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Non-Abelian color fields from relativistic color charge configurations in the classical limit
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We study the dynamics of color fields as generated by simple configurations of relativistic particles with
Abelian and non-Abelian [SU(2)] charges in the classical limit. We find that chromodynamic (non-Abelian)
systems generally show Coulomb-like features by analogy with electrodynamics. A peculiar feature in the
non-Abelian case is the additional strength of the chromoelectric and chromomagnetic fields caused by the
contribution of changing the color charge. This change of color SU(2) charges results in a rotation of the color
vector, which is getting very fast at close partonic distances. The presence of this non-Abelian additional term in
the chromoelectric and chromomagnetic fields creates a color charge glow, which is manifested as a distinct color
wave disturbance arising due to the finite distance at which the color interaction becomes active. This situation
may be relevant to the hadronization phase in ultrarelativistic heavy-ion collisions, where the partonic state is
governed by strong local color fluctuations.
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I. INTRODUCTION

Ultrarelativistic nucleus-nucleus collisions at Relativistic
Heavy-Ion Collider (RHIC) or Large-Hadron-Collider (LHC)
energies provide an opportunity to explore strongly interacting
QCD matter in and out of equilibrium. The experiments
at the RHIC and the LHC have demonstrated that a stage
of partonic matter is produced in these reactions that is
in approximate equilibrium for a couple of fm/c [1–5].
Contrary to early expectations, guided by perturbative QCD
(pQCD) calculations, the medium shows a collective response
of the strongly interacting plasma (sQGP) with interaction
rates beyond those of high density hadronic matter [6–8]. In
fact, viscous hydrodynamical calculations are successful in
describing the collective response of the partonic medium,
which is dominantly reflected in the differential azimuthal
angular distribution of the final (observable) hadrons [9–11].
These angular distributions can be characterized by the Fourier
coefficients vn that specify the strength of the nth harmonics
in the angular distributions. The observation of sizable uneven
coefficients v3,v5 showed the presence of initial-state fluctua-
tions, which are due to random positions of the nucleons in the
targets and random inelastic hard interactions in the primary
phase of the nucleus-nucleus collisions or due to color field
fluctuations in an early glasma phase. This comes about as
follows: the passage time of even central Au + Au (or Pb + Pb)
at RHIC energies is not longer than 0.2 fm/c at top RHIC
energies and below 0.02 fm/c at the present LHC energies.
During these short times the wave functions of the nucleons
in the target are frozen and even the partonic wave functions
of the individual nucleons are approximately frozen so that
configurations with high fluctuations in the energy density
show up in individual events [12–16]. In fact, when accounting
for such initial-state fluctuations, all harmonics vn in the
azimuthal angular distributions can be described in event-by-

event calculations within the hydrodynamic framework [17]
or within transport approaches like the parton-hadron-string
dynamics (PHSD) theory [18].

The partonic medium (near an equilibrium state) is charac-
terized by a very low ratio of the shear viscosity to the entropy
density η/s ≈ 0.1–0.2, which is close to the lower bound of
1/(4π ) [19]. It is presently accepted that η/s has a minimum as
a function of temperature close to Tc ≈ 160 MeV and increases
fast in the hadronic phase, i.e., with decreasing temperature
[20–22]. Furthermore, the ratio of the bulk viscosity to entropy
density is expected to have a maximum close to Tc [23–25].

However, the (dissipative) hydrodynamic calculations start
at delayed times of 0.2–1.0 fm/c from the initial impact of the
heavy ions since approximate equilibrium has to be achieved
by presently unknown mechanisms [26]. Initial fluctuations
in the hydrocalculations are usually imposed by independent
Glauber model simulations. Initial conditions very similar
to the Glauber model are included by default in the PHSD
transport approach that has been tested successfully so far for a
variety of observables in nucleus-nucleus collisions from lower
super-proton-synchrotron (SPS) up to LHC energies [27–30],
including electromagnetic probes such as e+e− or μ+μ− pairs
[31]. The event-by-event PHSD calculations for heavy-ion
reactions from RHIC to LHC energies show that apart from
local fluctuations in the energy density also sizable fluctuations
in color occur although the total system is always color neutral.
Furthermore, the formation of color dipoles is observed in
the microscopic transport calculations, in particular in the
hadronization phase at rather low parton densities, which
implies that color forces might play an important role during
the early nonequilibrium stage (cf. Ref. [32]) as well as in the
dynamics of hadronization.

The dynamical evolution of such systems depends on the
initial conditions for the above-noted string-like mechanism
and additionally on the parton distribution function in the
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nuclei prior to the collision. High-energy heavy-ion collisions
initially release a large number of gluons from their wave
functions. In fact, the wave function of a hadron boosted close
to the light cone is densely packed with gluons so that they
may overlap leading to saturation in the gluon density due to
nonlinear gluon interactions [33]. Therefore, at high collision
energies the colliding hadrons can be viewed as high-density
gluon fields. This dense system is nowadays referred to as a
color glass condensate (CGC) (cf. the review articles [34]).

The problem of computing the distribution functions for
gluons at very small Bjorken x has been a task for decades [34].
The gluon and quark distribution functions are computable in
perturbation theory at large values of the Bjorken x, but at
small x the precise computation encounters much uncertainty.
The perturbative paradigm of the low x gluon physics is the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [35], which,
however, is linear and ignores mutual interactions of the
gluons. Thus, nonperturbative calculations are needed. The
nuclear structure function for large parton density at small x,
where classical methods are applicable, is rather successfully
described by the McLerran-Venugopalan model [36] within
a classical effective field theory approach, where the degrees
of freedom are static color sources in the hadron at large x,
coupled to the dynamical gluon fields at small x. It recently
has been shown that renormalization group generalization of
this effective action can improve this approach. The renormal-
ization group equations, derived by requiring that observables
are independent of the separation in x between sources and
fields, lead to an infinite hierarchy of evolution equations
in x. With appropriate initial conditions, the solutions of
this Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, and
Kovner (JIMWLK) hierarchy [37] allow one to compute a wide
range of multiparticle final states in deeply inelastic scattering
or/and hadronic collisions and to reproduce several key results
in small x QCD.

If a single heavy nucleus (such as Au or Pb) is considered
within the McLerran-Venugopalan model [36], an ultrarela-
tivistic collision of two such nuclei at the very early times can
be treated as a collision of CGC sheets, which are sources
of the Yang-Mills radiation. The equations that describe the
color field evolution were applied to RHIC energy collisions
of nuclei and deuteron-Au reactions [38]. This intermediate
matter is highly coherent and responsible for the transition
from CGC to the quark-gluon plasma where fast thermalization
might be reached due to field instabilities. This intermediate
state is called the glasma, which is gluon rich and low in the
quark/antiquark density.

One should emphasize that the CGC picture refers to
the very early interaction stage of ultrarelativistic collisions.
To validate this picture—by comparing its predictions with
experiment—the glasma model has to be supplemented by
hydrodynamic or kinetic models that transport the energy
density and its fluctuations to the final hadronic spectra. Both
model types as well as the matching procedure, connecting the
two different descriptions of the system evolution, introduce
additional uncertainties, which prevent unambiguous conclu-
sions, especially in the case of nucleus-nucleus collisions. In
particular, the flow harmonics, being sensitive to the early
stage of the reaction, have been compared using the CGC

and Glauber initial conditions. Both model versions, being
progressively developing [39,40], give very close results with
a small advantage in favor of one or another initial condition
in different studies. The first LHC data on the bulk particle
production in Pb + Pb collisions are in good agreement with
improved CGC expectations but they are also compatible
with Monte Carlo event generators. Both approaches have in
common that they include strong coherence effects. Exhaustive
analysis of forthcoming more differential observables is
needed to better discriminate between the models (cf. [41,42]).

Our present study is, furthermore, motivated by recent in-
vestigations of peripheral ultrarelativistic heavy-ion collisions
at the RHIC and the LHC, for which a large electric charge eZ
of the colliding nuclei leads to the generation of intense electric
and magnetic fields during the passage time of the charged
spectators, as discussed in Ref. [43]. It is speculated that a
very strong electromagnetic field of short duration essentially
in the preequilibrium phase might have an important impact
on particle production [44,45].

Future ALICE measurements are promising to provide an
answer to these questions and, possibly, to strengthen the
standard approach to the saturation physics [34] treating the
gluon fields and the corresponding scattering cross sections
classically (rapidity-independent). Such classical field dynam-
ics calls for a transport formulation and the development
of an extended transport code for ultrarelativistic collision
processes, including the color dynamics of the gluon fields
(beyond the processes implemented, e.g., in PHSD).

In order to proceed to a solution of this task, we are
going here to give practical estimates for the space-time
dependence of classical non-Abelian fields, which (in line
with PHSD) are generated by colored quarks in relativistic
heavy-ion collisions. In this respect we will develop an
instrumental approximation for configurations of two color
charges, a color charge and a color dipole, and two color
dipoles, which are moving along a straight line towards
each other. For our initial study of non-Abelian fields we
simplify the problem to the SU(2) color group. We recall
that such color configurations are just the elementary basic
examples in ultrarelativistic heavy-ion collisions in the existing
phenomenological models [27,46]. The classical character of
the non-Abelian field means, as usual, that the field operators
are replaced by their average values for the quantum state, and
the off-diagonal elements are neglected. Quarks are treated as
classical pointlike massive particles possessing a color charge.
We will estimate the characteristic values of the classical gluon
field strength but are not interested in the parton (gluon)
distribution functions themselves. More precisely, we will
specify the features characteristic of the non-Abelian nature
of fields in comparison to solutions for Abelian fields for the
same coupling strength.

The actual layout of our study is as follows. In Sec. II, we
first recall the results from classical (Abelian) electrodynamics
considering the retarded electromagnetic field created by a
moving source. In Sec. III, the particularities of the non-
Abelian color field produced by a color source are discussed
on the basis of an approximate solution of the classical
Yang-Mills equations. The application of this technique to
particular cases of two color charges, a charge-color dipole
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system and two dipoles moving in the opposite direction is
presented in Secs. IV–VI, respectively. Our conclusions are
given in Sec. VII. Some more technical details for the color
interactions and the construction of approximate solutions of
the classical Yang-Mills equations are shifted to the Appendix.

