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Isoscalar giant monopole resonance in Sn isotopes using a quantum molecular dynamics model
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The isoscalar giant monopole resonance (GMR) in Sn isotopes and other nuclei is investigated in the framework
of the isospin-dependent quantum molecular dynamics (IQMD) model. The spectrum of GMR is calculated by
taking the rms radius of a nucleus as its monopole moment. The peak energy, the FWHM, and the strength of
the GMR extracted by a Gaussian fit to the spectrum have been studied. The GMR peak energies for Sn isotopes
from the calculations using a mass-number-dependent Gaussian wave-packet width σr for nucleons are found
to be overestimated and show a weak dependence on the mass number compared with the experimental data.
However, it is found that experimental data of the GMR peak energies for 56Ni, 90Zr, and 208Pb as well as Sn
isotopes can be nicely reproduced after taking into account the isospin dependence in isotope chains in addition
to the mass-number dependence of σr for nucleons in the IQMD model calculation.
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I. INTRODUCTION

The isoscalar giant monopole resonance (GMR), known as
the so-called breathing mode, is one of the collective modes of
nuclei. In the past decades, GMR was extensively studied both
theoretically [1–10] and experimentally [11–15]. Especially,
a strong correlation between the peak energy of GMR and
the nuclear incompressibility K0 at the nuclear saturation
density was found [16]. The studies from both relativistic and
nonrelativistic models have reached a consensus on the value
of the nuclear incompressibility at K0 ∼ 240 ± 10 MeV [2–4].

Recently, GMR along the Sn isotopic chain was studied
experimentally [12–14]. From the analysis based on the GMR
data for Sn isotopes, the asymmetry term of the nuclear in-
compressibility was constrained, i.e., Kτ ∼ −550 ± 100 MeV
[12]. Similar analysis on the GMR data in the Cd isotopes
gave a preliminary value of Kτ ∼ −555 ± 75 MeV [17].
Comparison between the experimental data and the theoretical
results has indicated that models which can reproduce the peak
energies of GMR in 90Zr, 144Sm, and 208Pb overestimate those
in Sn isotopes. This realization leaves a puzzling question:
Why is tin so soft? [5]. In Ref. [1], the effect of pairing
correlations on the peak energy of GMR was considered.
However, the result that the peak energies of GMR in Sn
isotopes are shifted by about 100–150 keV compared to the
case without pairing correlations was insufficient to explain
the experimental data. In Ref. [6], a hybrid model with a small
nuclear incompressibility of K0 = 230 MeV as FSUGold and
a stiff symmetry energy as NL3 was built. Although the
improvement in the description for the experimental data of
Sn isotopes was significant and unquestionable, the hybrid
model still underestimated the peak energy of GMR in 208Pb
by almost 1 MeV. The authors of Ref. [6] also suggested that
the rapid softening with neutron excess predicted by the hybrid

*Present address: Shandong Tumor Hospital, Jinan 250117, China.
†Corresponding author: ygma@sinap.ac.cn

model might be unrealistic. More details of the discussion on
this anomaly can be found in Refs. [1,6–9,14].

In the previous works, our group applied the isospin-
dependent quantum molecular dynamics (IQMD) model to
study the dynamical dipole emission in fusion reactions [18]
and giant dipole resonances (GDRs) as well as pygmy dipole
resonances (PDRs) in Ni isotopes by Coulomb excitations [19].
In the present work, we will investigate GMR in Sn isotopes
within a similar framework. We will show that using a new
function of the Gaussian wave-packet width, which takes the
isospin dependence into account, we are able to reproduce very
well the GMR peak energies for 56Ni, 90Zr, and 208Pb as well
as Sn isotopes.

The paper is organized as follows. Section II gives a brief
introduction of the IQMD model as well as the formalism for
GMR in the IQMD framework. Results and discussions are
presented in Sec. III, where effects from the impact parameter,
incident energy, equation of state (EOS), symmetry energy, and
width of the Gaussian wave packet used in the IQMD model
on GMR are investigated. A summary is given in Sec. IV.

