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The in-medium 7’ mass and the n’N interaction are investigated in an effective theory based on the linear
realization of the SU(3) chiral symmetry. We find that a large part of the n’ mass is generated by the spontaneous
breaking of chiral symmetry through the U, (1) anomaly. As a consequence of this observation, the n" mass is
reduced in nuclear matter where chiral symmetry is partially restored. In our model, the mass reduction is found
to be 80 MeV at the saturation density. Estimating the n’N interaction based on the same effective theory, we
find that the n’ N interaction in the scalar channel is attractive sufficiently to form a bound state in the ' N system
with a several MeV binding energy. We discuss the origin of attraction by emphasizing the special role of the o
meson in the linear sigma model for the mass generation of " and N.
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I. INTRODUCTION

The 1’ meson has a large mass compared to the other pseu-
doscalar mesons, such as , K, or . The mass spectrum of low-
lying pseudoscalar mesons has been discussed as the Ux(1)
problem [1]. The mass of 1’ can be explained by the U,(1)
anomaly in quantum chromodynamics (QCD) [2,3]. The quan-
tum anomaly is the phenomenon that symmetries in the classi-
cal level are broken by quantum effects. The QCD Lagrangian
is invariant under U 4 (1) transformation for the quark field, but
the symmetry is broken explicitly by the quark loop effect, and
the divergence of the U (1) current does not vanish [4]. When
chiral symmetry is broken spontaneously, the nonzero diver-
gence of the U, (1) current permits the nonvanishing mass of
the pseudoscalar flavor-singlet meson even in the chiral limit.

The medium effect to the n’ mass through the effective
UA(1) restoration has been discussed. The effective U4(1)
restoration is caused by the in-medium decrease of the
instanton density [5,6]. The reduction of the instanton density
in the medium may lead to the suppression of the expectation
value of the Uy(1) current divergence in the medium. The
vanishing expectation value of the U,(l) current for the
vacuum and 7’ states forces the 1’ meson to be massless in
the same way as the other pseudoscalar mesons.

Apart from the effective U4 (1) restoration, as we will dis-
cuss later in detail, chiral symmetry breaking is indispensable
to the mass difference between the pseudoscalar flavor-singlet
and flavor-octet mesons in addition to the U,(1) anomaly.
Recently, the reduction of the absolute value of the quark
condensate—which is referred to as partial restoration of
chiral symmetry—in the nuclear medium has been discussed
intensively from the theoretical and experimental points of
view, and it is suggested by the analysis of experimental data of
pionic atoms that the partial restoration actually does take place
in nuclei [7]. If one takes account of the necessity of chiral sym-
metry breaking in the generation of the n’ mass, it is expected
that the flavor-singlet meson mass decreases in the nuclear
medium, in which chiral symmetry is partially restored [8].

There are many theoretical works [6,9-22] and experimen-
tal attempts [23-26] involved in determining the in-medium
n’ properties from various points of view. Particularly, the
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effect of chiral symmetry on the " meson is discussed in
Refs. [8,27,28].

The mass reduction of 1’ in the nuclear medium implies that
the n’ meson feels attraction in the nuclear medium because
the mass modification is represented by the self-energy of the
meson in the medium, and the self-energy turns out to be the
optical potential in the nonrelativistic limit. The attraction in
nuclear matter suggests an attractive ' N two-body force as
an elementary interaction. If it is enough strong, we expect an
n’ N bound state. This is an analogous state of A(1405), which
is considered as a bound state of K N.

So far, the interaction between n’ and N is not known. We
do not know even whether it is attractive or repulsive. There
are some experimental suggestions about the n'N scattering
length and the in-medium 7’ properties. From the pp — ppn’
process, the scattering length of ' p has been extracted and
its value has been estimated to be about 0.8 fm [23] or
0.1 fm with the sign undetermined [24]. The absorption of
" into nuclei has been extracted by the yp — n'p process in
nuclei, and the absorption of 1’ is relatively small compared
to that of the w meson [25]. These experimental data suggest
the weakness of the n’N interaction. On the other hand, a
large mass reduction of 1’ has been reported from the analysis
of the low-energy pion distribution in relativistic heavy ion
collisions [26]. This suggests a strong attraction between n' N
if one considers that this mass reduction occurs due to the
partial restoration of chiral symmetry. The n’ N interaction and
in-medium properties of 1’ should be understood in a unified
manner, and theoretical study concerning the ' N interaction
is progressing [19].

In this paper, taking partial restoration of chiral symmetry
in the nuclear medium as a basis of our argument, we estimate
the amount of the expected " mass reduction in the nuclear
medium and the two body interaction strength of »'N in
vacuum. A preliminary account of this work was reported
at a conference proceedings [29]. In this paper, we explain
fully the details of the model that we use and the calculation
method. We also discuss the dependence of the results on the
model. In Sec. II, we explain the relation of the n” meson and
the chiral symmetry breaking. In Sec. III, we introduce an
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effective Lagrangian for the n” meson in the nuclear medium
based on the linear sigma model, and evaluate the in-medium
mass reduction of the n’. In Sec. V, we show the obtained
n’N interaction strength and the binding energy and scattering
length of the n’ N in vacuum. The conclusion and some remarks
are given in Sec. VL.

II. THE RELATION BETWEEN THE " MESON
AND CHIRAL SYMMETRY

The mass difference between the 1 and " mesons has been
discussed based on the QCD partition function [27,28] or the
SU(3) chiral symmetry [8]. The U4 (1) symmetry is broken ex-
plicitly due to the quantum effect. Therefore, with spontaneous
chiral symmetry breaking, the " meson can have a finite mass
even in the chiral limit, contrary to the other pseudoscalar
Nambu-Goldstone (NG) bosons. But, the Us(1) anomaly
effect lifting the " meson mass in vacuum cannot affect the
pseudoscalar mass spectrum when chiral symmetry is restored.
This is because the 1 and n” mesons masses should degenerate
in the SU(3) chiral symmetric phase even if U4 (1) symmetry
is explicitly broken by the anomaly effect according to
Refs. [8,27,28].

In the following, we explain the mechanism of the degener-
acy of the pseudoscalar flavor singlet and octet mesons based
on the SU(3) chiral symmetry [8]. We consider the three-flavor
chiral symmetry SU(3), ® SU(3)g, and we assume that the
effect of the change of the instanton density near normal
nuclear density on the 1’ mass is small compared to the effect
of partial restoration of chiral symmetry.

First, we define the transformation properties of the quark
field under the SU(3); ® SU(3)x transformation. The left-
handed quark g; and the right-handed quark gy are defined
as

1_

qL = 2y5qv (1)
1+

ar = T”q. ®)

Because the quark fields, ¢; and g, belong to the fundamen-
tal representations of SU(3), and SU(3)x respectively, the
transformation properties of the quark fields under SU(3), ®
SU(3)y are written as

g — %" Pq; (i=L,R). 3)

Here, A? (a =1, ...,8) is the Gell-Mann matrix.