II. FIELD OF A RELATIVISTIC ABELIAN CHARGE

In this section, we recall the results from classical electro-
dynamics: The field of a pointlike charge propagating along the
trajectory r(t) is described by the (retarded) Liénard-Wiechert
potential at the observation point r0

ϕ = 1

4π

[
e

R − vR

]
t ′
, A = 1

4π

[
ev

R − vR

]
t ′
. (1)

Throughout the paper we stick to the standard system of units
with speed of light c = 1, dimensionless electrodynamic e and
non-Abelian g charges, i.e., have the proper factors of �c to
keep the proper dimensions. Then characteristic distances in
the problem are of an order of one Fermi and the potentials
and field strengths are measured in units of mπ and m2

π ,
respectively, where mπ is the π -meson rest mass. In Eq. (1),
ϕ is the zeroth component of the potential and A is its vector
component, v is the particle velocity at some retarded time t ′,
which is determined by the distance between the observation
point and the particle R = |R| where R = r0 − r(t ′) is the
radius vector from the charge position to the observation point
r0. It is of importance to note that the relation between the
retarded and laboratory time t is

R = t − t ′, (2)

(although the notation R′ would be more suited). The electric
and magnetic fields are then given by

E = −∂ A
∂t

− ∇ϕ, H = ∇ × A. (3)

Using Eq. (2) we get

∂ A
∂t

= ∂ A
∂t ′

∂t ′

∂t
, ∇ × A = ∇ × ϕv,

∂t ′

∂t
= 1

1 − vn
, ∇t ′ = − n

1 − vn
, ∇R = n

1 − vn
,

∇(vR) = v − n
1 − vn

(v̇R − v2)∇ × v

= ∇t ′ × ∂v

∂t ′
= − n

1 − vn
× v̇ (4)

with the unit vector n = R/R while v̇ = ∂v/∂t ′ is the particle
acceleration retarded in time (see Ref. [47]). Combining these
relations and using the potentials from Eq. (1) we get the
following results for the electric and magnetic fields:

E = 1

4π

[
e

R2

(1 − v2)(n − v)

(1 − vn)3
+ e

R

n × (n − v) × v̇

(1 − vn)3

]
t ′
,

H = 1

4π

[
− e

R2

n × v

(1 − vn)3
(1 − v2 + v̇R) − e

R
n × v̇

]
t ′

= n × E. (5)

In fact the formulas (convenient for practical purposes) express
the electric and magnetic fields as a function of the particle
trajectory (at v̇ = 0) at the current time r = r0 − r(t) in the
form

E = 1

4π

er(1 − v2)

[(rv)2 + r2(1 − v2)]3/2
, H = v × E. (6)

We also recall that the potentials can then be written as

ϕ = 1

4π

e

[(rv)2 + r2(1 − v2)]1/2
,

(7)

A = 1

4π

ev

[(rv)2 + r2(1 − v2)]1/2
.

III. FIELD OF RELATIVISTIC SU(2) CHARGES
(CLASSICAL YANG–MILLS FIELDS)

In order to keep our approach transparent, we consider here
SU(2) non-Abelian fields only. In the classical approximation
they are c-number functions, which are the solutions of
the classical Yang-Mills equations. We analyze the QCD
Lagrangian of the form

L = − 1
4G̃μνG̃μν − j̃ μÃμ, (8)

where the color vector Ãμ = (A1
μ,A2

μ,A3
μ) represents a triplet

of the Yang-Mills fields of different colors (isospin), j̃ μ is
the current density of external color sources, and G̃μν =
∂μÃν − ∂νÃμ + gÃμ × Ãν is the gluon field tensor with the

covariant derivative acting as D̃μf = ∂μf̃ + gÃμ × f̃ . The
product sign × corresponds to the vector product in the color
space. The classical equations of motion, as known, then read

D̃μGμν = j̃ν . (9)

The most significant difference between these equations and
the electrodynamic equations is the compatibility conditions
of the system of Eqs. (9)

D̃μjμ = 0, (10)

which generally implies that the color vector charge is not
conserved in a sense similar to electrodynamics. Then as
a suitable solution of the Yang-Mills equations for a single
particle with constant color charge C̃ one may take the poten-
tials of the form

ϕ̃ = 1

4π

[
C̃

R − vR

]
t ′
, Ã = 1

4π

[
C̃v

R − vR

]
t ′
. (11)

Similarly to the electromagnetic case, discussed above in
Sec. II, R = r0 − r(t ′) is the radius vector directed from the
charge position to the observation point r0. In electrodynamics
one can easily verify the uniqueness of the solutions (1)
for a pointlike charge (taking into account the well-known
problem of the singularity associated with the self-interaction
[48]) because the superposition principle for solutions remains
valid. Furthermore, the general form of the retarded solution
is well known. In the non-Abelian case, we cannot benefit
from an analysis of the general Yang-Mills solutions but one
can construct approximate solutions with properties similar to
the solutions of electrodynamics. As mentioned above, here
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we focus on the analysis of some simple examples important
for practical applications treating the relativistic color objects
propagating along a straight line.

As an approximate solution, we consider a superposition of
the Liénard-Wiechert potentials (11) in which the vector of the
particle color charge can change in time and should be taken at
the retarded time, which results exactly from the general form
of the retarded solution as

ϕ̃(r,t) = 1

4π

∫
ρ̃(r ′,t ′)δ(t − t ′ − |r − r ′|)

|r − r ′| d3r ′dt ′,

(12)

Ã(r,t) = 1

4π

∫
j̃ (r ′,t ′)δ(t − t ′ − |r − r ′|)

|r − r ′| d3r ′dt ′.

As an example, we consider a simple approximation of the
covariant four-current with the delta function for a pointlike
particle

j̃μ(r ′,t ′) = (C̃δ(r ′ − r(t)),C̃v(t)δ(r ′ − r(t))), (13)

where v(t) = ṙ(t) is the particle velocity. In this context the
compatibility condition (10) for a pointlike charge becomes

˙̃C = g[ϕ̃(t,r) − v Ã(t,r)] × C̃. (14)

From these equations it is easy to see that the modulus of the
color charge vector remains constant. One should note that in
this approximation of color field sources as pointlike charges
the evolution of a separate parton is described by Eq. (14)
due to the continuity equation. Moreover, in the developed
consideration, as noted in the Introduction of Ref. [37], there is
a separation of scales. However, even in the tree approximation
the strength of the generated field may be so high that its
influence on the particle (parton) trajectory should be taken
into account. Presently available transport codes, in particular
the PHSD, allow one to consider this effect and to get a
consistent picture at the cost of an essential simplification
of the problem.

In the following we take the color charge as a unit vector and
specify the magnitude of the charge to be given by the coupling
constant g [αg = g2/(4π ) = 0.3], thus taking the coupling
strength out as an independent factor. This approximation will
be justified below in more detail.

The consideration of the non-Abelian charge as a function
of time leads to the generation of additional terms in the
expressions for the chromoelectric and chromomagnetic fields
of color pointlike charges, which stem from the derivative of
the color charge vector with respect to the retarded time t ′, i.e.,

D̃ = ∂C̃

∂t ′
,

∂C̃

∂t
= D̃

∂t ′

∂t
, ∇C̃ = D̃∇t ′,

∇ × C̃v = ∇t ′ × D̃v + ∇t ′ × C̃
∂v

∂t ′
.

The results for the non-Abelian chromofields are

Ẽ = 1

4π

[
C̃

R2

(1 − v2)(n − v)

(1 − vn)3
+ C̃

R

n × (n − v) × v̇

(1 − vn)3

+ D̃

R

n − v

(1 − vn)2

]
t ′

H̃ = 1

4π

[
− C̃

R2

n × v

(1 − vn)3
(1 − v2 + v̇R) − C̃

R
n × v̇

− D̃

R

n × v

(1 − vn)2

]
t ′

= n × Ẽ. (15)

These additional terms look like radiation terms; however,
one cannot state that exactly because the change of the color
charge vector does not result from a particle displacement
and such a conclusion needs further special analysis. It is
difficult also to compare directly these results with the Abelian
case since the chromoelectric and chromomagnetic field
strengths are not observable quantities. Accordingly, it is more
consistent to consider the energy density of chromoelectric
and chromomagnetic fields Ẽ2/2, H̃ 2/2 or the Wong force,
which is analogous to the Lorentz force in electrodynamics
[49] and serves as a measure for the momentum change of
a color particle in an external color field. Such a role could
also be played by a set of covariant functions, which define
the strengths of chromoelectric and chromomagnetic fields
at the different space-time points (in principle, one could
determine the covariant gluon-parton distribution functions
in the Weizsäcker-Williams ansatz).

In order to get well-settled approximate solutions we need
further information that, e.g., can be obtained by solving
the problem of two slowly moving color charges [50,51].
Assuming one particle to carry a color charge P̃ and the other
particle a charge Q̃ we are allowed to simplify the consistency
equations (10) for the pointlike sources to the following form:

˙̃P = gϕ̃(t,x1) × P̃ , ˙̃Q = gϕ̃(t,x2) × Q̃, (16)

where the dot denotes the time derivative, x1 and x2 are the
positions of the pointlike charges at time t , and ϕ̃(t,xi) is
the value of the scalar potential at the charge location. An
immediate consequence of Eqs. (16) is the conservation of the
modulus of the particle color charge ˙̃P 2 = 0 and ˙̃Q2 = 0. An
analysis of the perturbation series in the coupling constant g
and in particle velocity v/c shows that if the scalar potential ϕ̃
is spanned by the two color vectors defined above

ϕ̃ = ϕ1P̃ + ϕ2Q̃, (17)

(in particular, the first term of the iteration series looks
similarly), then the vector potential Ã (generated by the
charges) is spanned by the vector product of charges only

Ã = aP̃ × Q̃. (18)

In fact, Eqs. (17) and (18) fix the Coulomb gauge. Moreover,
as a consequence of the vector algebra rules, contributions to
the scalar potential are given only through the terms spanned
by two charge vectors P̃ , Q̃. Finally, the equation is factorized
and we have the following system of equations for the potential
components ϕ1, ϕ2 and the vector field a

D D
 = δ, ∇ × ∇ × a − g j = 0, j = 
J D
, (19)

where the column 
 = ϕ− ∗
ϕ with ϕT = ‖ϕ1,ϕ2‖,

∗
ϕT =

‖ ∗
ϕ1 ,

∗
ϕ2 ‖,

∗
ϕ1= ϕ1(x2), and

∗
ϕ2= ϕ2(x1) is the potential

at the points of the charge location, δT = ‖δ(x − x1),
δ(x − x2)‖, Dkl = ∇δkl + gaCkl , k,l = 1,2 is the covariant
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derivative, and C, J are the following matrices:

C =
∥∥∥∥−(P̃ Q̃) −(Q̃Q̃)

(P̃ P̃ ) (P̃ Q̃)

∥∥∥∥, J =
∥∥∥∥ 0 1

−1 0

∥∥∥∥.