II. MODEL AND FORMALISM

A. Brief description of IQMD model

The IQMD model, which is based on the QMD model, is
a kind of Monte Carlo transport model [20–26]. The wave
function of each nucleon is represented by a Gaussian form:

φi(�r,t) = 1

(2πL)3/4 exp

[
− [�r − �ri(t)]

2

(2σr )2 − i�r · �pi(t)

�

]
. (1)

In the above, σr is the width parameter for the Gaussian wave
packet, and its value depends on the size of the reacting system
to keep some quantum effect of nucleons. We will see in the
following that the influence of the width on GMR should be
treated carefully to reproduce the experimental results. �ri(t)
and �pi(t) are the position and momentum coordinates of the ith
nucleon. After performing the variation method, the equations
of motion, i.e., the time evolution of the mean position �ri(t)
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and momentum �pi(t), are found to be

�̇pi = −∂〈H 〉
∂�ri

and �̇ri = ∂〈H 〉
∂ �pi

. (2)

〈H 〉 is the total Hamiltonian of the system

〈H 〉 = 〈T 〉 + 〈V 〉, (3)

where the 〈T 〉 is the kinetic contribution, and 〈V 〉 is the
potential contribution

〈V 〉 = 1

2

∑
i

∑
j �=i

∫
fi(�r, �p,t) V ijfj (�r ′, �p ′,t) d�r d�r ′d �p d �p ′.

(4)

In the above, the Wigner distribution function fi(�r, �p,t), which
is the phase-space density of the ith nucleon, is obtained by
applying the Wigner transformation on the single nucleon
wave function

fi(�r, �p,t) = 1

π3�3
exp

[
− [�r − �ri(t)]2

2σr
2

− 2σr
2[ �p − �pi(t)]2

�2

]
,

(5)

and V ij is the two-body interaction including the contact
Skyrme-type interaction, the finite-range Yukawa potential,
the momentum-dependent interaction (MDI), the isospin-
dependent interaction, and the Coulomb interaction

V ij = V
ij

Skyrme + V
ij

Yuk + V ij
asy + V

ij
MDI + V

ij
Coul

= t1δ(�r − �r ′) + t2ρ
σ−1(�r)δ(�r − �r ′)

+ t3
exp[−|�r − �r ′|/μ]

|�r − �r ′|/μ + t6ρ
γ−1(�r)T3iT3j δ(�r − �r ′)

+ t4 ln2[1 + t5( �p − �p′)2]δ(�r − �r ′) + ZiZje
2

|�r − �r ′| , (6)

where Z is the charge of the nucleon, and t1, . . . ,t6 and μ are
the parameters to fit the empirical properties of nuclear matter
as well as nuclei.

In the following, we will give the expressions for the
Skyrme potential, the momentum-dependent potential, and the
symmetry potential to ease discussions for the GMR results.
The Skyrme potential is

USky = αu + βuσ , (7)

where u = ρint/ρ0 is the reduced density with ρ0 = 0.16 fm−3

being the nuclear saturation density and ρint = ∑
ρi

int(�r) with

ρi
int(�r) = 1

(4πσr
2)3/2

∑
j �=i

e−(�r− �rj )2/(4σr
2) (8)

being the interaction density of the ith nucleon. We will in
the following denote ρint as ρ for simplicity. α, β, and σ are
the Skyrme parameters related to the isoscalar EOS of bulk
nuclear matter. The momentum-dependent potential, which is
optional in the IQMD model, can be expressed as

UMDI = ρint

ρ0

∫
d �p ′gj ( �p ′,t)δ ln2[ε( �p − �p ′)2 + 1], (9)

TABLE I. Parameters α, β, and σ for different EOSs.

K0 α β σ

(MeV) (MeV) (MeV)

Soft 200 −356 303 7/6
Soft+MDI 200 − 390.1 320.3 1.14
Hard 380 − 124 70.5 2
Hard+MDI 380 − 129.2 59.4 2.09

where gj ( �p,t) = 1
(π�)3/2 exp[− 2σr

2( �p− �pj (t))2

�2 ] is the momentum
density distribution function of nucleon, and δ = 1.57 MeV
and ε = 500 (GeV/c)−2 are taken from the measured energy
dependence of the proton-nucleus optical potential [20–24].
The isospin asymmetry potential can be also calculated from
Eq. (4) as

Usym = Csym

2
[(γ − 1)uγ δ2 ± 2uγ δ], (10)

where δ = (ρn − ρp)/ρ is the local isospin asymmetry from
the contribution of all the other nucleons, and the symbol
+ (−) is for neutrons (protons), γ is the stiffness parameter
of the symmetry potential (energy), and Csym is the potential
contribution of the symmetry energy at saturation density.

