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We develop a field-theoretic model for the description of the proton Compton scattering in which the proton
and its excited state, the �+ resonance, are described as parts of one multiplet with a single Rarita-Schwinger
wave function. To describe the observed phenomena, it is necessary to incorporate both minimal and nonminimal
couplings. The minimal coupling reflects the fact that the �+ is a charged particle, and in this model the
minimal coupling contributes also to the γN� magnetic transition. The nonminimal couplings consist of five
electromagnetic form factors, which are accessed at fixed and vanishing momentum transfer squared with real
photons in the Compton scattering experiments, therefore it is possible to extract a somewhat well-determined
set of optimal parameters which fit the data in the resonance region 140–450 MeV reasonably well. The crucial
parameter which determines the γN� transition amplitude and therefore the height of the resonance peak is equal
to 1.83 ± 0.03, in units of μN . We find that this parameter is also the primary determinant of the contributions to
the magnetic polarizability in this model. In the low-energy region up to 140 MeV, we separately fit the electric
and magnetic polarizabilities while keeping the other parameters fixed, and obtain values in line with previous
approaches. In addition to proton Compton scattering, the model is applicable to a broad range of processes in
the few hundred MeV energy range, whenever the proton appears in some intermediate off-shell state.
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I. BACKGROUND AND INTRODUCTION

The proton is the particle which makes up the greatest
fraction of matter in the visible universe and its properties
have been studied extensively. Nevertheless it still holds some
mysteries, among them the physical origin of the electric and
magnetic polarizabilities. The polarizabilities are important
electromagnetic properties of the proton, and appear at the
next order in the expansion of the amplitudes in powers of
energy, right behind the more fundamental properties such as
the electric charge and the magnetic moment. Experiments
have been done since the 1960s to characterize and measure
the electromagnetic properties of the proton using fixed-target
Compton scattering [1–6]. In the last two decades, high-quality
proton Compton scattering data in the first �(1232MeV)
resonance region have been obtained at the Saskatchewan
Accelerator Laboratory [7], by the LEGS collaboration [8]
and by MAMI at Mainz [9,10]. Recent high-quality data
have also become available in the higher energy region, from
the experiments by Hall A Collaboration at the Jefferson
Lab [11].

These most recent and precise experiments have determined
the static values of the electric and magnetic polarizabilities;
see, for example [12,13]. In particular, the sign and value of the
magnetic polarizability have been measured; these remained
shrouded in uncertainty for a long time. Additional experi-
ments to measure the polarizabilities even more precisely were
proposed recently in Ref. [14]. In addition, a high precision
value was obtained for the forward spin polarizability [9,10]
which appears in the expansion of the scattering amplitudes to
the third order in momentum. Upcoming experiments will soon
measure all the spin polarizabilities using polarized beams and
targets.

Experimentally, it is certainly possible to measure the
polarization asymmetries as a function of the angle and energy,
for example, in the last experiment done at the venerable

Yerevan accelerator [15] and in the first resonance region
by the LEGS collaboration [16]. These data can be used
to discriminate theoretical models as a strong cross-check,
once the basic parameters of the model have been well
determined.

The process in the low photon energy range up to 140 MeV
is dominated by contributions from the anomalous magnetic
moment as well as the polarizabilities of the nucleon. Of these
additional contributions, the anomalous magnetic moment
contributes to the amplitude already at the linear order while
the polarizabilities start out at the second order, thus the cross
section can grow at first quadratically and then quartically with
energy. This is in contrast to the minimal coupling in QED,
where the Klein-Nishina cross section is essentially flat in the
relevant energy range.

Fundamental results on the scattering of light by particles of
spin 1/2 with an anomalous magnetic moment were obtained
by Powell, Low, Gell-Mann, and Goldberger [17–19]. Early
theoretical progress was driven by the phenomenologically
very successful dispersion theory approach [20–31]; see also
the latest excellent review in Ref. [32]. This approach was
supplemented by the insights gained from considering the
pion-vertex corrections and a multitude of other improvements
such as those in Refs. [13,33–36].

On the other hand, within the purely field-theoretic chiral-
Lagrangian paradigm [37,38], the development of a promising
approach of Peccei [39,40] was held up by difficulties in the
field theory of the spin 3/2 �+ particle. The most egregious
of these pathologies have been resolved in Ref. [41]. This
better understanding of the theoretical requirements on the �
propagator led to the paper of Pascalutsa and Scholten [42]
in which the first workable field-theoretical model for the
proton Compton scattering incorporating the contribution of
the resonance was constructed. There, it was argued that the
virtual spin 1/2 degrees of freedom present in the standard
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propagator do play a role in the Compton scattering amplitude.
As we shall see, the present work’s approach most directly
descends from this model of Pascalutsa and Scholten and the
subsequent recent developments in Refs. [43–51].

A separate development was the proposal to rid the
theory of spin 3/2 particles of pathologies that stem from
superluminal solutions by Ranada and Sierra in Ref. [52].
There, it was found that taking a Rarita-Schwinger multiplet
of a physical spin 3/2 particle and a physical spin 1/2 particle
(with different masses), would result in an acceptable wave
equation even when minimally coupled to the electromagnetic
field. A detailed investigation of the structure of poles in the
propagator revealed that additional restrictions on the Ranada
and Sierra equations result in a unitary theory with positive
definite residues at the Feynman poles, taking into account
the locations of the poles above or below the real axis [53].

In the present paper we make use of the propagator of
[53], in combination with the observation of Pascalutsa and
Scholten that the spin 1/2 degrees of freedom may be from
another baryon, and propose a model where this spin 1/2
mode is interpreted as the proton, such that the proton and
the �+ are together described by a single multicomponent
wave function of Rarita and Schwinger. The �+ has the
same quark constitution (uud) as the proton and is only
slightly, less than 300 MeV, heavier than the proton. The only
difference between the �+ and the proton is the alignment
of the spins of these quarks. In the proton, the d-quark spin
is antialigned and makes the total proton spin 1

2 , while in
the �+ all three quarks are aligned, making the �+ spin 3

2 .
This makes it very natural to consider the possibility of a
unified description; see Sec. II for the Lagrangian and more
details.

