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Emission source functions in heavy ion collisions
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Three-dimensional pion and kaon emission source functions are extracted from hydrokinetic model (HKM)
simulations of central Au + Au collisions at the top Relativistic Heavy Ion Collider (RHIC) energy

√
sNN =

200 GeV. The model describes well the experimental data, previously obtained by the PHENIX and STAR
collaborations using the imaging technique. In particular, the HKM reproduces the non-Gaussian heavy tails
of the source function in the pair transverse momentum (out) and beam (long) directions, observed in the pion
case and practically absent for kaons. The role of rescatterings and long-lived resonance decays in forming
the mentioned long-range tails is investigated. The particle rescattering contribution to the out tail seems to be
dominating. The model calculations also show substantial relative emission times between pions (with mean
value 13 fm/c in the longitudinally comoving system), including those coming from resonance decays and
rescatterings. A prediction is made for the source functions in Large Hadron Collider (LHC) Pb + Pb collisions
at

√
sNN = 2.76 TeV, which are still not extracted from the measured correlation functions.

DOI: 10.1103/PhysRevC.88.064904 PACS number(s): 25.75.Gz, 24.10.Nz

I. INTRODUCTION

The common method for accessing spatio-temporal char-
acteristics of expanding superdense systems formed in ul-
trarelativistic heavy-ion collisions is the correlation inter-
ferometry (or correlation femtoscopy) technique [1–3]. It
is based on the connection between the size and shape of
the region where the particles are produced (from the one
side), and the form of the corresponding two-particle relative
momentum distribution (from another side). Physically this
connection originates from the quantum statistics effect of
symmetrization (antisymmetrization) of the two-particle wave
function, leading to the enchancement (suppression) of the
production of particles with close momenta. Femtoscopic
analysis utilizes the experimentally measured two-particle
momentum correlation function, which is constructed as the
ratio of the actual particle-pair distribution over the relative
momentum (where pairs are formed by the particles from
the same event) to the analogous distribution of the pairs
of particles from mixed events. This correlation function is
typically fitted with a certain analytical expression. In most
cases its quantum statistical component1 is supposed to be
Gaussian 1 + λe− ∑

i q2
i R2

i , but in the general case it depends
on the researcher’s assumptions about the emission function,
thus being model dependent. The correlation function fit gives
one the interferometry radii Ri , commonly interpreted as the
i-direction system’s homogeneity lengths [6,7]. It allows one
to estimate the important characteristics of the dynamics of
heavy ion collisions, such as the lifetime of the fireball created,
gradients of the collective velocities, duration of emission, etc.

*Corresponding author: sinyukov@bitp.kiev.ua
1Usually one supposes that contributions of the quantum statistical,

the final state interaction, and the non-femtoscopic correlations to
the full correlation function can be separately accounted for in the
fit [4,5].

In some sense a complementary method of obtaining infor-
mation about the space-time structure of the system from the
correlation measurements is known as source imaging [8–10].
It is based on the extraction of the time-integrated distribution
of the relative distance between particle radiation points in the
pair rest frame (PRF) from the measured correlation function.
In contrast to the standard approach, allowing us to determine
only the interferometry radii which are interpreted then in
the previously assumed model, source imaging reveals the
actual non-Gaussian source function, being in this sense model
independent. Then, once the source function is obtained, one
can readily fit it with different model expressions and extract
the corresponding parameters. Having the source function,
apart from the Gaussian interferometry radii, one will also
know the detailed source structure, which can likely deviate
from the Gaussian distribution, having a more complicated
shape. This fact can be caused by different reasons, such as
collision geometry, long-lived resonance contribution [11–13],
space-momentum correlations due to either collective motion
[14,15] or string fragmentation [16], etc. The source imaging
in combination with collision model simulations gives the
possibility to study the influence of these effects on the source
form. Another advantage of the imaging technique is that, in
contrast to the correlation function, the source function reflects
the properties of the emission region itself, refined from the
final state interaction (FSI) and quantum statistics (QS) effects.

In Ref. [17] the authors investigate the source breakup dy-
namics in Au + Au collisions at

√
sNN = 200 GeV, analyzing

two-pion source functions extracted from the experimental
data. They observed a specific power-law tail in the pair-
momentum and beam direction source function projections,
interpreted as evidence for the noticeable emission duration
time and long time delays between emissions from different
points of the source, in particular because of long-lived
resonance decays. The kaon source function, obtained in the
STAR Collaboration Au + Au collision experiment at a similar
energy [18] does not contain an analogous heavy tail, that
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probably indicates a lesser role of the resonance’s halo in the
kaon emission and its almost instantaneous nature.

The tails observed in the pion source function can be
interesting also in view of the activity devoted to the search of
the phase transition between the quark-gluon plasma (QGP)
and the hadron gas, which could be expected to take place
during the evolution of systems produced in ultrarelativistic
nuclear collisions [19]. The idea of such studies is that, due
to the soft equation of state (leading to the speed of sound
cs = ( ∂p

∂ε
)1/2
s close to zero, cs ≈ 0), which the system has

at the first-order phase transition, its expansion should slow
down and the lifetime should increase. The source function’s
non-Gaussian tails can be considered as the possible signal of
such prolonged system lifetime.