The QCD Lagrangian is invariant under the SU(3), ®
SU@3)g transformation in the chiral limit. When
Or = 0, =0y, the transformation for the quark field ¢
is written as

q — e"ewa/zq. (@)
We call this transformation the vector transformation. When
Or = —0 = 04, the transformation for the quark field g is
written as

q — Py 5)
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We call this transformation the axial transformation. For an
infinitesimal transformation, the quark field transforms as

q9— (1 +i9/§)/5%) q. (6)
This implies
(04 a] = —32"¥sq )
and
[04. 4] = —332"vs ®)

with the generator of the axial transformation Q9.

Under the SU3), ® SU(3)g symmetry, the hadron fields
can be classified in terms of the irreducible representation
of SUB), ® SU3)g. Assuming that the mesons are com-
posed of the quark bilinear form and that parity invariance
is satisfied in vacuum, the meson fields belong to the
(32.3r) @ (31, 3r) representation. In terms of the vector
transformation, the meson fields belonging to (3., 3:) @
(32,3r) can be decomposed into octet and singlet repre-
sentations that are the irreducible representation of SU3)y,
with the fact of 3®3 =8 @ 1. Taking the meson fields
as the parity eigenstates, one can obtain the parity-even
mesons as —=(G1J5qr +dr J5q1) = 7cd4, 5L 4R +
c}R%“qL) = \Lﬁq%q and the parity-odd mesons as \/Lg(quR —
qrqL) = \/qui)/sq’ ﬁ(QL%CIR — Gr¥qL) = %cj%iVSq.We
assign the pseudoscalar octet mesons (7w, K, ng) to 8 and
singlet (n9) to 1, so the 9 pseudoscalar mesons are settled into
a part of the same representation of SU(3); ® SU(3)g. In the
real world, the n and 1’ mesons are mixed states of ny and
ng owing to the flavor SU(3) symmetry breaking, and their
masses are obtained by diagonalizing their mass matrix. In
the same way, the scalar mesons (o9, ag, k, 0g) are assigned
to the remainder of the (3., 3z) ® (3g, 3.) representation of
SU@B3). ® SU(3)g. From these assignments, the 18 scalar and
pseudoscalar mesons belong to the same chiral multiplet of
SUB3), ® SUB)k.

If one considers the SU(3); ® SU(3)g transformation, the
1o meson can be transformed to other pseudoscalar mesons
such as w, K, or ng. The singlet and octet are irreducible
representations in SU(3)y, so the vector transformation alone
cannot transform the singlet 1y into pseudoscalar octet mesons.
In contrast, the axial transformation can mix the singlet
and octet mesons because the axial transformation is an
element not of SU(3)y but of SU3); ® SU3)g. Thus, the
decomposition into singlet and octet makes sense when chiral
symmetry is broken, while they are transformed into each other
with axial transformations in the case that chiral symmetry
exists.

Here, we demonstrate the transformation between these
nine pseudoscalar mesons with the SU(3); ® SU(3)y transfor-
mation explicitly. Using Eq. (7), the flavor singlet pseudoscalar

064906-2



In-MEDIUM ' MASS AND #'N ...

meson field ny = gi %q is transformed as

s (a1 2q) = | 0% a1 g | = {2 —EV q
NG "6 N

A

_Gil_g.

ai- 4

and the obtained octet-scalar meson field is transformed as

R P W P o B I
ql\/gq = | 0% ql\/gq—q lﬁ’ S Vs (4

NG (10)

Equation (9) shows that the singlet pseudoscalar meson is
transformed into a scalar octet meson through the first axial
transformation, and the second axial transformation changes
the flavor-octet scalar meson into a pseudoscalar octet meson
in Eq. (10). Thus, the pseudoscalar flavor singlet and octet
mesons are transformed into each other under the SU(3); ®
SU@3)x transformations. This means that the 7y meson
degenerates to the other pseudoscalar mesons when chiral
symmetry exists.

Here, it is notable that the degeneracy of the singlet
and the octet mesons does not necessarily happen in the
Ny =2 case. The case of Ny =2 corresponds to the limit
that the strange quark mass, mg, goes to infinity in Ny = 3.
So the SU(3); ® SU(3)g symmetry is strongly broken. Hence,
the mass degeneracy of the n” and pseudoscalar octet mesons
does not necessarily take place. This is consistent with the
argument in Ref. [28].

With simple assumptions, we can estimate the amount of
the mass reduction of " in a nuclear medium. Here, we take the
chiral limit, so " and 5 correspond to 1y and ng respectively.

First, we assume the linear dependence of the mass
difference of the n and n’ on the flavor singlet combination of
chiral condensate. With this assumption, the mass difference
of n and n’ is written using a constant C as

C))

— dabcqiys

m;, —m; = C (2(Gq) + (5s)) . (11)

Here, we have taken (Gq) = (iiu) = (dd). From Eq. (11),
2, —m?

C can be written as C = Wﬁé). We suppose that the

strangeness condensate (ss) and the n mass do not change
so much in nuclear matter. Substituting the explicit form of C,
we obtain

2 =\
md = nE = (2 ) (1 - <z7qq>> ) . a2

where my, and (q)* denote the in-medium values of the n’

mass and the quark condensate, respectively. With the low-
density theorem [30], the reduction of the quark condensate at
the leading order of the density is written as
(C?‘I)* OxN 4/3
——=1- p+ 0", 13)
(q) m; f3

PHYSICAL REVIEW C 88, 064906 (2013)

where o,y is the 7 N sigma term. With mz, =my — Amy
and neglecting (Am,,/)z, we obtain the mass reduction of " as
2 m%, — m% OxN

23 2my  m

Am,y (14)

TJTI

Using the observed values of the masses and the decay constant
and the typical value for o, ;, which reproduces the 35% reduc-
tion of the quark condensate at normal nuclear density, Am,y
takes a value around 80 to 100 MeV at normal nuclear density.

III. LINEAR SIGMA MODEL

To study n’ in nuclear matter and the n'N interaction in
vacuum, we use the linear sigma model as a chiral effective
theory. The linear sigma model is based on the global symme-
try same as QCD, and contains the effects of the finite current
quark mass and the U4 (1) anomaly [31-34]. The advantages
of the linear sigma model are as follows; It has the mechanism
of spontaneous chiral symmetry breaking, and it expresses
the physical quantities by the sigma condensate, which is the
order parameter of the spontaneous chiral symmetry breaking
in the linear sigma model. The sigma condensate is given
by minimizing the effective potential calculated from the
Lagrangian. The sigma condensate characterizes the vacuum
to be realized as the ground state. This means that the linear
sigma model is a model which can describe the response of
the physical quantities caused by the change of the vacuum. In
the case of the nonlinear sigma model, the physical quantities
are written by the low-energy constants, which should be, in
principle, determined again by the information of the vacuum
in the nuclear medium. Therefore, the nonlinear sigma model
is not suitable for the present aim to directly connect the n’
mass with partial restoration of chiral symmetry. In addition,
since the hadron is the fundamental degree of freedom in
the linear sigma model, we can introduce the nucleon fields
straightforwardly. This is a different point from a quark-based
model, such as the Nambu—Jona-Lasinio (NJL) model, in
which we have to build up the nucleon within the model.