The nuclear incompressibility is calculated from the
second-order derivative of the binding energy per nucleon as

K0 = 9ρ2
0

∂2

∂ρ2

(
E

A

)
ρ=ρ0

. (11)

Table I gives different parameter sets for the Skyrme potential
with and without the momentum-dependent potential, leading
to the nuclear incompressibility of 200 and 380 MeV. As
mentioned in the Introduction, although the latest experimental
analysis leads to K0 ≈ 240 MeV, we will use these extreme
values to illustrate the sensitivity of the GMR peak energy
on the nuclear incompressibility as well as the momentum
dependence of the nuclear potential based on the IQMD model.

B. Calculation method of giant monopole resonance

In the present framework, we first pick up a stable initial
density distribution for a concerned nucleus, e.g., 112Sn, as is
done for most QMD model studies. This density distribution
is generally not the ground state for the nuclear interaction
used, so the nucleus suffers from collective oscillation in its
excited state [28], among them is the GMR mode. As GMR
is a compression mode in the radial direction, we take the rms
radius of the nucleus as its monopole moment DGMR(t) at each
time step [27,28], as is shown by the solid line in Fig. 1. One
sees that the rms radius shows good oscillation structure, i.e.,
the GMR mode. However, the oscillation damps quickly due
to the dissipation effect from both the mean-field potential and
the nucleon-nucleon scatterings [28]. It is noteworthy that the
period and the decay of the GMR oscillation leads respectively
to the peak energy and the width of the GMR spectrum, which
can still be hardly reproduced simultaneously [28]. In the
present study, we use 208Pb as a target and the concerned
nucleus as the projectile. In this way, the strength, period,
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FIG. 1. (Color online) Time evolution of the calculated rms
radius of 112Sn without Coulomb interaction and reacting on the 208Pb
target at different beam energies of 100, 300, and 500 MeV/nucleon,
respectively, with impact parameter of 30 fm.

and damping of the GMR oscillation are thus modified by the
Coulomb interaction between the projectile and the target, as
shown in Fig. 1. It is seen that with Coulomb interaction, the
rms radii have a larger amplitude and a little longer oscillation
period with the increasing of the beam energy and become
larger on average in the later stage. Overall, a good oscillation
behavior of the rms radius in a relative long time scale is the key
to forming a GMR mode. Of course, considering the stability
of time evolution of the rms radius in the present model, we
calculate the GMR spectra by 200 fm/c.

By applying the Fourier transformation to the second-order
derivative of DGMR(t) with respect to time

D′′(ω) =
∫ tmax

t0

D′′
GMR(t)eiωtdt, (12)

one can get the spectrum of probability for energy Eγ = �ω
as follows

dP

dEγ

= 2e2

3π�c3Eγ

|D′′(ω)|2. (13)

As mentioned above, we set the stopping time of the monopole
moment (tmax) as 200 fm/c in the present calculation. From a
Gaussian fit to the spectrum of GMR, one can get the peak
energy Ec

γ , the FWHM �c
γ , and the strength Sc

γ of GMR.

III. RESULTS AND DISCUSSIONS

A. GMR spectrum comparison

The GMR spectra for 112Sn and 124Sn from our calculations
are compared with the experimental data from Ref. [12] in
Fig. 2. Note that there is one major different point which we
should mention in this comparison between our calculation
and the data. In Ref. [12], the GMR data are taken from
the excited Sn nucleus by inelastic scattering of 400-MeV
α particles at extremely forward angles. However, in our
calculation, the GMR comes from the excited oscillation of
the Sn nucleus, because the initial density distribution is not
the ground state of the nuclear interaction used. The reason
is based on the following consideration: (1) it is not an easy

(a) (b)

FIG. 2. (Color online) Calculated results of GMR in 112Sn and
124Sn compared with the experimental data. Note that the condition
to induce the GMR is different for the experimental data and the
present calculation (see texts for more details). The blue circles with
error bars are the experimental data from inelastic scattering [12],
and the red line is the result from the IQMD calculation.