To detail the interpretation of the extracted experimental
data, one usually compares them with the results of calcula-
tions in different event generators, such as THERMINATOR [20]
or hadronic rescattering calculations [21] (HRC). Based on
such comparisons, one can see certain peculiarities of the
system evolution. Another way of using the model source
functions is by including them into the correlation function
fitting expressions, which account for the FSI effects, such
as the Lednický and Lyuboshitz analytical model [22]. Such
models are utilized to fit the experimental data and extract the
parameters characterizing the interaction between particles,
such as scattering lengths, effective radii, etc. This method
allows one to find out the characteristics of, e.g., strong inter-
action between particles of exotic species, which can hardly be
measured in ordinary scattering experiments, but are accessible
for the FSI correlation technique in relativistic heavy-ion
collisions (see, e.g., [23]). The analytical approximations to
the correlation function depend on both the source and the
interaction characteristics, that complicates the interpretation
of the experimental data, increasing the number of free
parameters in the fitting expression. Calculating the parameters
that describe the source separately in the event generator
simulations could facilitate and improve the reliability of the
interaction analysis.

However, each of the mentioned models lacks completeness
in the description of the matter evolution process and involves a
set of substantial simplifications. This complicates the analysis
of the physical reasons of observed effects and most probably
leads to missing some features of the explored phenomena. For
example, in most THERMINATOR calculations the simple blast-
wave [24] parametrization for the freeze-out hypersurface and
flow is used, and particle rescatterings are not implemented.
The HRC includes rescattering treatment, but accounts only
for eight types of resonance decays and assumes kinematic
evolution of particles just from the time t = 0 fm/c, at which
the simple parametrization for the initial particle momenta and
coordinate distributions is exploited.

In this paper we present an analysis of the source functions
calculated in the hydrokinetic model (HKM) [25–27], exactly,
in its hybrid version (hHKM). The latter includes a pure hydro-
dynamic stage, passing on to the hydrokinetic one, describing
the gradual liberation of particles from an expanding fluid,
which is then switched on a spacelike hypersurface to the
UrQMD hadronic cascade. Thus, the model provides a realistic
description of the full process of evolution of the matter

produced in relativistic nuclear collisions and is known to
successfully describe a wide class of various observables [28].
The simulations were performed to describe the results for
20% most central Au + Au collisions at

√
sNN = 200 GeV

at the Relativistic Heavy Ion Collider (RHIC) and to make a
prediction for 5% most central Large Hadron Collider (LHC)
Pb + Pb collisions at

√
sNN = 2.76 TeV.

In Sec. II we briefly discuss the physical meaning of the
emission source function and describe the idea of the source
imaging technique. In Sec. III we show the results of our
calculations, compare them with experimental data, and give
our interpretation. In Sec. IV we summarize our results and
make concluding remarks.

II. SOURCE FUNCTION AND SOURCE
IMAGING METHOD

As follows from the previous section, the emission source
function is an important object used in the analysis of the space-
time structure of nuclear collisions. In theoretical studies based
on computer simulations one can easily extract the simulated
source function directly from the event generator output, as we
do in the present article. However, in experiments one needs
to utilize the source imaging technique to extract the source
function from the measured correlation function C(p, q). To
make the relation of the source function to the experimental
observables more clear, in this section we remind the reader
of definition of the source function and the basic ideas of the
source imaging method.

Analyzing experimental data, the researcher aims to extract
from it all possible information about the explored object.
Studying particle emission in a relativistic nucleus-nucleus
collision one would like to know the emission function
g(x, p) = d7N

d4xd3p
: the distribution of the emitted particles over

the space-time coordinates and momentum components, which
would provide exhaustive information about the analyzed
process. However, in practice it turns out that the maximum
possible knowledge about this process, obtainable in typical
experiments where the single-, two-, and even many-particle
momentum spectra are measured, is limited, so that g(x, p) and
even the less informative Wigner function fW (x, p) = d6N

d3xd3p

cannot be reconstructed in a model-independent way [29].
To see this, one can write the following expression for the

Wigner phase-space density function fW (x, p) [30]:

fW (x, p) = (2π )−3
∫

d4qδ(q · p)e−iqx〈a†
p−q/2ap+q/2〉, (1)

justified for the case of weakly interacting particles. Here
a
†
k , ak are the creation and annihilation operators of particles

with momentum k, q = p1 − p2, p = p1+p2

2 , and p1, p2 are
the particle momenta. The delta function δ(q · p) under the
integral sign corresponds to the assumed mass-shell constraint,
and the brackets 〈· · · 〉 mean averaging over the density matrix
associated with the spacelike hypersurfaces, at which particles
become almost free (for sudden freeze-out the thermal density
matrix at the freeze-out hypersurface can be used).
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One can see that, to restore the Wigner function, one should
have the possibility to extract the quantity 〈a†

p−q/2ap+q/2〉. But
can it be done, based on common experimental data? Typically
in the experiment one measures the single-particle W (p) and
the two-particle W (p1, p2) momentum spectra to construct the
two-particle correlation function

C(p1, p2) = W (p1, p2)

W (p1)W (p2)
. (2)

The spectra can be expressed through a
†
p and ap,

W (p) = E
d3N

d3p
= 〈a†

pap〉,

W (p1, p2) = E1E2
d6N

d3p1d3p2
= 〈

a†
p1

a†
p2

ap2ap1

〉
= W (p1)W (p2) + ∣∣〈a†

p1
ap2

〉∣∣2
,

where it is supposed that the four-operator average
〈a†

p1a
†
p2ap2ap1〉 can be decomposed into the sum of products of

two-operator ones,〈
a†

p1
a†

p2
ap2ap1

〉 = 〈
a†

p1
ap1

〉 〈
a†

p2
ap2

〉 + 〈
a†

p1
ap2

〉 〈
a†

p2
ap1

〉
. (4)

From the Eq. (3) it follows that, having measured single- and
two-particle momentum spectra, one can determine only the
absolute value of 〈a†

p−q/2ap+q/2〉, so it will be known only
to the phase factor.2 This information is surely insufficient to
restore the Wigner function (1).

