
PHYSICAL REVIEW C 88, 064606 (2013)

Energy dependence of fission-fragment mass distributions from strongly damped shape evolution
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The recently developed treatment of Brownian shape evolution is refined to take account of the gradual
decrease in microscopic effects as the nuclear excitation energy is raised. We construct effective potential-energy
surfaces by multiplying the shell-plus-pairing correction term by a suppression factor that depends on the local
excitation energy. While this approach is equivalent to the modification of the Fermi-gas level density parameter
suggested by Ignatyuk et al. [Sov. J. Nucl. Phys. 29, 450 (1979)], we adopt a more general functional form for the
suppression factor, which is adjusted to measured charge yields for 234U (E∗ ≈ 11 MeV). The resulting model
is benchmarked by comparison with 70 measured yields.
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I. INTRODUCTION

The approximate treatment of nuclear shape evolutions in
terms of Metropolis walks on five-dimensional (5D) potential-
energy surfaces has been remarkably successful for predicting
fission-fragment mass distributions [1–3]. However, until now,
the treatment has not taken account of the gradual weakening
of the shell and pairing corrections as the nuclear excitation en-
ergy is raised. The present study models this feature by means
of energy-dependent effective potential-energy surfaces.

In Sec. II, we briefly review the key features of the
Metropolis method, and then, in Sec. III, we discuss our
treatment of the energy dependence. Finally, in Sec. IV, we
benchmark the refined treatment against experimental data for
70 fission-fragment yields.

II. BROWNIAN SHAPE MOTION

In the Metropolis walk treatment, the formal starting point
is the commonly employed Langevin framework [4], which
treats the time development of the multidimensional nuclear
shape as it responds to the driving force from the potential
energy of deformation and the dissipative force due to the
interaction between the shape degrees of freedom and the
residual part of the nuclear many-body system.

Specifically, in the present approach, the shape is
parametrized in terms of the three-quadratic-surface family in-
troduced by Nix [5,6]. The associated five-dimensional shape
“coordinate” is denoted here by χ = {χi} with i = 1, . . . , 5.
For over five thousand nuclei, the potential-energy landscape
was calculated [7] by use of the macroscopic-microscopic
method [8,9] which provides the energy of a given shape
on the form U (χ) = Umacro(χ) + Ush+pair(χ). The first term
was obtained with the finite-range liquid-drop model, and
the second term represents the microscopic shell and pairing
corrections [7]. The resulting driving force is then Fpot(χ) =
−∂U (χ)/∂χ , and the kinetic energy associated with a
shape change is given by K(χ̇ ,χ ) = 1

2

∑
ij Mij (χ)χ̇i χ̇j ,

where M(χ) is the 5 × 5 inertial-mass tensor. The La-
grangian function for the shape dynamics is, thus, L(χ̇ ,χ ) =
K(χ̇ ,χ ) − U (χ).

The dissipative coupling between the shape and the micro-
scopic degrees of freedom is encoded into the 5 × 5 dissipation
tensor γ (χ̇ ,χ ) in terms of which the Rayleigh function is
expressed:F(χ̇,χ ) = 1

2

∑
ij γij (χ )χ̇i χ̇j . The average dissipa-

tive effect produces a friction force Ffric(χ̇ ,χ ) = −∂F(χ)/∂χ̇

[whose five components are F fric
i (χ̇ ,χ ) = −∑

j γ (χ)ij χ̇j ],
while the residual dissipative effect is represented by a
stochastic force Fran(χ ; t), which gives the evolution of χ

a diffusive character. The random force varies relatively
rapidly in time and is assumed to be Markovian, i.e.,
≺ Fran(χ ; t)Fran(χ ; t ′) �= 2T (χ )γij (χ )δ(t − t ′), where T (χ )
is the shape-dependent temperature (see below). The total
dissipative force is thus Fdiss = Ffric + Fran.

The Langevin equation of motion for the evolution of the
five-dimensional shape parameter χ is given by

d

dt

∂

∂χ̇
L(χ̇ ,χ ) = ∂

∂χ
L(χ̇ ,χ ) + Fdiss(χ ; t). (1)

Relative to this general description, the key simplifying
assumption in our treatment is that the dissipative coupling
is sufficiently strong to render the inertial-mass tensor M(χ )
unimportant. The term on the left-hand side of Eq. (1)
is then absent, and the Langevin equation reduces to the
Smoluchowski equation in which there are no inertial forces.
Consequently, the shape dynamics is determined by the bal-
ancing of the driving force against the dissipative force Fpot +
Fdiss .= 0. This condition yields the instantaneous rate of shape
change,

χ̇ (χ ; t) = μ(χ) · [Fpot(χ) + Fran(χ ; t)], (2)

where μ(χ) ≡ γ (χ)−1 is the shape dependent 5 × 5 mobility
tensor. Thus, the net change in χ in the course of a brief time
interval �t consists of a deterministic part that represents the
average change, μ · Fpot�t , and a stochastic part proportional
to the square root of T and �t . It is straightforward to numer-
ically simulate the resulting diffusive evolution of the nuclear
shape [2].