task to treat inelastic scattering of α particles in our IQMD
model even though the data are available; (2) the peak energy
and the FWHM are determined by the intrinsic properties
of the nucleus and independent of how the GMR mode is
excited. Consequently, we have to take a compromise for
the comparison, i.e., taking the GMR for the same excited
nucleus but with a different reaction mechanism, with the
strength Sc

γ of GMR from our calculation scaled by that from
the experimental data. In this background, we introduce the
parameters used in our calculations as follows: incident energy
Ein = 386 MeV/nucleon, impact parameter b = 30 fm, the
soft EOS with MDI, Csym = 35.2 MeV, and γ = 1. Although
the condition of our calculation is different from that of the
experiment in Ref. [12] as mentioned above, one can see that
our results from the oscillation of excited nuclei modified by
the Coulomb interaction show a reasonable agreement with the
inelastic α scattering experimental data, i.e., giving a similar
peak energy but a slightly larger FWHM. The calculated result
of 112Sn shows a better agreement with the experimental data
than that of 124Sn. The results indicate that the IQMD model
is suitable for the study of GMR by considering the rms radius
as its monopole moment.

B. Systematic GMR analysis

The sensitivities of the peak energy, the FWHM, and the
strength obtained by a Gaussian fit to the GMR spectrum
have been explored. The sensitivity of these quantities to the
impact parameter for 112Sn is given in Fig. 3. It shows that
the GMR results do not change much with the increasing
impact parameter. This is understandable since the effect of
the Coulomb interaction is not affected by much when the
impact parameter changes from 25 to 40 fm. Figure 4 shows
the incident energy dependence of GMR results for 112Sn.
With the increase of the incident energy, the peak energy of
GMR decreases, while the FWHM and the strength of GMR
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(a)

(b)

(c)

FIG. 3. Impact parameter dependence of the peak energy Ec
γ , the

FWHM �c
γ , and the strength Sc

γ of GMR for 112Sn. In the calculation,
we use Ein = 386 MeV/nucleon, Csym = 35.2 MeV, γ = 1, and the
soft EOS with MDI.

increase. This behavior can be understood by the oscillation
of rms radii at different beam energies as shown in Fig. 1.
As we know, the longer oscillation period corresponds to the
lower frequency, i.e., lower energy, while the higher amplitude
corresponds to the larger strength. Figure 1 tells us that with
the increasing beam energy, the GMR monopole moment has
a little longer period but a larger amplitude, which results
in a decreasing peak energy and an increasing strength of GMR
as shown in Fig. 4. From the above discussions, it is seen that
although the GMR oscillation is already there for a nucleus
alone, it can be slightly modified by the Coulomb interaction
with different incident energies and impact parameters.

Many previous works indicated that the EOS associated
with the nuclear incompressibility K0 has an important
influence on GMR, i.e., the peak energy of GMR can be used
to constrain K0. By adjusting the parameters of EOS in Table I
used in the IQMD model, the EOS dependence of GMR
parameters for 112Sn can be explored. The sensitivity of the
GMR results to the EOS are illustrated in Fig. 5, where a
significant dependence of the GMR peak energy on the EOS
can be seen. In general, the hard EOS gives a higher peak

(a)

(b)

(c)

FIG. 4. Same as Fig. 3, but for the incident energy dependence
of the GMR results for 112Sn. In the calculation, we use b = 30 fm,
Csym = 35.2 MeV, γ = 1, and the soft EOS with MDI.

FIG. 5. (Color online) Peak energies of GMR in Sn isotopes
when different EOS parameters are used. In the calculation, we
use Ein = 386 MeV/nucleon, b = 30 fm, Csym = 35.2 MeV, and
γ = 1. The blue circles with error bar are the experimental data
from Refs. [12,14], and the open diamonds with error bar are the
experimental data from Refs. [29,30].

energy than the soft one, and so does the EOS with MDI. In
this sense, a soft EOS with MDI can reproduce the results from
a hard EOS without MDI. Similar results on giant or pygmy
dipole resonances are seen within the same model [19]. By
comparing the calculated results with the experimental data
[12,29,30], one can see that the soft EOS with MDI shows the
best agreement with the experimental data.