The emission function g(x, p) is connected with the
Wigner function through the integral equation [below x0 ≡
(tσ0 (x0), x0 = x + (p/p0)[tσ0 (x0) − t]) corresponds to the por-
tion of the system, which propagates without collisions until
some time t starting from the initial hypersurface σ0, x ′ ≡
(t ′, x + (p/p0)(t ′ − t))]

fW (x, p) = fW (x0, p) + p0
∫ t

t0

dt ′g(x ′, p), (5)

so its reconstruction makes the task even harder. That is
why the analysis of the space-time structure of the emission
process has to be performed in terms of other (less informative)
characteristics. The source function S(r∗) is one of them. It is
usually defined as a time-integrated pair separation distribution
in the pair rest frame.

In the experiment S(r∗) is restored from the measured corre-
lation function C(p, q). To figure out the connection between
S(r∗) and C(p, q), one can express both of them via the
emission function g(x, p). If the smoothness approximation
is assumed, the spectra (3) can be written as

W (p) = p0
∫

d4x g(x, p),
(6)

W (p1, p2) ≈p0
1p

0
2

∫
d4x1d

4x2g1(x1, p1)g2(x2, p2)|ψ(q̃, r)|2,
where ψ(q̃, r) is a reduced Bethe-Salpeter amplitude corre-
sponding to the relative motion of the particles making the

2It can be shown that the same situation takes place even if one
includes many-particle spectra into consideration.

pair with the generalized relative four-momentum q̃ = q −
p(q · p)/p2 and separation r . For the case of identical particles
it should be replaced by the (anti)symmetrized amplitude,
ψ(q̃, r) → [ψ(q, r) ± ψ(−q, r)]/

√
2. Here one supposes also

that the two-particle emission function is defined only by two-
particle interaction, whereas other effects such as many-body
interactions or event-wide correlations are neglected.

After substitution of (6) into (2) the correlation function
reads as

C(p, q)

= 1 +
∫

d4x1d
4x2g1(x1, p1)g2(x2, p2)(|ψ(q̃, r)|2 − 1)∫
d4x1g1(x1, p1)

∫
d4x2g2(x2, p2)

.

(7)

Then one can introduce the relative distance distribution
function s(r, p1, p2) as the convolution of normalized emission
functions,

s(r, p1, p2) =
∫

d4Rg1(R + r/2, p1)g2(R − r/2, p2)∫
d4Rg1(R,p1)

∫
d4Rg2(R,p2)

=
∫

d4Rg̃1(R + r/2, p1)g̃2(R − r/2, p2), (8)

where a tilde denotes the normalized emission function, R =
x1+x2

2 , and r = x1 − x2.
The femtoscopic correlations take place mainly between the

particles with small relative particle velocities, v1 ≈ v2. At this
approximation for a pair with total momentum P = p1 + p2

one has [22] p1 ≈ m1
m1+m2

P and p2 ≈ m2
m1+m2

P in (8), so that
s(r, p1, p2) does not depend on q. Assuming also the on-shell
approximation, P 0 =

√
(m1 + m2)2 + P2, one obtains

s(r, P) =
∫

d4R g̃1

(
R + r/2,

m1

m1 + m2
P
)

× g̃2

(
R − r/2,

m2

m1 + m2
P
)

. (9)

In the pair rest frame, which we mark by an asterisk—where
q̃ = {0, q∗}, P∗ = 0, and supposing the equal-time approx-
imation to be justified, t∗ = t∗1 − t∗2 = 0, in the argument
of ψ(q̃, r)—one can substitute the Bethe-Salpeter amplitude
in (7) by the stationary solution of the scattering problem
ψ(q∗, r∗). Such a substitution is valid provided that the
condition [22] |t∗| 
 m2,1r

∗2 for sgn(t∗) = ±1 respectively is
fulfilled. This is usually true for heavy particles such as kaons
or protons. For pions produced in typical nuclear collisions,
the equal-time approximation leads to a slight overestimation
(<5%) of the strong FSI effect and it does not influence the
leading zero-distance (r∗ 
 |a|, a being the pair Bohr radius)

064904-3



V. M. SHAPOVAL, YU. M. SINYUKOV, AND IU. A. KARPENKO PHYSICAL REVIEW C 88, 064904 (2013)

effect of the Coulomb FSI [22,31]. Then one can connect
the correlation function with the time-integrated s(r∗, P∗),
obtaining the so-called Koonin equation [22,31–36],

R(q∗, 0) = C(q∗, 0) − 1

=
∫

d3r∗
∫

dt∗s(r∗, 0)[|ψ(r∗, q∗)|2 − 1]

=
∫

d3r∗S(r∗)K(r∗, q∗). (10)

where the function K(r∗, q∗) represents the kernel of the
integral transform and S(r∗) = ∫

dt∗s(r∗, 0) is the source
function. The latter is interpreted as the probability density
of emission of two particles at the relative distance r* in their
rest frame. Thus, it is normalized to unity,∫

d3r∗S(r*) = 1. (11)

Extraction of S(r*) from the correlation function (7)
requires inverting the integral relation (10). This operation is
the central problem of imaging. It appears that computationally
it is easier to reduce this three-dimensional problem to the
series of one-dimensional ones. Such simplification can be
achieved using the expansion of R(q*), S(r∗), and K(r∗, q∗)
in terms of spherical Ylm(	) or Cartesian Al(	) harmonics:

Ylm(	) =
√

2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos θ )eimφ, (12)

where P m
l (cos θ ) are associated Legendre polynomials,

l = 0, 1, 2, . . . and m = −l, . . . , l;

Al(	) =
li /2∑

mi=0

(
− 1

2

)m (2l − 2m − 1)!!