Here the parentheses denote the scalar product of charge
vectors and δ is the δ-function source of unit intensity. Then
Eqs. (16) achieve the following form :

˙̃P = g
∗
ϕ2 Q̃ × P̃ , ˙̃Q = g

∗
ϕ1 P̃ × Q̃. (20)

This system of Eqs. (20) describes the rotation of color charges

with respect to the constant vector �̃ = ∗
ϕ1 P̃ + ∗

ϕ2 Q̃ with the
frequency g|�̃|. The matrix C is conserved dC/dt = 0, so the
potentials of the scalar ϕ and vector field a are quasistatic,
indeed.

The set of Eqs. (19) has a transparent physical interpre-
tation. The color field, generated by two pointlike sources,
is the source of a color charge itself. Thus, a self-consistent
environment of color charges and the corresponding currents
is established in the space around the charges. The solutions
of this system were investigated in detail both analytically
and numerically in Ref. [51]. There, it was demonstrated
that the interaction between color charges is Coulomb-like.
If the coupling constant is not large, i.e., g2/(4π ) <

√
2,

the corresponding solution can be well approximated by the
Coulomb potentials ϕ1,2 = 1/(4π |x − x1,2|) with the vector
field a that is generated by these potentials in the next iteration
in g. This is illustrated in Fig. 1 by drawing the lines of constant
force for a [see Fig. 1(a)] and equi-potentials for the induced
chromomagnetic field Hϕ = rot a [Fig. 1(b)], respectively.
A line of force is a directed curve in the color field such
that a forward tangent at any point shows the direction of the
chromofield intensity. It is seen that the vector field of two color
charges looks like the field of a permanent magnet with poles
being placed at the points x1,x2. The vector field a develops a
constant longitudinal component |a‖| = 1/(4π |x1 − x2|) only
along the straight line connecting the sources at z1 = 0 and
z2 = 1, as demonstrated in Fig. 1, where the current lines
of the vector field a are presented. The field drops sharply
perpendicular to the line on which the color charges are
located. The chromomagnetic field includes a single (vortex)
component and, for example, for color charges at the points 0

and 1 on the axis z, is given by

H̃ϕ = g3

(4π )2

1

r

(
1 − μ

1 + μ

)1/2(
1 − 1 + r

(1 − 2rμ + r2)1/2

)
× P̃ × Q̃ ≡ Hϕ P̃ × Q̃, (21)

where r , μ are the spherical coordinates measured from the
origin and μ = cos θ with the angle θ measured with respect
to the z axis. The contour lines of the Hϕ component of
the chromomagnetic field are presented in Fig. 1(b). It is
noteworthy that the lines of constant force and equipotentials
seem to be mutually orthogonal at each z,r point. Equation (21)
becomes more complicated for other choices of the charge
location.

The total energy concentrated in the color field may be
estimated as

E =
∫

d3x
Ẽ

2 + H̃
2

2
� αg

(P̃ Q̃)

|x1 − x2| + α3
gI

(P̃ × Q̃)2

|x1 − x2| ,
(22)

with αg = g2/(4π ), I = (6 − π2/2)/4; the terms of the source
self-interaction are not included here. These estimates of the
energy density of the chromomagnetic and chromoelectric
fields clearly demonstrate the relative contributions of the
first and subsequent iterations as well as the dominant role
of the first iteration in the coupling constant relevant for actual
applications in ultrarelativistic nucleus-nucleus collisions.

A closer analysis shows that the potentials ϕi have a
singularity in the locations of the charges. The limiting values
∗
ϕi [cf. Eqs. (20)] depend on the path by which one arrives at
the charge position. For example, for one of the charges in the
origin we get

ϕ1 = − 1

4π

1

|x| − g3

4π
aμ(P̃ Q̃) + · · ·

ϕ2 = − 1

4π

1

|x − x2| + g3

4π
aμ(P̃ P̃ ) + · · · ,

where a is the value of the longitudinal component of the
vector field a‖ at the location point of the charge. Formally,
the presence of singularities leads to a contradiction with
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FIG. 1. (Color online) Schematic view of the lines of force of the vector field a (a) and the isolines of the chromomagnetic field component
Hϕ = rot a (b). The results are given for the cylindrical symmetry with two charges located at the points with z = 0 and 1.
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the initial assumptions of deriving Eqs. (20) because now a
mismatch of the color vector rotation on the charge itself is
possible. In fact, it signals the necessity of a more accurate
fixing of boundary conditions on the charge (this problem is
akin to similar problems of diffraction theory). In particular, if
these conditions are formulated in such a way that the vector
field a does not penetrate into the sources, one can avoid
these difficulties [52]. However, the approximate solutions are
still quite appropriate to be used for the coupling constants,
which are of interest for applications. Then it can be shown
that the solutions of Eq. (19) with a boundary condition that
leads to expelling the vector field from the charge should be
qualitatively restructured when the coupling constant reaches
the threshold values


 = g2

(4π )2
P̃ 2 � l(l + 1), (23)

where l = 0,1,2, . . . are integers (of angular momentum) and
l = 0 corresponds to the situation with the penetrating vector
field. In addition to these critical values there is another one: it
results from the same characteristic equation that we have used
to obtain the limit (23) and is associated with the singularity
power of (19) solutions in the neighborhood of the origin,
where the source of the color charge P̃ is located. Searching

for the solution of (ϕi−
∗
ϕi) and the vector field component a

in the form of rσ we obtain for the exponent σ

σ = −1

2
± [(2l + 1)2 − 4π ]1/2

2
.

The condition to treat only the real-valued solutions


 � (l + 1/2)2 (24)

leads to the constraint widely discussed some time ago [53]. It
was asserted that when reaching this threshold the non-Abelian
fields develop instability and, as a consequence, the color
charge becomes completely screened. However, one can notice
that the critical values (23) are always reached before the
limit (24) becomes effective and, therefore, a rearrangement
of the vector field takes place before the complete color charge
screening develops. The proper time-consuming calculations
are possible only by applying numerical schemes with the
vanishing divergence. Fortunately, such effects occur for
coupling constants, which apparently are of little interest for
the applications.

The scalar component of Eqs. (19) can be written in the
form

∇E = δ − aC E,

where a column of two components of the chromoelectric
field E = D
 has been introduced. The last term includes the
vector field a and can be interpreted as a charge density cloud
(column of charges G1, G2) of the gluon field

G = −aC E.

Intuitively, it appears plausible that if the color sources
are antiparallel, then the charge of the non-Abelian field
could be zero. Indeed, if P̃ = −Q̃, then by calculating
the charge density components G1 = G2 = a∇(
2 − 
1), it

becomes clear that the charge of the non-Abelian field indeed
vanishes G̃ = G1P̃ + G2Q̃ = 0̃. In contrast, we expect that
the non-Abelian field charge becomes maximal if the color
charges of the particles are parallel P̃ = Q̃. In this situation
G1 = −G2 = a∇(
1 + 
2), where, contrary to expectations,
the non-Abelian field charge gets zero G̃ = 0̃ again. Note,
however, that the charge of the non-Abelian field will be
nontrivial for other configurations.

It is important to notice that the energy of the system of the
non-Abelian field and the particles can be written [if based on
the solutions of Eqs. (19)] in the following form:

E =
∫

d3x
Ẽ

2 + H̃
2

2
= 1

2

∫
d3x(−ϕ̃δ̃ + ϕ̃G̃), (25)

where in accordance with Eq. (17) δ̃ = δ1P̃ + δ2Q̃, i.e.,
the chromomagnetic component effectively transforms into
a charge. This form reminds us of the well-known expression
of electrodynamics for the electrostatic energy of a system of
charges

E = −1

2

∑
i

ϕiei,

where ϕi is the potential (that can already be considered as
an observable quantity) at the location point of the charge ei .
Comparing these expressions we are able to conclude clearly
about the role of the non-Abelian charge cloud and, taking into
account the sign of its contribution to the energy [see Eq. (22),
for example] we find that extra repulsion is developed in the
system of non-Abelian charges. We speculate that this extra
repulsion might also lead to enhancement of the elliptic flow
v2 of hadrons in relativistic heavy-ion collisions, which has
not been considered so far.

In view of the classical field dynamics we realize that
Eq. (25) serves as the only source of information on the
forces acting in the system. It is interesting to remark that,
e.g., the Wong force (invented to describe the dynamics of
color charges in an external field) is associated only with the
first term ∼ ϕ̃δ̃ of Eq. (25), as it should be in the chromostatic
case, since it is the only combination permitted to construct
properly its covariant momentum extension. It can also be
constructed by counting the Wong force for the first and second
charge explicitly (using the definition of the chromoelectric
field strength Ẽ):

FP = P̃ Ẽ(x1) = ∇ϕ1|x1 P̃
2 + ∇ϕ2|x1 (P̃ Q̃),

FQ = Q̃Ẽ(x2) = ∇ϕ1|x2 (P̃ Q̃) + ∇ϕ2|x2Q̃
2.

Singular contributions describe self-interactions and should be
regularized as in electrodynamics. Equation (25) demonstrates
explicitly that the superposition principle for a color charge is
nonapplicable in the general situation and one has to accurately
account for the non-Abelian field cloud energy. The structure
of the cloud environment and, hence, the system energy
depends, generally speaking, on the choice of the boundary
condition for the charge.

It is relevant to notice that the iterative perturbation
series can be analyzed [when dealing with the Yang-Mills
systems (9)] even when discarding the compatibility con-
dition (10). The correct construction of the iterative series
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inevitably leads to the conclusion about the nonconservation
of classical color charge. This property is essentially different
from naively expected small corrections to the Abelian solu-
tions because of the nonlinearity of the Yang-Mills equations.
In a sense this conclusion can be used in the inverse manner
that the solutions are automatically correct with accuracy of
an order of g [in reality g3, see (25)] if the compatibility
conditions are taken into account. In the non-Abelian case
it is technically difficult to operate with the different gauges
and besides, the set of physically justified (gauge invariant)
observables is less than in electrodynamics.

Since the strengths of chromoelectric and chromomagnetic
fields are not proper observables, the problem arises in
interpreting their solutions. Actually, in the example discussed
above the gauge is implicitly fixed by selecting a special type of
solution. If one makes a choice in favor of the rest frame of the
rotating charges, the potentials ϕ1,2 approach some constants
at spatial infinity. Such a gauge is inconvenient to be used in
numerical calculations and our experience suggests that the
Coulomb solutions are most informative.