The GMR results may also be affected by the nuclear
symmetry energy which is important in understanding the
structure of neutron- or proton-rich nuclei and the reaction
dynamics of heavy-ion collisions [31,32]. Again we use the
extreme values of Csym and γ to illustrate the sensitivity of the
GMR results to the nuclear symmetry energy. The dependence
of the GMR results on the parameter Csym is shown in Fig. 6.
When Csym changes from 16 to 64 MeV, the peak energy
of GMR shows a decreasing behavior, the FWHM of GMR
increases, and the strength of GMR slightly decreases. The γ
dependence of the GMR results is shown in Fig. 7. When

(a)

(b)

(c)

FIG. 6. Same as Fig. 3, but for Csym dependence of GMR results
for 112Sn. In the calculation, we use Ein = 386 MeV/nucleon,
b = 30 fm, γ = 1, and the soft EOS with MDI.
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(a)

(b)

(c)

FIG. 7. Same as Fig. 3, but for the γ dependence of GMR
results for 112Sn. In the calculation, we use Ein = 386 MeV/nucleon,
b = 30 fm, Csym = 35.2 MeV, and the soft EOS with MDI.

γ changes from 0.5 to 2, the peak energy of GMR also
decreases, while the FWHM and the strength of GMR show
a nonmonotonical behavior. To understand the dependence of
the GMR peak energy on the symmetry energy, we express it
in the form of [33]

Ec
γ = �

√
KA

m〈r2〉 , (14)

where m is the nucleon mass, 〈r2〉 is the ground state mean-
square radius, and KA, which is the incompressibility of a
nucleus with mass A, can be written as [12]

KA ∼ KV (1 + cV A−1/3) + Kτ [(N − Z)/A]2 + KCZ2A−4/3,

(15)

with N and Z the neutron and proton number, and KV as well
as cV , Kτ , and KC the coefficients for the volume, asymmetry,
and Coulomb contributions, respectively. In the analysis of
the symmetry energy effects on the GMR results where all
the other parameters have been fixed, KA increases with the
increasing asymmetry incompressibility Kτ , with the latter
expressed as [34]

Kτ = Ksym − 6Ls − J0

K0
Ls. (16)

The slope parameter Ls and the curve parameter Ksym at
saturation density can be calculated from the expression of
the symmetry energy as

Ls = 25 + 3
2Csymγ (MeV),

(17)
Ksym = −25 + 9

2Csymγ (γ − 1)(MeV).

K0 and J0 are related to the isoscalar part of the equation of
state E0(ρ) in the form of

K0 = 9ρ2
0

(
d2E0

dρ2

)
ρ=ρ0

, (18)

J0 = 27ρ3
0

(
d3E0

dρ3

)
ρ=ρ0

. (19)

The dependence of Ec
γ on Csym and γ in Figs. 6 and 7 can be

understood from the above formulas.
The Gaussian wave-packet width σr [in Eq. (1)] for

nucleons is a parameter in the IQMD model indicating the
interaction range between nucleons. Previous studies have
shown that the value σr has a large effect on GMR results
[35]. In many previous QMD model calculations, σr is set to
be a constant. However, there were also some discussions
related to the influence of σr on the dynamical results,
e.g., flow, multifragmentation, and pion and kaon production,
etc. [21,36–40]. Since in a finite system nucleons are localized
within a potential well, it is reasonable to make σr related to
the size of a nucleus. For example, the width of the Gaussian
wave packet is taken to be σr = 1.04 fm for the Ca+Ca system
and σr = 1.47 fm for the Au+Au system in Ref. [21], while a
system-size-dependent σr was presented in Ref. [40]. Actually,
in some models like an extended quantum molecular dynamics
(EQMD) model [37] and a fermionic molecular dynamics
(FMD) model [38,39], σr is treated as a dynamical variable. In
our IQMD model, we use a similar mass-number dependence
of σr as in Ref. [40],

σr = 0.17A1/3 + 0.48(fm), (20)

where A is the mass number of the system (projectile, target,
or compound system). In heavy-ion reactions, σr for the
compound system is set to be the mean value of that for the
projectile and the target given by Eq. (20). In the present study,
we just use σr for the concerned nucleus, i.e., the projectile.
This is similar to the treatment in Ref. [40], where the projectile
and target have their own σr before they contact in the
heavy-ion reaction process, and after the contact, the projectile
and the target gradually melt into one system, and consequently
all the particles have a universal σr . Figure 8 displays the σr

dependence of the GMR results. As σr increases, the peak
energy and the FWHM of GMR show a clear decreasing trend,
while the strength of GMR is not largely affected.

