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The hydrodynamic description of a fireball produced in high-energy heavy-ion collisions has been recently
supplemented by a very successful study of acoustic perturbation created by the initial-state perturbations.
We discuss sound produced at later stages of the collision, as the temperature drops below critical, T < Tc, and
originated from the Rayleigh-type collapse of the quark-gluon plasma clusters. In a certain analytic approximation
we study distorted sound spheres and calculate modifications of the particle spectra and two-particle correlators
induced by them. Unlike for initial-state perturbations studied previously, we propose to look for those late-time
sounds using rapidity correlations, rather than the azimuthal angles of the particles. We then summarize known
data on rapidity correlations from RHIC and LHC, suggesting that the widening of those can be the first signature
of the late-time sounds.
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I. INTRODUCTION

Production of quark-gluon plasma (QGP) has been a major
goal of the heavy-ion collision program at RHIC and LHC.
Relativistic hydrodynamics describes quite accurately the
radial and elliptic flows seen in RHIC data [1–4].

The observed explosion has certain similarities with the
cosmological big bang, and is often called the little bang.
This analogy extends to the existence in both cases of
small deviations from the smooth average behavior caused
by quantum fluctuations at the early stages of the process.
Resulting event-by-event fluctuations of the elliptic flow [5],
as well as the third [6] and higher harmonics are also well
described by hydrodynamics, as shown in multiple papers
(including those by the current authors [7,8]). One important
conclusion from all those works is that the mode damping
is basically acoustic in nature, and consistent with the same
value of the viscosity-to-entropy ratio η/s = (1.5–2)/4π , see,
e.g., a recent phenomenological summary [9]. The quantum
fluctuations of the colliding nuclei are, however, neither the
only nor even the most interesting source of fluctuations. The
necessary existence of fluctuations during the hydrodynamical
expansion follows from dissipation-fluctuation theorem and its
theoretical grounds have been recently studied by Kapusta,
Muller, and Stephanov [10]. As the system expands and
its temperature passes through the phase transition region
T ≈ Tc, from QGP to the hadronic phase, one may think of
enhanced critical fluctuations [11]. Those are expected to be
enhanced near the second-order critical point [12]: this idea
had motivated the so-called downward energy scan program
at RHIC, not yet completed.

In this paper we propose a different strategy in a search
for the critical event-by-event fluctuations: using the sound
emitted by them. The very strong interaction in the system,
leading to a rapid relaxation, from an enemy becomes an
ally. In a near-ideal fluid the sounds are the only long-lived
propagating mode. The underlying assumption is that the
acoustic properties of the matter are there not only during the
QGP era, but are also maintained for the time period between
the critical region (T ≈ Tc ≈ 170 MeV) and the final (kinetic)
freeze out (T ≈ 100 MeV).

The sound generation by critical fluctuations while crossing
the phase transitions is a well known phenomenon in physics:
e.g., the familiar singing of a near-boiling tea pot. While the
QCD phase transition is not strictly a first-order transition,
but a smooth crossover, it is still close to it. At a certain
expansion rate of the fireball, formation of an inhomogeneous
intermediate state in the near-Tc region is quite probable. By its
end, certain QGP clusters should remain. (Even pp collisions
result in significant clustering of secondaries, as two-particle
correlations in rapidity indicate.) A new idea of this paper is
that, instead of slowly evaporating, the QGP clusters should
undergo Rayleigh-type collapse, transferring (part of) their
energy/entropy into the outgoing shocks/sounds.

These mini bangs, as we will call them, are the source of
the sound spheres, distorted by flow. In order to separate them
from sounds caused by the initial-state perturbations, one may
use their early-time origins and rapidity independence. The
late-time mini bangs have also sound waves propagating in
longitudinal (rapidity) direction. As we will show in this paper,
some of them should produce correlations rather different from
the usual Gaussian-like correlations, coming from isotropic
resonance/cluster decays.

As the trigger pt grows the contribution of the jet frag-
mentation also grows, and beyond say 10 GeV it becomes
dominant. Whatever the model of jet quenching, it is clear that
some fraction of the energy goes into the medium and thus jets
must also induce a sound wave [13]. From a hydrodynamical
point of view, these sounds are similar to those from the mini
bangs, and differ only by the fact that jet quenching deposits
energy along the lightlike trajectory rather than at a particular
space-time point. We will not discuss sounds from jets in this
paper, as we do so elsewhere [15].

Let us note that an instability at T ≈ Tc of the hydroflow has
been noticed by Torrieri and Mishustin [14]. Using Bjorken
flow with large bulk viscosity at the transition point, they
found longitudinal instability leading to clustering of matter.
While quite different from our suggestion (in which collapse is
driven by the bulk pressure while viscosity is terminating the
collapse), it is similar since both emphasize the impossibility
to maintain the homogeneous solution at late times, or T < Tc.
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The structure of the paper is as follows. Section II
describes cluster implosion in the passing through the phase
transition. It starts with a brief review of the Rayleigh collapse
phenomenon, known for a long time and studied extensively
in sonoluminescence experiments. Our studies focus on the
shock/sound generation and the role of viscosity.