A. The Lagrangian of the linear sigma model

The Lagrangian of the linear sigma model is constructed to
possess the same global symmetry as QCD. The fundamental
degree of freedom is the hadron. The hadron fields can be
assigned the irreducible representation of SU(3); ® SU(3)k.
As the result, the transformation properties of the hadron
fields under the SU(3); ® SU(3)g transformation are fixed,
and the Lagrangian is constructed so as to be invariant under
the transformation. Chiral symmetry is spontaneously broken
with certain parameter sets, and then the sigma condensate has
a nonzero value. In the following, we explain the Lagrangian
of the linear sigma model which we use to calculate the
in-medium 1’ mass and the n’ N interaction.

1. Meson part

As mentioned above, the meson field M belongs to the (3, 3)
irreducible representation, which means that the meson field
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transforms as 3 under the SU(3); transformation and 3 under
the SU(3)r transformation. Thus, the transformation rule of
the meson field under SU(3); ® SUB)y is

M — LMR', (15)

where L € SU3)., R € SU3)g. Here, the scalar and pseu-
doscalar meson field M is written in terms of the physical
meson fields as

8 8
. AaOy . AaTly

M=M+iM, = +i , (16)
! ; ﬁ a=0 ﬁ

where A, (a@=1,...,8) is the Gell-Mann matrix and

Ao = \/g 1 with the unit matrix 1, which are normalized as
tr(Aghp) = 284, (a,b=0,...,8). 17)

The explicit form of the pseudoscalar meson field is given as

i AaTly
My =) 7

a=0
- - R K° :
K~ K° —\/gns-l—j—%

(18)

To include the effect of the finite current quark mass, we
give the quark mass yx a fictitious transformation rule under the
SU3); ® SU(3) transformation to maintain chiral symmetry.
If one assumes the transformation rule of x as

X — LxRT, (19)

the QCD lagrangian is invariant under the SU(3); ® SU(3)x
transformation. Here, we take the explicit form of x as

my my
x=v3|l  mg =3 m, . 0)

M mg

where m,,, my, m; are the up, down, strange quark masses,
respectively. Taking m, = m4 = m,, we introduce the isospin
symmetry, and we break the SU(3) flavor symmetry with m, #
mg. Owing to the flavor symmetry breaking, (og) has a nonzero
value as does (0y).

The Lagrangian constructed so as to have the same global
symmetry as that of QCD is

1 ' w? ,
Loneson = ztr(a,LMa”z\ﬁ) — 7tr(MM*)

T B

+Atr (xM" + x'M) + V3B(det M + det M").
2D

This Lagrangian has five parameters, w?, A, A, A, B, which
cannot be fixed only by the symmetry. We determine them to
reproduce the physical quantities. In this Lagrangian, the fifth
term with x represents the current quark mass contribution
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(or the flavor symmetry breaking) as mentioned above. The
last term proportional to B represents the effect of the U, (1)
anomaly. This term corresponds to the Kobayashi-Maskawa—t
Hooft term [35,36].

When chiral symmetry is broken spontaneously, the sigma
condensates, (0p) and (og), are nonzero. In the broken chiral
symmetry phase, the meson masses are written in terms of the
sigma condensate because the meson masses are defined as
the curvature mass in vacuum where the sigma condensate is a
nonzero value. The explicit forms of the meson masses in the
p = 0 vacuum at tree level are shown in Appendix A.

We obtain the relation between the sigma condensate and
the meson decay constants from the axial current and the
definition of the meson decay constants. The octet axial current

Al (a =1, ...,8) is calculated with the Noether theorem as
" oL M,
(0, M)

= r[0" Mp{ha, My} — 0" M{da, Mps}l,  (22)

where §M, = ’5 {Aa, M} is the infinitesimal variation of the
meson field under the axial transformation of SU(3); ®
SU(3)g. The definition of the meson decay constant is

(O1AL T (p)) = —ipy fud*Pe ™. (23)

Thus, calculating the matrix element of the axial current with
Eqg. (23), we obtain the relation between the sigma condensates
and the meson decay constants as

2 1
fr = §(Uo> + ﬁ<08>» 24)
fr = \/2 (o) — %8 (25)
3 23

We discuss the relation of the order parameter of the spon-
taneous chiral symmetry breaking in the linear sigma model
and QCD. The quark and hadron quantities can be related by
the ansatz that the symmetry property should be shared by both
QCD and the linear sigma model. In the linear sigma model
parameter, x represents the quark mass. Equating the deriva-
tives of the partition functions of QCD and the linear sigma
model with respect to the quark mass, we obtain the relation
between the quark and sigma condensates at the tree level as

Gq) = —2A<(Uo) + %) 26)
(55) = —2A({00) — /2{0%)). 27)

The parameters in the Lagrangian are determined so as to
reproduce the physical values of the meson masses, the meson
decay constants, and the u, d quark mass m,. The details of
parameter fixing are given in Appendix B.

In this paper, we do not consider the density dependence
of the parameters. The dependence of parameter B, which
represents the effect of the U4 (1) anomaly, is also responsible
for the mass reduction of n’. The density dependence of the
parameter B is discussed using the instanton-liquid model,
and the effect of the anomaly decreases in nuclear matter [37].
Thus, the calculation in this paper gives a lower bound of the
n’ mass reduction.
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2. Baryon part

To consider the change of the meson properties in the
nuclear medium, we introduce the nucleon field to the
Lagrangian of the meson fields of the SU(3) linear sigma
model. The transformation property of baryons is not unique
even if one regards the baryon as a composite object of three
quarks. The baryon representations which are allowed within
the symmetry are (3, 3) @ (3, 3)and (8, 1) @ (1, 8) [38]. Here,
we use the (3, 3) @ (3, 3) representation. The Lagrangian is
written as

. _ (& 53
[/baryon = 1/f(l¢ - mN)v/ - gllf (ﬁl + %1) 4
7 T 1o UK
—gyiy <—+—1+—
\v2 V3 U6
where T=(11,72,13), ; (i=1,...,3) are Pauli matri-
ces, 0; = (0;) +6;, 1 is 2 x 2 unit matrix in the flavor
space, and my is the nucleon mass. The nucleon fields are

represented as
p
V= < ) (29)
n

and the nucleon mass m y is given by the spontaneous breaking
of chiral symmetry as

my = % <<Uo> + %) . (30)

Here, we have shown only the terms relevant for the following
calculation.

The free parameter involved in the Lagrangian of the baryon
part is the coupling constant g. This parameter g can be
determined from the observation that the quark condensate
reduces by about 35% at normal density [7].