This type of dynamics is characteristic of Brownian motion,
the erratic movements of a particle immersed in a fluid.
But relative to the standard scenario where the fluid is
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three-dimensional, uniform, isotropic, and force free, the
nuclear Brownian shape dynamics is more complex: The
“particle” (the nuclear shape) moves in a five-dimensional
space, it is subject to an external force (the driving force
Fpot), which is nonuniform (it depends on the shape parameter
χ), and the interaction with the medium (described by the
dissipation tensor γ ) is both nonuniform (γ depends on χ)
and anisotropic (the five eigenvalues of γ are not equal, nor
are the eigenvectors aligned with the χ coordinate system).

In order to calculate the fission-fragment mass distribution,
one typically proceeds as follows. The Brownian motion on
the potential-energy surface is started from a suitably compact
shape, such as the ground-state shape or an isomeric minimum;
the precise starting point is immaterial as long as it is located
well inside the highest saddle. The resulting track is then
followed until the system has passed beyond the last barrier
and is well on its way towards scission. At this stage, the
nuclear shape has developed a binary character with the two
parts being joined by a relatively small neck. Any further
change in the mass asymmetry is then strongly suppressed, so
the evolution is terminated, and the current mass asymmetry
is binned. With this procedure, a sufficiently large number of
individual tracks (typically 10 000) are generated to produce a
good-quality histogram of the resulting fission-fragment mass
yield Y (Af).

The strong dissipation causes the shape to evolve rather
slowly, and it may, therefore, be expected that a high degree
of relaxation occurs along the evolution towards scission.
Consequently, the sensitivity to the specific form of the
dissipation tensor γ should be diminished, and it was found
that the resulting fragment mass distributions are, indeed,
relatively insensitive to the structure of γ [2]. This provides a
justification for the method introduced in Ref. [1], namely, that
the shape evolution may be simulated by means of a Metropolis
walk on the five-dimensional χ lattice where the potential U
is available [7] because this procedure generates the shape
evolutions implied by the Smoluchowski equation (2) for
the extreme case of an isotropic diffusion tensor, γij (χ) =
γ0(χ ) δij [1].

The original Metropolis procedure was developed to gen-
erate a sequence of lattice sites {χn} that are distributed
according to the applicable statistical weight W (χ ) [10]. [For a
canonical distribution of temperature T , the statistical weight
is given by W (χ ) ∼ exp(−U (χ)/T ).] Having arrived at shape
number n in the sequence {χn}, one determines the next
shape in the sequence as follows. First one of the neighboring
shapes χ ′ is selected randomly, and its statistical weight W (χ ′)
is compared with that of the current shape, W (χn). If the
candidate shape χ ′ has a larger statistical weight, then it is
accepted as the next shape in the sequence, i.e., χn+1 = χ ′.
But if the candidate shape has a smaller statistical weight,
it is accepted only with the probability W (χ ′)/W (χn) (in
which case, χn+1 = χ ′), whereas the shape χn is taken as
shape number n + 1 otherwise (in which case the current
shape is repeated χn+1 = χn). The Metropolis procedure,
thus, produces a diffusive random walk through the shape
lattice, and it is easy to verify that, for a closed system, the
selected lattice shapes {χn} are distributed in accordance with
the statistical weight W (χ ). However, in the present case, the

system is not closed, and only partial equilibration occurs
before scission is reached.

The generation of the Metropolis walks on the shape lattice
is computationally far less demanding than the numerical
solution of the Smoluchowski equation with a nontrivial dissi-
pation tensor. The method, therefore, presents a very powerful
tool for making approximate (but essentially parameter-free)
predictions of fragment mass distributions. However, it should
be noted that the Metropolis walk only provides the tracks
through the shape lattice but not any temporal information (i.e.,
it provides the shape evolution but not the time evolution) but
that suffices for calculating the mass splits.

