni
(k). (c)

The one-loop diagram in which one nucleon is in the Fermi sea
while the other is in vacuum, �3

Ni
(k). (d) The double-scattering term

represented by the two-loop diagram with two Fermi sea insertions
and one pion propagator.

Next we consider �2
Ni

(k), which arises in a panel (b) of
Fig. 9,

�2
Ni

(k) = −
∫

d4p

(2π )4
Trs

[
( 	kγ5)iD−1

m (p + k)( 	kγ5)iD−1
m (p)

]

=
∫

d3p

(2π )32E(p)
(−2π )

δ[k0 + E(p) − E(k + p)]

2E(k + p)

× Trs[	k( 	p+ 	k − mN ) 	k( 	p + mN )]2δij

× θ
(
ki
F − |p + k|)θ(

ki
F − |p|),

where we have used δ[(p + k)2 − m2
N ]θ (p0 + k0) = δ[k0 +

p0 − E(k + p)]/[2E(k + p)], with p0 = E(p). Because both
nucleons are in the Fermi sea, they are on the mass shell,
p2 = m2

N and (k + p)2 = m2
N , which provides 2k · p + k2 =

0. Using these facts, the trace can be evaluated as

Trs[	k( 	p+ 	k − mN ) 	k( 	p + mN )] = −8k2m2
N. (C2)

Now we consider the 1/mN expansion in the nucleon energy
and take the first term, that is, E(p) = E(p + k) = mN . Then,
finally we obtain

�2
Ni

(k) = k2

2π2
δ(k0)

∫
d3pθ

(
ki
F − |p + k|)θ(

ki
F − |p|)

= k2

3π
δ(k0)ki3

F (1 − x)2(x + 2)θ (1 − x), (C3)

where x = |k|/(2ki
F ) and we have used the formula [43]∫

d3p θ
(
ki
F − |p + k|)θ(

ki
F − |p|)

= 2π

3
ki3
F (1 − x)2(x + 2)θ (1 − x). (C4)

We calculate �3
Ni

(k) which appears in a panel (c) of Fig. 9
in the soft limit:

�3
Ni

(0) = lim
k→0

(−1)
∫

d4p

(2π )4

× Trs

[
(i 	kγ5)iD−1

0 (p + k)(−i 	kγ5)iD−1
m (p)

]

= lim
k→0

∫
d3p

(2π )32E(p)

i

(k + p)2 − m2
N + iε

×Trs

[
	k( 	p+ 	k − mN ) 	k( 	p + mN )

]
θ
(
ki
F − |p|)

= lim
k→0

∫
d3p

(2π )32E(p)

i

k2 + 2k · p + iε
θ
(
ki
F − |p|)

×4
[
(2k · p + k2)k · p − 2k2m2

N

]
= 0. (C5)

This goes to zero in the soft limit.
Finally, we calculate �4

Ni
(k) given in panel (d) of Fig. 9 in

the soft limit:

�4
Ni

(0)

= (−1) lim
k→0

∫
d4p

(2π )4

d4q

(2π )4

× Trs

[
iD−1

m

(
q − p

2

)
iD−1

m

(
q + p

2

) ]
iDπ (p + k)

=
∫

d3p

(2π )3

d3q

(2π )3
Trs

[(
	q − 	p

2
+ mN

)(
	q + 	p

2
+ mN

)]

× θ
(
ki
F − ∣∣q − p

2

∣∣)
2E

(
q − p

2

) θ
(
ki
F − ∣∣q + p

2

∣∣)
2E

(
q + p

2

) iDπ (p).

Here we have performed the p0 and q0 integrals, which contain
two delta functions for the energy conservation and give us the
following relation:

q0 = 1

2

[
E

(
q + p

2

)
+ E

(
q − p

2

)]
, (C6)

p0 = E
(

q + p
2

)
− E

(
q − p

2

)
. (C7)

In addition, we have the following kinematical relations:

q · p = 0, (C8)

q2 + p2

4
= m2

N. (C9)

Using these relation, the trace can be evaluated as

Trs

[(
	q − 	p

2
+ mN

) (
	q + 	p

2
+ mN

)]
= 8m2

N − 2p2.

(C10)
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Taking the leading term of the 1/mN expansion in which p0 = 0 and q0 = mN , we obtain �4
Ni

as

�4
Ni

(0) = −2i

∫
d3p

(2π )3

d3q

(2π )3

1

p2 + m2
π

θ
(
ki
F −

∣∣∣q − p
2

∣∣∣) θ
(
ki
F −

∣∣∣q + p
2

∣∣∣)

= −2iG

(
m2

π

4ki2
F

)
. (C11)

Here G(a) is defined by

G(a2) = ki4
F

6π4

[
3

8
− a2

4
− a arctan

1

a
+ a2

4
(a2 + 3) ln

∣∣∣∣1 + a2

a2

∣∣∣∣
]
.
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