Adding even one more color charge makes it impossible
to investigate the problem at the same level of consistency
as for the two-particle problem because the compatibility
equations (10) cannot be integrated anymore. Nevertheless, it
seems reasonable to consider that the system energy is given by
the same expression (25) with the Coulomb interaction of the
components. The charge contributions of non-Abelian fields
(diffusive color clouds) are small for the coupling constants of
actual interest because in the relativistic heavy-ion situation it
is impossible to factorize the equations in a general form and
the problem arises of how to construct an approximate solution.

IV. FIELD OF TWO COLOR CHARGES

Let us first consider the field of two color charges P̃ , Q̃
moving along the z axis towards each other with velocities v
and −w, respectively. If their encounter is supposed to take
place at time t = 0, their coordinates in the laboratory system
are given as z1 = vt,z2 = −wt . Obviously, when the particles
are far from each other their interaction can be assumed weak
and their charges remain constant with high accuracy.

Adapting the typical scale of non-Abelian (strong) interac-
tions of about 1 fm we assume that the interaction is switched
on just at this distance (scale) denoted by D. Obviously, this
generates the characteristic time scale in the problem. Then the
first milestone appears when the particles enter the interaction
area, i.e.,

T = − D

v + w
. (26)

The second time instant of importance is t ′1 when a signal
of the appearance of charge Q̃T at the distance of 1 fm reaches
the first particle (with the color charge P̃ ). Similarly for the
second particle, the time when the charge P̃T comes at the
same distance is denoted by t ′2, where P̃T , Q̃T are the color
charges before entering the zone of interaction, i.e., before the
time T ,

t ′1 = 1 − w

1 + v
T , t ′2 = 1 − v

1 + w
T. (27)

FIG. 2. The time scheme for the meeting of two color particles.
The solid lines are the particle trajectories, the dashed lines show
projections on the time axis, the dotted lines are the light signals.
Here T is the initial time of the interaction when the particles become
closer than the distance D = 1 fm; t ′

1 is the arrival time of the signal
to the first particle about the presence of the color charge Q̃T at 1 fm;
similarly for the second particle; t ′

2 is the time when the charge P̃T

is seen at the same distance, where P̃T , Q̃T are the charges before
entering the interaction zone, i.e., before the time T . Until the time
t ′′, the first and the second particles rotate with respect to constant
color vectors Q̃T , P̃T .

These expressions are easily extracted from the scheme in
Fig. 2 by writing out the relations for the arrival of the light
signals and charges at the points of interest. In the figure,
these events take the form of the corresponding triangles. Just
at these times the color charges start to rotate with respect
to their constant color vector, which is the vector peculiar to
the partner charge before it entered the interaction area. This
regime is going on up to the time

t ′′ = 1 − w

1 + v

1 − v

1 + w
T, (28)

which is the same for both particles. It is also the time necessary
for a signal to reach the partner providing information on
the beginning of rotation [see Eqs. (20)] starting from its
asymptotic charge value P̃T , (Q̃T ). It is noteworthy that the
same approach is used for formulating properly the Cauchy
problem for retarded equations [54].

The velocity of a relativistic particle is determined by the
relation

v =
(

1 − m2

E2

)1/2

� 1 − m2

2E2
, (29)

where m is the particle mass and E its energy. It allows us to
estimate the order of magnitude for the characteristic time in
the problem as

t ′ ∼ m2

E2
T , t ′′ ∼ m4

E4
T .
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The collision energies of present heavy-ions facilities (RHIC
and LHC) allow us to estimate the corresponding factors as
E/m ∼ 10 − 102 and more. In Secs. V and VI, where charge-
dipole and dipole-dipole scattering is considered, another
interesting scale arises. It is the distance δ between the dipole
charges and we assume it to be of the order of the interquark
distance in the nucleon, i.e., δ = 1 fm. Then in the laboratory
system the dipole size (due to Lorentz contraction) will be

� = δ(1 − v2)1/2 ∼ δ
m

E .

Let us denote the time corresponding to this scale by t3 ∼ m/E
(see below). Thus, for the relativistic problem of interest we
obtain the following temporal hierarchy of interaction stages

t ′′ 
 t ′ 
 t3 
 T .

Due to the chosen geometry of the problem an approximate
solution of the Yang-Mills equations for two color charges can
be represented as the following superposition [see also (11)]:

ϕ̃ = [ϕ1P̃ ]t ′ + [ϕ2Q̃]t ′ , Ãz = v[ϕ1P̃ ]t ′ − w[ϕ2Q̃]t ′ . (30)

The scalar potentials ϕ1 and ϕ2 can be specified as:

ϕ1 = 1

4π

g

R1 − vR1
, ϕ2 = 1

4π

g

R2 − wR2
. (31)

The factor g is taken out since the normalization of the
color charge vectors of the particles is chosen as unity.
The consistency conditions (14) include the potentials at the
location point of the particles. Let z1 and z2 be the coordinates
of the particles at some moment (see Fig. 3). From this picture
one can conclude that the potential values of interest are

FIG. 3. The scheme for determining the retardation time for the
collision of two charges. Here z1 and z2 are the current positions of the
particles at two certain time moments. The charge of the first particle
is characterized by the retarded time t∗∗ as well as by a segment D

which measures the distance between the particles for this time. The
parameters t∗ and d for the second particle have a similar meaning
(see text).

determined by the distance

R1 = d + z2 − z1 = t∗, R2 = D + z2 − z1 = t∗∗

with d = vt∗ and D = wt∗∗. Using these relations, we obtain

ϕ1 = 1

4π

g

z2 − z1
, ϕ2 = 1

4π

g

z2 − z1
.

Thus, the Lorentz factors are compensated in such a way that
the scalar potentials at the charge location can be simply
expressed in terms of the distance between the particles in
the current moment. Also, taking into account the form of the
vector potential, we arrive at the following expression for the
compatibility conditions:

˙̃P = αg

1 + vw

|z1 − z2|Q̃(t − t∗∗
12 ) × P̃ ,

(32)
˙̃Q = αg

1 + vw

|z1 − z2| P̃ (t − t∗21) × Q̃.

The retarded time can be obtained (using Fig. 3, for example),
as

t∗21 = −v + w

1 − v
t, t∗∗

12 = −v + w

1 − w
t, for t < 0.

For t > 0 (in the above formulas) the following replacement
should be made: v,w → −v,−w. In the electromagnetic case,
the charge is conserved and its retarded time is defined simply
as t = t ′ + R(t ′)/c [43]. Below we will apply the reduced
notation for the retarded time without any further explanation.

It is convenient to introduce an auxiliary variable χ =
− ln |t |, by means of which Eqs. (32) are reduced to

P̃ ′ = ωQ̃(χ − �∗) × P̃ , (t < 0)
(33)

Q̃′ = ωP̃ (χ − �∗∗) × Q̃,

for negative times, and

P̃ ′ = −ωQ̃(χ + �∗∗) × P̃ , (t > 0)
(34)

Q̃′ = −ωP̃ (χ + �∗) × Q̃,

for positive times. Here the prime denotes differentiation with
respect to χ ,

ω = αg

1 + vw

v + w
, �∗ = ln

1 + v

1 − w
, �∗∗ = ln

1 + w

1 − v
.

The procedure for obtaining an approximate solution is
given in the Appendix. To find the strength of the chromo-
electric and chromomagnetic fields, it is also required to know
the derivatives of the color charge vectors with respect to the
retarded time dP̃ (t ′)/dt ′, dQ̃(t ′)/dt ′. They are computed by
the explicit formulas (32).

As an example, let us consider the field created by two
relativistic particles moving with velocities: v = 1 − 2×10−2

and |w| = 1 − 1×10−2 . The energy-mass ratio for the first
particle is E/m � 16, and for the second particle is E/m �
22. Let us take the coordinates of the observation point as
r0 = (2,0,1), i.e., x = 2 fm, z = 1 fm. For comparison, we
consider also the field created by particles with electric charge
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FIG. 4. (Color online) Time evolution of three color components for the scalar φ̃ (a) and z component of the vector potential Ãz (b) for
two oppositely directed charges in color space as a function of time is given by the dashed lines. The solid line shows the absolute value of the
isovector potential |φ̃|. The electrodynamic potential with charges ±e corresponding to the coupling constant αe = 0.3 is displayed by open
circles.

±e of the same interaction strength as the color charges
[e2/(4π ) = g2/(4π ) = 0.3] moving with the same velocities.
The potentials for the scalar ϕ̃ and z component of the vector
Ãz fields of color particles are presented in Fig. 4 where the
initial angles in the color space are determined as θ = π/1.95,
φ = π/20 for the first particle and θ = −π/1.95, φ = −π/20
for the second one. In this case the color charge of the first
particle, for example, will be P̃ = (P1,P2,P3), with P1 =
sin θ cos φ, P2 = sin θ sin φ, P3 = cos θ . This configuration of
color charges P̃ , Q̃ corresponds to almost oppositely directed
charges at the initial stage. The dashed lines in this figure show
the three color components of the scalar potential [Fig. 4(a)]
and the third component of the vector potential [Fig. 4(b)].
The open circles are plotted for the potentials corresponding
to the enhanced electrodynamic coupling. The modulus of the
scalar |ϕ̃| and vector |Ãz| potential are displayed by the solid
lines in Fig. 4. We recall again that these variables are not di-
rectly observable. The selected observation point r0 = (2,0,1)
introduces some asymmetry reminding us of the asymmetry in

the transverse plane for peripheral nucleus-nucleus collisions,
which lead to some dominant component [43].

According to the choice of the geometry, we see that there
are three maxima in the evolution of the chromofield, Fig. 5.
The first maximum corresponds to the passage of the first
particle at the closest distance to the observation point, then
the second maximum corresponds to the passage of the second
charge and a late third one for which there is no analogy in
the electromagnetic field (the dotted line is flat in this time
interval). The first two bumps are located symmetrically with
respect to the meeting point t = 0. For the selected configura-
tion of color charges, one of the components of the potentials,
shown by the dashed lines, dominates and almost coincides
with the appropriate modulus of vectors in the color space
(solid line). The meeting point seen by an observer is located at
a distance of R = (x2 + z2)1/2 = √

5 ∼ 2.24 from t = 0. It is
seen that there is a noticeable difference between the scalar and
vector potentials as compared to the electrodynamic case (open
circles) at the appropriate time. As discussed in the Appendix,
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FIG. 5. (Color online) Three color components of the chromoelectric Ẽ (a) and chromomagnetic H̃ field strength (b) for two moving color
charges of opposite signs as a function of time are given by the dotted lines. The solid line shows the absolute value of the isovector potential
|Ẽ|. The open circles show the electrodynamic vector field corresponding to charges ±e and coupling constant αe = 0.3.
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FIG. 6. (Color online) Modulus of the two components of the chromoelectric field strength |Ẽx | (solid line) and |Ẽz| (dashed line) for two
moving charges with parallel (a) and orthogonal (b) color charges in the initial time.

the rotation of color charges is described by Eqs. (A1)–(A5).
The effective rotation frequency in the neighborhood of the
meeting point t → 0 is ω′′ = αq/ ln |t |, i.e., the color charges
are rotating infinitely fast near the meeting point.

