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Background: Near-barrier fusion can be strongly affected by the coupling between relative motion and internal
degrees of freedom of the collision partners. The time-dependent Hartree-Fock (TDHF) theory and the coupled-
channels (CC) method are standard approaches to investigate this aspect of fusion dynamics. However, both
approaches present limitations, such as a lack of tunneling of the many-body wave function in the former and a
need for external parameters to describe the nucleus-nucleus potential and the couplings in the latter.
Method: A method combining both approaches is proposed to overcome these limitations. CC calculations are
performed using two types of inputs from Hartree-Fock (HF) theory: the nucleus-nucleus potential calculated
with the frozen HF method and the properties of low-lying vibrational states and giant resonances computed
from the TDHF linear response.
Results: The effect of the couplings to vibrational modes is studied in the 40Ca + 40Ca and 56Ni + 56Ni systems.
This work demonstrates that the main effect of these couplings is a lowering of the barrier, in good agreement
with the fusion thresholds predicted by TDHF calculations.
Conclusions: As the only phenomenological inputs are the choice of the internal states of the nuclei and the
parameters of the energy density functional used in the HF and TDHF calculations, the method presented in this
work has a broad range of possible applications, including studies of alternative couplings or reactions involving
exotic nuclei.

DOI: 10.1103/PhysRevC.88.064604 PACS number(s): 25.70.Jj, 24.10.Eq, 21.60.Jz

I. INTRODUCTION

Our understanding of nuclear reactions is shaped by two
extreme perspectives: a macroscopic picture and a microscopic
picture. In the former, the colliding atomic nuclei are treated as
charged liquid drops undergoing a large-scale shape evolution.
In the latter, the internal structure of the nuclei at the nucleon
level plays a role in the final outcome of the reaction. The
two perspectives are connected: The macroscopic evolution
of the colliding system must be directly related to the
microscopic behavior of its constituent nucleons. However,
the complexity of the nuclear many-body problem typically
requires a compromise between the two perspectives when it
comes to producing models capable of shedding light on our
observations of the subatomic world.

Nowhere is this compromise more evident than in models
of heavy-ion collisions near the Coulomb barrier. In such
collisions, a wide range of reaction mechanisms—including
inelastic scattering, (multi-)nucleon transfer, fusion, quasifis-
sion, and compound nucleus fission—can all compete with
each other. The competition between all of these outcomes
can be profoundly shaped by both the large-scale evolution of
the two-nucleus system and the internal structure of the nuclei
involved.

One of the clearest examples of this dual influence can
be found in the coupling between the internal degrees of
freedom of the colliding nuclei and their relative motion.
Through coupling, these internal degrees of freedom, which
can include low-lying vibrations [1–4], rotations [5], and
higher-lying giant resonances [6,7], have been shown to
modify dynamically the interaction potential between the
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collision partners and, subsequently, the outcome of the
reaction itself [8].

Signs of this coupling can be extracted from experimental
fusion cross sections σfus for reactions around the Coulomb
barrier. By taking the second derivative of Eσfus to derive
a quantity known as the experimental barrier distribution, a
direct visualization of the effect of the couplings can be—and
in many cases, has been [3]—obtained [9].

The standard theoretical approach to study these couplings
between internal degrees of freedom and relative motion is the
coupled-channels method. The method is macroscopic in its
approach and includes three ingredients: a collective rotational
or vibrational model of nuclear structure for the target and
projectile, an interaction potential between the nuclei, and, in
some cases, a simple transfer potential. Like most macroscopic
models, these potentials and the characteristics of the internal
degrees of freedom affecting the relative motion are provided
as input parameters. Coupled-channels codes are then not
predictive on their own as they require input parameters from
either experimental data or from theoretical calculations.

The coupling between relative motion and internal degrees
of freedom can, in principle, be addressed through a different
theoretical approach, investigating the path to fusion through
microscopic models with effective interactions between the
nucleons. The time-dependent Hartree-Fock (TDHF) theory is
one such approach and has been widely used to study reaction
dynamics near the barrier (see Ref. [10] for a recent review).