In Sec. III we study sound propagation, on top of the
expanding fireball. We are fortunate to be able to do it near
analytically, using a small perturbation on top of the so-called
Gubser flow solution. We end up calculating the shapes of
the two-particle correlations those sounds produce. In the
Sec. III D we compare the results with the ALICE (LHC) data,
which indeed show the double-hump correlations we propose
to identify with the mini bangs.

II. CLUSTER COLLAPSE, SHOCK/SOUND FORMATION

A. Rayleigh collapse

This subsection contains well known material worked out
by people working on sonoluminescence, for a review see,
e.g., Ref. [16]: it is given for self-consistency of the paper,
introduction of notations, etc.

We start by reminding the derivation of the Rayleigh
equation for the bubble radius, coming from the Euler
hydroequations

ρ[∂t �u + (�u �∇)�u] = −�∇p, ∂tρ + �∇(ρ �u) = 0. (1)

The standard steps are the assumption of spherical symmetry
of the flow, and the introduction of the flow potential

�u = �∇φ(r, t). (2)

Then, stripping off the gradient, one finds that the first Euler
equation becomes

ρ∂tφ + 1
2 (∂rφ)2 = −p. (3)

Using dp/dρ = c2, dh = dp/ρ where h is the enthalpy, and c
is the sound velocity (the speed of light in our units is 1), one
obtains a single equation for flow potential

�∇2φ − 1

c2
∂2
t φ = u

c2
(∂tu − ∂rh). (4)

Now comes the crucial step: if all flows are slow compared
to c, the Laplacian term is the dominant one. It then provides
a simple Coulomb-like solution to the potential

φ ∼ f1(t)
1

r
+ f2(t), (5)

as a function of r . The two time-dependent functions should
be matched to the boundary conditions of the problem. One of
them is at the bubble wall located at some R(t): the condition
matches the flow velocity with the wall speed

ur = ∂rφ = Ṙ, (6)

where the dot denotes the time derivative. It fixed one of the
functions in a solution

φ = − ṘR2

r
+ f2(t), (7)

and putting it back into the Euler equation in the form (3) one
finds, taking at r = R, the ordinary differential equation for
R(t)

R̈R + (2 − 1/2)Ṙ2 = p(r → ∞, t)

ρ
, (8)

where the (1/2) comes from the second term of (3) and the
right-hand side is the effective pressure far from the bubble.

If the right-hand side is positive, the system is stable, but
as it crosses into the negative a collapse takes place. What was
discovered by Rayleigh is that even if the right-hand side is put
to zero, the equation admits a simple analytic solution (known
as the original Rayleigh collapse solution)

R(t) ∼ (t∗ − t)2/5. (9)

While the time-dependent singularity has a positive power, it
is less than one, and thus produces an infinite velocity

Ṙ ∼ (t∗ − t)−3/5, (10)

at t = t∗. Needless to say, large velocity is incompatible with
the approximation of small u 	 c made above: therefore the
near-collapse stage should be treated separately and more
accurately (see below).

A comprehensive review [16] on sonoluminescence in-
cludes both the theoretical and the phenomenological discus-
sion of the shock waves produced by the collapsing air bubbles
in water, under the influence of small-amplitude sounds driving
an effective pressure to negative at each sound cycle. The
reader interested in details can find it in this review: let us only
mention that the observed shocks from collapsing bubbles have
velocities of about 4 km/c, a few times the speed of sound in
water c = 1.4 km/s, suggesting the pressure in the collapse
reaching a range as high as 40–60 kbar. Those values also
imply a reduction of the bubble’s volume by a huge factor
∼106. Emission of light, indicating very high temperatures
T ∼ 1 eV 
 Tr→∞, gave the name of sonoluminescence to
the whole phenomenon. Our last comment is that in these
experiments one found a rather high efficiency ∼O(1/2) of
the energy transferred into the shocks/sounds.

B. Collapse with the viscosity and sound radiation

The right-hand side of the equation for the R(t) can include
a number of extra terms. The most obvious of them is the bulk
pressure, which drives the collapse. The next is the surface
tension, preventing collapse of too small bubbles because its
role grows as 1/R at small R. Ignoring those terms for now,
we focus on the dissipative effect of the flow due to viscosity.
The standard Navier-Stokes term in the right-hand side is

R̈R + 3

2
Ṙ2 = −4ηṘ

ρR
. (11)

Solving this equation with variable value of the viscosity we
found its critical magnitude capable to turn the catastrophic
Rayleigh collapse into a soft landing. In Fig. 1 we show a set
of solutions with increasing values of η ∗ T/ρ, showing how
the collapse can be stopped by viscosity.