(2l − 1)!!

lx!

(lx − 2mx)!mx!

× ly!

(ly − 2my)!my!

lz!

(lz − 2mz)!mz!

× nlx−2mx
x n

ly−2my

y nlz−2mz
z . (13)

Here n = {nx, ny, nz} is a unit vector in the 	 direction,
lx + ly + lz = l, mx + my + mz = m, and (−1)!! = 1. Carte-
sian harmonics Al(	) are linear combinations of spherical
harmonics Ylm(	) corresponding to one l and different m.

The function decomposition in, for example, spherical
harmonics looks like

R(q∗) =
√

4π
∑
lm

R∗
lm(q∗)Ylm(	q∗ ),

S(r∗) =
√

4π
∑
lm

S∗
lm(r∗)Ylm(	r∗ ), (14)

K(q∗, r∗) = 4π
∑
lm

Kl(q
∗, r∗)Ylm(	q∗ )Y ∗

lm(	r∗ ),

where Rlm(q∗) = 1√
4π

∫
d	q∗Ylm(	q∗ )R(q∗) and Slm(r∗) =

1√
4π

∫
d	r∗Ylm(	r∗ )S(r∗) are called spherical correlation and

source moments respectively. Here and below in this section
q∗, r∗ mean magnitudes of the corresponding three-vectors.
Substitution of the obtained expansions (14) into Eq. (10)
gives one the series of one-dimensional integral equations with

respect to source function spherical moments Slm(r∗) :

Rlm(q∗) = 4π

∫
dr∗r∗2Slm(r∗)Kl(q

∗, r∗). (15)

Apart from simplifying imaging calculations, the decompo-
sition of the correlation function in harmonics, in contrast to its
one-dimensional projections, represents complete information
about the three-dimensional correlation structure and provides
focused insight into the specific physical properties of the
emission process (see, e.g., [37]).

For instance, the R00 moment represents angle-integrated
correlation, being sensitive mainly to the invariant radius
Rinv. The moments corresponding to l = 1 provide access to
“Lednicky offset” [38], telling us which sort of particles was
emitted earlier. They vanish in the case of identical particles
due to symmetry. R20 is sensitive to the ratio of transversal and
longitudinal source sizes. The more it differs from zero, the
stronger is the asymmetry that takes place between these sizes.
The moment R22 corresponds to the outward-to-sideward
system size ratio. As for the moments with l = 3, they
contain information about the so-called boomerang triaxial
deformation and also disappear for identical particles. The
moments with l � 4 provide rather detailed information about
the source and are not intensively studied at the moment.
Also, the harmonic decomposition is more directly connected
with the source shape [39] and simplifies the analysis of
non-femtoscopic correlations [40].

As for solving the system (15), in the most simple cases,
when the analyzed correlation function contains information
only about the quantum statistics correlations, it can be
performed analytically using the inverse integral transform. In
this case the kernel moments Kl(q∗, r∗), containing spherical
Bessel functions jl , define the Fourier-Bessel transform, which
can be easily inverted using the completeness relation for jl ,

Slm(r∗) = 4π

∫ ∞

0
dq∗q∗2K−1

l (q∗, r∗)Rlm(q∗), (16)

where K−1
l (q∗, r∗) is the inverse transform kernel. But in the

general case, when the kernel K(q∗, r∗) is more complicated,
K−1

l (q∗, r∗) cannot be found in an analytical form. Instead of
finding it, one can discretize Eq. (15) and solve it numerically:

Rlm(qi) = 4π
∑

j

�rr2
j Slm(rj )Kl(qi, rj )

=
∑

j

Kl
ij S

lm
j , (17)

where i = 1, . . . , Nq , j = 1, . . . , Nr with Nq and Nr being the
numbers of discrete points where the values of Rlm(q∗) and
Slm(r∗) are specified. Since generally Nq �= Nr , the obtained
system of linear equations can be under- or overdetermined.
So, one usually tries to find the values Sj (for each l, m) using
the method of χ2minimization:

χ2 =
∑

i

(∑
j KijSj − Ri

)2

σ 2
i

(18)

with σ 2 being the variance of observed correlation moments
Rlm. Equating the χ2 derivative with respect to Sj to zero, one
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obtains the following series of equations:∑
ij

1

σ 2
i

(KijSj − Ri)Kij = 0. (19)

Its solution in matrix form is [8]

S = (KT K)−1KT R. (20)

However, the integral equation (15) that has to be solved is
a homogeneous Fredholm integral equation, which is actually
an ill-posed problem for numerical solution because of the
singular or ill-conditioned K matrix. Singularity in the context
of numerical calculations means that the matrix has one or
more eigenvalues negligibly small as compared to the others.
It leads to instability of the resulting solution, i.e., small
uncertainties in the Ri values can cause big uncertainties in Sj .
Thus, the solution will not be a smooth function and will be
different depending on the solving algorithm. This problem is
quite general and is well known for the whole inverse problem
class. There are certain methods that can be applied to increase
the solution stability [9], but their successful application,
resulting in an unambiguous imaging problem solution, i.e.,
extracting the source function from the experimental data, is a
nontrivial and complicated task.