In applications up to now, the statistical weight was
taken as W (χ ) ∼ exp[−U (χ)/T (χ )], where T (χ) is the local
temperature, i.e., the temperature of the nucleus when its shape
is as specified by χ . When the energy of the fissioning system
is increased, the local temperatures increase correspondingly
and that, in turn, broadens the resulting mass distribution.
However, the increase in the nuclear excitation energy also
causes the microscopic effects to gradually subside. This
behavior can be of considerable significance but was not
accounted for previously. Therefore, in the present paper, we
address this issue and show how the gradual disappearance
of microscopic effects may be included in a simple approxi-
mate manner by means of energy-dependent potential-energy
surfaces.

III. TREATMENT OF ENERGY DEPENDENCE

The potential energies were calculated [7] with the
macroscopic-microscopic method, so they have the form

U (χ) = Umacro(χ) + Ush+pair(χ), (3)

where both terms are available on a five-dimensional lattice
of shapes χ . The macroscopic energy was calculated by
means of the finite-range liquid-drop model [11,12] and
depends smoothly on deformation, as illustrated in Fig. 1 (solid
curve in the upper panel). The corresponding macroscopic
potential-energy landscape, Umacro(χ), displays a single saddle
point, and the associated shape is reflection symmetric. By
contrast, the microscopic part of the energy tends to exhibit
an undulatory behavior as the shape is changed (dashed curve
in the upper panel of Fig. 1). As a consequence, the total
potential-energy landscape, U (χ) (solid curve in the lower
panel), has a rather bumpy appearance, which, for the actinides,
causes the ground-state shape to be deformed, generates a
secondary minimum, and renders the outer saddle shapes
reflection asymmetric.

The microscopic part of the potential energy, Ush+pair(χ),
arises from the nonuniformities in the neutron and proton
single-particle level distributions near the respective Fermi
surfaces. Accordingly, Ush+pair(χ) vanishes when the level
spectra are regular. We denote the density of nuclear many-
body states for this reference scenario by ρ̃(E∗), where E∗
is the nuclear excitation energy, measured relative to the
potential energy of the given shape χ , E∗(χ ) = E − U (χ),
with E being the total energy. Usually, it is taken to have a
simplified Fermi-gas form, ρ̃(E∗) ∼ exp(2

√
ãE∗), where the
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FIG. 1. (Color online) Schematic illustration of the construction
of the effective potential UE(χ). Panel (a): The smooth macroscopic
energy Umacro (solid curve) and the undulating shell-plus-pairing
correction Ush+pair (dashed curve). Panel (b): The total potential
U = Umacro + Ush+pair (solid curve); for a given shape, the excitation
energy is given by E∗ = E − U , where E is the specified total
energy (dashed line), and the effective potential is given by UE =
Umacro + S(E∗)Ush+pair (dashed line) and thus approaches Emacro for
large E∗.

level-density parameter has a macroscopic form [we use ã =
A/(8 MeV)]. The inverse of the corresponding temperature
T̃ (χ ) is then given by β̃(χ ) = ∂ ln ρ̃(E∗)/∂E∗, which leads
to the familiar expression E∗ = ãT̃ 2 for the simple Fermi-gas
form.

The global use of the simplified Fermi-gas level density
is only a rough approximation which, among other things,
neglects the influence of pairing correlations. However, in view
of the approximative nature of the Metropolis walk method,
a more refined form does not seem warranted at this stage. A
recent discussion of the influence of pairing on nuclear level
densities was given in Ref. [13].

The tabulated potential energies U (χ) pertain to a cold
nucleus, T = 0. As the temperature is raised, both terms
in Eq. (3) generally change. But the macroscopic term
depends only weakly on temperature and is assumed to remain
unchanged. On the other hand, the microscopic term exhibits
a significant temperature dependence and generally subsides
as the temperature is increased; it is this feature that we wish
to take into account in a simple manner.

Although it would, in principle, be straightforward to
recalculate the shell-plus-pairing correction for specified finite
temperatures, this would, in practice, be a rather formidable
task if carried out for all of the over five million shapes of more
than five thousand nuclei for which the original tabulation [7]
was performed. We therefore seek to develop an approximate
treatment that can be implemented with the currently available
information.

A. Effective potential

For a specified total energy E, which is assumed to
remain constant as the nuclear shape evolves, we introduce
an energy-dependent effective potential UE(χ) by suppressing

the microscopic term by a factor S(E∗) that depends on the
local excitation energy E∗(χ) = E − U (χ),

UE(χ) ≡ Umacro(χ) + S[E∗(χ)]Ush+pair(χ ). (4)

The characteristic energy scales for the damping of the pairing
and shell corrections generally differ, so it might appear
unjustified to employ a common suppression factor. However,
the pairing correction usually is substantially smaller than the
shell correction, and so the use of a single suppression factor
is a reasonable approximation at this stage.