In relativistic hydrodynamics the mass density ρ is substi-
tuted by ε + p = T s, where ε, s are the energy and entropy
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FIG. 1. (Color online) The time evolution of the drop radius R(t),
for the values of ηT/ρ = 0.01–0.1 with a 0.01 step (left to right
curves).

densities. Thus the combination used above is changed to
the common η/s ratio: its value needed to stop collapse is
thus η/s > 0.06, well satisfied by sQGP viscosity, which is
η/s ≈ 0.15–0.20. (For smaller values it goes into the Rayleigh
singularity, which simply stops our numerical solver; we use
the default one on Maple 16).

The second effect we study is the sound radiation. For
a spherical source with a time-dependent volume V (t) =
(4π/3)R(t)3 the outgoing wave solution at large distances is
(see hydrodynamics textbooks such as Ref. [17])

φ = − V̇ (t − r/c)

4πr
, (12)

corresponding to the flow velocity of radiated sound

vr = Ṙ = V̈

4πrc
, (13)

resulting in the intensity of the sound radiation

I = ρ

4πc
|V̈ |2, (14)

at large distances. In Fig. 1 we plot the time evolution of
the volume acceleration squared (to which sound radiation
intensity is proportional) for five trajectories, generated by
the smooth viscosity-induced end of the collapse. What one
can see from those figures is that the sound radiation has a
sharp peak at a certain moment, which becomes much more
pronounced as the viscosity is reduced toward its critical value
mentioned above. This peak in the sound emission represents
the mini bang we are discussing in this paper.

It is methodically interesting (see Ref. in [16]) to derive
the self-force induced by the sound radiation directly, which is
analogous to the Abraham-Lorentz reaction-to-radiation force
in electrodynamics. Including in φ the outgoing sound one
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FIG. 2. (Color online) The time evolution of the quantity |V̈ (t)|2,
entering the sound radiation intensity, for the values of ηT/ρ =
0.06, 0.07, 0.08, 0.09, 0.1 (from the most singular to the smoother
ones).

determines the second function of the time

φ = φ∞(t) − 1

r
F (t − r/c) ≈ φ∞(t) − 1

r
F (t) + 1

c
Ḟ , (15)

where, as before F (t) = ṘR2, one finds a contribution to the
right-hand side of the main equation to include the third-order
derivatives of the radius

ρ

(
R̈R + 3

2
Ṙ2

)
= · · · + ρ

c

d2

dt2

(
dR

dt
R2

)
, (16)

similar to the familiar Abraham-Lorentz one. (The only
difference really is that the dipole radiation in electrodynamics
is substituted by spherical monopole radiation of sound.) As
it is the case with other self-force applications, one needs
more initial conditions. Also having small terms with higher
derivative prone to spurious acausal solutions, so this equation
is to be treated with care. Yet using the Rayleigh collapse
solutions with viscosity we already have, one can calculate
this term and see that it is indeed very singular, as is shown
in Fig. 2. One clearly needs a more accurate solution near the
singularity, yet the main answer is clear: the energy of the
collapsing bubble is transferred to the outgoing wave.

III. SOUND PROPAGATION ON TOP OF
EXPANDING FIREBALL

A. General considerations

It is by now well established that the four-dimensional
region of space time in which hydrodynamical description is
(approximately) valid is surrounded by the three-dimensional
surface, consisting of the initial and final parts, in which the
signs of the matter flow through it are in and out, respectively.
The observed secondaries come from the latter part, and
their spectra are commonly calculated by the Cooper-Frye
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formula [18]

dN

dypT dpT dφ
=

∫
�

f (pμuμ)pμd3�μ, (17)

where pμ is the four-momentum of the particle, uμ the four-
velocity of the fluid, d�μ is the vector normal to the freeze-
out surface and the function f is the distribution function of
particles that we approximate by a Boltzmann distribution.

It has been shown in many works, e.g., based on interfero-
metric measurements of the sizes of the fireball at the freeze
out, that this surface can be well approximated by an isotherm,
with Tf being in the range Tf ≈ 100 MeV for the most central
collisions, to Tf ≈ 170 MeV for the peripheral ones. Note
that the former are much lower than the critical value of
the temperature Tc ≈ 170 MeV. The pressure in the hadronic
phase is p ∼ T 6, and thus for central collisions one expects
pressure to drop from the critical value by a significant factor

p(Tf )

p(Tc)
∼

(
Tf

Tc

)6

∼ 1

25
(18)

over the time of just few f m/c. Such pressure drop rate is
perhaps sufficiently rapid to induce bubble formation.