This hypothesis confers several benefits. Low-energy pro-
ton Compton scattering occurs mainly through the exchanges
of the proton and the �+ in the s and u channels and
the exchanges of pions in the t channel; see Fig. 1. The
�+(1232 MeV, J P = 3

2
+

), the lightest baryon resonance,
appears in the intermediate state. Furthermore, the �+ is only
slightly heavier than the proton, so that even at the lowest
energies this contribution is not suppressed compared with
that from the exchange of the proton alone. In our model,
because of the unified description, the s/u-channel proton
and �+ contributions can be calculated simultaneously as in

k2

k1

k3

k4
(a) (b) (c) (d)

N, Δ

N, Δ
π

FIG. 1. The tree-level Feynman diagrams for the proton Compton
scattering. In our model the propagator of the intermediate particle in
the diagrams (a) and (b) contains the physical poles both for the proton
and the �+, and in (c) the π 0 meson is exchanged in the t channel. The
diagram (d) is for the contact interaction in Eq. (13). For appropriate
photon incident energy, the intermediate �+ is approximately on-
shell, and around this energy, there is the characteristic peak in the
cross section which is dominated by the �+ contribution.

Figs. 1(a) and 1(b) instead of adding up the four separate
contributions.

The second benefit is that in this model it is possible
to avoid the introduction of a large number of arbitrary
parameters. In Sec. II A (see also [54]), we present in detail
the five electromagnetic form factors which are possible for a
spin 3/2 particle. These couple the momentum-independent
fermion bilinears directly to the EM field strength. Three
of these have clear physical interpretations as the magnetic
moments of the proton and the �+, and the strength of the M1
magnetic transition between the nucleon and the �+. One of
the remaining two parameters contributes a purely imaginary
part to some amplitudes and this is disfavored by data, so that
it can be safely set to zero (see Sec. VI).

In Sec. III, we discuss the γNN , γ�+�+, γN�+
transition matrices and derive the formulas for the proton
and the �+ magnetic moments. In Sec. IV, we calculate
the proton Compton scattering cross section and express the
electric and magnetic polarizabilites in terms of the coefficients
of the nonminimal interactions, and also present an analytic
approximation to the amplitude around the �+ pole. We
fit the Compton scattering data in Sec. VI, and extract the
polarizabilities using the expressions derived in Sec. IV.
Because one linear combination of the coefficients of the
nonminimal interactions gives the �+ magnetic moment, our
best-fit parameter set also provides a prediction of the �+
magnetic moment, but we conservatively interpret it as an
upper bound. The interactions in Sec. II A can also be used to
calculate the �+ → N + γ decay width (Appendix A); this
acts as a useful cross-check on our model.

II. LAGRANGIAN AND THE ELECTROMAGNETIC
INTERACTIONS

A spin 3/2 field is represented as a field with both a Lorentz
index and a Dirac index. The Lagrangian in Refs. [52,53] is

L = −ψ̄λ

[
pμ �μλ

ρ − m 	λ
ρ

]
ψρ,

�μλ
ρ = γ μ ηλ

ρ + ξ (γ λ ημ
ρ + γρ ηλμ) + ζ γ λ γ μ γρ,

(1)
	λ

ρ = ηλ
ρ − z γ λ γρ,

ξ = 2 z − 1, ζ = 6 z2 − 4 z + 1,

in which the Dirac indices are suppressed. The solutions of the
corresponding wave equation are all transverse, pμ ψμ = 0,
and consist of a spin 3/2 component with mass m and a spin
1/2 component with mass M = m

6z−2 , compared to a pure spin
3/2 field in the original Rarita-Schwinger theory. We identify
the spin 3/2 and 1/2 components as the �+ and the proton,
respectively, and thus unify them in one theory. This unification
is very natural because the proton and the �+ have the same
quark constituents and both are dominated by configurations
with all the quarks in the s wave. In addition, transition from
one into the other is possible by absorbing or emitting a photon
or even a neutral pion (which carries no charge or spin); this
signifies that the two are states of the same physical system.
The mass splitting between the nucleon and the � is less than
300 MeV. The model allows adjusting the z parameter to satisfy
the observed ratio of the proton to the Delta mass.

064614-2



PROTON COMPTON SCATTERING IN A UNIFIED. . . PHYSICAL REVIEW C 88, 064614 (2013)

The propagator with the specific arrangement of the poles
is [53]

−iS(p) = (/p + m) 
3

p2 − m2 + i ε
− (/p + M) 
11

p2 − M2 − i ε

2M2

m2

+ [
22 − (
21 + 
12)/B + 
113/B2]
3

2(M + 2m)
,

B = 3 m

2M + m
, (2)

where the standard spin projection operators 
 can be found,
for example, in Ref. [41]. Note, that at high energies there
is a destructive interference between the contributions of the
virtual proton and �.

The minimal electromagnetic interaction is usually derived
by substituting pμ → pμ + e Aμ. The interaction Lagrangian
is

LI = e ψ̄λ �μλ
ρ ψρ Aμ. (3)

Ward identity is satisfied:

−i kμ �μλ
ρ = Sλ

ρ (p + k)−1 − Sλ
ρ (p)−1, (4)

and as we shall see in the next subsection there are only a
finite number of additional possibilities of electromagnetic
couplings which satisfy gauge invariance and the Ward
identity.