The time dependence of the strength components of
the chromoelectric Ẽx [Fig. 5(a)] and chromomagnetic H̃y

[Fig. 5(b)] fields is shown in Fig. 5 by the three dashed lines;
the solid lines correspond to the modulus of the chromofields
|Ẽx | and |H̃y |. We have cut the singular peaks at some threshold
and thus the lines look somewhat irregular. In full agreement
with Eqs. (15), the Ex and Hy components are dominating. In
both cases two maxima (minima)—caused by passing the color
charges in the vicinity of the observation point—are clearly
visible. Note that here (and in what follows) the color field
strength is plotted in dimensionless units where c̃ is the color
charge of the appropriate field component and mπ is the pion
mass. The charge velocities considered roughly correspond
to the RHIC energy where the maximal electromagnetic field
eHy/m2

π reaches a few units [43]. This value is essentially
smaller than those in the color charge case (see Fig. 5). It is seen
that for the color charge configuration considered the chromo-
electric and chromomagnetic field are quite similar to the field
in the case of enhanced (αe = 0.3) electrodynamics. Some
differences in the height of the first two maxima are caused by
different velocities of color charges. A significant difference
at the third maximum is due to the arrival of a signal from the
meeting point of particles to the observation point, where there
is a noticeable additional contribution of chromoelectric and
chromomagnetic fields associated with the temporal change
of the particle color charges. This extra enhancement may be
considered as a manifestation of the color vector rotation in
the evolution of the color field strength named as the effect of
the color charge glow. The color glow effect is not an artifact
of the approximation but results from the pure non-Abelian
term proportional to D̃ in Eq. (15) as a distinct color wave
disturbance arising due to the finite retardation time.

The modulus of the transverse |Ẽx | =
√

Ẽ2
x and longitu-

dinal |Ẽz| =
√

Ẽ2
z component of the chromoelectric field is

shown in Fig. 6 for two configurations of the initial color
charges. The longitudinal component is strongly suppressed,

as it should be due to relativistic effects, but the signal
from the meeting point of the particles leads to almost equal
contributions. It is noteworthy that the change of the initial
configuration of color charges from parallel to orthogonal [cf.
Figs. 6(a) and 6(b)] does not change the evolution in the
absolute values of the chromoelectric field though the signs
of the color Ex,Ez components are different and change with
time. It is also important to note that every collision noticeably
changes the position of color charges in the color space but we
do not present these scattering data here.

Characteristics for the initially almost orthogonal color
charge vectors are presented in detail in Figs. 7 and 8. These
results are obtained for particles with color charges defined by
the following angles in color space: θ = 0, φ = π/20 for the
first particle θ = −π/1.95, φ = −π/20 for the second one. We
shall henceforth refer to this case as non-Abelian. The notation
in these figures is identical to that in Figs. 4 and 5. The main
result here is that in this case there is no dominant component,
as in the case of mutually opposite charges considered above,
but two preferred directions in color space are significant, as
evidenced by the corresponding maxima shown by the dashed
lines in Figs. 7 and 8. The third bump at t = 2.24 is again the
manifestation of the color charge glow effect.

Some comments with respect to previous studies, address-
ing the color rotation in the encounters of color charges,
are in order: In Ref. [55] the authors have solved the
classical QCD equations of motion in perturbation theory up
to order g3 within light-cone variables (using the Mueller
gauge transformation [56]) and assuming that the color
charges move with the speed of light (v = 1) and the color
interaction is switched on at T = −∞. Their focus has been
on the computation of soft gluons in the initial phase of
ultrarelativistic nucleus-nucleus collisions in the forward light
cone, in particular the gluon number, the gluon energy, and
their multiplicity distributions. Though the basic equations (9)
and (10) are the same, our model considers charges moving
with velocities v < 1, subdivides the scattering process at
three different stages (see Appendix) and takes into account
the finite retardation time at each stage. As demonstrated
above in Figs. 5 and 7, we are interested explicitly in the
evolution of chromoelectric and chromomagnetic fields where
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FIG. 7. (Color online) Non-Abelian configuration of color charges (see text). The three components of φ̃ (a) and Ãz (b) are shown for the
initially orthogonal charge vectors. The notation is the same as in Fig. 4.

the new color glow effect is observed most clearly. Since
the authors of Ref. [55] compute the gluon field obtained
by the Weizsäcker-Williams transformation of the potential
and consider only global properties such as energy, number,
and multiplicity distributions of gluons, a possible contribution
of the color charge glow is hard to discriminate.

Furthermore, the space-time evolution of the classical
gluon fields was investigated before in Ref. [57] within a
rather similar non-Abelian model. This model, applied to
the collision of two nuclei, exhibits a very complicated field
structure associated with instabilities. In this picture, it is
hardly possible to disentangle such a particular mode as the
late effect of the color glow, which in principle could have
left its traces also in their calculations. However, an additional
investigation for simple colliding systems, as performed here,
is mandatory to clearly pin down this phenomenon.

V. FIELD OF A COLOR CHARGE AND A COLOR DIPOLE

As in the previous section, let us assume that there is a
particle with color charge P̃ that moves along the z axis with
velocity v. We denote it as the first particle. Suppose that the

dipole made up by the second and third particle with charges
Q̃2 and Q̃3 is aligned along the z axis and moves in the
opposite direction with velocity w. We denote the distance
between the charges in the dipole as δw in its rest frame, which
is taken as 1 fm. In the laboratory frame the charges are located
closer to each other �′

w = (1 − w2)1/2δw due to the Lorentz
contraction. Let the first and second particle encounter at zero
time before the time t3 = δ′

w

v+w
of the second meeting between

the first and third particle (see Fig. 9). Then the trajectories
of the first, second, and third charges are defined as z1 = vt ,
z2 = −wt , z3 = −wt + δ′

w. Similarly to Eq. (30), let us
adopt an approximate solution of the Yang-Mills equations in
the form

ϕ̃ = [ϕ1P̃ ]t ′ + [ϕ2Q̃2]t ′ + [ϕ3Q̃3]t ′ ,
(35)

Ãz = v[ϕ1P̃ ]t ′ − w[ϕ2Q̃2]t ′ − w[ϕ3Q̃3]t ′ .

The potentials at the location point of charges can be found in
the same way as in the case of two color charges; this leads
to the compatibility conditions for each of the charges, see
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FIG. 8. (Color online) Non-Abelian configuration of color charges (see text). The three components of chromoelectric Ẽ (a) and
chromomagnetic H̃ (b) fields are shown for the initially orthogonal charge vectors. The notation is the same as in Fig. 5.
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FIG. 9. Scheme of the meeting of a color particle and a dipole.
The particle trajectories are plotted by the solid lines, the dotted lines
are light-cone lines corresponding to the arrival of the signal from
the particle meeting point. The arrival of the signal is marked by the
points 12 and 13 (see text). The time t3 is the moment when the first
and the third particle meet each other.

Eq. (14)

˙̃P = αg

1 + vw

|z1 − z2|Q̃2(t − t∗∗
12 ) × P̃ + αg

1 + vw

|z1 − z3|
× Q̃3(t − t∗∗∗

13 ) × P̃ ,

˙̃Q2 = αg

1 + vw

|z1 − z2| P̃ (t − t∗21) × Q̃2 + αg

1 − w2

|z2 − z3|
× Q̃3(t − t∗∗∗

23 ) × Q̃2,

˙̃Q3 = αg

1 + vw

|z1 − z3| P̃ (t − t∗31) × Q̃3 + αg

1 − w2

|z2 − z3|
× Q̃2(t − t∗∗

32 ) × Q̃3, (36)

with t∗31 = − v+w
1+v

(t − t3), t∗∗∗
13 = − v+w

1+w
(t − t3) for t3 < t , and

t∗∗
32 = v+w

1+w
t3, t∗∗∗

23 = v+w
1−w

t3 for t < t3 (with the substitution
v,w → −v,−w). The retardation times are determined simi-
larly to the case of two color charges, where, in particular, the
retarded times t∗21 and t∗∗

12 are given (see the relevant scheme
in Fig. 3). An interesting peculiarity of the resulting system of
Eqs. (36) is strong suppression of the contributions of charges 2
and 3 flying in the same direction, which enter into the equation
with the Lorentz factor 1 − w2. Thus, in the ultrarelativistic
case the mutual influence of color charges flying in the same
direction may be ignored and the system can be considered as
frozen. This is true even in the cases where the system has the
size of a nucleus.

We are interested now in the particular case when the color
dipole charges in the initial state are opposite, i.e., Q̃3 = −Q̃2.
The prescription for obtaining an approximate solution in this
case is given in the Appendix.

The strength of the chromoelectric and chromomagnetic
fields—generated by particles moving with the velocity v =
1 − 2 × 10−2 and by the dipole with the velocity |w| = 1 −
1 × 10−2—is demonstrated in Fig. 10. The color charges of
the particles at the initial time are determined by the following
angles in the color space: θ = π/1.95, φ = π/20 for the first
particle, θ = 0, φ = −π/20 for the second one and with the
opposite angles for the third particle. This configuration is
denoted as non-Abelian. We do not show explicit data for the
potentials, as they provide little information. It is seen that
generally the two first maxima of the field strength generated
by color charges in the vicinity of the observation point are
reasonably reproduced by the Coulomb-like solution (dotted
lines in Fig. 10). However, the first maximum formed in
passing the dipole is not smooth but has an up-down jump
(or zigzag) shape. This structure is caused by the opposite
color charges forming the dipole.

The observation point is located now in another place
x = 1, z = 1 fm as compared to the case of the meeting
of two particles at x = 2, so the signal of the meeting of
the color charge and the dipole arrives at a time about
τ = (x2 + z2)1/2/c = √

2 ∼ 1.41. Here, at the meeting point
the Coulomb-like solution predicts noticeably narrower distri-
butions over the color field strength due to the so-called color
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FIG. 10. (Color online) Chromoelectric Ẽ (a) and chromomagnetic H̃y (b) fields for the charge-dipole case. The notation is the same as in
Fig. 5.
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FIG. 11. Scheme of the meetings of two color dipoles. The solid
lines are the particle trajectories. The meeting points of the particles
are marked by t3 for the particles 1-3, t4 for the particles 4-2 and
t3 + t4 for the particles 4-3.

charge glow, which, as noted above, results from the color
charge interaction through the time dependence of the color
vectors D̃ [the last term in Eqs. (15)].