Fortunately, to obtain the model source function from the
event generator one does not need to utilize the imaging
technique, since in this case the source function can be
extracted from the program output straightforwardly. The next
section contains the results of a source function calculation
in the hydrokinetic model, its interpretation, and comparison
with experiment.

III. RESULTS AND DISCUSSION

The hydrokinetic model [25–27] simulates the evolution
of matter formed in the relativistic heavy-ion collisions. The
full process is supposed to pass in two stages: a continuous
medium expansion, described in the ideal hydrodynamics
approximation, which then goes over to gradual system
decoupling, described in the hydrokinetic approach. At the first
stage matter is supposed to be in local chemical and thermal
equilibrium. Here we use the lattice-QCD inspired equation of
state for the quark-gluon phase [41], matched via a crossover-
type transition with the hadron resonance gas, consisting of
all 329 well established hadron states made of u, d, and s
quarks. As the system expands and cools down, it reaches
the second stage, supposed to begin at the chemical freeze-out
isotherm Tch = 165 MeV. At temperatures T < Tch the system
gradually loses both chemical and thermal equilibrium, and the
particles begin to continuously escape from the medium. In the
hybrid model version (hHKM) the hydrokinetic description of
the second stage is switched to an ultrarelativistic quantum
molecular dynamics (UrQMD) hadron cascade on a spacelike
hypersurface, situated behind the hadronization one. Another
option consists of direct switching to the cascade just from
the hydrodynamics, at the hadronization hypersurface Tch =
165 MeV. We use this particular variant in the current analysis,
relying on the result of [28], where the comparison of one-
and two-particle spectra, calculated at both types of matching
hydrodynamic and cascade stages, showed a quite small

difference between them in the considered case of top RHIC
and LHC energies. The reason for the similarity is that for
the utilized event-averaged initial conditions the contribution
from the negative number of the particles crossing nonspace-
like sectors of the matching hydro-UrQMD hypersurface is
quite small, ∼1–2 percent. This is because of very high
hydrodynamic velocities (0.7c) of the fluid elements crossing
nonspacelike parts of the chemical freeze-out isotherm. Then
the number of the particles that move inside the fluid belongs to
a tail of the relativistic (Boltzmann) spectra and their negative
contributions in the Cooper-Frye formula are negligible.

At the switching hypersurface a set of particles is generated
according to the corresponding distribution function using
either the Cooper-Frye prescription [42] (for sudden switching
from hydrodynamics to UrQMD) or the technique of Boltz-
mann equations in integral form [26,27] (if hydrokinetics is
involved). This set serves as input for UrQMD, which performs
particle rescatterings and decays. The final model output is
again a collection of particles, characterized by their momenta
and the points of their last collision.

HKM showed itself to be successful in a simultaneous
description of kaon and pion femtoscopy together with cor-
responding momentum spectra at top RHIC and LHC energies
[27,28]. So we can expect the source functions extracted from
the model also to be realistic and reliable. Here we present
the pion and kaon source functions generated by HKM using
parameters adjusted for description of the data from the RHIC
20% most central Au + Au collisions at

√
sNN = 200 GeV.

Also the predictions concerning the LHC 5% most central
Pb + Pb collisions at

√
sNN = 2.76 TeV are demonstrated.

We work in the central rapidity slice and assume longitudi-
nal boost invariance. Early thermalization at proper time τ =
0.1 fm/c is supposed. In the transverse plane we use a Glauber
Monte Carlo (MC) initial energy density profile generated by
the GLISSANDO code [43]. The fluctuations of initial conditions
tilt in each event the principal axes of the ellipse of inertia and
shift the center of mass relative to the reaction-plane coordinate
system. To account for this effect, we superpose the principal
axes by rotation and recentering of each initial distribution, and
after that take averages over the ensemble of events (so-called
variable geometry analysis, also implemented as an option
in GLISSANDO). So we use event-averaged initial conditions.
Also we suppose small but nonzero initial transverse flow
which is taken to be linear in the transverse radius rT [28]:
yT = α rT

R2(φ) . Here R(φ) is a system’s homogeneity length

in the φ direction; we take it as the r.m.s. R(φ) = √〈r2〉φ
along an azimuthal angle φ. Such a small initial flow mimics
the shear viscosity effects at the system evolution based on
perfect hydrodynamics as well as the effects of event-by-event
fluctuating hydrodynamics solutions [28]. Maximal initial
energy density ε0 is chosen to reproduce the experimental
mean charged particle multiplicity. Thus, ε0 and the coefficient
α are the only fitting parameters of the model. For the case
of Au + Au collisions at

√
sNN = 200 GeV we take the

parameters from [28] corresponding to the best fit for the pion,
kaon, and proton spectra and pion interferometry data, ε0 =
430 GeV/fm3 and α = 0.45 fm (the maximal initial transverse
velocity at the very periphery of the system is then 0.05).
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FIG. 1. (Color online) The angle-averaged emission functions p0τ 〈g(x, p)〉φ (fm−3 GeV−2) for pions (a) and kaons (b) from HKM
simulations of Au + Au collisions at the top RHIC energy, 0.2 < pT < 0.36 GeV/c, |y| < 0.35, c = 0%–20%.