In the following, we mention the nucleon mass in the linear
sigma model. The parameter g determined by the magnitude
of partial restoration of chiral symmetry is so small that the
nucleon mass in vacuum cannot be reproduced. On the other
hand, if we determine g so as to reproduce the in-vacuum
nucleon mass, g is too large to restore chiral symmetry fully
at densities lower than the saturation density. This problem is
known as the Lee-Wick singularity [39]. This inconsistency
can be solved, for instance, by introducing the parity doublet
baryon [40—43], where a part of the nucleon mass comes from a
chiral invariant mass term rather than the spontaneous breaking
of chiral symmetry. According to the lowenergy theorem, the
interaction between the pseudoscalar meson and baryon is not
dependent on the representation of the baryon in SUQ3); ®
SU3)g when chiral symmetry is spontaneously broken. So,
we assume that the following calculations are not affected by
how we introduce the baryon in the linear sigma model as long
as we keep chiral symmetry.

1) v, (28)

B. The vacuum condition and the medium effect

In the linear sigma model, the vacuum is defined by the
minimum point of the effective potential. In this paper, we
evaluate the effective potential with the nucleon one-loop
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(a) (b) (c)

L4
Nam»

FIG. 1. The medium effect of the nucleon one-loop approxi-
mation on the meson mass. The solid line, double-solid line, and
dashed line denote a nucleon, scalar meson, and pseudoscalar meson,
respectively. Diagram (a) contributes to the determination of the
vacuum. Diagrams (b) and (c) are used in the calculation of the
in-medium meson mass.

approximation. The one-loop diagrams considered in this work
are given in Fig. 1. To include the medium effect, we calcu-
late these one-loop diagrams using the nucleon propagator
with the Pauli blocking effect. The nucleon propagator is
given as
i
Prea(p) = (p +my) {m

—218(p* — my)6(po)o (ks — |13|)}. 31)

In the calculation, we regard the nucleon mass as very large
and take the leading term of 1/my. Diagram (a) of Fig. 1
contributes to the determination of the vacuum and diagrams
(b) and (c) give the in-medium self-energy of the meson and
the explicit p dependence on the meson mass. We write the
contribution to the effective potential from the first diagram of
Fig. 1 as Viyr(p) and the contribution to the meson mass
from the second and third diagrams as X,n(p). Using the
propagator including the Pauli blocking effect, Vy/r(p) is
calculated as

Vir(p) = f/—‘% (Go + %) , (32)

which corresponds to the contribution from the mean-field
approximation of the nucleon field. The one-nucleon loop
contribution X,,(p) is obtained as

2
8P
Zpn(p) = Ci—, (33)
my
where i =, no, ng, Nong and C, = % Cyp = % Cy = é,
Chons = %ﬁ These factors C; are obtained from the meson-

baryon coupling constant in the vacuum shown in Eq. (28). The
contribution from X,,() corresponds to the nucleon particle-
hole excitation. The details of these calculations are shown in
Appendix C. In the following, we assume that nuclear matter
does not contain the strangeness component.

The value of the sigma condensate is determined by
minimizing the effective potential obtained from the linear
sigma model Lagrangian. As a result of the introduction of
the medium effect, the effective potential for oy and og of
the linear sigma model with the one-loop approximation is

064906-5



SHUNTARO SAKAI AND DAISUKE JIDO

given as
2 A 3
V, = %(002 + 082) + T <66‘ + 6002082 - 2«/500083 + Eaé)

!

A
+ Z(UO2 + 082)2 — 2Amyoy — 2Amgog

2 3 o3 gp o3
— =B 03——002——8>+—<a —|——),
3 ( 02 p) BT A
(34
where we have defined
mo = 2my + my, (35)
mg = ~2(m, — my). (36)

The term proportional to gp comes from the medium effect
from the one-loop diagram of the nucleon, Eq. (32). If
the nuclear density p changes, the potential also changes.
Consequently, the vacuum, which is the minimum point of the
potential, changes. The minimum conditions of the potential
are given as

av. A
800 = uloo + 6(203 + 60907 — ﬁag) + Voo(og + o%)
0

o3\ , &p
—2Amo — 2B 02——8>+—=0, (37)
° ( " 2)" A
aV, 0003 02
305 = MZGS + Aog <002 — ﬁ + %’) + )JGg(UOZ + 682)
—2Amg + 2Boy (oo + ﬁ) +8 _o. 38
v2) W6

The solution for oy = (0p) and og = (o3) of these equation is
the vacuum at nonzero p. The in-medium meson masses are
obtained from

m*(p) = m§((o)*) + Zpn(p).- (39)

The first term m%((cr)*) is the same expression as in vacuum
but evaluated with the in-medium sigma condensate (o)*.
The in-vacuum meson masses are shown in Appendix A.
mg((a)*) contains only the contribution from diagram (a).
The contribution from diagram (a) to the meson mass can
be seen explicitly by using the vacuum condition. The in-
medium masses of the pseudoscalar mesons 7, 19, g, which
are denoted as m (p), my,(p), mp,(p), and the mixing term of
no and g, m; . (p), are

)\‘ 2
my(p) = W+ 3 ((00)2 + /2(00) (o%) + “’;) )

+ 2'((00) + (o3))
3
—2B((00) — v/2(03)) + \/_—gpm
2((o0) + )

6A
_ _O4Mq (40)

M’
(00) + 22

A
My, () = 1+ 2((00)” + (0%)%) + 2 ((00)” + (05))

8P

+4B(og) + ———————
" VA ((oo) + )
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| (o0 = )’
(00) — ~/2(0s)

+2A< Mg M ) @1
(00) + % {o0) = v2{o5) )

A 3{og)?
my (p) = 1’ + 3 <(00)2 — V/2(00) (0%) + “;8) )

+ X ((00)* + {(03)?)
—2B({00) + v2(o3)) +

(03)?

6B (03) ((09) — &)

__ 72
(00) — ~/2(0s)
NI,y L - M . 43)
((00> + % (o0) — \/§<(78>>

Here we have used the vacuum condition, Eqs. (37) and
(38), to obtain the second expressions. It is interesting that in
the second expressions for the in-medium meson masses the
explicit density dependence disappears. This is a consequence
of chiral symmetry in meson-nucleon interaction, in which the
sigma exchange and Born contributions are canceled away.
The physical masses of 1 and " are obtained by

2 4
my, = %(mglo +m$ls o \/(m%o —m%g) +4m(1))8 )’ (44)

2 _1(,2 2 2 _ 2)\2 p4
my = Z(mﬂo + Mg + \/(mﬂo m?]s) + 4mO8 )’
so as to resolve the off-diagonal mass term mim.

From these explicit forms of the 1y and ng meson mass, the
mass difference of these mesons in the SU(3) flavor symmetric
limit (;m, = my, (03) = 0) is written as

m} —m; = 6B(0y). (45)

This expression is consistent with the discussion in Sec. II,
where we have shown both effects of the U,(1) anomaly
and the chiral symmetry breaking are necessary for the
mass difference of 1y and ng. In addition, since ng is the
Nambu-Goldstone boson associated with the spontaneous
breaking of chiral SU(3) symmetry, the mass of the ng
meson comes from the explicit breaking of chiral symmetry.
Assuming that the 7y and ng masses are of orders 1000 and
500 MeV, respectively, one finds from Eq. (45) that almost
half of the ny mass is generated by the spontaneous chiral
symmetry breaking through the U, (1) anomaly.
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FIG. 2. The chiral condensates in the nuclear medium. The
dashed and solid lines denote (—(gg))"/? and (—(5s))!/3, respectively.