VI. FIELD OF TWO COLOR DIPOLES

Let us finally consider the field created by two color dipoles.
The first dipole is formed by the first and fourth particle with
charges P̃1 and P̃4, respectively. The second dipole is made
up of the second and third particle with charges Q̃2 and Q̃3.
At the initial time the color charge of each dipole is neutral:
P̃1 = −P̃4, Q̃2 = −Q̃3. Particles of the first aligned dipole
move along the z axis with velocity v and the second aligned
dipole moves towards them with velocity w. Let us denote the
distance between the charges in the first and second dipole in
their rest system as δv and δw, respectively. In the laboratory
frame, these distances are contracted δ′

v = (1 − v2)1/2δv and

δ′
w = (1 − w2)1/2δw. Again, it is convenient to introduce the

time scales

t3 = δ′
w

v + w
, t4 = δ′

v

v + w
,

when the first particle meets the third one and the fourth
meets the second one, respectively (see Fig. 11). At the time
t3 + t4 the fourth particle meets the third one. Suppose for
convenience that the meeting of the first and second particle
occurs at time zero. Then the trajectories of charges with
numbers one, two, three, and four are defined as z1 = vt ,
z2 = −wt , z3 = −wt + δ′

w, z4 = vt − δ′
v . In this case the

ansatz for the superposition of approximate solutions has the
form

ϕ̃ = [ϕ1P̃1]t ′ + [ϕ2Q̃2]t ′ + [ϕ3Q̃3]t ′ + [ϕ4P̃4]t ′,
(37)

Ãz = v[ϕ1P̃1]t ′ − w[ϕ2Q̃2]t ′ − w[ϕ3Q̃3]t ′ + v[ϕ4P̃4]t ′ .

Similarly to the previous sections the compatibility condition
[see Eq. (14)] for each charge can be written as follows:

˙̃P 1 = αg

1 + vw

|z1 − z2|Q̃2(t − t∗∗
12 ) × P̃1 + αg

1 + vw

|z1 − z3|

× Q̃3(t − t∗∗∗
13 ) × P̃1 + αg

1 − v2

|z1 − z4| P̃4
(
t − t IV

14

) × P̃1,

˙̃Q2 = αg

1 + vw

|z1 − z2| P̃1(t − t∗21) × Q̃2 + αg

1 − w2

|z2 − z3|
× Q̃3(t − t∗∗∗

23 ) × Q̃2 + αg

1 + vw

|z2 − z4| P̃4
(
t − t IV

24

) × Q̃2,

˙̃Q3 = αg

1 + vw

|z1 − z3| P̃1(t − t∗31) × Q̃3 + αg

1 − w2

|z2 − z3|
× Q̃2(t − t∗∗

32 ) × Q̃3 + αg

1 + vw

|z3 − z4| P̃4
(
t − t IV

34

) × Q̃3,

˙̃P 4 = αg

1 − v2

|z1 − z4| P̃1(t − t∗41) × P̃4 + αg

1 + vw

|z4 − z2|
× Q̃2(t − t∗∗

42 ) × P̃4 + αg

1 + vw

|z3 − z4|Q̃3(t − t∗∗∗
43 ) × P̃4,

(38)
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FIG. 12. (Color online) The three components of Ẽx (a) and H̃y (b) for the dipole-dipole case. The notation is similar to Fig. 5.
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FIG. 13. (Color online) The same as in Fig. 12 but for the zoomed region near the meeting point.

where the different times are defined as t∗∗
42 = − v+w

1−w
(t − t4),

t IV
24 = − v+w

1−v
(t − t4) for t < t4 (for t4 < t , the substitution

should be made v,w → −v, −w); t∗∗∗
43 = − v+w

1−v
(t − t3 − t4),

t IV
34 = − v+w

1−w
(t − t3 − t4) for t < t3 + t4 (for t3 + t4 < t , the

substitution should be made v,w → −v, −w); t∗41 = − v+w
1−v

t4;
and t IV

14 = − v+w
1+v

t4. In the Appendix we present the procedure
for obtaining an approximate solution for two color dipoles.

In Fig. 12, the strength of chromoelectric and chromomag-
netic fields created by two dipoles with the velocities v = 1 −
2 × 10−2 and |w| = 1 − 1 × 10−2 is demonstrated. The color
charges of the particles at the initial time are determined by the
following angles in the color space: θ = π/1.95, φ = π/20 for
the first particle and θ = 0, φ = −π/20 for the second one and
with the opposite angles for the third and fourth particle. As
is seen (by the dotted lines in Fig. 12), the two first maxima
are reproduced by the Coulomb-like solution including the up-
down jump effect for both maxima, noted above in Sec. V. The
observation point has the coordinates x = 1 fm and z = 1 fm,
so the signal on the meeting of the color dipoles arrives at
the time about τ = (x2 + z2)1/2/c = √

2 ∼ 1.41. In fact, the
whole area from the second maximum until the meeting point
is filled by the chromoelectric and chromomagnetic fields of
noticeable strength and near τ = 1.41 this looks like a band.
To clarify the band structure, we zoom into the region near the
meeting point in Fig. 13. It is seen that this area consists of
four maxima of huge intensity, which in dynamical systems
can result in large local color fluctuations. This shining of the
color charge glow is mainly due to color charge interactions
through the time dependence of the color vectors D̃ [the last
term in Eqs. (15)], which is certainly not reproduced by the
Coulomb solution with the enhanced coupling. It is noteworthy
that the color charge glow effect is getting even larger for more
complicated systems.

VII. CONCLUSIONS

In this study, we have considered several elementary
configurations of relativistic partons with non-Abelian charges
for the SU(2) group in the classical limit. It is shown that, as
in the case of nonrelativistic particles, the system generally
shows Coulomb-like features, and the analogy is convincingly

supported by a comparison with electrodynamics for the
same coupling strength. In distinction, we find an additional
strength of chromoelectric and chromomagnetic fields close to
the meeting of particles, which is caused by the explicit time
dependence of the color charge vectors. In the chosen gauge
the interaction of the color charges results in the rotation
of the color vectors, which becomes very fast close to the
meeting point of two particles. The chromofields are stronger
by about an order of magnitude than the corresponding
electromagnetic fields created by a moving source at similar
conditions. The longitudinal and transverse field components
of this signal are of the same order of magnitude in contrast
to the longitudinally compressed field (due to the Lorentz
contraction). Changing the observation point one can see the
predicted shift of the meeting signal of the particles. It turns
out that for complex systems the whole observation zone—of
the order of a few fm near the meeting point—is filled up by
this intensive signal of a strong interaction scale, which we
have denoted as color charge glow.

We emphasize that the new color charge glow effect, which
was not identified explicitly in similar studies in the past [57],
is a manifestation of the nonlinear nature of non-Abelian field
dynamics and intimately related to the color vector rotation,
which results in additional field strength from the previous
encounter of color charges moving with velocity v < 1. This
effect essentially becomes visible in the chromofield strength
and may be not observed in global time-integrated observables
such as the gluon energy and multiplicity distributions. In this
respect, the effect of color charge glow is as robust as the color
rotation itself.

In fact, there is no direct evidence of the Coulomb law
for the interaction between quarks. The leading hypothesis to
explain the observed behavior of quarks is the idea of vacuum
gluon fields or gluon-field fluctuations. Our considerations
do not provide an alternative to the CGC description of
the very initial phase of ultrarelativistic nucleus-nucleus or
proton-nucleus collisions but should be important at the later
stage of the glasma evolution—when the CGC is melting and
converting to a QGP with a considerable amount of quarks and
antiquarks—as well as for the dynamics of hadronization at
the late stage of the QGP evolution. In this paper, we have not
touched upon these topics, but one should note that estimates
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based on the instanton vacuum model indicate that the vacuum
field may be much stronger than the fields generated by the
collision of quarks [58]. Every open color in the instanton
medium is screened, which indicates the impossibility of
forming gluon fields of noticeable intensity and, in a physical
sense, apparently implies the transformation of the gluon field
quanta in energetically more favorable configurations.

With respect to our discussion of the energy of a non-
Abelian system [see Eq. (25)], we speculate that the signals
of the additional repulsive non-Abelian interaction might
leave its traces in the early development of the collective
flow in relativistic nucleus-nucleus collisions prior to partonic
equilibration.

Using the proposed approximation that particles begin to
feel the presence of the non-Abelian charge of a collision
partner only below the distance of 1 fm, the discussed color
configurations can apparently be considered as a model for
a color pre-quark/gluon matter. As to a possible formation
of some objects, such as a color-flux tube, a larger system
similar to that formed in ultrarelativistic heavy-ion collisions
might be considered. Here new collective effects like the
Debye screening come into play, additionally. However, these
effects are beyond the aim of our study and are the subject of
future investigations. Also, an important practical conclusion
is that, in essence, the correct assessment for the strengths
of chromoelectric and chromomagnetic fields is obtained just
in the approximation of pure electrodynamics with enhanced
coupling g0. At the same time, the experience gained so
far [59] indicates that such a signal of color charge glow
might manifest itself not so directly as suggested by the
figures above. Subsequent parton-parton collisions in dense
matter—as produced in ultrarelativistic Pb + Pb (or Au + Au)
collisions—may wash out this effect. Accordingly, the study of
collisions of light nuclei or proton-nucleus interactions appears
more promising.
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APPENDIX

1. Time hierarchy of interaction stages

In the discussion of a color charge, a color dipole, and two
dipoles we need to compare the description at different scales.
It is convenient to specify them by the following items.

(i) The time t < T , T � t < t ′′ (recall t ′′ < 0). The form
of the solution for negative times has already been
specified above, for example, the color charge vectors
are constant up to the scale t ′

P̃ = P̃T , t < t ′1 Q̃ = Q̃T , t < t ′2. (A1)

Further, up to the time t ′′, each charge rotates relative
to the constant vector of the opposite charge particle.
Let us introduce the basis (static) vectors in the
color (isotopic) space, in terms of which it will
be convenient to express the solutions of equations.

The triple orthogonal unit vectors are associated with
the vector P̃ in the form:

Q̃T , ñPT
= P̃T × Q̃T

sin θ
, m̃PT

= Q̃T × ñPT
,

where cos θ = (P̃T Q̃T ). A similar basis associated
with the vector Q̃ is defined as

P̃T , ñQT
= −ñPT

, m̃QT
= P̃T × ñQT

.