It is worth noting that we are not planning to analyze and
demonstrate how much worse will be results with other initial
conditions. Our viewpoint is as follows. During the 1990s
and 2000s great efforts were made to clarify a spatiotemporal
structure of particle emission within hydrodynamics-inspired
parametrizations based on the Cooper-Frye prescription, e.g.,
the “blast-wave” parametrization. This trend has not brought
convincing success in a complex description of different
observables; moreover, it collides with principal problems. It is
clear now that the emission structure should be analyzed within
a continuous emission of particles in dynamical evolutionary
models, which are still quite different. One of our tasks is to
restore the full emission function which describes simultane-
ously spectra, their azimuthal asymmetry, Gaussian fits for the
Bose-Einstein correlation functions, the non-Gaussian source
functions, etc. In case of success, no matter how advanced
future models will be, they will have a reference point: the
spatiotemporal structure of an emission function that describes
the experiment well.

In Fig. 1 we demonstrate plots of pion and kaon angle-
averaged emission functions p0τ 〈g(x, p)〉φ for 0.2 < pT <
0.36 GeV/c, calculated in HKM at the selected initial
conditions described above for the top RHIC energy.

The source functions are calculated from the event-
generator output according to the formula

S(r∗) =
∑

i �=j δ�(r∗ − r∗
i + r∗

j )∑
i �=j 1

. (21)

Here r∗
i and r∗

j are the particles’ space positions, and r∗ is the
particles’ separation in the pair rest frame, δ�(x) = 1 if |x| <
�r/2 and 0 otherwise, and �r is the size of the histogram bin.
The results of the calculation depend weakly on the histogram
bin size (increasing the bin size twice leads to an increase of
the extracted source radius of ∼1.5% and does not noticeably
affect the heavy tail shape). In this paper we chose the bin size
to be the same as in the experimental plots from [17].

In the PHENIX experiment [17] the measured correlation
function is decomposed into Cartesian correlation moments,

R(q) =
∑

l

∑
α1···αl

Rl
α1···αl

(q) Al
α1···αl

(	q), (22)

where l = 0, 1, 2, . . . , αi = x, y or z, Al
α1···αl

(	q) are
Cartesian harmonic basis elements (	q is the solid angle in

q space), and Rl
α1···αl

(q) are Cartesian correlation moments
given by

Rl
α1···αl

(q) = (2l + 1)!!

l!

∫
d	q

4π
Al

α1···αl
(	q) R(q). (23)

The obtained correlation moments then are used as the input
data for the source imaging method. In [17] only the even
moments up to order l = 6 were utilized, whereas the odd
moments were found to be consistent with zero, as was
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FIG. 2. Two-pion correlation moments Rxlxyly (q) obtained from
the HKM model (solid lines) and from the data measured by PHENIX
(open circles), 0.2 < pT < 0.36 GeV/c, |y| < 0.35, c = 0%–20%.
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FIG. 3. Pion (top) and kaon (bottom) source function projections extracted from the HKM model compared with the ones obtained by
PHENIX and STAR from the experimental correlation data using the imaging procedure, 0.2 < pT < 0.36 GeV/c, |y| < 0.35 for pions and
|y| < 0.5 for kaons, c = 0%–20%.

expected from symmetry considerations, and the moments of
higher order were found to be negligible.

To demonstrate the model’s reliability in describing the
experimental data we compare in Fig. 2 the simulated two-pion
Cartesian correlation moments with the experimental ones.
Among all the moments used in the correlation function
decomposition only ten moments presented in the figure
are independent, and the rest can be expressed through
these ten. Here Rxlxyly denotes the Cartesian correlation mo-
ment corresponding to l = lx + ly , α1 = · · · = αlx = x, and
αlx+1 = · · · = αl = y. As one can see, the HKM calculation
result is in a good agreement with the experiment.

The comparison of projections of the three-dimensional
pion and kaon source functions calculated in HKM with the
PHENIX and STAR experimental data can be found in Fig. 3.3

Here the out-side-long coordinate system is used, where the
out axis is directed along the pair total momentum, the long

3The demonstrated HKM source functions (as well as the correlation
moments in the Fig. 2) are scaled by a factor λexp/λHKM < 1,
which is the ratio of the experimental λexp and the model λHKM

correlation function suppression parameters, which define also the
source function intercept. In the present study we do not aim to
analyze in detail the reasons for disagreement between both λ values
(the smaller λexp value could be caused by, e.g., misidentification of
a certain fraction of particles in the experiment, etc.). Instead we
would like to focus on exploring the space-time extent of the source,
reflected in the shape of the source function, which is reproduced
well in our simulations as one can see.

direction coincides with the beam axis, and the side axis is
perpendicular to the latter two ones.