A. Nonminimal electromagnetic interactions

For a phenomenological application to the proton Compton
scattering, the minimal interaction alone does not suffice. A
well-known fact of Dirac theory is that it allows for two
electromagnetic form factors, one of which is charge and the
other describes the anomalous magnetic moment. We add the
as yet undetermined nonminimal interactions to the vertex:

�̃μλ
ρ = �μλ

ρ + i

2M

∑
n

Fn(k2) (�n)μλ
ρ , (5)

where the Fn(k2) are form factors. If the amplitudes are to be
gauge invariant, the Ward identity (4) should still hold. For
that to occur, it is sufficient to have kμ(�n)μλ

ρ = 0 and thus �n

should be of the form,

(�n)μλ
ρ = (�n)μνλ

ρ kν, (6)

where (�n)μνλ
ρ is antisymmetric in μ and ν.

Antisymmetric tensors live in the (1, 0) ⊕ (0, 1) represen-
tation of the Lorentz group, and we can count the number of
these representations in the product representation of the two
matter fields. The representation for ψλ (or ψ̄λ) is a product of
that for a vector field and that for a spinor field:(

1
2 , 1

2

) ⊗ [(
1
2 , 0

) ⊕ (
0, 1

2

)]
= (

1, 1
2

) ⊕ (
0, 1

2

) ⊕ (
1
2 , 0

) ⊕ (
1
2 , 1

)
. (7)

The vertices live in the tensor product of the above reducible
representations, and[(

1, 1
2

) ⊕ (
0, 1

2

) ⊕ (
1
2 , 0

) ⊕ (
1
2 , 1

)] ⊗ [(
1, 1

2

) ⊕ (
0, 1

2

)
⊕(

1
2 , 0

) ⊕ (
1
2 , 1

)] ⊃ 5 [(1, 0) ⊕ (0, 1)]. (8)

This tells us there are precisely five antisymmetric tensors and
we have been able to explicitly construct them as

(�1)μνλ
ρ = −1

2
τμνλ
ρ ,

(�2)μνλ
ρ = σμνηλ

ρ,

(�3)μνλ
ρ = −1

9
γ λσμνγρ,

(�4)μνλ
ρ = 1

12

(
γ λγ μην

ρ − γ λγ νημ
ρ (9)

+ γ μγρη
νλ − γ νγρη

μλ
)
,

(
�5)μνλ

ρ = −i

12

(
γ λγ μην

ρ − γ λγ νημ
ρ

− γ μγρη
νλ + γ νγρη

μλ
)
,

where τ and σ are the generators of the Lorentz transformation
for spin 1 and 1/2, respectively, τμνλ

ρ = i(ημλην
ρ − ηνλημ

ρ ), and
σμν = i

4 (γ μγ ν − γ νγ μ). The tensors listed above constitute
just one economical choice, among the possible choices of
the basis in the required five-dimensional linear space. The
coefficients are normalized such that the form factors Fn

enter with equal weights in the proton magnetic moment in
Eq. (16).

These tensors satisfy the requirement of Hermiticity:[
ψ̄(p1)λ�

μνλ
nρ ψρ(p2)(p1 − p2)ν

]†
= −ψ̄(p2)λ�

μνλ
nρ ψρ(p1)(p2 − p1)ν, (10)

which implies that the form factors Fn(k2) are real.
At higher order in momentum there are a small number of

additional possibilities. The pure spin 3/2 field has three form
factors other than charge [54], while only the first and second
ones in Eq. (9) contribute for the spin 3/2 mode, because
γρ ψρ = 0 for the spin 3/2 solutions. Thus we add one more
tensor:

(�6)μνλ
ρ = 1

M2
kλ σμν kρ. (11)

The form factors Fn(k2) which appear as the coefficients in
Eq. (5) are scalar functions of the momentum transferred
squared k2 = (p1 − p2)2. For real Compton scattering and
Delta decay �+ → p + γ , the photons are on-shell k2 = 0, so
these form factors are taken to be constants in what follows.

B. Bare polarizability effective Lagrangian

Expanding the Compton scattering cross section at low
energies, the static polarizabilities ᾱ and β̄ first enter at the
second order:

dσ

d�lab
=

(
dσ

d�

)
Powell

− e2ω2

4πM

(
ᾱ + β̄

2
(1 + cos θ )2

+ ᾱ − β̄

2
(1 − cos θ )2

)
+ O(ω3). (12)

Thus, the polarizabilities are defined here in the standard way
in the literature, by comparing the theoretical predictions and
the experimental data to the Powell cross section ( dσ

d�
)Powell,

which is the differential cross section of the scattering of light
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by a Dirac point particle with the anomalous magnetic moment
included [17–19]. A different definition would result if the
Klein-Nishina cross section for a Dirac point particle without
an anomalous magnetic moment is taken as the basis for
comparison. Such a difference has sometimes led to confusion
in the literature, but was satisfactorily resolved by separating
the contributions from the anomalous magnetic moment.
Likewise, the nonminimal interaction vertices presented in
this section contribute to the effective polarizabilities ᾱ and β̄
as we shall see in Sec. IV. In addition to these vertices, we may
include also an effective four-point interaction that can con-
tribute directly to the polarizabilities. Inspired by the effective
Lagrangian proposed in Ref. [55], we include the following
interaction Lagrangian to model the “bare” polarizabilities:

Lpol = iπ

M

(
ψ̄λ �μλ

ρ ∂ν ψρ − ∂ν ψ̄λ �μλ
ρ ψρ

)
× (αBFμρ F ρν + βBF̃μρ F̃ ρν). (13)

This Lagrangian is not unique, but other candidates contribute
identically to the cross section up to the second order in the
energy of the incident photon.

The two coefficients αB and βB are the bare polarizabilities.
The additional contribution of this effective Lagrangian to the
laboratory frame Compton scattering amplitudes at second
order in the photon energy is

δA = 4π αB ωω′ �ε′ · �ε + 4π βB �ε′ × �k′ · �ε × �k + O(ω3),

(14)

therefore it is a four-point contact interaction whose coupling
constants are additive linearly to the polarizabilities via
Fig. 1(d).

At higher orders in momentum it is possible to define and
extract more general polarizabilities [56], such as the spin
polarizabilities at the cubic order.