The solution of Eqs. (32) for the times considered (A1)
can be represented as follows:

P̃< = cos θQ̃T + sin θ
{

cos[ω(χ − χ ′
1)]m̃PT

− sin[ω(χ − χ ′
1)]̃nPT

}
, t ′1 � t < t ′′,

(A2)
Q̃< = cos θP̃T + sin θ

{
cos[ω(χ − χ ′

2)]m̃QT

− sin[ω(χ − χ ′
2)]̃nQT

}
, t ′2 � t < t ′′,

where we use the notation χ ′
1 = − ln |t ′1|, χ ′

2 =
− ln |t ′2|.

(ii) The time t ′′ � t � −t ′′. Now consider the asymptotic
solutions for large χ (in the neighborhood of the
meeting point of particles). In this case, one can
neglect the retardation factors �∗, �∗∗ in Eqs. (33)
and (34). Then, for both positive and negative times
these equations describe the rotation of the color
charge vector with respect to the vector P̃ + Q̃, which
is conserved. It seems reasonable to approximate the
solutions of Eqs. (32) on the whole semiaxis of the
negative time including the time of the meeting of
particles, by matching the solutions on the t ′ scale
with those on the t ′′ scale, where the retardation is
neglected. The numerical study of the system (32)
justifies in general such an approximation. Thus, at
the time t ′′ the color vectors are

P̃ ′′ = P̃<(t ′′), Q̃′′ = Q̃<(t ′′).

Therefore, the vector P̃ + Q̃ is defined with respect to
which vector of the color charge particles is rotated on
the scale T ′′ < t < 0. Similarly to the considered case
of solutions for large time t ′, let us introduce three
orthogonal unit vectors

�̃ = P̃ ′′ + Q̃′′

|P̃ ′′ + Q̃′′| , ñP ′′
P̃ ′′ × �̃

|P̃ ′′ × �̃| ,

m̃P ′′ = �̃ × ñP ′′ ,

by means of which the solutions of systems (33) can
be expressed as follows

P̃< = c�̃ + s{cos[ω′′(χ − χ ′′)]m̃P ′′

− sin[ω′′(χ − χ ′′)]̃nP ′′ },
Q̃< = c�̃ − s{cos[ω′′(χ − χ ′′)]m̃P ′′

− sin[ω′′(χ − χ ′′)]̃nP ′′ }, (A3)

ω′′ = ω|P̃ ′′ + Q̃′′|, c = cos
(P̃ ′′Q̃′′)

2
,

s = sin
(P̃ ′′Q̃′′)

2
, χ ′′ = −ln|t ′′|.
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This solution describes an infinitely fast rotation of
the charges in the neighborhood of their meeting
point, if they are treated as a function of time, and
we have a rotation with a constant frequency ω′′ in
the logarithmic variables χ . To continue the solution
beyond the singularity for positive times, we assume
that in the time interval −tmin < t < tmin, the particle
charge vector does not change. The time scale tmin

is of artificial character and can be chosen arbitrarily
small, in principle. Without retardation the solution of
Eq. (34) at t > tmin can be written as

P̃> = c�̃ + s{cos[ω′′(χ − χ∗)]m̃P ′′

+ sin[ω′′(χ − χ∗)]̃nP ′′ },
(A4)

Q̃> = c�̃ − s{cos[ω′′(χ − χ∗∗)]m̃P ′′

+ sin[ω′′(χ − χ∗∗)]̃nP ′′ },
where χ = − ln t , χ∗, χ∗∗ are arbitrary phases to be
defined by the known values of the charge vectors on
the left end of the segment −tmin

P̃<(−tmin) = P̃>(tmin),

Q̃<(−tmin) = Q̃>(tmin).

Comparing Eqs. (A3) and (A4), one can obtain
relations between the phase χ ′′ and phases χ∗ and χ∗∗.
It is seen that it is convenient to put the time tmin in
such a way that sin[ω′′(χmin − χ ′′)] = 0, with χmin =
− ln tmin; i.e., χmin = 2πn/ω′′ + χ ′′, where n is an
integer number. Then one can put χ∗ = χ∗∗ = χ ′′.
As a result, the expression for positive times will not
be overloaded by formal phase shifts and at the same
time an arbitrarily small time scale tmin can be chosen.
Thus, the solution for the time scale tmin < t < |t ′′|
has been obtained. As a result, we can see that

P̃<(t ′′) = P̃>(|t ′′|) = P̃ ′′,

Q̃<(t ′′) = Q̃>(|t ′′|) = Q̃′′,

i.e., in this approximation the phase shift is not
observed, and the color charge vector at the exit from
the scale t ′′ coincides with that at its entrance.

(iii) The time −t ′′ < t � tout, tout < t . We continue the
approximate solution to larger times in such a way
that a change of the color rotation regime on the scale
tout ∼ |t ′| should occur symmetrically with respect to
the negative time and the rotation should stop when the
scale t ∼ |T | is reached. This solution for the positive
time can be written in the form [a change of the sign
in this system in comparison with Eq. (A2) should be
mentioned]

P̃> = cos θoQ̃o + sin θo

{
cos[ω(χ − χ∗

o )]m̃Po

+ sin[ω(χ − χ∗
o )]̃nPo

}
, |t ′′| � t < |t ′|,

Q̃> = cos θoP̃o + sin θo

{
cos[ω(χ − χ∗∗

o )]m̃Qo

− sin[ω(χ − χ∗∗
o )]̃nQo

}
, (A5)

with yet unknown basis vectors

Q̃o, ñPo
= P̃o × Q̃o

sin θo

, m̃Po
= Q̃o × ñPo

,

P̃o, ñQo
= −ñPo

, m̃Qo
= P̃o × ñQo

,

on which the solution is spanned and with the
corresponding phases χ∗

o , χ∗∗
o . Here cos θo = (P̃oQ̃o).

This information should be restored using the available
P̃>(|t ′′|) = P̃ ′′, Q̃>(|t ′′|) = Q̃′′. The vector product
P̃ ′′ × Q̃′′ gives another condition in addition to the
relations (A5). Applying the vector algebra rules, these
relations can be presented in the matrix form

a11P̃o + a12Q̃o + a13ñPo
= P̃ ′′,

a21P̃o + a22Q̃o + a23ñPo
= Q̃′′,

a31P̃o + a32Q̃o + a33ñPo
= P̃ ′′ × Q̃′′, (A6)

with the coefficients

a11 = c1, a12 = c(1 − c1), a13 = s1,

a21 = c(1 − c2), a22 = c2, a23 = −s2,

a31 = (α − βc)/s, a32 = (β − αc)/s, a33 = γ s,

where the following notation is used:

α = −c2s1 − c(1 − c1)s2,

β = c1s2 + c(1 − c2)s1,

γ = c1c2 − c2(1 − c1)(1 − c2),

c = cos θo = (P̃oQ̃o),

s = sin θo, c1 = cos θ∗
o ,

s1 = sin θ∗
o , θ∗

o = ω(χ ′′ − χ∗
o ),

c2 = cos θ∗∗
o , s2 = sin θ∗∗

o , θ∗∗
o = ω(χ ′′ − χ∗∗

o ).

Now, if all the phases are known, then one can find
P̃o, Q̃o using the inverse matrix A−1.
In order to determine the phases, we use an important
relation for the scalar product of vectors P̃ ′′ and Q̃′′

(1 − c1)(1 − c2)c3 + (c1 + c2 − c1c2)c − s1s2

= (P̃ ′′Q̃′′). (A7)

Numerical analysis with the coefficients c1, c2 (s1, s2) shows
that the resulting cubic equations for the cosine of the angle
between the vectors P̃o and Q̃o has one real and two complex
conjugate roots. The real root does not always satisfy the
restriction |c| < 1, i.e., in general all of the coefficients c1,
c2, (s1, s2), and c should be consistent. The boundaries of the
acceptable region are defined by setting c = ±1, then

±(1 ∓ s1s2) = (P̃ ′′Q̃′′).

In particular, for the parallel and antiparallel vectors P̃ ′′ and
Q̃′′ we have s1 = s2 = 0. For an approximate solution we can
restrict ourselves to a particular case s1 = s2 = 0 just as we
did in choosing the phase χmin. Then for the phase one can get

ω(χ ′′ − χ∗
o ) = 0 + 2πn, ω(χ ′′ − χ∗

o ) = π + 2πn,
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where n is an integer. Similar relations hold for the phase χ∗∗
o .

The time scale, when the rotation around the constant charge
vector of the particle partner stops, is defined by the condition
tout = e−χ∗

o . The analyzed cases show that for the considered
particle velocities (with reasonable accuracy) will fall at the
scale of |t ′|, if the phase is chosen as χ∗

o = χ∗∗
o = χ ′′ − π/ω.

This regime is approximately applied when m/E < 10−1.5 and
it gets better with an increase in energy reaching the required
scale. In principle, nothing prevents installing the time tout also
for moderate relativistic velocities, because at this scale ∼t ′
the change in color charges is insignificant, as compared to the
scale t ′′. With this choice of the phase, Eq. (A7) takes the form

4c3 − 3c = (P̃ ′′Q̃′′).

This equation has one real root, which always satisfies the
condition |c| < 1, and two conjugated imaginary roots. Now
with the known coefficients c1, c2, (s1, s2), and c, one can
find the vectors of the particles that define the basic three
vectors, which are spanned over the solutions for positive time
scales tout and |T |. The equation set (A6) for particular cases
interested takes the form

−P̃o + 2cQ̃o = P̃ ′′, 2cP̃o − Q̃o = Q̃′′.

From here we get the solutions

P̃o = 1

4c2 − 1
P̃ ′′ + 2c

4c2 − 1
Q̃′′,

Q̃o = 2c

4c2 − 1
P̃ ′′ + 1

4c2 − 1
Q̃′′.

The explicit expressions provide an approximate solution of
Eq. (32) continuous in time, which can be applied to the entire
time axis.