For secondaries with the pt of interest, say 1.2–2.4 GeV,
which are well described by hydrodynamics, such pt exceeds
the freeze-out temperature Tf ≈ 120 MeV by a large factor
ranging from 10–20. If those particles were produced by
the pure tail of the thermodynamic Boltzmann factor, its
probability would be truly negligible. But the hydrodynamical
expansion makes a huge difference: in the moving fluid the
exponent is not the energy in the laboratory frame but in the
frame comoving with the fluid, pμuμ, which is smaller than
the momentum itself by the so-called blue-shift factor

pμuμ

Tf

≈ p0

Tf

√
1 − v⊥
1 + v⊥

. (19)

This depends on the local transverse flow velocity v⊥, which
varies over the surface �, with a maximum near the edge.
The transverse flow velocity reaches at LHC v⊥ ∼ 0.8, for
which this factor is ∼1/3, reducing the quantity in Boltzmann’s
exponent to only ∼3–7. It is much smaller than pt/Tf , but still
can be considered a large parameter. This blue shift narrows
the contribution from the surface integral to the particle spectra
to relatively small vicinity of the point r = r∗ where r∗ is
the location of the maximal transverse flow. (We will specify
this in the next section using a particular analytic example.)
Furthermore, assuming for simplicity zero impact parameter
(central collisions) and rapidity independence of the system,
we conclude that at such pt the observed particles come
from the freeze-out cylinder, with r = r∗, depicted in Fig. 3.
Large transverse flow strongly enhances the contribution of
this cylinder, basically projected it onto the detector.

Now let us consider small-amplitude sound perturbations,
propagating on top of the background flow. They form certain
distorted sound spheres around the origination point. From
the discussion above it is clear that such perturbations fall
into two classes: (a) the internal ones, such that their sound
sphere never reaches the flow maximum on the freeze-out
surface, and (b) the peripheral ones, for which the sound

η

x

y

FIG. 3. (Color online) The schematic representation of the freeze-
out cylinder and a sound perturbations, for internal (upper picture)
and peripheral (lower picture) sources. In the latter case we show the
intersection of the sound sphere and the freeze-out cylinder, called in
the text the sound line.

sphere and the freeze-out cylinder cross, see Fig. 3. From
the previous discussion the latter perturbations should be
dominant over the former, as they benefit maximally from the
blue-shift effect. Thus we come to the conclusion that clusters
located not too far from r = r∗ cylinder are the only ones
which can be observed. The distance from it is given by the
distance the sound can travel between its emission point and the
final freeze-out moment. Thus the corresponding perturbation
should be located approximately at a sound sphere of the
radius Rs = cs(τf − τemission), distorted by the flow, shown
schematically in Fig. 3(b). As one can see from Fig. 4, the
time difference between the two surfaces is about 2 fm/c for
remission < 6 fm, but grows to 6 fm/c at remission ≈ 8 fm. In the
former case the radius of the sound sphere is about Rs ∼ 1 fm
in absolute distance: compared to the size of the fireball one
finds the expected angle 
φ ≈ Rs/r∗ ∼ 1/7 too small, well
inside the peak of comoving particles of jets and mini jets.
However if the sound source is at the outer wall, with r ≈ 8 fm,
the time and corresponding angles 
φ,
η are larger and may

0 2 4 6 8 10 12 14
0

2

4

6

8

r (fm)

τ
(f

m
)

FIG. 4. (Color online) Isothermal surfaces for freeze out Tc =
120 MeV (blue solid line) and for the critical conditions Tf o =
175 MeV (magenta dashed line). The sound emission from near-Tc

phenomena we discuss is expected near the latter surface, and its
propagation ends on the former one. Only for rather large r = 7–11 fm
on the fireball’s rim there is substantial time for that.
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become observable. Repeating the same argument as above,
we expect that the observable effect is basically a projection of
the intersection of the sound sphere and the freeze-out cylinder,
where both the perturbation and blue shift are maximal.

Summarizing this section: the sounds emitted close to
the fireball surface are most likely to be detected. The best
observable correlations induced by the sound come from the
intersection of the sound sphere and the freeze-out cylinder.
In principle, one should find the effect both in azimuthal and
rapidity directions.

B. Perturbations of the Gubser’s flow

When the radius of a cluster rapidly decreases, it produces
spherical sound waves that expand and propagate through
the medium. This effect is similar to what happens when a
Gaussian perturbation is placed in the medium: it too generates
divergent sound waves. We will now look at the effect that the
presence of such waves has on the final particle distribution.