In the following, we show the in-medium meson masses
calculated with the medium effect including the SU(3)y
breaking owing to the quark mass difference. The parameters
are determined by the method shown in Appendix B. As the
input parameters, we used fy, fx,my, mg, my, the sum of
m% and mfl/, and the degenerate u, d quark mass m,. All the
used and determined parameters are shown in Appendix B.
We determine the meson-baryon coupling parameter g by the
reduction of the chiral condensate.

First, we show the density dependence of the chiral
condensate in Fig. 2. Since the parameter g is determined to
reproduce the 35% reduction of the quark condensate at normal
nuclear density, the quark condensate at the saturation density
is the input value here. As mentioned above, we assume that the
nuclear medium contains no explicit strange component. So,
the strange condensate is insensitive to the nuclear density.
Nevertheless, the strange condensate does change slightly
through the SU(3) flavor breaking of nuclear matter.

Next, we show the result of the in-medium meson masses
including the SU(3) breaking by the current quark mass in
Fig. 3. From this calculation, we find that the " mass reduces
by about 80 MeV at normal nuclear density. In contrast, the
masses of the other pseudoscalar octet mesons are enhanced.
Especially for the 7 case, the enhancement is about 50 MeV.
This is because under the partial restoration of chiral symmetry
the magnitude of the spontaneous breaking is suppressed and

1000
0 m., ]
800
700
600
500
400 "
300
200 m

1000 0.04 008 0.12 0.16

Nuclear Density [fm 3]

Meson Mass [MeV]

FIG. 3. The mass shift of the n” meson in the nuclear medium.
The solid, dotted, and dashed lines represent the n’, n, and 7 meson
masses in the nuclear medium, respectively.
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FIG. 4. The ny-ns mixing angle in the nuclear medium.

consequently the Nambu-Goldstone boson nature of the octet
pseudoscalar mesons declines.

Finally, we show the density dependence of the mixing
angle of ny-ng in Fig. 4. We defined the mixing angle 6 with

2m?
tan 20 = ——"" "0"82 ) (46)
—m
no ng

The density dependence of the mixing angle 6 is shown in
Fig. 4. As we can see in Fig. 4, the absolute value of the mixing
angle becomes smaller when the nuclear density become
larger. One can understand this behavior as follows: When
chiral symmetry is being restored partially with the reduction
of the magnitude of the sigma condensates, the first terms of
Egs. (41)-(43) are getting suppressed. In the limit where
the first terms vanish, the mixing angle is obtained by
tan 20 = 2+/2 and has a positive large value. Therefore, the
mixing angle is approaching to a positive value with the
partial restoration.

IV. THE LOW-ENERGY 7'N INTERACTION IN VACUUM

Let us discuss the ' N two-body interaction in vacuum. In
the following, we estimate the ' N interaction strength with
the linear sigma model developed in the previous section. We
evaluate the invariant amplitude of the meson and nucleon V,,
in the tree level by the scalar meson exchange and Born terms
shown in Fig. 5:

_iVub

cY i + c® i

= 8ogNN ab (k k/)z 8osNN ab (k k/)2
i i

+Coys———Cpys + Coys————Cus,

p+k—my p—F —my

(47)
* f’l: (b)‘ [)," (C)C;~~~ ¢':’;

D

FIG. 5. The diagrams that contribute to the ' N interaction. The
dashed, single, and double lines mean the pseudoscalar meson,
nucleon, and scalar meson propagation, respectively.
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where k and k" are incoming and outgoing meson momenta,
respectively, and p is the incoming nucleon momentum. The
labels a, b correspond to the incoming and outgoing mesons,
C((l(,),), Cf,? are the coupling constant of the pseudoscalar mesons
and oy and og mesons, gs,nNN, §oxNN are 0p,os and nucleon
couplings, respectively, and C, is the coupling constant
between the pseudoscalar meson and the nucleon. The first
term is the contribution from the scalar meson exchange shown
in diagram (a) of Fig. 5, while the second and third terms are
the Born terms shown as diagrams (b) and (c) of Fig. 5.

With the meson momentum expansion, the Lorentz scalar
part of the sum of the amplitude for the NG boson and
nucleon scattering is canceled out, while the vector part
remains the contribution. This interaction is known as the
Weinberg-Tomozawa (WT) low-energy theorem stemming
from the spontaneous chiral symmetry breaking. In the flavor
SU(3) limit and a, b # 1y, the vacuum condition in the chiral
limit is given as

A
W+ 3(00)” +2(00)” = 2B{og) = 0, 48)
and the scalar and pseudoscalar meson coupling are
2
cO = s <§A(00) + 2 (00) — 2B> , (49
2
c® = —iaab(éuoo) + 2\/53). (50)
The o and og and nucleon couplings are
. 8
o = —1 —_—, 51
8oyNN /3 (51
. 8
o = —i—. (52)
8osNN \/6
The meson-baryon coupling C, is given as
8
Co=—1 (@a=1,2,3,8) (53)
V2

1
7

mZ, = u* + A{oo)* + 31/ (09)* — 4B (00)

from Eq. (28). Here, we define tg = - 1. The masses are

_ 2 2 ’ 2
= 3Mo0)” + 24 {o0)” — 2B{o0), 4

mg, = u* + A{00)* + 4'(00)* + 2B(00)

= %A(o*o)z +4B(0y), (55)
my = %<U0>’ (56)

where we used the vacuum condition Eq. (48). Substituting
Egs. (49)—(56) for Eq. (47) and expanding the amplitude in
terms of the incoming and outgoing meson momenta k, k', we
can obtain the s-wave amplitude of the NG boson (a, b # 0)
and baryon scattering as

2
£ 2 Ttas ] + OGO, (57)
N

Vip = ———
b 8m
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where w is the meson energy. Here, we have used the Dirac
equation (p —mpy)u(p) =0 and we take only the s-wave
contribution for low-energy scattering. In Eq. (57), we omitted
the unit matrix of the spinor space.