One difficulty of these dynamical microscopic studies is
to disentangle the role of various internal degrees of freedom
on the fusion process. Indeed, in the TDHF approach, all the
couplings are automatically included at the mean-field level
and it may be difficult, for instance, to separate the contribution
of transfer from that of vibrational states. In addition, one
cannot extract directly realistic barrier distributions from
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standard TDHF calculations because the quantum tunneling
of the many-body wave function, where the coupling effects
are most apparent, is not accounted for [11].

It would be highly desirable to combine the advantages of
the coupled-channels model with those of the TDHF theory.
Ideally, one would like to be able to predict realistic fusion
cross sections (and thus the experimental barrier distributions)
using inputs from microscopic models alone, removing the
need to rely on quantities extracted from experimental data.

As a first step towards achieving a fully microscopic
model of nuclear reactions, we propose a method based on
the coupled-channels framework where only the effective
interaction between the nucleons is required as an input. More
precisely, apart from the choice of the number of phonons
of each mode, the parameters of the coupled-channels
calculations are entirely determined from (time-dependent)
Hartree-Fock calculations.

As a proof of principle, we investigate the effect on the
centroid of the barrier distribution of the coupling between
vibrational states and the relative motion. For this purpose, we
consider light symmetric doubly magic systems to minimize
the role of transfer and coupling to rotational states. In
particular, the 40Ca + 40Ca and 56Ni + 56Ni systems are
studied to compare the role of magic numbers 20 and 28 on
the vibrational couplings.

We start with a general discussion on the TDHF and
coupled-channels models, as well as a presentation of the
method combining both approaches, in Sec. II. We then
provide details of the Skyrme HF formalism in Sec. III. The
technique used to compute the bare nucleus-nucleus potential
is introduced in Sec. IV. Near-barrier TDHF calculations are
presented in Sec. V. The strength functions of vibrational
modes are computed in Sec. VI and are used to get the
energy and deformation parameters of the main vibrational
modes in Sec. VII. The coupled-channels calculations are
performed in Sec. VIII. Finally, we discuss the differences
between 40Ca + 40Ca and 56Ni + 56Ni systems in Sec. IX.

II. COMBINING MICROSCOPIC AND
MACROSCOPIC FORMALISMS

This section is devoted to a general discussion of the
theoretical approaches. The applications of the TDHF method
to both nuclear vibrations and heavy-ion collisions is first
discussed. Then the coupled-channels approach to determine
the effect of couplings to internal degrees of freedom on
fusion is introduced. Both approaches have limitations in their
predictive power for fusion reactions. We aim at overcoming
these limitations in combining them, as described at the end
of this section.

A. Successes and limitations of the TDHF approach
to describe nuclear dynamics

A natural application of the TDHF formalism is to investi-
gate nuclear vibrations at the mean-field level using the linear
response theory [10]. Indeed, the linearization of the TDHF
equation leads to the random-phase approximation (RPA) [12],
which is the basic tool to investigate collective vibrations
in the harmonic picture. Note that, using a TDHF code, the

calculations are fully self-consistent; i.e., all terms of the RPA
residual interaction are taken into account, including Coulomb
and spin-orbit terms. Most of the numerical applications to
investigate nuclear vibrations with time-dependent micro-
scopic models have been focused on giant resonances [13–22].
Nevertheless, some applications to the study of collective
bound states have also been considered [10,22–24].

As mentioned in the Introduction, the TDHF approach has
also been widely used to study heavy-ion collisions [10].
However, sub-barrier fusion cannot be described with the
TDHF theory because it does not take into account the
tunneling of the many-body wave function. Nevertheless,
fusion thresholds can be computed as the energy above which
central collisions lead to fusion while the exit channel at
lower energies is made of two outgoing fragments. As a
result, realistic three-dimensional TDHF calculations of fusion
thresholds are in excellent agreement with the centroids of
experimental barrier distributions [25,26]. In addition, the role
of deformation and reorientation on fusion [27,28], as well
as the effect of transfer channels [25,29,30], have also been
studied with TDHF calculations. Note that both Coulomb
and nuclear contributions are accounted for self-consistently
and that no weak coupling assumption [31] is made; i.e., the
couplings are treated to all orders.