Hadronic matter is different from QGP in the speed of
sound: c2 ≈ 1/5 rather than 1/3. We will however ignore
this difference and use the SO(3)-invariant flow developed
by Gubser and Yarom [19,20] as a background. We only want
in this work to have a qualitative description of the propagating
sounds, and the Gubser-Yarom framework provides very nice
analytical tools to do so. Furthermore, a propagation of pertur-
bation induced by a Gaussian source we had already studied
in Ref. [8]. The two new elements are: (i) the perturbation is
not defined at initial time, but at some hadronization surface;
(ii) instead of propagation in three dimensions as before, we
now consider all four dimensions, including spatial rapidity
η. In this framework it is useful to work in the (ρ, θ, φ, η)
coordinates, related to transverse radius r and proper time τ by

sinh ρ = −1 − q2τ 2 + q2r2

2qτ
, (20)

tanh θ = 2qr

1 + q2τ 2 − q2r2
, (21)

where q is the dimensional parameter giving the size of the
fireball. These coordinates are comoving coordinates in the
background flow, in which hydrodynamics of perturbations
allow for separation of all four coordinates. Moreover, the
azimuthal angle φ and θ are combined together into those
on two-sphere, so the corresponding set of functions are just
standard spherical ones Ylm(θ, φ).

The temperature and velocity are given by the general
expressions

T = T0

τ (cosh ρ)2/3

(
1 +

∑
cklmδkl(ρ)Ylm(θ, φ)eikη

)
, (22)

uτ = uτ,Back + τ
∂θ

∂τ

∑
cklmvkl(ρ)∂θYlm(θ, φ)eikη, (23)

ur = ur,Back + τ
∂θ

∂r

∑
cklmvkl(ρ)∂θYlm(θ, φ)eikη, (24)

uφ = τ
∑

cklmvkl(ρ)∂φYlm(θ, φ)eikη, (25)

uη = τ
∑

cklmv
η
kl(ρ)Ylm(θ, φ)eikη. (26)
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FIG. 5. (Color online) Temperature at the (zeroth-order) freeze
out as a function of spatial rapidity η, for transverse plane coordinates
x = 6, 7, 8, 8.3 fm, y = 0 fm, (red, blue, green, gray, respectively).

The background flow (uτ,Back and ur,Back) is described
by the (axially symmetric) flow proposed in Refs. [19,20],
the constants cklm were calculated by imposing that the
perturbation starts as a Gaussian in θ, φ, and η, and the
ρ-dependent functions δ(ρ), v(ρ), and vη(ρ) were computed
from the system of coupled differential equations (108), (109)
in Ref. [20]. We placed the perturbation near the edge of
the expanding matter at the time when the medium reaches
the critical temperature, and let it evolve until the system
reaches freeze out. A sample of results is shown in Fig. 5,
corresponding to different cuts through the sound sphere. One
can see that at appropriate positions the double-peak structure
in longitudinal coordinates—represented by a spatial rapidity
η—emerges, substituted by a single peak centered at the cluster
rapidity (gray dotted line) when looking at the very edge of
the fireball.

C. Particle spectra and correlations

As it is by now well known, different species of secondaries
are affected by collective flow differently. One consideration,
stemming from previous studies of elliptic and higher har-
monics of the flow, is that the largest effects are observed at
p⊥ ∼ 3 GeV, where those effects are maximal. The second
general consideration is that the heavier the particle used,
the smaller its thermal motion inside the cell at freeze out,
and thus the more visible collective velocities become. In
particular, the baryons/antibaryons have thermal velocities
∼√

Tf /M ∼ 1/3, significantly less than pions. Note also that
using protons instead of pions does not result in significant
loss of statistics, as at transverse momenta range under
consideration their spectra are comparable.

To calculate the final particle distributions we used an
approximate isothermal freeze-out prescription, taking as
freeze-out surface the surface obtained by setting TBack(τ, r) =
Tf o (solid curve in Fig. 4). We then computed the Cooper-Frye
integrals (17) to get the particle distributions.

As explained in detail in Ref. [21], the spacelike part of the
freeze-out surface for Gubser flow deviates significantly from
the one obtained in more realistic numerical hydrodynamical
simulations. The relatively long powerlike tail of the matter
distribution at large distances do not correspond to exponential
cutoff of the density at the edge of the nuclei. Fortunately,
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FIG. 6. (Color online) Single-particle distribution as a function
of rapidity y, for azimuthal angle  = 0, 0.3, 0.6 (red, blue, black)
counted from the cluster location.

the realistic freeze-out surface normal is nearly orthogonal
to momenta and thus it contributes only few percents to the
final spectra. Thus we adopted a simple practical approach:
we simply ignore it and include only the contribution of the
timelike part.

The integrals over r and η are computed using MATHE-
MATICA’s numerical integration, while we approximated the
integral over ϕ by using a well known saddle-point method
φ = φp. The pseudorapidity integral was evaluated in the
range |η| < 5, while the integral over r was calculated from
r = 0 to r = rf , where rf is the value of the radius at
which the background v⊥ on the freeze-out surface reaches
its maximum. A sample of the results is shown in Fig. 6 for
pions at p⊥ = 1.5 Gev: here one can also find the characteristic
double-peak shapes.