2. Color charge and dipole

As before we assume that particles begin to feel the
presence of the third-particle color charge when approaching
the distance D estimated as 1 fm. The signal of the presence
of the charge P̃ arrives at the second particle at time t ′2, and
at the third one at t ′3 = t ′2 + t3. We ignore the time difference
between t ′2 and t ′3 (due to the Lorentz contraction), i.e., the
charges of the second and third particles do not change up to
the time t ′2. With the same degree of accuracy, the signals from
the second and third charges will come to the first particle
at the time t ′1. Until this point the first particle charge P̃ does
not change in time. Then the charges rotate with respect to the
constant charge vector, which the particles had at the entrance
in the interaction zone. For these times the compatibility
conditions (A5) become

˙̃P = ω

[
1

|t | − 1

|t − t3|
]
Q̃T × P̃ ,

˙̃Q2 = ω
1

|t | P̃T × Q̃2 − ω‖
1

t3
Q̃T × Q̃2, (A8)

˙̃Q3 = ω
1

|t − t3| P̃T × Q̃3 − ω‖
1

t3
Q̃T × Q̃3,

with ω‖ = αg(1−w2)
v+w

. From this system one can conclude that
due to the factor of ω‖ the charges of Q̃2 and Q̃3 can
be considered as mutually opposite well away from the
meeting point (as well as at the entrance to the interaction
zone), in particular, until the scale t ′, the dynamics of
color charges is described by a simplified system of the
two equations

˙̃P = ω

[
1

|t | − 1

|t − t3|
]
Q̃T × P̃ ,

(A9)
˙̃Q = ω

1

|t | P̃T × Q̃,

Q̃2 = Q̃, Q̃3 = −Q̃. Comparing this set of equations with
Eqs. (32) we get a solution in the form

P̃< = cos θQ̃T + sin θ
{

cos[ω(η − η′
1)]m̃PT

− sin[ω(η − η′
1)]̃nPT

}
, t ′1 � t < t ′′,

Q̃< = cos θP̃T + sin θ
{

cos[ω(χ − χ ′
2)]m̃QT

− sin[ω(χ − χ ′
2)]̃nQT

}
, t ′2 � t < t ′′,

where

η = χ − ψ, χ = −ln|t |, ψ = −ln|t − t3|,
with the initial data on the scale t ′. In this case, the dipole
charges act on the color charge of the first particle weaker than
a single color charge because the contributions compensate
each other. This scheme is equivalent to item (i) of the previous
section, and describes the behavior of charges for times t < T ,
T � t < t ′′.

As in the case of the two color charges let us take as an
acceptable approximation to the exact solution the matching
of the solution on the scale t ′′, which neglects the retardation,
and the above solutions for the time scale larger than t ′. In the
meeting area the charges of the first and second particles are
described by the familiar equations

˙̃P = ω
1

|t |Q̃2 × P̃ , ˙̃Q2 = ω
1

|t | P̃ × Q̃2. (A10)

In contrast to the singular behavior dictated by this system, the
charge of the third particle obeys

Q̃3 � ω
1

t3
P̃T × Q̃3.

In many applications the time scale t ′′ is so small that in this
interval the color vector Q̃3 can even be taken as a constant.
As was mentioned in the section devoted to the two color
charges, after the singularity point for a positive time t = |t ′′|
the charges take the same position in the color space as at the
entrance to the singularity zone. Therefore, the continuation
to larger positive times used for the two color charges holds
valid in the color-dipole case, the color charge dynamics being
described by the simplified system of equations (A9). The
initial data are defined by the obvious matching of the condition
with a singular solution at the time t = |t ′′|, which we do not
present here. It is clear that the same considerations of the
behavior of color charges can be applied to the meeting point
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of the first charge with the third particle on the scale of t ′′ in
the neighborhood of t3.

˙̃P = ω
1

|t − t3|Q̃3 × P̃ , ˙̃Q3 = ω
1

|t − t3| P̃ × Q̃3. (A11)

In its turn, the charge vector of the second particle Q̃2 can be
considered in this segment as constant. As in item (ii) of the
previous section for the times t ′′ � t � −t ′′, here for the times
t ′′ � t − t3 � −t ′′ one should construct the appropriate three
basic vectors based on the continuous vector P̃ (t3 + t ′′) +
Q̃3(t3 + t ′′) and introduce an additional time scale tmin, which
is defined by the relation χmin = 2πn/ωt3+t ′′ + χ ′′, �t3+t ′′ =
|P̃ (t3 + t ′′) + Q̃3(t3 + t ′′)|. In this way we obtain solutions
analogous to those in item (ii) but for the case of two color
charges at the meeting points of the particles 1-2 and 1-3.

The continuation of the solution to larger times should be
carried out by analogy with item (iii) of the previous section,
i.e., first, to construct the description of charges on the scale
−t ′, then on the scale of t3 + t ′ and so on, up to the scale
t3 + t ′′ where there is a meeting of the first and third particle
and the behavior of charges is singular. But such a meticulous
description apparently is not needed if approximate solutions
are considered. So we just accept that the passage to the regime
of rotation around constant vectors of color charges of particle
partners at the exit from the interaction zone occurs somewhere
on the scale t3. Such a solution of (A9) is as follows:

P̃> = cos θoQ̃o + sin θo

{
cos[ω(η − η∗

o)]m̃Po

+ sin[ω(η − η∗
o)]̃nPo

}
, |t ′′| � t < tout,

Q̃> = cos θoP̃o + sin θo

{
cos[ω(χ − χ∗∗

o )]m̃Qo

− sin[ω(χ − χ∗∗
o )]̃nQo

}
,

where as in the previous section, one should determine the
basic three vectors and phases using available information
on the scales t ′′, i.e., P̃ ′′, Q̃′′. The corresponding systems of
equations have the form (A6) and (A7), where the variable
substitution χ → η should be made for variables related with
the vector of the first particle charge P̃ . As was noted in the
previous section, the easiest version of the inverse problem
of reconstruction of the basis vectors and phases would be
appropriate if this choice of variables gives s1 = s2 = 0. An
analysis shows that for the problem of the particle and the
dipole one can take

ω(η′′ − η∗
o) = 2π, ω(χ ′′ − χ∗∗

o ) = π.

With this choice of phases, going on to large positive times
occurs somewhere on the scale of t3 for the first particle and
on the scale t ′2 for the second one

to1 = t3

1 − e−xo1
, xo1 = 2π

ω
− η′′

to2 = e−xo2 , xo2 = χ ′′ − π

ω
.

As mentioned above, there is no sense in complicating the task
by better matching the transition regime for asymptotically
large times. Now Eq. (A7) becomes (c1 = 1, c2 = −1)

c = (P̃ ′′Q̃′′).

The system of equations (A6) in which we are particularly
interested takes the form

P̃o = P̃ ′′, 2cP̃o − Q̃o = Q̃′′.

In this way we complete the description referred to the item
(iii) for the problem of two color charges. The whole procedure
to obtain approximate solutions for the system of compatibility
equations (36) is reduced to the description of the behavior of
two basic charges, since the partner charge in a dipole pair can
be considered as adjusted. The passage for a short time on the
scale t ′′ to a singular rotation regime is not accompanied by a
change in phase.

We have missed some interesting effects of the arrival of
the signal to the particle partner in the dipole from the meeting
point of two other particles. In Fig. 9, the marked point 12
corresponds to the light signal coming from the meeting of the
first and second charges to the third color charge. In these times
on the scale t ′′ the charge of the third particle is described by
the equation

Q̃3 � ω
1

t3
P̃ × Q̃3, (A12)

where the charge of the first particle P̃ is rapidly changing
in a singular manner. Unfortunately, it is difficult to derive
analytical expressions describing the behavior of the color
charge of the third particle, and in this paper we simply ignore
this important, but short, episode. It is also important to note in
turn that a signal about events that happened to the third charge
prior to the collision of the first charge with the third particle
in time reaches the first particle. Then, a signal will come to
the third particle even before the meeting of the first and the
third particles, and so on. There is some danger that we are not
able to control the behavior of charges at the second meeting
point because one should trace the ladder of events up to the
meeting point (we have not depicted in Fig. 9 an appropriate
sequence of signals similar to those shown in Fig. 2). However,
it is noteworthy that these processes should not change too
much the color charge phase since the first signal comes on
the scale t3 ∼ m/E , and the second one occurs on the scale
t3 × t ′′ ∼ m5/E5, while the merging of solutions takes place
on the scale t ′′.

3. Two color dipoles

We discard a detailed prescription for obtaining
approximate solutions, as was done in the previous
sections. Let us write down directly the simplified system of
equations, which allows us to describe the behavior of color
charges for large times,

˙̃P = ω

[
1

|t | − 1

|t − t3|
]
Q̃T × P̃ ,

(A13)
˙̃Q = ω

[
1

|t | − 1

|t − t4|
]
P̃T × Q̃,

where P̃1 = P̃ , P̃4 = −P̃ , Q̃2 = Q̃, Q̃3 = −Q̃. One should
specify that under construction of approximate solutions
there are an additional basic three vectors by means of which
solutions at the meeting point of particles are built. One
should also introduce the appropriate set of times tmin, where
formally singular solutions are matched. On a time scale t ′
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the solution of the system (A13) has the form

P̃< = cos θQ̃T + sin θ
{

cos[ω(η − η′
1)]m̃PT

− sin[ω(η − η′
1)]̃nPT

}
, t ′1 � t < t ′′,

Q̃< = cos θP̃T + sin θ
{

cos[ω(ζ − ζ ′
2)]m̃QT

− sin[ω(ζ − ζ ′
2)]̃nQT

}
, t ′2 � t < t ′′,

where

η = χ − ψ, ζ = χ − ξ, χ = −ln|t |,
(A14)

ψ = −ln|t − t3|, ξ = −ln|t − t4|,

with the initial data taken on the scale t ′. The passage of
approximate solutions from the scale |t ′′| to large positive
times is described by the solution of the form

P̃> = cos θoQ̃o + sin θo

{
cos[ω(η − η∗

o)]m̃Po

+ sin[ω(η − η∗
o)]̃nPo

}
, |t ′′| � t < tout,

Q̃> = cos θoP̃o + sin θo

{
cos[ω(ζ − ζ ∗∗

o )]m̃Qo

− sin[ω(ζ − ζ ∗∗
o )]̃nQo

}
,

where the three basic vectors and phase are determined
by the conditions s1 = s2 = 0 discussed above. Under these
conditions one can avoid solutions of the complicated inverse
problem of the restoration of basic triple vectors using the ini-
tial data on the scale t ′′. In the case of two dipoles one can take

ω(η′′ − η∗
o) = 2π, ω(ζ ′′ − ζ ∗∗

o ) = 2π.

With this choice of the phase the passage to large positive
times for the first and fourth particle occurs somewhere on the
scale t4 and on the scale t3 for the second and third particle

to1 = t3

1 − e−xo1
, xo1 = 2π

ω
− η′′,

(A15)

to2 = t4

1 − e−xo2
, xo2 = 2π

ω
− ζ ′′.

Accordingly, in the case of two dipoles the passage to large
positive times is more consistent than in the particle-dipole
case. Now Eq. (A7) becomes (c1 = 1, c2 = 1)

c = (P̃ ′′Q̃′′).

For a particular case considered the system (A6) is reduced to

P̃o = P̃ ′′, Q̃o = Q̃′′.

Thus, the approximate solution on the entire time axis has
been constructed.
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