In the case of the ' N interaction, the interaction strength in
the chiral limit is derived as follows. From Eq. (28), the ngoy
coupling and the ngog coupling in the SU(3) symmetric limit
can be obtained from the Lagrangian Eq. (28) as

CO = —i(2r{ov) + 21 (00) + 4B), (58)

c® =, (59)

NoMo

and the 7o and nucleon coupling C,, v can be written as

8

— 1L 60
7 (60)

(jnglv =

Substituting Cf,g;?? and C,,y for Eq. (47), the noN interaction
in the linear sigma model in the chiral limit and at low energy
compared to the meson and nucleon mass is calculated as

. ig .(2 , i
—iVyn = —El <§A(00) + 2X'(00) +4B>m_(270
g \? i i
+(ﬁ) ys(wk—mﬁﬁ—k—mN)”
ig mZ +6B(oo)
V3(o0) m2,

i (i)z <L+k_,> + 0k
2\V3) \p-k p-¥K

ig? 6B (0p) o8
= B 1+ 22 _iE o
3my m 3my

o0

ig 6B
- %m_z + 0k, ©1

From the first line to the second line, we have kept the leading
contribution in the meson momentum expansion and replaced
p with my as well as in the case of NG boson and nucleon
scattering, and from the third line to the fourth line we take
only s-wave amplitude for the low-energy scattering. As
a result, the leading contribution to the no/N interaction is
induced by the B term, which comes from the U4 (1) anomaly.
In contrast, the Weinberg-Tomozawa interaction is canceled
due to the Uy (1) symmetry. This is because only the terms
including B (and the quark mass) break the U4(1) chiral
symmetry and the other terms keep the symmetry. Thanks to
the chiral symmetry in these terms, we have the cancellation
between the o exchange and Born terms.

Substituting the values of the parameters into Eq. (61),
we find the n'N interaction to be attractive with strength
—0.0534 MeV~!. This attraction is strong comparable to the
K N system with I = 0, in which it is conceivable that there
exists a KN quasibound state regarded as A(1405). In the
following, we use this value as the ' N coupling constant.
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V. THE ' N BOUND STATE

In the previous section, we obtained the tree-level amplitude
for the n’ N scattering in the linear sigma model. Making use
of this amplitude as an interaction kernel, we solve a scattering
equation for the ' N two-body system. Because the ' N inter-
action is attractive with a strength comparable to the KN sys-
tem with / = 0, we expect that the ' N system forms a bound
state similar to A(1405), which is a bound state in the KN
channel. In this section, we evaluate the scattering length of the
n’ N system and binding energy if an ’ N bound state is formed.

To solve the ' N scattering system, we make use of the same
machinery for the A(1405) in the KN channel with I =0
[44,45], in which the KN scattering amplitude obtained with
the chiral perturbation theory at the tree level is used as the in-
teraction kernel of the scattering equation and the loop function
is regularized so that the scattering amplitude can be described
in terms of hadronic objects. As a result one finds a quasibound
state in the KN channel. The T matrix is calculated by the
single-channel Lippmann-Schwinger equation. Here we take
the n'N interaction evaluated in Eq. (61) as the interaction
kernel. We denote the interaction kernel as Vi, where the
indices k and k' are incoming and outgoing meson momenta
respectively. Now, we are in the case that the interaction
kernel Vi is independent of the external momentum, and
the T-matrix can be obtained in an algebraic way:

T = Vi + / dl VG Ty
= Viw +/dl VG Vi

+/dl/dl/Vle,V,,,Gl,Vl,k,_|_...

o0 n V
_ VZ(V/le,) - i —vrag @

n=0

where G| is the two-body Green function of the " and nucleon.
From the second line to the third line, we used the fact that the
interaction kernel Vj is independent of the external momen-
tum, Vi = V. Because we take the momentum-independent
contact interaction Eq. (61), the integral of G, diverges. With
dimensional regularization, the integral of G; is calculated with

G(W) = /le,
_ [ 2my 1
) @t —m} i (P =1 —ml +ie
2 2 2 2
= %{a(uwrlnrz_iV + Wln%
+ %{m [W? — (m}, —m;) +2GW]
+ In[W? + (m%, - m%) +2qW]

[
— In [—W2 — (mi, — m%,) + 26]W]
[

—W? 4 (my —mb) +2qW]} } (63)
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where p is the scale of dimensional regularization, and the
center-of-mass momentum is given by

VIW? — (my +my PIIW? — (my — my)?]
2w '

From the second line to the third line of Eq. (63), we have
supposed that the divergent part could be absorbed in
interaction vertices in the renormalization procedure, and the
remaining finite constant is denoted as a(w). The subtraction
constant a(x) has to be determined in some way. Here we take
the natural renormalization scheme proposed in Ref. [46] in
which the Castillejo-Dalitz-Dyson (CDD) pole contribution
are excluded from the scattering amplitude in a way consistent
with chiral counting. This means that the scattering amplitude
is described by dynamics of " and N. In our calculation, we
use a(u) = —1.838 and the renormalization point u = my.

Using the T matrix calculated with the above method, we
evaluate the binding energy and scattering length of the n' N
system. The mass m p of the bound state is obtained as the pole
position of the 7" matrix. The binding energy E is calculated
by EB =my + myN — nmp.

With Egs. (62) and (63), the ' N binding energy Ejp is
obtained as 6.2 MeV. The scattering length and effective
range are obtained as —2.7 and 0.25 fm with the definition
in Appendix D. We show the scattering amplitude with
my, = 700 MeV in Fig. 6.

In this calculation, we used the mass of the sigma meson m.,
as an input to fix the parameter of the Lagrangian of the linear
sigma model. In the previous calculations, we used m,, =
700 MeV. The sigma meson mass dependence of the binding
energy, scattering length, and effective range is given in Table I.
The parameters of the Lagrangian are determined for each m,,
with the procedure shown in Sec. III B. Within the wide range
of m,,, we found that the existence of the n' N bound state and
the binding energy have a somewhat m,, dependence. From
Table I, we find that the larger binding energy accompanies
the smaller scattering length. This behavior can be understood
because the scattering length can be roughly evaluated with
1/+/2mEpg, where m is the reduced mass of n" and nucleon.
We find the scattering length is about 1 fm if a ' N bound state
exists with binding energy of a few MeV.

q= (64)

0.015

i‘ real part --
> imaginary part----
= 0.01 1 ™~ absolute value—
% ooosf ;7 T

2 ;

= U R —
S —

S -0.005( .

2 4

5 001/

3 -0.0157895 1905 1915 1925 1935

Total energy of n'N system [MeV]

FIG. 6. The value of the scattering amplitude above the threshold.
The dashed, dotted, and solid lines represent the real part, the
imaginary part, and the absolute value of the scattering amplitude
of the n' N system with m,, = 700 MeV, respectively.
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TABLEI. The m,, dependence of the ' N bound state.

M, Binding energy Scattering length Effective range
(MeV) (MeV) (fm) (fm)
500 35 -35 0.25
600 6.2 —2.7 0.25
700 6.2 —2.7 0.25
800 4.6 -3.1 0.25
900 24 —4.2 0.26
1000 0.6 —8.1 0.33

The result in the low-energy limit depends on the choice
of the subtraction constant a(u), and we determined a(jt)
to exclude dynamics other than those 1’ and N here. The
other degree of freedom, for example the w meson exchange
interaction or the microscopic quark dynamics, may spoil such
a description [46].