Here, however, is the difficulty: in the theoretical calculation
we may calculate all distribution knowing the location of the
original cluster. In particular, in Fig. 6 the rapidity is counted
from the cluster location. In the experiment cluster, location
in azimuth and rapidity φc, yc are unknown, and thus we can
only observe correlators integrated over them. Reconstructing
from those the original single-body distribution is not a trivial
task.

In principle, in order to solve the case, an experiment should
be able to measure a sample of n-body correlation functions.
Returning to the rapidity case at hand, those can be written as

dN

dy1 . . . dyn

=
∫

dycP (yc)
∏

i=1..n

f (yi − yc), (27)

where P (yc) is the probability to have a cluster at rapidity yc,
and f (yi − yc) being spectrum modification due to perturba-
tion, which we just calculated above.

As rapidity distributions are usually rather rapidity inde-
pendent, P (yc) ≈ const can be approximated by a constant. If
so, the n-body distribution depends on rapidity differences.
Furthermore, translational symmetry in rapidity results in
conservation of the momentum associated with this coordinate.
One obvious consequence is that the two-particle correlation is
thus a function of y1 − y2 = 
y. Furthermore, it is convenient
to define Fourier transform

f̃ (k) =
∫

dyeikyf (y), (28)

and rewrite the Fourier transform of the n-body spectrum in a
form

dÑ

dk1 . . . dkn

= 2πδ

( ∑
i=1..n

ki

) ∏
i=1..n

f̃ (k), (29)

where the δ function stems from the integral over unknown
cluster rapidity yc. A very special case is the two-body
one, in which there remains only one momentum since
k2 = −k1 = k and one can rewrite this expression as the power
spectrum

dÑ

dk
∼ |f̃ (k)|2, (30)

containing the square modulus of the harmonic amplitudes,
but not the phase.

As a particular toy model, consider f (y) of a double-
peaked shape, as we found in certain kinematic windows.
Representing it by f (y) = [δ(y − a) + δ(y + a)]/2 one finds
f̃ (k) = cos(ka), and the power spectrum thus being

|f̃ (k)|2 = (e2ika + e−2ika + 2)/4. (31)

Making a Fourier transform of the power spectrum one
finds the two-particle correlation function: three terms in this
expression giving three peaks, at 
y = ±2a and at 
y = 0,
of twice larger amplitude.

This issue and expressions are the close analogs of
formulas, which had been derived in the theory of correlators
as a function of the azimuthal angle. In particular, a three-peak
structure of the kind had emerged from hydrodynamical
calculation in our work [8]. Indeed, for central collisions
one has the axial symmetry of the background flow, resulting
in angular momentum zero for observable harmonics of the
any-body correlators.

(As a side remark, we point out that while the experimental
two-body correlator does indeed have the predicted shape
with three maxima, that does not uniquely prove that the
original spectrum has indeed the predicted shape. For example,
various harmonics may have random phases, which are not
observable in the power spectrum. This issue for flow harmon-
ics remains unresolved and needs further study of few body
correlators.)

Summarizing this part: given the single-particle perturba-
tion function f (y), all multiparticle ones can be calculated,
e.g., from the (approximate) relations above. We however
cannot offer any straightforward inverse procedure, deriving
f (y) from measured correlators: comparing calculated predic-
tions with the measurements seem to be the only way. Since
there are many multibody correlation functions, one should
be able eventually to be convinced that f (y) have a certain
shape, such as, e.g., the one coming from the projected sound
sphere. Certainly, quantifying the multibody correlations
needs a lot of statistics: to characterize what can be done
with the experimental sample on tape let us just mention that
studies of the elliptic flow factorization already done include
up to n = 2, 4, 6, 8 particles.
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Let us now return to joint two-particle distributions, both in
rapidity and angle

dN

d
φd
η

=
∫

dN

d(η1 − y)d(φ1 − ψ)

dN

d(η2 − y)d(φ2 − ψ)
dψdy.

(32)

Unfortunately, as one can see from Fig. 4, the time for sound
propagation under consideration is rather limited to about 2 fm,
except in the improbable case of a cluster at very large r >
6 fm. Thus the sound-induced peaks in rapidity are only shifted
by about ±1/2 unit of rapidity, which in most kinematics is
not enough to see the peaks in the observable correlators.