Because the suppression accounts for the damping of
the shell-plus-pairing correction relative to its value at zero
excitation, we have, by definition, S(0) = 1. Furthermore,
S(E∗) approaches zero in the limit of high excitation. Then
for zero temperature the real potential U is recovered, whereas
only its macroscopic part remains at very high temperatures.
The specific functional form of S(E∗) will be discussed in
Sec. III D.

We also define the corresponding effective excitation energy
as the difference between the total energy and the effective
potential,

E∗
E(χ ) ≡ E − UE(χ) = FE(χ)E∗(χ)

= E∗(χ ) + {1 − S[E∗(χ )]}Ush+pair(χ), (5)

where we have introduced the modification factor,

FE(χ) ≡ E∗
E(χ )/E∗(χ)

= 1 + {1 − S[E − U (χ)]}Ush+pair(χ)

E − U (χ)
. (6)

It has the following limiting behaviors:

E∗ → 0 : FE ≈ 1 − Ush+pairS ′(0), (7)

E∗ → ∞ : FE ≈ 1 + Ush+pair/E
∗ → 1, (8)

where S ′(0) ≡ [∂S(E∗)/∂E∗]E∗=0 is the initial slope of the
suppression factor (which is negative). The relationship be-
tween the various potential energies is illustrated schematically
in Fig. 1.

For the given total energy E, the domain of accessible
shapes is determined by the condition that the local potential
should be lower than the total energy: U (χ) < E, so that the
local excitation energy is positive: E∗(χ) > 0. So the domain
boundary is characterized by E∗(χ) = 0, i.e., U (χ) = E. This
implies that the suppression factor S is unity on the boundary
and so is the modification factorFE , ensuring that the effective
excitation also vanishes on the domain boundary, E∗

E(χ) = 0,
i.e., UE(χ) = E.

For the effective excitation E∗
E(χ ) to remain positive inside

the domain boundary (where E∗ > 0), we must demand
that the modification factor FE(χ) be positive. Near the
domain boundary, this condition leads to the requirement that
Ush+pair(χ)S ′(0) < 1 [see Eq. (7)], which limits how rapidly
the function S(E∗) may decrease initially. For example, in
the case of S(E∗) = exp(−E∗/Edamp) [14], it follows that the
damping energy Edamp must exceed the absolute value of the
most negative value of the shell-plus-pairing correction.
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B. Level density

We now assume that the energy dependence of the many-
body level density can be accounted for by simply evaluating
the macroscopic level density ρ̃(E∗) at the effective excitation
energy E∗

E = E − UE ,

ρE(χ) = ρ̃[E∗
E(χ )] = ρ̃[FE(χ)E∗(χ )]. (9)

Thus, at high excitations, where the factor FE is unity, there
is no change relative to the earlier treatment which used ρ =
ρ̃(E∗) for all E∗. But FE generally deviates from unity at
lower excitations, and the expression ρ̃(E∗

E) may then differ
significantly from ρ̃(E∗).

When the simple Fermi-gas form is used for ρ̃(E∗), the
prescription (9) yields

ρE(χ ) ∼ exp[2
√

ãFE(χ )E∗(χ)]. (10)

Because the product ã × FEE∗ is equal to ãFE × E∗, the
level-density (10) can also be written as

ρE(χ) ∼ exp[2
√

aE(χ)E∗(χ)], (11)

where the energy-dependent effective level-density parameter
aE is defined by

aE(χ ) ≡ ãFE(χ). (12)

It approaches ã[1 + Ush+pair(χ)S ′(0)] for E∗ → 0, whereas it
tends to ã for large E∗. We note that if the suppression function
is taken to be purely exponential, S(E∗) = exp(−E∗/Edamp),
then the expressions (11) and (12) correspond to what was
employed previously by Ignatyuk et al. [14].