III. MAGNETIC MOMENTS AND THE γ N �+

TRANSITION MATRIX

To calculate the magnetic moments, we place the particles
in a magnetic field by taking the (virtual) photon to be either
left polarized AL = 1√

2
(0, 1, i, 0) or right polarized AR =

1√
2
(0, 1,−i, 0) and let �p1 − �p2 = qẑ, with �p1 → 0, �p2 → 0,

eū2(p1, σ1) �̃μ u2(p2, σ2) AL
μ

= 2 M
μp

Sp

(
J

( 1
2 )

+
)
σ1σ2

(−iq) + O(q2),

eū4(p1, σ1) �̃μ u4(p2, σ2) AL
μ

= −2 m
μ�+

S�+

(
J

( 3
2 )

+
)
σ1σ2

(−i q) + O(q2). (15)

In this equation, Sp = 1
2 is the spin of the proton and S�+ = 3

2
is the spin of the �+; u2 and u4 are the spin 1/2 and spin
3/2 solutions of the wave equation; �J ( 1

2 ) and �J ( 3
2 ) are the

standard quantum mechanical spin operators for spin 1/2
and 3/2.

In units of μN = e
2M

(M is the proton mass), the magnetic
moments of the proton and the �+ as defined by Eq. (15)

are

μp

μN

= 1 + λp

= 1 + 4M(m + M)

3m2
+ 2M2

3m2
(F1 + F2 + F3 + F5),

(16)
μ�+

μN

= M

m
+

(
−1

2
F1 + F2

)
. (17)

When all the form factors are set to zero, μ�+ = e
2m

, so the g
factor of the �+ would be equal to 2

3 , which is expected for
a minimally coupled particle of spin 3/2 [57]. At the same
time, partial-wave unitarity at high energy demands that the
natural value of the g factor is equal to 2 for all spins [58,59].
Simple considerations based on the quark model suggest that
the magnetic moment of the �+ should be somewhat smaller
than that of the proton, and imply that the actual value of the
g factor is indeed somewhere between 2/3 and 2.

In the minimally coupled case, the spin 1/2 particle of our
model has an anomalous magnetic moment from the second
term in Eq. (16). The proton magnetic moment μp 	 2.79 is
well measured and acts as a constraint on the form factors
through Eq. (16). Intriguingly, the actual value is close to that
of the minimally coupled theory, so that F1 + F2 + F3 + F5 is
approximately zero.

F6 does not contribute to the magnetic moments because
it is higher order in the soft photon momentum q. F4 does
not enter μ�+ because γρψ

ρ = 0 for the spin 3/2 solution. F4

does not appear in the proton magnetic moment either, as can
be shown from the equations of motion.

In the limit of a degenerate mass for the proton and
the �+ (where in reality the mass gap is indeed small:
|m−M|

M
∼ 0.3), we can calculate the transition amplitude

between a slowly moving proton and a �+. We take the
�+ at rest: p1 = (m, 0, 0, 0) and the proton momentum p2 =
(
√

M2 + q2, 0, 0, q) and work in the degenerate M → m limit.
We calculate e ū4 (p1, σ1) �̃μ u2(p2, σ2) A

L/R
μ . For a small q,

the transition is O(q) and at the first order in q the result is

eū4(p1, σ1)�̃μu2(p2, σ2)AL
μ

= 2 M μN Gq

⎛
⎜⎜⎝

√
3 0

0 1
0 0
0 0

⎞
⎟⎟⎠

σ1,σ2

+ O(q2),

(18)
eū4(p1, σ1)�̃μu2(p2, σ2)AR

μ

= 2 M μN Gq

⎛
⎜⎜⎝

0 0
0 0

−1 0
0 −√

3

⎞
⎟⎟⎠

σ1,σ2

+ O(q2),

where G = 1
12

√
2

(8 + 2 F1 + 8 F2 + F5 − i F4) determines

the M1 transition amplitude between the proton and the �+.
The entries of the matrix are proportional to the appropriate
Clebsch-Gordan coefficients. G is an important parameter and
as we will see in the next section it makes the dominant
contribution to the static magnetic polarizability in our model.
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IV. COMPTON SCATTERING CROSS SECTION AND
POLARIZABILITIES

At tree level, the Feynman diagrams for the proton Compton
scattering are shown in Fig. 1. For the s and u channels, the
propagator and the vertices were given in the previous section
in Eqs. (2), (5), (6), (9), and (11).

For the pion exchange t-channel diagram, there is no
contribution from the �+, and we use the familiar Dirac

spinor as the proton wave function. The relevant interaction
Lagrangian is

Lint = i gπ ū γ 5 uπ0 + 1
8 Fπγγ εμνρλ Fμν F ρλ π0. (19)

The incoming proton and photon have 4-momentum k1 and k2,
and the outgoing proton and photon k4 and k3, respectively.
With the above Feynman rules, the tree level amplitude is the
sum of the four diagrams in Fig. 1:

Aσ1,σ4,λ2,λ3 =
[

(ie)2 ū2(k4, σ4) �̃μ (−i)S(k1 − k3) �̃ν u2(k1, σ1) + (ie)2 ū2(k4, σ4) �̃ν (−i)S(k1 + k2) �̃μ u2(k1, σ1)

+ igπ Fπγγ

(k1 − k4)2 − m2
π

ū(k4, σ4) γ 5 u(k1, σ1) εμνσρ k2σ k3ρ

]
εμ(k2, λ2) ε∗

ν (k3, λ3) (20)

+ iπ

M
[ū2(k4, σ4) �σ ∂δ u2(k1, σ1) − ∂δ ū2(k4, σ4) �σu2(k1, σ1)],

[
(αB − βB)

(
k3 σ δρ

μ − k
ρ
3 gμσ

)(
k2 ρ δδ

ν − kδ
2 gρν

) − 1

2
δδ
σ βB

(
k

ρ
3 δγ

μ − k
γ
3 δρ

μ

)(
k2 ρ gγ ν − k2 γ gρν

)]
εμ(k2, λ2)ε∗

ν (k3, λ3).