After studying those, we come to the conclusion that the
most interesting seems to be an asymmetric kinematics, in
which the trigger is higher momentum (or higher mass) and
serves to locate the cluster location, while the associated
particles should rather be a pion with smaller p⊥, sensitive
to the double-hump region of the fireball. We calculate the
two-particle correlation with one particle with p⊥ = 1.5 GeV
and one with pT = 2.5 GeV. We integrate over 
φ in the range
|
φ| < 0.87, to obtain the particle correlations projected in

η, and integrate over |
η| < 0.8, to generate the two-particle
correlation projected in 
. We present the results in Fig. 7
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FIG. 7. (Color online) Two-particle correlation functions for a
cluster located initially at: (top)r = 6 fm, and (bottom) r = 6.5 fm.
The solid (blue) curve corresponds to the correlation in 
η with
|
| < 0.87, and the dashed (magenta) curve corresponds to the cor-
relation in 
 with |
η| < 0.8. In both cases the single-particle dis-
tribution functions had been normalized such that their integral was 1.

for two initial locations of the perturbation, at r = 6 fm and
r = 6.5 fm. As one will see, the correlations obtained are
very different, which is explained by a different time for the
sound to propagate. The shape of the particle distributions and
the two-particle correlations shown in Fig. 7 varies greatly,
depending on the initial radial position of the perturbation. For
the perturbation located at r = 6 fm one finds all three peaks
in the correlators merge into one structure, while for that at
r = 6.5 fm one can clearly see the three peaks. This happens,
again, because for the different sound origination points; the
evolution will be longer at some places and shorter at others.
Furthermore, to produce a noticeable effect the perturbation
must be placed near the edge of the fireball—if it is located
close to the center the sound circles will not reach the edge.

D. Phenomenology

Correlations of secondaries in rapidity is a subject which,
in the context of pp collisions, goes back at least to 1970s
experiments at CERN ISR. Already at that time it had been
recognized that secondary pions are not produced individually,
but from certain clusters of 〈Nch〉 ∼ 3 charged secondaries,
or about five pions. Their mass and apparent isotropic decay
distribution (deduced from shape and width of the correlation
function itself) indicated that they are some hadronic reso-
nances, with the mass M ∼ 2 GeV. With the development of
string fragmentation models—such as the Lund model and its
descendants such as Pythia—these observations were naturally
explained.

Heavy-ion collisions at RHIC have not focused so much on
rapidity correlations. We have only PHOBOS collaboration
data [22], which used their large rapidity coverage due to the
silicon detector. (PHOBOS had no particle ID or momentum
measurements, so the pseudorapidity has been used.) These
data display rather strong modifications of the two-particle
correlators in AA, relative to pp. Analysis of those data using
some version of a cluster model has been reported by Stephans
in his talk [23]. Their discussion and some key plots have been
reproduced in Ref. [24], so we will not duplicate it here and
only summarize the main points. In Fig. 13(a) of Ref. [24],
from Stephans, one can see that the charged multiplicity per
cluster in AuAu collisions is significantly larger that what is
seen in pp collisions, up to 〈Nch〉 ∼ 6 charged particles (or up
to 10 including neutrals). Furthermore, as shown in Fig. 13(b),
the produced clusters do not decay isotropically but are instead
more extended in (pseudo)rapidity. The width of the cluster
decay changes from about 0.8 in pp to about 1.4 at midcentral
collisions, a quite substantial broadening. The first fact might
bring to mind production of heavier resonances, but the last
feature excludes this, as the decay of resonances can hardly be
anisotropic.

The first LHC data on two-particle pseudorapidity cor-
relations provided further puzzles. As seen in Fig. 8 (from
the ALICE collaboration [25]), the observed correlator seems
to have the two-hump shape. (The evaluated kurtosis of this
distribution is near −1, with rather high statistical significance
away from zero: so a shape change cannot be a statistical
fluctuation.). This particular ALICE plot is kinematically
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FIG. 8. (Color online) Correlation functions of two
charged hadrons in the kinematic range 2 GeV/c < p

trig
⊥ <

3 GeV/c, 1 GeV/c < pass
⊥ < 2 GeV/c projected onto relative

azimuthal angle 
φ (black) or relative pseudo rapidity 
η (red).
The complementary variable is integrated over the range shown at
the top of the figure [25].

restricted to rather high pt of both trigger and associate
particle, so one cannot compare it to PHOBOS data directly.
(One may wonder if the two humps are not due to the well
known Jacobian between the rapidity and pseudorapidity. In
the Appendix we show it not to be the case, with the Jacobian
contributing an effect of one order of magnitude smaller than
observed.)

Based on our arguments above, we propose the following
interpretation of these phenomena:

(i) The increased width in rapidity and the modified shape
are caused by the sound waves emitted by the decaying
clusters.

(ii) The larger cluster mass is due to larger QGP clusters in
the hadronic matter produced in the AA case, substituting the
string fragmentation process in the pp collisions.

Our calculations above had produced a variety of shapes of
the two-particle correlators, from near-Gaussian to three-peak
ones. Some combination of those can perhaps generate the
shape seen in experiment.