VI. CONCLUSION AND REMARKS

In this paper, we have constructed a chiral effective
Lagrangian for mesons based on the linear realization of the
SU(3) chiral symmetry in symmetric nuclear matter and esti-
mated the mass reduction of 7’ in the medium. The Lagrangian
contains the explicit breaking of the chiral symmetry and flavor
symmetries and the determinant type U4(1) breaking term
which introduces the effect of the U4 (1) anomaly. We find that
asubstantial part of the " mass is generated by the spontaneous
breaking of chiral symmetry through the U,4(1) anomaly.
Nuclear matter is taken into account as a mean field by
calculating one nucleon loop in the Fermi gas. The parameters
of the Lagrangian have been fixed by the observed quantities,
such as the meson decay constants and the meson masses. In
the determination of the coupling strength of nucleon and the
sigma meson, we make use of partial restoration of chiral
symmetry, that is, the experimental suggestion of a 30%
reduction of the quark condensate as the basic assumption.
In our calculation, we have obtained an 80 MeV reduction of
the n’ meson mass at the normal nuclear density.

Based on the effective Lagrangian used for the calculation
of the in-medium properties of the mesons, we have also
estimated the two-body 1’ N interaction in vacuum. Using the
interaction of n'N as the kernel of the scattering equation, we
have evaluated the T matrix of the ' N system. As a result, we
have obtained an 1’ N bound state, which is a state analogous to
A(1405) in the K N system. The binding energy of the system
is found to be several MeV, which is comparable to the typical
value of the hadronic bound state; for example, that of A(1405)
or the deuteron. We have also evaluated the scattering length
and the effective range of the n’ N system, having obtained a
few fm with the repulsive sign for the scattering length, which
is a consequence of the existence of the bound state, and a
quarter fm of the effective range.

In the linear sigma model, the n'N interaction originates
from sigma meson exchange with the 7ynoo coupling coming
from the U4(1) breaking determinant term. The Weinberg-
Tomozawa type vector interaction is canceled away by the
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scalar-meson-exchange and Born terms thanks to chiral sym-
metry. In contrast, the interactions of the octet pseudoscalar
meson and nucleon are expressed by the Weinberg-Tomozawa
interaction at low energies as a consequence of the spontaneous
breaking of chiral symmetry, and there is no sigma exchange
term, which is canceled away with the Born term and turns
into the Weinberg-Tomozawa interaction. This implies that
the difference comes from the fact that the n” meson is not a
Nambu-Goldstone boson due to the U, (1) anomaly.

Actually, the ongno coupling from the explicit Ua(1)
breaking induces the mass of the n' meson when chiral
symmetry is broken spontaneously with finite o condensate.
In this way, the onono coupling plays an important role
for the mass generation of the n’ meson. This is the case
also for the nucleon. The nucleon mass is generated by the
sigma condensate through the o NN coupling. In addition,
the strong o NN coupling induces a strong attraction in the
scalar-isoscalar channel for the NN interaction with the o
meson exchange, Thus, we conclude that the n' N interaction in
the scalar channel is entirely analogous to the N N interaction.
Since the ongny and o NN coupling are necessary for the
mass generation of the n” meson and nucleon in the linear
sigma model, the ' N interaction coming from the o exchange
is inevitable. (In the same manner, one could have a strong
attraction also in the n’'n’ system.) This attraction may open the
possibility to have bound states in n’ N and n’-nucleus systems.
Nevertheless, there could be such repulsive interactions in
other channels as to spoil the bound states. It should be noted
that chiral symmetry says that there is no Weinberg-Tomozawa
interaction in the no/N channel.
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APPENDIX A: THE LINEAR SIGMA MODEL IN VACUUM

In this section, we show the application of the linear sigma
model in vacuum. From the meson Lagrangian Eq. (21), we
obtain the effective potential for oy and og, V, (09, 03), using
the tree approximation as follows:

2
Vs (00, 03) = 7(002 +03)

A 3
+ E (0’6‘ + 60(?082 — 2\/5(700’5 + 50’?)
A 2 2\2

+ Z(GO + 08) — 2A(mgyog + mgog)

2 5 3, o

_§B (O’O — 50’008 — ﬁ .
In Eq. (A1), we have omitted o3 because we assume isospin
symmetry and trivially (o3) = 0. The vacuum expectation

values, (0y), (0g), are obtained as the minimum point of the
potential. The minimum point is obtained by solving the

(AD)
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vacuum condition

oV,
= MZO'O + — (200 + 60008 \/_08) + A 0'0(0'0 + 0'8)
80‘0 6
o2
—2Amy — 2B (O’O — 7) =0, (A2)
Vs 2 Ao o 2 3 / 2 2
T = Wost 5(20008 — V20007 + 03) + X og(ag + 03)
8
o2
—2Amg + 2B (0008 + %) =0, (A3)
where we have defined
mo = 2m, + m,, (A4)
mg = ~/2(my — my). (A5)

The meson masses are obtained as the second-order
derivative of the full effective potential V' at the vacuum point
v,
S =0
do

9%V

m,, = ——- (A6)
b dwadmt | oy

Here, 7¢ is the meson field and m, = m,, stands for the mass

of the meson 7¢ and m,, (a # b) means the mixing term

between 7¢ and 7”. Using the vacuum expectation values,

(00), {0g), we obtain the meson masses as follows:

m2, =’ +r({00)*+(038)*) + 1'(3(00)*+ (08)*) —4B(00),

(A7)

2 (03)? >
= A 24— | + 21/ (0)?

3 ((00) + 22(00) ~+ 21" {00)

(U8>2> 2Amy
—2B , A8
(<U°) 200 ) T o0) (48)
mZ, = i + A({(00)* — v/2(00)(05) + 3(0%)?/2)

+ X ({00)? + 3{0%)?) 4 2B(0p + v203) (A9)
(2, (0g)3 (03)?
—A(§<o> — V2(00) (o3) + e T 2 )

’ 2 2Am0
+22/(0g)% +
{(00)
( <C78>2)
+ B ( 4(00) + 2v/2(03) — , (A10)
(00)
m2 . = %(40068 — V20¢) + 2)/0g0s + 2Ba, (A1)
A
=pu*+ §<<oo>2 + V2(00) (0%) + (08)2/2)
+ 1 ({00)* + (0%)%) — 2B(0p — v20%) (A12)
= M’ (A13)
fr
A
mi = 1+ 3(o0)* = (00} (03) / V2 + T{0%)?/2)

+ 1 ({00)* + (08)%) — 2B((00) + (03)/¥2)  (Al4)

_ V6A (mg +my) (A15)

fx
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my =+ (<ao> +(08)*) + X((00)* + (08)) + 4B(00)
(A16)
2 _(Afxk — f2)  2V2 (zm,, m, )
=./-B A
\[3 it BT T2 g
(A17)
A
i, = 12 + 3 ((o0)* = V2{00)(0w) +3(05)*/2)
+ X ((00) + (05)%) — 2B((00) + V2(05))  (A18)
_ 2
_ 82 (e = fi) N 2V2 ( Lo )
\/§ sz_fﬂ \/§ frr ZfK_fﬂ
(A19)
My, = ‘?A(ag)(fz(om - @) — 2B(o3), (A20)

where m(zf o and mfm , are the mixing terms of oyog and ngns,

respectwely The physical mass is defined so as to diagonalize
the mass term. For  and n’, we have

m2 = (2, m2, =2, —m2 )+ amd, ). (A2D)
2, = %(mn0+mns+\/ m2, —m2)t+dmb ). (A22)