The influence of different forms of σr on the peak energy
of GMR has also been studied. Figure 9 shows the calculated
peak energies of GMR in Sn isotopes with the fixed σr =
1.47 fm or the variational σr given by Eq. (20) together with

(a)

(b)

(c)

FIG. 8. Same as Fig. 3, but for σr dependence of GMR results
for 112Sn. In the calculation, we use Ein = 386 MeV/nucleon,
b = 30 fm, Csym = 35.2 MeV, γ = 1, and the soft EOS with MDI.
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(a) (b)

FIG. 9. (Color online) Mass-number dependence of the GMR
peak energies for Sn isotopes with a fixed (down-triangles) or a
mass-number dependent (up-triangle) σr . In the calculation, we use
Ein = 386 MeV/nucleon, b = 30 fm, Csym = 35.2 MeV, γ = 1, and
the soft EOS with MDI. In the left panel, the blue circles with error bar
are the experimental data from Refs. [12,14], and the pink diamonds
with error bar are the experimental data from Refs. [29,30]. In the
right panel, the peak energies of GMR in Sn isotopes are divided by
those in 112Sn to better illustrate the mass-number dependence, and
the straight lines are plotted to guide the eyes.

the experimental data [12,29,30], respectively. One can see
that the mass-number-dependent σr gives a larger peak energy
and shows a stronger mass-number dependence of the GMR
peak energy than the constant σr . However, it still gives a
weaker mass-number dependence of the GMR peak energy
in comparison with the experimental data as seen from the
right panel of Fig. 9. Results from other theoretical studies
[3,5] are also plotted for comparison. One can see that they
overestimate the peak energies of GMR by about 0.3–1 MeV
in Sn isotopes, and the mass-number dependence of the GMR
peak energy seems also weaker than the experimental data.

C. Fitting GMR peak energies with σr

From the above discussions, it is seen that introducing only
the mass-number dependence to the width of the Gaussian
wave packet for nucleons in the IQMD model is not sufficient
to reproduce the experimental results of the GMR peak
energies for Sn isotopes. However, considering the correlation
between σr and the peak energy of GMR, we can fit the values
of σr with the experimental data for different Sn isotopes.
Figure 10 shows such a fit of σr for 112Sn, 116Sn, 120Sn, and
124Sn using the experimental results of GMR peak energies
from Ref. [12]. It is seen that with the increasing mass and
isospin asymmetry along the Sn isotope line, the GMR peak
energy decreases while σr from fitting the GMR peak energy
increases.

The above study gives us some hints that to reproduce
reasonably well the experimental data of the GMR peak
energies for Sn isotopes, σr may depend not only on the mass
number but also on the isospin asymmetry of the nucleus.

FIG. 10. (Color online) Fit of σr by the peak energies of GMR in
112Sn, 116Sn, 120Sn, and 124Sn. In the calculation, we use Ein = 386
MeV/nucleon, b = 30 fm, Csym = 35.2 MeV, γ = 1, and the soft
EOS with MDI. The red line with the black rectangle representing
the error is the experimental data from Ref. [12].

On the other hand, since the GMR peak energy is strongly
correlated with the nucleus incompressibility KA [12], it is
reasonable to assume that σr has a functional form similar to
that of KA, i.e.,

σr = aA−1/3 + b[(N − Z)/A]2 + cZ2A−4/3 + d. (21)

By fitting the experimental data of the GMR peak energies for
Sn isotopes [12] with the above functional form, we obtain the
following expression for σr :

σr = −3A−1/3 + 2.5[(N − Z)/A]2

+ 1.6 × 10−8Z2A−4/3 + 2.01(fm). (22)