It is thus equally valid to take account of the shell
structure in the single-particle level spectrum by either an
energy-dependent effective level-density parameter aE or by
an energy-dependent effective excitation energy E∗

E obtained
by means of an effective potential. In either case,

ρE(χ) ∼ exp{2
√

ãFE(χ)[E − U (χ)]}. (13)

Once the level density ρE(χ) is given, the various thermo-
dynamic quantities of interest can be determined. Of particular
interest is the local temperature, TE(χ ), whose inverse is given
by [see Eq. (5)]

βE(χ) = ∂

∂E
ln ρE(χ) =

[
∂

∂E∗ ln ρ̃(E∗)

]
E∗

E

∂E∗
E

∂E

= β̃[E∗
E(χ)]{1 − Ush+pair(χ)S ′[E∗(χ)]}. (14)

Defined earlier, the function β̃(ε) ≡ ∂ ln ρ̃(ε)/∂ε = √
ã/ε

is the inverse temperature associated with the macroscopic
level density ρ̃(ε) ∼ exp[2

√
ãε]. Thus the actual inverse

temperature βE is obtained by evaluating the macroscopic
inverse temperature β̃ at the effective excitation energy E∗

E and
then multiplying by the factor in the square brackets in Eq. (14),
which arises from the energy dependence of the effective
level-density parameter aE . It is convenient to introduce the
local effective temperature [see Eq. (18)] defined as

Teff(χ) ≡ 1/β̃[E∗
E(χ)] = [E∗

E(χ)/ã]1/2. (15)

C. Metropolis walk

In the simple treatment introduced in Ref. [1], the Smolu-
chowski evolution for the nuclear shape evolution is simulated
as a Metropolis walk on the 5D lattice where the potential
energy U (χ) is available. The lattice shapes are labeled
by the five-dimensional site index ν = (i, j, k, l,m) (so the
associated shape parameter χ (ν) has the components χ

(ν)
1 =

i, χ
(ν)
2 = j, . . . , χ

(ν)
5 = m), and the Metropolis process then

provides a sequence of lattice sites, {ν}, selected as follows.
At any given stage in the walk, let the current site have

the index ν. To determine the next index in the sequence,
a candidate index ν ′ is first selected randomly (with even
probability) from the neighboring sites. If the statistical weight
of the selected candidate shape exceeds that of the current
one, 
(ν ′) > 
(ν), then ν ′ is accepted as the next index in
the sequence; in the opposite case ν ′ is accepted only with
the probability 
(ν ′)/
(ν), and otherwise the current index ν

is repeated. Thus, generally, the Metropolis probability for
making the proposed shape change, i.e., moving from the
current lattice site ν to the candidate site ν ′, is given by

P (ν → ν ′) = min[1,
(ν ′)/
(ν)]. (16)

Were it not for the energy dependence of the microscopic
effects, one would implement this procedure as follows. The
statistical weight of a given lattice point is proportional to the
nuclear level density for the corresponding shape, evaluated
at the associated local excitation energy, 
(ν) ∼ ρ[E∗(χ (ν))].
Therefore the ratio between the statistical weight of the
candidate shape χ ′ and that of the current shape χ would
be evaluated as

ln

′



= ln ρ[E∗(χ ′)] − ln ρ[E∗(χ )]

≈ ∂

∂χ
ln ρ[E∗(χ)] · �χ

= ∂ ln ρ(E∗)

∂E∗
∂E∗(χ )

∂χ
· �χ ≈ −�U

T
, (17)

where �χ ≡ χ ′ − χ is the proposed change in the shape
coordinate and �U ≡ U (χ ′) − U (χ) ≈ ∂χU · �χ is the cor-
responding change in the potential energy. We have used that
∂ ln ρ(E∗)/∂E∗ is the inverse of the temperature T (E∗) and
that ∂E∗(χ)/∂χ equals −∂U (χ)/∂χ because U + E∗ = E.
Thus, P (χ → χ ′) ≈ min[1, exp(−�U/T )].

The energy dependence of the microscopic effects compli-
cates the comparison of the weights considerably. However, it
is possible to treat this more general case in an equally simple
manner by utilizing the effective potential UE(χ) introduced
in Eq. (4),

ln

′



= ln ρE(χ ′) − ln ρE(χ) ≈ ∂ ln ρE(χ)

∂χ
· �χ

= ∂ ln ρ̃(E∗
E)

∂E∗
E

∂E∗
E(χ)

∂χ
· �χ ≈ −�UE

Teff
, (18)

i.e., P (χ → χ ′) ≈ min[1, exp(−�UE/Teff)]. Here we have
used that the first factor is the inverse of the effective
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temperature introduced in Eq. (15) and that ∂χE∗
E(χ ) equals

−∂UE(χ )/∂χ because UE + E∗
E = E.

Thus, the random walk on the shape lattice can be
performed in a manner similar to the energy-independent
case (17), the only differences being that the potential
U (χ) is replaced by the effective potential UE(χ) and the
temperature T (χ ) is replaced by the effective temperature
Teff(χ). This facilitates the numerical implementation of the
energy dependence.