APPENDIX B: THE DETERMINATION OF PARAMETERS

We determine the parameters in the linear sigma model
from the physical values in vacuum. The sigma condensates
can be determined from the meson decay constants through
Egs. (24) and (25):

1

(o0) = %(fn +2fk), (B1)
2

(og) = ﬁ(fzr - fx)- (B2)

Once the sigma condensates are fixed, Am, and Am, can
be determined by the m and K meson masses, Eqs. (A13)
and (A15):

Amg = f—;/r_m,zr, (B3)
A(mg +my) = f/’% ma. (B4)

This fixes the ratio of m, and m,. In the linear sigma model,
the quark masses appear always with the parameter A. For
independent determination of m,, my, and A, we introduce an
explicit value m; = 5 MeV to fix A and m;,.
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TABLE II. Input values.

f?r f K my
MeV) (MeV) (MeV) (MeV)

mg mz +m; Mg, m,
(MeV2)  (MeV) (MeV)

922 110.4 135 495 550% + 9582 700 5.0

Noticing m} +m; =m; +m; from Egs. (A21) and

(A22), we can determlne B from m,27, + m% with Eqgs. (A17)
and (A19):

:L ZfK_fn
V633 —8fxfx +8f;

X[(m’27+m ) _2fA< Zme—fn>]

(B5)
From Egs. (A12) and (A14), we can fix A from
2 2
_ my —m; _ 2J/6B . (B6)
(fk = DCfk — fx) 2fk — fx

Finally from the vacuum conditions Eqgs. (A2) and (A3), we
can fix u? and A’ as
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APPENDIX C: THE CALCULATION OF THE IN-MEDIUM
NUCLEON LOOP DIAGRAMS

In this section, we show the explicit calculation of the
nucleon one-loop contribution to the sigma effective potential
and the meson masses. Here we assume the chiral limit. We
use the in-medium nucleon propagator defined as

i
Pmed(p) = (15+mN) )
4

— m%, +ie
—278(p* — my)0(po)o(ky — |13|>}. (Cl)

First, we evaluate the tadpole diagram for the o effective
action denoted as Vj;r(p) in Sec. III B. The effective potential
for oy coming with the nucleon-tadpole diagram V3 .(p) is
calculated as

. d*
— iV (p) = ~200800 / StPup) (€
with the oy N coupling
ig
86oNN = —ﬁ (C3)

obtained from the Lagrangian. The factor 2 comes from the
isospin degeneracy and the minus sign comes from the fermion
loop. Removing the pure vacuum contribution, which is
divergent and should be renormalized into physical quantities,

2 /
W= aih+ah +asB (B7) we have obtained
with VO ()= Lo (C4)
MF «/§ 0
4y = _Ms((o0)* + 6o0)(08)? = v/2(04))/6 Here we have used
(00>m8 — {og)mg J
p _Amy [ 4 3(po— Ep) 5
mo(08)(2(00)” — v/2(00) (%) + (0)7)/2 - f @yt T Fmea(P) = 505 f TP g ks = 1PD
{o0)mg — {(a8)mo K3
2 2 S C5
ar = —((00)” + (03)°), (B8) =327 (€5
og)? O 3 - N
2{ms[(00)* — % + mo(ag)((o0) + %)]} where p = ;kaz and En(p) = ,/|p|* + m?%. Here we have
4= (o0)mg — {(og)mg ’ approximated Ey =my. In the same way, the effective
(B9) potential for oy is obtained as
d4
and iV () = 28y f St Posa(p)
= m2 — May + (00)* + (03)%) — B(az — 4(00)) = —zﬁag (C6)
2{o0)? ' V6
(B10)  with the oy N coupling
i
We show the input values to determine the parameters of 8N = ——g. (CT
the Lagrangian and the determined parameters in Tables II V6
and III. Summing up Egs. (C4) and (C6), we obtain Eq. (32).
TABLE III. Determined quantities.
(00) (o) W A A B A my 8 my, My Moy (—(@gN'"* (=GN
MeV) (MeV)  (MeV?) MeV)  (MeV?)  (MeV) (MeV) (MeV) (GeV)  (MeV) (MeV)
128 -21.0 116 x10° 594 -—24 984 6.86 x 10* 156 7.67 535 959 1.23 249 279

064906-12



In-MEDIUM ' MASS AND #'N ...

Next, we calculate the particle-hole contribution to the
meson self-energy Xpn(0). The particle-hole contribution to
the in-medium self-energy of mesons written as () is
d*p
Qn)t

tr{y5 Pmed(p + Q)VS Pmed(p)}-
(C8)
The coefficient C; is dependent on the channel: C, =
C'lo = %’ C'Is = %’ C'?o’ls = #j’
meson-nucleon couplings g.yv = & /ﬁ, gnoNN = 8 /\/§,
gnsNN = &/ V6. Denoting the part of the nucleon loop integral

in Xpu(p) as Il(p) and removing the divergent vacuum
contribution, we evaluate I1(p) as follows:

—i Zpn(p) = _gzci/

1
2
which are obtained by the

d4
—ill(p) = —/ #Ubfs(ﬁ +q +mp)ys(p +my)l

1

X —2m)8 (p? — m?>
(p+q)2—m§\,+ie( »(p v)

x0(po)o (ks — 1pI)

i 3. 4p-q -
= — —0(ks — |pl)
Q) / Popa+a2Ex) P
i _O0(ky — |pl) i
=— d®p— = — . (C9
n)y / P g ©

From the first line to the second line, we used the Dirac
equation and from the second line to the third line, we
have taken the soft limit, q2 = 0. Here, we have omitted

PHYSICAL REVIEW C 88, 064906 (2013)

the contribution from the pure medium contribution, which
contains the two step functions, because the contribution
vanishes in the soft limit. Multiplying the symmetry factor
and the isospin degeneracy and adding the contribution from
another cross term of the particle-hole diagram and the
contribution from crossed diagram, which gives the same
contribution as the noncrossed diagram in the soft limit, we
obtain finally
g’p

Xpn(p) = Ci— (C10)
my

APPENDIX D: DEFINITION OF SCATTERING LENGTH

Based on Ref. [47], the scattering length a and effective
range r, are given by the scattering amplitude f (k) as

M
flk) = —mt(k), (DI)
a= f)o- (D2)

i ( ! ) (D3)
re = —5 |\ 7 < s
di> \ f(k) /o

where #(k) is the T matrix defined in Eq. (62). The relation of
the center-of-mass momentum k and the total energy W is

_ VW — (M +mP|[W? — (M —m)’]
- 2W

with the baryon mass M and the meson mass m.

k

(D4)
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