In addition to the diagrams in Fig. 1, strong interactions
contribute through the pion one-loop diagrams as in Fig. 2.
Above the pion-production threshold, the diagram (a) con-
tributes to the imaginary part of the self-energy of the �+
and determines the line shape of the resonance. In principle,
the imaginary part depends on the center-of-mass momentum
squared s, and all these diagrams should be taken into account
at the one-loop order [47]. For our purposes, we make an
estimate of this effect by setting the imaginary part of the
�+ mass m to the observed width at the resonance, i.e., we
analytically extend the above matrix element by substituting
m with (m0 − i �

2 ) ∼ (1210 − 50i) MeV everywhere it appears
in the matrix element. Despite modifications of both the vertex

N, Δ

(c)(a) (b)

(d) (e)

π

(f)

FIG. 2. The one-loop level pion corrections, at the second order
in the pion-nucleon coupling: (a) is the self-energy correction;
(b) and (c) are the pion vertex corrections. The first three diagrams
are one-particle reducible, so that their contributions can be absorbed
into the baryon propagator (a) and the electromagnetic vertices (b)
and (c). These are especially important above the pion production
threshold. The other three diagrams are one-particle irreducible (1PI)
and therefore we model them by the effective four-point interaction
of Eq. (13). There exist additional diagrams with the photon legs
crossed.

and the propagator, this procedure preserves the Ward identity
from the analyticity of Eq. (4) in m.

It is verified that our result satisfies Low’s theorem [18],
namely that for the low-energy Compton scattering of spin
1/2 particles, the amplitudes expanded to the first order in
the photon energy are completely determined by the mass,
the electric charge, and the magnetic moment of the spin 1/2
particle. According to the theorem, in the laboratory frame
with the photon incident energy ω, the amplitudes are

Aσ1,σ4,λ2,λ3

= e2

M
�ελ2 · �ε∗

λ3
δσ1σ2 − ieω

M

(
2μp − e

2M

)(�ε∗
λ3

× �ελ2

) · �σσ1σ2

+ ieμp

ωM

(�ελ2 · �k3
(�ε∗

λ3
× �k3

) − �ε∗
λ3

· �k2
(�ελ2 × �k2

)) · �σσ1σ2

+ 2iμ2
p

ω

((�ε∗
λ3

× �k3
) × (�ελ2 × �k2

)) · �σσ1σ2 + O(ω2). (21)

The expansion of the cross section to the second order in the
photon energy ω is exactly in the form of Eq. (12) with ᾱ ± β̄:

ᾱ + β̄ ∼ −0.860 − 0.556F1 − 1.789F2 − 0.240F5

− 0.069F 2
1 − 0.961F 2

2 − 0.015F 2
4 − 0.020F 2

5

− 0.536F1F2 − 0.023F1F3 − 0.085F1F5

+ 0.009F2F3 − 0.234F2F5 − 0.007F3F5

+αB + βB (10−4f m3), (22)

ᾱ − β̄ ∼ 1.894 + 1.284F1 + 2.602F2 + 0.202F3 + 0.650F5

+ 0.146F 2
1 + 1.339F 2

2 + 0.028F 2
3 + 0.023F 2

4

+ 0.064F 2
5 + 0.728F1F2 + 0.069F1F3

+ 0.177F1F5 + 0.101F2F3 + 0.447F2F5

+ 0.067F3F5 + αB − βB (10−4f m3),

where αB and βB are the bare polarizabilities defined in
Eq. (13).
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To conclude, we note that the influence of the parameters
F1..6 at the second order in energy is degenerate: There are
only two polarizabilities which enter at the second order in
the energy of the photon. At higher orders in energy this
degeneracy is broken, and one can in principle relate the
appropriate combinations of F1..6 to the spin polarizabilities,
conventionally defined as the coefficients of the third order in
the energy.

V. THE AMPLITUDES NEAR THE �+ POLE

The �+ and the proton are almost degenerate in mass:

m = M(1 + x − iy), (23)

where x ∼ 0.3 and y ∼ 0.05 ∼ 1
2 x2. In addition, around the

�+ resonance, the photon momentum q
M

is of the same order
as x, thus we can approximate the amplitudes to the lowest
nontrivial order in q

M
, x and y.

First, at the �+ pole position, the contribution to the
pole mainly comes from the first term in the propagator
in the s channel where the momentum in the propagator is

k1 + k2. In this case, the denominator contributing to the pole
is (k1 + k2)2 − m2 = (ECM − m)(ECM + m). We multiply the
amplitudes by (ECM − m) and then expand it with respect to
q
M

, x, and y. We define q
M

= r1x and y = r2x
2. Around the

peak, r1 ∼ 1 and r2 ∼ 0.5. Then we can expand the amplitudes,
premultiplied by (ECM − m), with respect to x, and finally set
r1 = 1 (at the peak) and r2 = y

x2 . In the center-of-mass frame,
we rotate the proton wave function to make it polarized along
its direction of movement; that is, for a proton moving in the
direction θ with respect to the z axis,

ũ2

(
p,

1

2

)

= cos

(
θ

2

)
u2

(
p,

1

2

)
+ sin

(
θ

2

)
u2

(
p,−1

2

)
,

(24)

ũ2

(
p,−1

2

)

= − sin

(
θ

2

)
u2

(
p,

1

2

)
+ cos

(
θ

2

)
u2

(
p,−1

2

)
.