While we argued above that known examples of cluster
collapse lead to efficient (nearly complete) transfer of its stored
energy into the shocks/sound, in practice the efficiency of this
process is hard to evaluate. If one assumes a two-component
model of the particle source, in which a certain number
of secondaries, proportional to extra parameter A, originate
from the QGP cluster itself, then a number proportional
to parameter B come from the sound emitted from its
collapse. The two-particle correlator, projected on the rapidity
difference 
y, is then written in a form of three terms

dNcorr

d
y
= A2fcc(
y) + ABfcs(
y) + B2fss(
y). (33)

The first term stands for both secondaries coming from the
cluster decay: as it is expected to decay isotropically the
function fcc(
y) is the same near-Gaussian distribution as
is well known for the two-body resonance decays. The second
term has a trigger coming from the cluster, fixing its rapidity,
and the second from the sound: we thus expect the function
fcs(
y) to have the double-hump shape we have calculated in
the preceding section. The third term ∼B2 is the convolution
of the two single-particle ones just specified, averaged over the
unobserved rapidity of the cluster, calculated in the preceding
section. Unfortunately, if A is nonzero, such a modification
leads to reduction of the correlator width and even less
opportunity to get a double-hump shape.

E. Observation of late-time sounds via higher
angular harmonics

The calculated two-particles correlators shown in Fig. 7
display certain structures not only in rapidity, but in the
azimuthal angle as well, with the characteristic width δφ ∼
1 rad. Those would correspond to angular harmonics m ∼
2π/
φ ∼ 6 and higher. We had already mentioned in the
Introduction that the so far observed multiple harmonics in
azimuthal angle φ come from the initial time perturbations.
Their strength is peaked at m = 2, 3, but the existing data do
extend at least until m = 6.

Since the damping factor [7]

v2
m

ε2
m

∼ exp

(
−4

3

η

T s

m2t

R2

)
(34)

exponentially decreases with the time of propagation t , one
may argue that at large enough harmonic number m > mlate

the late-time sounds become dominant over the early-time
ones. While the initial-state fluctuations should travel the time
until freeze out tf , the critical sound should only propagate
time tf − tc. The equation for mlate then becomes

εinitial
m e

−m2
late

2
3

η

T sR2 tf < εc
me

−m2
late

2
3

η

T sR2 (tf −tc) (35)

or

mlate ≈ 3

2

T R2

tc

s

η
ln

(
εc
m

εinitial
m

)
. (36)

The situation is complicated further by the fact that
higher-order harmonics can be generated also nonlinearly, as
a superposition of several lower harmonics. (For example,
m = 6 can be generated as 2 + 2 + 2 or 3 + 3.) In this case the
amplitude of the signal is reduced, but also the damping effect
is less severe. At the moment it is hard to see if the progress
in experimental statistic/accuracy may get sufficient to find
evidences for the time sounds in the angular harmonics as well.

IV. SUMMARY AND DISCUSSION

In this paper we: (i) have assumed that during passing of
the T ≈ Tc region of the QCD phase transition some inho-
mogeneous intermediate state of matter is reached, resulting
in formation of the QGP clusters; (ii) had shown that they
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are likely to undergo the Rayleigh collapse, as the hadronic
phase pressure becomes higher than that of the QGP; (iii) show
that this collapse converts significant fraction of the cluster’s
energy into an outgoing shock/sound pulse (the mini bang);
and (iv) show that this propagates, and by the time of the
final freeze out (with about δτ ∼ 3 fm to go) generates sound
spheres of the size cδτ ∼ 1.2 fm.

We further propose that increases in clustering and espe-
cially of their rapidity width and modified shape observed
by PHOBOS at RHIC and ALICE at LHC can be the
manifestation of these late-time sound spheres.

Needless to say, a lot of studies need to be done before these
suggestions can be verified. In particular, our arguments rely
on hydrodynamics, but the famous perfect liquid properties of
the matter are known for QGP, not so much for the late-stages
hadronic matter.

Another disclaimer is needed for the hydrodynamical
expressions we use. Gubser flow is a very attractive analytic
tool, saving us months of numerical studies, yet it is not
realistic enough and can at best be used for the QGP stage

of the collision, not the late hadronization stages we used it
for in this paper. So, the particular results we obtained cannot
be trusted beyond a qualitative level.
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APPENDIX: JACOBIAN DIP

There is the so-called Jacobian dip in the pseudorapidity
η = (1/2) ln[(p + Pl)/(p − Pl)] distribution as opposed to
true rapidity y = (1/2) ln[(E + Pl)/(E − Pl)]: indeed

dy

dη
= 1√

1 + m2/[pt cosh(η)]2
(A1)

but neither the magnitude nor the width of the observed dip
can be explained by it.
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