Because the Metropolis lattice walk ignores the specific
structure of the dissipation tensor, the extracted yields may
generally depend somewhat on the specific manner in which
a neighboring lattice site is selected. However, as illustrated
in Ref. [2], this dependence is relatively insignificant, and
our standard treatment considers all neighbors in the circum-
scribed 5D hypercube (so a given lattice site has a total of 242
immediate neighbors, except at the edges of the lattice).

D. Suppression function

We now turn to the determination of the key quantity, the
suppression function S(E∗).

Ignatyuk et al. [14] wrote the level density on the form
(11) using an energy-dependent level-density parameter of
the form (12) with an exponential suppression function
S(E∗) = exp(−γE∗). Their analysis yielded the value γ =
1/(15.625 MeV) for the damping rate. More recent applica-
tions of that approach usually write γ = γ0/A

1/3 and adjust
γ0 to the data being analyzed. For example, for 234U the
Reference-Input-Parameter-Library-2 (RIPL-2) compilation
[15] finds γ = 1/(18.957 MeV), whereas, the RIPL-3 com-
pilation [16] finds γ = 1/(15.016 MeV).

Therefore, for our present purposes, we first con-
sider a purely exponential suppression function, S(E∗) =
exp(−E∗/E0). For fission of 234U at E∗ = 11 MeV, we show
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FIG. 2. (Color online) The relative fragment charge yield for fis-
sion of 234U at E∗ = 11 MeV as calculated with a purely exponential
suppression function for various values of the damping energy E0

(indicated in MeV). The experimental data for 234U(γ, f ) are from
Ref. [17]. [The curve labeled “E0 = 0” was obtained for a purely
macroscopic potential, U = Umacro.]
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in Fig. 2 the calculated mass yields for a wide range of damping
energies E0 together with the experimental 234U(γ, f ) data
[17]. It is apparent that E0 values in the range of 15–20 MeV
are far too small, leading to mass yields that are peaked at
symmetry. A reasonably good reproduction of the experimen-
tal data is obtained for E0 = 60 MeV, whereas E0 values
below 40 MeV lead to significant discrepancies. It is thus
evident that if the suppression function is purely exponential
then a reasonable reproduction of the fission-fragment yields
can be obtained only if the associated damping energy is
significantly larger than the values previously obtained from
neutron-resonance analyses [14–16]. However, the use of a
purely exponential suppression with E0 = 60 MeV would
cause the microscopic effects to persist up to rather high
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FIG. 4. (Color online) Similar to Fig. 2, but the charge yield has
been calculated with either the energy-independent potential UT =0 =
Umacro + Ush+pair (corresponding to E0 = ∞ in Fig. 2) or the purely
macroscopic potential Umacro (E0 = 0 in Fig. 2) as well as with the
effective potential UE (4) using the suppression function (19) with
E0 = 15 MeV and E1 = 20 MeV.
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excitations and, as a result, the mass yields would retain an
asymmetric character even above E∗ ≈ 50 MeV. We therefore
adopt a modified functional form, namely a (renormalized)
Woods-Saxon function,

S(E∗) = 1 + e−E1/E0

1 + e(E∗−E1)/E0
= 1 + c

eE∗/E0 + c
. (19)

The numerator in the center expression serves to ensure that
S(0) is unity, and in the last expression we have introduced
the constant c = exp(E1/E0) for convenience. The purely
exponential form is recovered for c = 0, which corresponds
to E1/E0 → −∞, and the inverse of the initial slope is
1/S ′(0) = −(1 + c)E0.

To determine the two parameters, we assume that the
damping energy E0 has a value in the 15–20-MeV range,
consistent with the analyses mentioned above, while we
consider the energy shift E1 as adjustable. As a reminder
that our approach is approximate and that the existing data
do not permit a very accurate parameter determination, we
select round values. We have adopted E0 = 15 MeV (the most
recent value of the Ignatyuk damping energy [16]) and E1 =
20 MeV. This suppression function is shown in Fig. 3 together
with the purely exponential form with either E0 = 15 MeV or
E0 = 60 MeV. It follows the latter function quite closely up
to E∗ ≈ 10 MeV, while it drops off as exp[−E∗/(15 MeV)]
at high excitations.

As shown in Fig. 4, the modified suppression function (19)
leads to a satisfactory reproduction of the observed mass yield
for the 234U(γ, f ) case, similar to what was obtained with
exp[−E∗/(60 MeV)] (see Fig. 2).