Then the approximate amplitudes are

AppRR = (2ir2 + 1 − 6|G|2)x2 cos3 θ
2

2(ECM − m)
,

AppRL = (−2ir2 − 1 − 6|G|2)x2 cos θ
2 sin2 θ

2

2(ECM − m)
,

AppLR = (−2ir2 − 1 − 6|G|2)x2 cos θ
2 sin2 θ

2

2(ECM − m)
,

AppLL = (2ir2 + 1 + 6|G|2 + (2ir2 + 1 − 18|G|2) cos θ )x2 cos θ
2

4(ECM − m)
,

(25)

ApmRR = (2ir2 + 1 − 6|G|2)x2 cos2 θ
2 sin θ

2

2(ECM − m)
,

ApmRL = (−2ir2 − 1 − 6|G|2)x2 sin3 θ
2

2(ECM − m)
,

ApmLR = (−2ir2 − 1 + 2|G|2 + (2ir2 + 1 + 6|G|2) cos θ )x2 sin θ
2

4(ECM − m)
,

ApmLL = (2ir2 + 1 − 6|G|2)x2 cos2 θ
2 sin θ

2

2(ECM − m)
.

In the above expressions, x = Re(m)−M
M

, r2 = y

x2 = − Im(m)
Mx2 .

G is the combination of the form factors which describes
the γN�+ transition amplitude as described in the previous
section in Eq. (18). For the subscript of the amplitudes,
the first(second) p(m) stands for the final(initial) proton
polarization and the first(second) L(R) for the final(initial)
photon polarization. Here only eight of the 16 amplitudes are
given, because the other eight are related by parity:

AmmRR = AppLL, AmpRR = −ApmLL,

AmmRL = AppLR, AmpRL = −ApmLR,
(26)AmmLR = AppRL, AmpLR = −ApmRL,

AmmLL = AppRR, AmpLL = −ApmRR.

In the same limit, the magnetic polarizability has an approxi-
mation:

β̄ = −4α|G|2
xM3

+ βB. (27)

This implies that the magnetic polarizability is directly related
to the proton-� (magnetic) transition [60,61].

VI. FITTING DATA

We fit the model to the 714 proton Compton scattering data
points from eight experiments [1–3,5,7–10]. Only the data
points with the photon incident energy smaller than 455 MeV
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FIG. 3. (Color online) Fixed c.m. angle cross section and the data points, where the parameters from the fitting to all the 714 data points
are used for the theoretical cross-section curve. (a) c.m. frame cross section at θc.m. = 70◦; (b) c.m. frame cross section at θc.m. = 90◦; (c) c.m.
frame cross section at θc.m. = 115◦; (d) c.m. frame cross section at θc.m. = 140◦. The x axis is the lab frame photon energy and the y axis is
the c.m. frame differential cross section in units of nanobarn. For [1–3,5,7–10], we use the following colors: cyan, darker pink, black, orange,
red, blue, green, and magenta, respectively. The angles of the data points included in this plot may differ from the nominal by at most 3◦.

are used, i.e., in the first resonance region. In principle, one
can also compare the model predictions with the polarized
measurements, where some data are available [6,16]. On the
theoretical side, lattice QCD may perhaps be used to measure
the necessary observables [62].

We set F4 = 0 in our fitting for several reasons. First, F4

does not appear in the expressions of the proton and the �+
magnetic moments Eqs. (16) and (17). Second, in all the fits
we attempted, the best fit value of F4 was near exactly zero,
and statistically consistent with zero.

The parameters we use to fit are F1, μ ≡ μ+
�

μN
= M

m
+

F2 − 1
2F1, G = 1

12
√

2
(8 + 2F1 + 8F2 + F5), F6 and the bare

polarizabilities αB and βB in Eq. (13). F3 is constrained by the
proton magnetic moment; see Eq. (16).

We minimize χ2 = ∑714
i=1

(( dσ
d�

)calc
i −( dσ

d�
)data
i )2

σ 2
(stat)i+σ 2

(syst)i
. We did not at-

tempt to rescale the data of each experiment within its own

TABLE I. Our best-fit parameter values and confidence levels in
the resonance region. The 95% confidence levels are given in the
table.

F1 G μ F6 αB βB

Whole data −27.5 1.81 14.2 12.9 7.5 −8.2
95% C.L. 2.8 0.05 1.1 1.7 2.2 1.6
MAMI data −27.7 1.83 14.2 14.8 2.1 −8.1
95% C.L. 1.4 0.03 0.7 1.5 1.5 1.1

systematical uncertainty to see if it would lead to better
consistency between data sets as it was done in Ref. [63].
The optimal set of parameters is found to be F1 = −27.5,
μ = 14.2, G = 1.81, F6 = 12.9, αB = 7.5, βB = −8.2 with
χ2 ∼ 6.3 × 103, see Table I.

On average the data points are 3σ away from the fit values.
The �+ resonance region is fitted well, while the low-energy
cross section deviates greatly from the data points. In fact,
the 68 data points with the incident photon energy smaller
than 140 MeV out of the total 714 data points contribute
nearly a third to the total χ2. Our fit cannot take care of
the low energy (�140 MeV) data points and the high energy
(�200 MeV) data points simultaneously. When finding a good
fit in the resonance region, where most data points used lie,
the predicted cross section at low energy cannot account for
the large asymmetry of the cross-section data at forward and
backward angles. Our fit cross sections at low energies are
much higher than the data at forward angles and lower at
backward angles. Because the polarizabilities are extracted
according to a low-energy expansion of the cross section in
Eq. (12), it is expected that ᾱ + β̄, calculated using Eq. (22)
is smaller than the experimental value, and ᾱ − β̄ larger than
the experimental value.

We plot the center-of-mass (c.m.) frame cross section using
the above fit parameters, together with the data points, in Figs. 3
and 4.