We can see that the source functions are reasonably well re-
produced by HKM both for pions and kaons, including the non-
Gaussian tails in the out and long directions for the pion case.
The range of the S(rlong) projection reflects the source lifetime,
and S(rout) is affected by several factors. Since the out direction
corresponds to the pair momentum in a longitudinally comov-
ing system (LCMS), the tail in S(rout) can be partially ex-
plained by the Lorentz dilation at boost from the LCMS to the
pair center-of-mass system (PCMS). However, the estimates
made in [44] show that, even at the maximal Lorentz dilation,
when the Rout value in the PCMS is γ times larger than the
LCMS one, the observed long-range source component cannot
be explained only by such a kinematic transformation. Another
possible explanation consists of associating the long-range tail
with long delays between particle emission times due to a halo
of secondary particles from long-lived resonance decays and
due to hadron rescatterings. The latter may cause under certain
conditions the so-called anomalous diffusion of particles,
characterized by an increasing-in-time mean free path [45].

Let us investigate the role of secondary particles from the
long-lived resonances decays and particle rescatterings in the
formation of the observed heavy tail. In Fig. 4 we present
the different projections of three uniformly normalized source
functions, constructed from different model outputs (open
markers): the full one, the model output with rescatterings
turned off, and the one containing only primary particles
emitted at the hadronization hypersurface, i.e., with both
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lines correspond to the Gaussian fits to corresponding HKM results.

rescatterings and resonances decays turned off. Along with
the model data we also show the corresponding Gaussian fits
(solid lines). Considering the out-direction profile, one can
see that the full model output has a large non-Gaussian tail,
while in the case of no rescatterings it is quite reduced. The
primary particles’ source function is almost Gaussian in the
transverse direction. It seems that the exclusion of rescatterings
reduces the out tail more significantly than the exclusion of the
resonance decay contribution, so the rescatterings seem to play
the main role in the tail formation. Also one can conclude that
the role of the Lorentz boost to the PCMS should be of minor
importance, since the tail is already practically absent for the
source function built from primary particles in the PCMS,
so that accounting for the Lorentz transformation can only
change the Gaussian interferometry radius Rout, but cannot

additionally reduce the S(rout) deviation from Gaussian form
by any noticeable extent.

The reason for a slight out and long tails overestimation
obtained in HKM as compared to the experiment is not
completely clear at the moment. To some extent it could
be possibly explained by the peculiarities of rescattering
treatment for resonances in the UrQMD hadronic cascade.
However, most probably it is mainly connected with the
substance of the experimental imaging procedure, described
in the Sec. II. In the experiment one does not measure
the source function itself, but restores it from the measured
correlation function. The latter is typically suppressed due
to the misidentification problem and due to the particles
coming from long-lived resonance decays, which contribute
to the single-particle spectrum, but are almost imperceptible

 (fm)outr
0 10 20 30 40 50 60 70

)
-3

 fm
-7

) 
(1

0
ou

t
S

(r 10

210

(a)

 (fm)sider
0 10 20 30 40 50 60 70

)
-3

 fm
-7

) 
(1

0
si

de
S

(r 10

210

(b)

 (fm)longr
0 10 20 30 40 50 60 70

)
-3

 fm
-7

) 
(1

0
lo

ng
S

(r 10

210

(c)

 (fm)outr
0 10 20 30 40 50 60 70

)
-3

 fm
-7

) 
(1

0
ou

t
S

(r

10

210

310
(d)

 (fm)sider
0 10 20 30 40 50 60 70

)
-3

 fm
-7

) 
(1

0
si

de
S

(r

10

210

310
(e)

 (fm)longr
0 10 20 30 40 50 60 70

)
-3

 fm
-7

) 
(1

0
lo

ng
S

(r

10

210

310
(f)

FIG. 5. Pion (top row) and kaon (bottom row) source function projections from HKM with parameters adjusted for Pb + Pb LHC collisions
at

√
sNN = 2.76 TeV, c = 0%–5%, 0.2 < pT < 0.36 GeV/c, |y| < 0.5. Solid lines represent the Gaussian fits to the corresponding HKM

calculations, presented by circles.
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in two-particle spectrum measurement. Hence, the source
function, restored from such a suppressed correlation function,
should have a smaller tail as compared to the actual one. In
our calculations we build the source function directly from
the event-generator output. In such a way we do not face
the above-mentioned problems arising in the experiment, and
thus we should obtain a more realistic, higher tail in the source
function.

As for interpreting the observed tails as the signals of the
phase transition, the situation is not so easy. Different criteria
for detecting the transition occurrence were proposed, such as
the Bertsch criterion Rout/Rside � 1 or the large Rlong criterion.
However, in practice there exist certain difficulties in their
application. For example, if the matter expansion starts from
a state of pure phase and then at some stage of the evolution
the system undergoes a phase transition, fast matter expansion
will continue out of inertia, and we will not find the transition
signs in the measured data. To see these signs, one would have
to create such initial conditions for matter evolution that it
would start from a transient state where different phases exist
simultaneously. Apart from this, the application of the Bertsch
criterion is troubled by the likely existence of a positive rout–t
correlation in the sectors of the freeze-out hypersurface, where
the particles are emitted from a surface of the hydrodynamic
tube, that causes the negative sign of the space-time correlation
contribution to Rout and in such a way reduces the observed
Rout value [46,47]:

R2
out(p) = 〈(�rout − vout�t)2〉p

= 〈
�r2

out

〉
p

+ v2
out〈�t2〉p − 2vout〈�rout�t〉p. (24)

This means that the observed Rout/Rside ≈ 1 ratio does not
necessarily indicate a short emission duration. However, one
can try to extract the mean emission duration as well as the
system’s lifetime from the event-generator calculations.