FIG. 11. (Color online) Mass-number dependence of the new
function of σr given by Eq. (22) compared with that given by Eq. (20).
The black line is the mass-number dependence given by Eq. (20). The
red line is the one given by Eq. (22) for symmetric nuclei, and other
lines are given by Eq. (22) for each isotopic chain.
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FIG. 12. (Color online) Mass-number dependence of the peak
energy of GMR with σr given by Eq. (22). The blue circles with
error bars are the experimental data from Refs. [12,14], and the open
diamonds with error bars are the experimental data from Ref. [11] and
references therein. The red line is a fitting of Piekarewicz’s [6] results
with Ec

γ = 69A−0.3 (MeV), and the gray line is a liquid drop fitting
with Ec

γ = 90A−1/3 (MeV). In the calculation, we use Ein = 386
MeV/nucleon, b = 30 fm, Csym = 35.2 MeV, γ = 1, and the soft
EOS with MDI.

The small coefficient for the charge-number dependence
indicates that the optimized choice of σr might be a quadratic
function of the nucleus isospin asymmetry. The new function
of σr is compared with the old one [Eq. (20)] used in the QMD
model in Fig. 11, and it is seen that they are quite different
especially for isotope chains.

Equation (22) has also been extended in the calculation
of GMR peak energies for 40Ca, 56Ni, and 90Zr as well as
208Pb and the overall results are compared with those from
other theoretical models [6,28] as well as the experimental
data [11,12] in Fig. 12. It is found that after introducing the
isospin dependence to the Gaussian wave-packet width fitted
by the GMR peak energies for Sn isotopes of intermediate
nucleus mass, our results agree with the experimental data
for light or heavy nuclei such as 56Ni and 90Zr as well
as 208Pb much better than others in the literature, which
overestimate the GMR peak energies. For the even lighter
nuclei such as 40Ca, although our result follows the same
trend of mass-number dependence for intermediate and heavy
nuclei, it overestimates the GMR peak energy compared
with the experimental data. Different from the cases of
intermediate and heavy nuclei, the GMR peak energies from
the experimental studies fluctuate with mass number for light
nuclei. This is due to the increasing effect of the shell structure
as well as the pairing correlation for smaller nuclei, which has
already been beyond the limit of the framework of the IQMD
model and the other transport models with only mean-field
potentials.

IV. SUMMARY

In this work, we have applied the IQMD model to
investigate the isoscalar giant monopole resonance (GMR)
in Sn isotopes and other nuclei. The collective oscillation,
including the GMR mode, appears for an initial density
distribution for the concerned nucleus, because it is generally
not the ground state for the nuclear interaction used. This
oscillation is further modified by the Coulomb interaction
when we take the concerned nucleus as the projectile and
the 208Pb nucleus as the target. We took the rms radius of
the concerned nucleus as the monopole moment of GMR and
calculated the spectrum of GMR. Using a Gaussian fit to the
spectrum, we calculated the peak energy, the FWHM, and
the strength of GMR. The sensitivity of these GMR results
to the parameters used in the IQMD model was discussed.
The GMR peak energy is found to slightly decrease with
increasing incident energy, while it is almost independent
of the impact parameter. It seems difficult to extract the
information of the symmetry energy from the present study
of GMR, because we found that GMR is also sensitive to
other parameters such as the isoscalar part of the EOS and
the Gaussian wave-packet width σr . As observed previously,
the EOS associated with the nuclear incompressibility has an
important influence on GMR. Comparing our results with the
experimental data, it is found that the soft EOS with MDI
can give a better fit to the experimental data. The studies
of the systematic evolution for Sn isotopes have shown that
a widely used mass-number-dependent σr overestimates the
peak energies of GMR by about 1 MeV for Sn isotopes and
leads to a weaker mass-number dependence of the GMR peak
energies compared with the experimental data. By fitting the
experimental data of the GMR peak energies for Sn isotopes
using the functional form of the nucleus incompressibility,
we obtain a new function of σr with isospin dependence in
addition to mass-number dependence. Applying this new form
of σr to the calculation of the GMR peak energies leads to a
good agreement with the experimental data for 56Ni, 90Zr, and
208Pb, although it still overestimates the GMR peak energy
of 40Ca due to the lack of effects from shell structure as well
as the pairing correlation in the IQMD framework. It will be
interesting to check whether the width of the Gaussian wave
packet for nucleons obtained from the present study can give
better explanations for other observables from IQMD model
calculations in future studies.
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