The challenge is clearly that the low-energy part and the
�+ resonance range data points are difficult to fit well at
the same time. The form factors (and thus the parameters μ
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FIG. 4. (Color online) The c.m. cross section at fixed photon incident energy and the data points, where the parameters from the fitting
to all the 714 data points are used for the theoretical cross-section curve. (a) c.m. frame cross section at Elab = 90 Mev; (b) c.m. frame cross
section at Elab = 160 Mev; (c) c.m. frame cross section at Elab = 225 Mev; (d) c.m. frame cross section at Elab = 300 Mev; (e) c.m. frame
cross section at Elab = 355 Mev; (f) c.m. frame cross section at Elab = 425 Mev. The x axis is the c.m. frame scattering angle and the y axis
is the c.m. frame differential cross section in units of nanobarn. Labels are the same as in Fig. 3. The quoted photon energy of the data points
included in the plots may differ from the nominal values by at most 4 MeV.

and G) are generally functions of k2 where k is the photon
momentum. For real Compton scattering, k2 is always zero,
so the form factors should be constants. However, in the
case of the bare polarizabilities it is possible that they vary
with energy and/or scattering angle [32], which would make
fitting with constant bare polarizabilities unsuccessful. In fact,
the dynamical behavior of the polarizabilities, including the
nonanalyticity near the pion threshold can only be successfully
accounted for by including the pion loop correction within the
chiral perturbation theory approach [49–51,64,65]

The strategy we propose to minimize the impact of the
dynamical behavior of the polarizabilities is as follows. First,
we fit only the peak range data points and fix the form factors
(including μ and G) from this fitting. Then we fit the low-

energy data points varying only the bare polarizabilities. For
the peak range, we use only the MAMI(2001) experiment [10],
which contains 436 data points with photon incident energy
ranging from 260 MeV to 455 MeV. A good fit is achieved
at F1 = −27.7, G = 1.83, μ = 14.2, F6 = 14.8, αB = 2.1,
βB = −8.1 with χ2 ∼ 830, see Table I. Notice that F1, F6,
μ, and G have not changed much from the complete fit of all
data points, yet χ2 per data point is much smaller. This may be
indicative of the fact that the experimental data prior to these
latest and more precise measurements may not be consistent
with each other. In the past, one of the strategies for dealing
with this (see [63]) was to allow rescaling the cross-section
data for each experiment within the systematical uncertainty
which tends to be large.
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FIG. 5. (Color online) Projections of the six-dimensional 95% confidence region into planes spanned by several pairs of the parameters.
The plots in each column share the same x-axis parameter as indicated at the top of each column. The plots in each row share the same y-axis
parameter as indicated at the left of each row. The range for F1 is (−30,−26); G: (1.79,1.88); μ: (13,15); F6: (13,17).

Qualitatively, we found that changes in the μ�+ affect the
predicted cross-section asymmetrically: Lower values of the
magnetic moment do not drastically change the prediction,
but higher values greatly enhance the cross section, both on
and off the resonance. Therefore we exclude any values of
the �+ magnetic moment μ�+ larger than about 14.2. This
should be compared to the value extracted by MAMI [66] at
2.7+1.0

−1.3(stat) ± 1.5(syst) ± 3(theor), but notice that the error is
dominated by theoretical model uncertainty. Our upper bound
is also consistent with expectations from a naive quark model
and some model calculations [67,70].

The inclusion of the sigma channel and/or variation of the
mass and width of the sigma meson do not appreciably alter
the goodness-of-fit or the values of the optimal parameters.

In Fig. 5, we give the contour plots of χ2 with respect to
several pairs of parameters for this fit. It is seen that G is very
strictly constrained.

We then fix these values for F1, F6, μ, and G and fit the low-
energy data points, varying only αB and βB . We take 68 data

points with photon incident energy below 140 MeV and obtain
the best fit values of αB = −4.6 and βB = 17.9 with χ2 ∼ 194.
See Figs. 6 and 7. For these optimal parameter values, the to-
tal polarizabilities, ᾱ + β̄ = 11.3 ± 0.9 ± 2.3(95% C.L.) and
ᾱ − β̄ = 7.8 ± 3.3 ± 2.0(95% C.L.), are much closer to val-
ues extracted (from the same data) previously. The first error
is determined from the high energy fit, by investigating how
the contributions of F1, G, and μ to the polarizabilities vary
in the three-dimensional 95% confidence region spanned by
these three parameters. The second quoted error is statistical.

The important conclusion which can be inferred from
Table II (the second line) is that the extraction of the backward
polarizability, ᾱ − β̄, is influenced by the uncertainties in the
model parameters which are degenerate at the second order in
the photon energy such as F1, F6, and μ� (for fixed G and μN ).
Stated in more familiar language, the influence of the unknown
spin polarizabilities makes itself felt through the variation of
the model prediction in the 80- to 140-MeV region. This would
not be the case if data could be taken at arbitrarily low energy
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FIG. 6. (Color online) Fixed c.m. angle cross section and the data points with photon incident energy below 140 MeV, for the fit parameters
of the low-energy data points. (a) c.m. frame cross section at θc.m. = 63◦; (b) c.m. frame cross section at θc.m. = 90◦; (c) c.m. frame cross section
at θc.m. = 137◦. The x axis is the laboratory frame photon energy and the y axis is the c.m. frame differential cross section in units of nanobarn.
The angles of the data points included may differ from the nominal by at most 2.5◦. The labels are the same as in Fig. 3.

or if the radius of convergence of the power series in energy
were greater.

VII. DISCUSSION

At the dawn of the particle and nuclear physics, there had
been considerable doubt as to the right relativistic equation
to describe the proton. Some of this doubt was because of
the fact that the Dirac equation in its original form could not
describe or explain the large anomalous magnetic moment of
the proton. Eventually, the Dirac Lagrangian with the addition
of an effective term corresponding to the anomalous magnetic
moment became well accepted. Nevertheless, an alternative to
the Dirac equation to describe the proton had been proposed
by Bhabha: Long before the quark model he suggested that
his three-mass-state relativistic spin 3/2 equation could be
used to describe the proton. In his opinion, the proton in the
high-energy regime could exhibit its hidden spin 3/2 nature.
We now know this to be more or less correct, because there are
indeed three spin 1/2 quarks inside the proton. Unfortunately,
in his equation the ratio of the mass of the spin 1/2 and spin 3/2
components was rigidly fixed to 3, and there was a second spin
1/2 component which has incorrect pole structure indicating
that it is a ghost. In the equation of Ranada and Sierra [52] the
second, unphysical, spin 1/2 component is projected out and
the resulting equation with some additional restriction on the
mass ratio has unitary pole structure and completely transverse
physical modes [53].