IV. BENCHMARKING

About a dozen years ago, Schmidt et al. [17] used the
secondary-beam facility at GSI to study fission from 70 short-
lived radioactive isotopes. A primary beam of 1-A-GeV 238U
was fragmented on a beryllium target, and the resulting
relativistic nuclei were then mass and charge analyzed in
the fragment separator FRS [18]. These secondary beams
were subsequently excited by electromagnetic interactions in
a secondary lead target, mostly via the giant dipole resonance,
leading to fission from a range of excitation energies centered
at 11 MeV.

Here, we benchmark our calculated fragment distributions
against those seminal data. For each of those 70 cases, we
employ the Metropolis walk to calculate the fission-fragment
charge distribution [obtained by a simple scaling of the mass
distribution, P (Zf) = P (Af )A0/Z0] for just a single excitation
energy E∗ = 11 MeV, which represents a rough average of
the experimentally generated excitations. However, for the
lighter systems the fission barrier is often higher than 11 MeV.
Because the observed fission events mainly originate from
compound systems excited to energies above the saddle energy,
we perform the calculations at excitation energies of 11 MeV
or barrier height plus 2 MeV, whichever is higher. As has been
pointed out previously, our method only applies to energies
above the barrier. In practice, we cannot approach the saddle
energy too closely because of the associated increase in the

computation time. Even at energies of 2 MeV above the saddle,
the computation time can be several days for the 10 000 tracks
we generate for this benchmark.

The experimental yields are contaminated by second and
third chance fission to a level of approximately 15% and 5%,
respectively [17]. Such contributions are not included in the
calculated yields. The Metropolis walks are started from the
ground-state shapes, but the results are not sensitive to the
specific starting shape as long as it lies well inside the highest
saddle.

The benchmark charge yields calculated with this standard
treatment are displayed in Figs. 5–11 together with the data
from Ref. [17]. The overall agreement between the calculated
and the measured yields is very good, especially in regions
where symmetric or asymmetric fission is well developed. It
should be recalled that the measured yields display odd-even
effects, a level of detail that is beyond the capability of the
current models.

In the lighter mass region, the experimental yields tend
to be symmetric, and the calculated yields reproduce this
general feature. In particular, the widths of the distributions
are matched quantitatively (see Figs. 5–7). Furthermore, the
calculations tend to display slightly asymmetric charge yields
for the lightest isotopes (Fig. 5), a feature also shown by very
lightest measured yields.

In the heavier region, the measured yields begin to exhibit
asymmetric components which gradually grow predominant,
as is most clearly seen in the thorium and protactinium isotopic
sequences. The calculated yields also display a gradual
transition, but the individual cases have larger deviations, until
the asymmetry has become well developed, at which point, the
agreement is again quantitatively good. In the calculations, a
relatively small asymmetric yield component appears too early
(Fig. 8). Furthermore, the calculated asymmetric peaks seem to
be located at a somewhat too large asymmetry, as was already
discussed in Ref. [2] for 226Th.

To provide a global view of the transition from symmetric
fission for the lighter nuclides to asymmetric fission for the
very heaviest ones, we display in Fig. 12 the measured charge
yields [17] together with the corresponding calculated yields.
The layout is the same as that originally used in Ref. [17],
except that the present subplots all have the same horizontal
and vertical scales.

V. CONCLUDING REMARKS

We have previously shown that simple Metropolis ran-
dom walks on five-dimensional macroscopic-microscopic
potential-energy surfaces lead to overall remarkably good
agreement with experimental data on fission-fragment mass
(or charge) distributions [1]. Because those surfaces pertain to
zero temperature, the treatment has been limited to relatively
low excitations, such as fission induced by thermal neutrons.

We have now extended the treatment upwards in energy in a
simple manner by means of effective potential-energy surfaces
obtained by performing an energy-dependent suppression of
the microscopic part of the potential energy of a given shape.
With the adopted suppression function included, the resulting

064606-6



ENERGY DEPENDENCE OF FISSION-FRAGMENT MASS . . . PHYSICAL REVIEW C 88, 064606 (2013)

206Fr119 E*= 15.98 (MeV) 

  

20 30 40 50 60 
Fragment charge number  Zf 

0 

5 

10 

15 

20 

C
ha

rg
e 

yi
el

d 
Y

(Z
f) 

(%
) 

208Rn122 E*= 19.93 (MeV) 

  

  

0 

5 

10 

15 

20 

C
ha

rg
e 

yi
el

d 
Y

(Z
f) 