In [17] the experimental data for pions are presented
together with results of simulations in the THERMINATOR event
generator with blast-wave parametrization for the freeze-out
hypersurface, τ = τ0 + aρ, where τ0 is the source proper
breakup time, ρ is the transverse radial coordinate, ρ � ρmax,
and a is a free parameter describing space-time correlations.
The simulations give the best data description when the
resonances decays are turned on and particle emission is
supposed to take place from the family of hypersurfaces
defined by different breakup proper times τ ′

0, distributed

according to exponential law, dN
dτ ′

0
= �(τ ′

0−τ0)
�τ

exp( τ ′
0−τ0

�τ
). The

width �τ is interpreted then as the mean emission duration
time in the rest frame.4

The break-up proper time τ0 ∼ 9 fm/c and small but
nonzero proper emission duration in the rest frame �τ ∼
2 fm/c, for which simulation results are closest to the
data, appear to be incompatible with the first-order transition
scenario [48,49], but can point to a crossover phase transition
[19]. Finite emission duration in the used parametrization (and,

4One can say that such a parametrization efficiently accounts for
particle rescatterings, which are not implemented in THERMINATOR,
but seem to strongly influence the measured source function.

partly, the resonance decays contribution) leads to a quite
appreciable pion emission time differences in the LCMS, with
〈|�tLCMS|〉 ≈ 12 fm/c.

As for the hybrid HKM, the crossover phase transition is
assumed in the model from the beginning in the equation of
state for the hydrodynamics stage. We use the isotherm Tch as
the single freeze-out hypersurface, which in the case of top
RHIC energies spreads in proper time up to τmax ≈ 7 fm/c,
and the mean LCMS emission time difference for pions in
our calculations is 〈|�tLCMS|〉 = 13 fm/c including emission
from resonances and after rescatterings, which is apparently in
accordance with the results obtained within the THERMINATOR

parametrization.
Finally, in Figs. 5 and 6 we show our predictions concerning

source function and Cartesian correlation moments Rxlxyly (q)
for the case of 5% most central LHC Pb + Pb collisions at the
energy

√
sNN = 2.76 TeV. For these calculations we take the

same α = 0.45 fm as for the RHIC case, and the maximal
energy density at starting time τ = 0.1 fm/c is equal to
ε = 1300 GeV/fm3. In contrast to the RHIC case, these LHC
source functions and correlation moments are demonstrated as
is, not scaled by the factor λexp/λHKM. We see that, according
to our calculations, the kaon source functions at LHC also
have to be closer to Gaussian shape, whereas for the pion case
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the source function should have a heavy tail. Also the source
functions for the case of LHC energy are wider than the ones
for the RHIC case that corresponds to the larger homogeneity
lengths in the LHC case, a more prolonged rescattering stage,
and so prolonged particle emission as is expected at increasing
collision energy.

IV. CONCLUSIONS

In this paper we considered the analysis of heavy ion
collision space-time structure in terms of emission source
functions, or a time-integrated particle-emission-points sepa-
ration distribution related to the pair rest frames. Experimental
source functions serve as model-independent characteristics
of the size and shape of the emission region, separated from
the particle interaction effects. Restored from the measured
correlation functions with a sophisticated source imaging
technique, experimental source functions can be compared
with the model ones, directly extracted from the event
generators of a particular model.

We presented the results of pion and kaon source func-
tion simulations within the hydrokinetic model (HKM) for
semicentral Au + Au collisions at top RHIC energy

√
sNN =

200 GeV together with the predictions for the central LHC
Pb + Pb collisions at

√
sNN = 2.76 TeV. The results for RHIC

are in good agreement with the experimental data.
The long-range power-law tail in the pair momentum

direction, observed in pion source functions, can be explained
by the combined influence of secondary particles coming from
the long-lived resonance decays and particle rescatterings,

whose contribution seems to be dominating. The role of the
kinematic transformation to the pair rest frame seems to be
of minor importance. The model calculations also point to
substantial emission time differences for pion pairs that should
take place in the experiment.

We also demonstrate the spatio-temporal structure of pion
and kaon emission (Fig. 1), with which one can simultaneously
well describe not only the observed spectra, elliptic flow,
and Gaussian interferometry radii, but also detailed emission
characteristics, such as the non-Gaussian source functions.

The behavior of the predicted source functions for the LHC
case is qualitatively similar to the RHIC one, including the
presence of heavy tails for pions and an almost Gaussian source
shape for kaons. Quantitatively, the LHC source functions are
wider than the ones at RHIC, indicating larger homogeneity
lengths and a prolonged particle rescattering stage.
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[15] S. Y. Panitkin and D. A. Brown, Phys. Rev. C 61, 021901(R)

(1999).

[16] B. Andersson and W. Hofmann, Phys. Lett. B 169, 364
(1986).

[17] S. Afanasiev et al. (PHENIX Collaboration), Phys. Rev. Lett.
100, 232301 (2008).

[18] P. Chung (STAR Collaboration), PEPAN Lett. A 8, 219 (2011),
arXiv:1012.5674; L. Adamczyk et al. (STAR Collaboration),
Phys. Rev. C 88, 034906 (2013), arXiv:1302.3168.

[19] R. A. Lacey, Braz. J. Phys. 37, 893 (2007); 35, 104139
(2008).

[20] A. Kisiel, T. Taluc, W. Broniowski, and W. Florkowski,
Comput. Phys. Commun. 174, 669 (2006).

[21] T. J. Humanic, Nucl. Phys. A 715, 641c (2003); Phys. Rev. C
73, 054902 (2006).
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