The model of electromagnetic properties of the proton
which we developed on this basis in Secs. II and III is of
general nature and has applicability to many processes in

the few-hundred MeV energy range, i.e., whenever there is
an off-shell proton in some intermediate state. Other than
proton Compton scattering it can be applied, for example,
to calculations of two-photon exchange in elastic electron
scattering. The predictions of the model are different from
the standard approach of treating the proton as a Dirac
particle with anomalous magnetic moment, and the �+ as
a Rarita-Schwinger particle. In particular, at higher energies,
there is a destructive interference between the contributions of
the virtual proton and the �+.

Our model incorporates both minimal and nonminimal
couplings. The former takes into account that the �+ is
charged, a fact which presents difficulties in the standard
approach because of the possibility of unphysical poles in
the dressed propagator. In our model, it is assured that such
unphysical poles do not appear.

The existence of the nonminimal couplings necessitates the
introduction of a small number of free parameters. Most of
these parameters have a clear physical interpretation, namely
as the proton and the �+ magnetic moments, as well as the
strength of the N� magnetic transition (M1) and the two bare
polarizabilities. The contributions of the parameters which
are degenerate at the second order in the photon energy (F1,
F6, and μ�) are disentangled at the third order, where the
coefficients are usually interpreted as the spin polarizabilities.
This should be contrasted with the standard approach [64]
where there is just one parameter to describe the strength
of the M1 transition. Fortunately, very precise data which is
sufficient to determine the entire set of spin polarizabilities will
soon become available. One can expect that the quantitative
and the qualitative differences between the predictions of
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FIG. 7. (Color online) The fit cross section and the data points with photon incident energy below 140 MeV, for the fit parameters of the
low-energy data points. (a) c.m. frame cross section at Elab = 80 MeV; (b) c.m. frame cross section at Elab = 109 MeV; (c) c.m. frame cross
section at Elab = 133 MeV. The x axis is the c.m. frame scattering angle and the y axis is the c.m. frame differential cross section in units of
nanobarn. The incident energy of the data points included in this plot may differ from the nominal by at most 2.5 MeV. The labels are the same
as in Fig. 3.
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TABLE II. Our best-fit parameter values for polarizabilities
and confidence regions inferred from the low-energy fit. The 95%
confidence levels are given in the table.

Value 95% C.L. model error from 95% C.L. stat error
high-energy parameters

ᾱ + β̄ 11.3 ±0.9 ±2.3
ᾱ − β̄ 7.8 ±3.3 ±2.0

different models in the energy range below the peak will then
become more pronounced, and that it will be necessary to
introduce additional terms in the effective Lagrangian in the
standard approach as well. Our approach already incorporates
the necessary flexibility to fit the spin polarizabilities to data.

Although we have been able to extract a value for the �+
magnetic moment, we cannot have a very high confidence
in this value because the proton Compton scattering does
not probe the γ�+�+ vertex directly. It is possible to
extract this because the form factors have definite properties
under the Lorentz transformations, so that the same set of
parameters which affects the Compton process also determines
the magnetic moment of the �+. The more reliable path
towards determining the �+ magnetic moment would be to
extend the model to include the pions and thus cover the case
of pion photoproduction γN → πN and γN → πNγ . An
extension of the model to include the interaction with the
pion, within the framework of chiral perturbation theory, will
be published in an upcoming paper.
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APPENDIX: �+ → N + γ DECAY WIDTH

Aside from the proton Compton scattering, another pro-
cess can be readily accounted for in this unified N − �+
electromagnetic model, that is, the decay �+ → N + γ . The
Feynman rules for this diagram were given in Sec. II.

We label the momentum and polarization of the �+ as
k1, σ1, the produced photon k2,λ2 and the proton k3,σ3, the
matrix element is

Aσ1,λ2,σ3 = e ū2(k3, σ3) �̃μ u4(k1, σ1) ε∗
μ(k2, λ2). (A1)

It is of interest to find the decay width �3/2 and �1/2 for the final
state helicity 3

2 and 1
2 , respectively. Evaluating this amplitude,

we obtain after substituting the values of m, M,

�3/2 = 0.0047F 2
1 + 0.056F 2

2 + 0.001F 2
4 + 0.001F 2

5

+ 0.032F1F2 + 0.004F1F5 + 0.0139F2F5 + 0.032F1

+ 0.1113F2 + 0.0139F5 + 0.0557 MeV,

�1/2 = 0.0004F 2
1 + 0.0120F 2

2 + 0.0002F 2
4 + 0.0002F 2

5

+ 0.0002F 2
6 + 0.0058F1F2 + 0.0005F1F5

− 0.0006F1F6 + 0.0037F2F5 − 0.0039F2F6

− 0.0004F5F6 + 0.0043F1 + 0.0293F2 + 0.0027F5

− 0.0028F6 + 0.0108 MeV. (A2)

If, on the other hand, we let m = M(1 + x) then in the limit
of small x we find

�3/2 ∼ 3αMx3|G|2,
(A3)

�1/2 ∼ αMx3|G|2.
Experimentally, the �+ → p + γ decay amplitudes can be
extracted from the �+ peak of the proton Compton scattering
[8]. For the optimal fit parameters for the MAMI data we
obtained in Sec. VI we calculate �3/2 = 0.43 MeV and �1/2 =
0.11 MeV, close to the values quoted in [8,71–74]: �3/2 =
0.49 − 0.56 MeV and �1/2 = 0.13 − 0.15 MeV.
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