(%
) 

206Rn120 E*= 18.20 (MeV) 

  

  

0 

5 

10 

15 

20 

C
ha

rg
e 

yi
el

d 
Y

(Z
f) 

(%
) 

204Rn118 E*= 16.10 (MeV) 

  

  

0 

5 

10 

15 

20 

C
ha

rg
e 

yi
el

d 
Y

(Z
f) 

(%
) 

205At120 E*= 19.41 (MeV) 

  

  

0 

5 

10 

15 

20 

C
ha

rg
e 

yi
el

d 
Y

(Z
f) 

(%
) 

206At121 E*= 20.63 (MeV) 

  

  

  

205Rn119 E*= 17.20 (MeV) 

  

  

  

207Rn121 E*= 19.14 (MeV) 

  

  

  

209Rn123 E*= 20.75 (MeV) 

  

  

  

207Fr120 E*= 16.84 (MeV) 

  

20 30 40 50 60 
Fragment charge number  Zf 

  

FIG. 5. Comparison of the calculated fission-fragment charge yields with the GSI data by Schmidt et al. [17] for cases 1–10.
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FIG. 6. Comparison of the calculated fission-fragment charge yields with the GSI data by Schmidt et al. [17] for cases 11–20.
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FIG. 7. Comparison of the calculated fission-fragment charge yields with the GSI data by Schmidt et al. [17] for cases 21–30.
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FIG. 8. Comparison of the calculated fission-fragment charge yields with the GSI data by Schmidt et al. [17] for cases 31–40.
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FIG. 9. Comparison of the calculated fission-fragment charge yields with the GSI data by Schmidt et al. [17] for cases 41–50.
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FIG. 10. Comparison of the calculated fission-fragment charge yields with the GSI data by Schmidt et al. [17] for cases 51–60.
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FIG. 11. Comparison of the calculated fission-fragment charge yields with the GSI data by Schmidt et al. [17] for cases 61–70.
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FIG. 12. (Color online) Comparison of the calculated fission-fragment charge yields with those measured by Schmidt et al. [17] for the
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calculational method is then applicable up to high excitation
energies where only the macroscopic part of the potential
remains.

This refined treatment has been benchmarked against the 70
fission-fragment charge yields measured at GSI [17] several
years ago, yielding an overall good agreement with the
measured charged distributions. A benchmarking over such
a wide region of the nuclear chart has not been performed for
any other fragmentation yield model.

However, there are some obvious differences between the
calculated yields and the observations in the transition region
between asymmetric yields above A ≈ 226 and symmetric
yields for lighter nuclei. But the transition region extends
only across a range of four neutrons, for example from 225Th
to 229Th in the case of thorium. This corresponds to just
two neutron orbitals. The reproduction of the details of the
observed transition between symmetric and asymmetric yields
is comparable to the reproduction of the transition between
spherical and deformed ground-state shapes near magic
numbers where any global model may miss the transition
location by several neutron orbitals [11,19,20]. Because the
calculated yields in our model depend almost exclusively on
the specific structure of the calculated potential-energy surface
from approximately slightly inside the highest saddle point to
scission, we may conclude that we have, for the first time in
an extensive study, established that the calculated potential
energy in this region of deformation is as realistic as near
ground-state shapes.

Although the model has reproduced the observed fission
yields for 70 heavy nuclei quite well, its “dynamical” aspects
are remarkably simple. For example, the treatment does not
require any assumptions about how the neck size affects the
evolution of the mass asymmetry (one might expect changes
in the mass asymmetry to be strongly hindered for small
neck sizes). In the actinide region, the degree of asymmetry
is governed mainly by the deep asymmetric valley in the

calculated potential-energy surface which often extends from
the saddle region and all the way to scission [7,21]. One
may therefore wonder how well the model would perform
globally in regions with qualitatively different potential-energy
surfaces, such as the mercury region [22] and, more generally,
globally in the region 74 � Z � 90. In this regard, it is
noteworthy that the calculated fragment distribution for fission
of 180Hg is asymmetric [3], as was observed via electron
capture on 180Tl [23]. Some other data exist near A = 200
[24,25] and elsewhere, but the experimental data are sparse
and do not allow a systematic benchmarking of our current
approach in this region.

Ideally, to draw firm conclusions about what model en-
hancements might be required, one would need to compare cal-
culated yields to experimental data for long isotope sequences
from the proton drip line to β stability or slightly beyond. We
therefore encourage measurements in this region that are as
comprehensive as those obtained in the GSI experiment [17].
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