The ability of TDHF to describe collective vibrations at the
mean-field level implies that it can also be used to investigate
the interplay between vibrations and reaction dynamics. For
instance, collective vibrations of the nonequilibrated system
after capture have been studied [32–35]. Low-lying collective
vibrations have also been shown to be excited in a recent
TDHF application to 16O + 16O collisions just below the
barrier [24]. In these calculations, the octupole moment of
the outgoing fragments was oscillating and these oscillations
could be associated with the excitation of the 3−

1 state in 16O.
The above discussion shows that the TDHF framework

can be used to investigate vibrational states as well as their
coupling to the relative motion. Associated with a modern
coupled-channels code such as CCFULL, it is then well-
equipped to provide realistic fusion cross sections around the
fusion barrier.

B. Coupled-channels framework

In the coupled-channels model, the relative motion between
the collision partners is affected by a potential generated
by the Coulomb and nuclear interaction between the nuclei.
A standard form of the nuclear part of the nucleus-nucleus
potential is given by the Woods-Saxon function,

VWS(D) = −V0

1 + exp
D−r0

(
A

1/3
1 +A

1/3
2

)
a

, (1)

where V0 is the depth of the potential and a its diffuseness.
The excitation of vibrational states induces a variation of the

distance between the surface of the nuclei. It can be accounted
for by replacing the radii of the collision partners R0i

= r0A
1/3
i

in Eq. (1) with the observable R̂i(θφ) measuring the distance
to the surface of the nucleus i defined, e.g., as the isodensity
with ρ0/2, where ρ0 = 0.016 fm−3 is the saturation density. It
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could be written as (see, e.g., Ref. [36])

R̂(θφ) � R0 +
∑
λ�2

∑
ν

R0β
(ν)
λ√

2λ + 1

[
â
†(ν)
λμ + (−)μâ

(ν)
λμ

]
Y ∗

λμ(θφ),

(2)

where β
(ν)
λ is the deformation parameter of the phonon |ν〉.

The operators â
†(ν)
λμ and â

(ν)
λμ create and annihilate, respectively,

a phonon |ν〉 with angular momentum λ and projection μ. In
the isocentrifugal approximation, the spherical harmonics dis-
appears in Eq. (2) and only the μ = 0 component remains [36].
The potential including all order couplings is then obtained by
transforming the Woods-Saxon potential coordinate according
to

V̂ ≡ VWS

⎧⎨
⎩D̂ −

2∑
i=1

R0i

∑
ν,λ�2

β
(ν)
λi√
4π

[
â
†(ν)
λ0 (i) + â

(ν)
λ0 (i)

]⎫⎬⎭ .

In principle, the above technique can be used to incorporate
the effect of both collective low-lying vibrations and giant
resonances. In particular, low-lying energy collective vibra-
tions effectively lead to a fragmentation of the single-barrier
generating a barrier distribution [1–4]. Collective states at
higher energies, like giant resonances, can also affect the
potential barrier. However, they essentially induce a global
shift of the barrier distribution without modifying its shape
[37]. The same effect is obtained in the case of light systems
because the small product of the proton numbers Z1Z2 leads
to a small coupling strength. For instance, the coupling to the
3−

1 state of 40Ca with light collision partners or of 16O with
any target essentially produces an adiabatic renormalization of
the static potential without changing the shape of the barrier
distribution [3].

In standard applications of the coupled-channels method,
e.g., with the code CCFULL [36], the collective model (using en-
ergies and deformation parameters extracted from experiment)
is used to investigate the shape of the experimental barrier
distribution, while the parameters of the nucleus-nucleus
potential are adjusted to reproduce its centroid. This method
has been quite successful in explorations of reactions on target
nuclei such as isotopes of Sm [5] and has been widely applied
because of its simplicity. However, it is inherently limited in
scope. There are three reasons for this.

(1) The collective picture (a vast simplification of collective
nuclear structure in itself [38]) requires experimental
inputs that are not always available from precision
measurements. Although the energies of the states are
usually well known in stable nuclei, this is not always
the case for the deformation parameters. As an example,
the experimental reduced electric-octupole transition
probability B(E3; 0+

1 → 3−
1 ) values, from which the

deformation parameter β3 is computed, varies by more
than a factor of two for 40Ca [39]. Obtaining such
experimental structure data on exotic nuclei will also be
a difficulty, limiting the possibility of reaction studies
with upcoming radioactive beams.

(2) This approach cannot be used for quantitative predic-
tion of the centroid of the barrier distribution. This is

because of the fitting of the barrier centroid, which
essentially incorporates the potential renormalization
effect owing to the higher energy states into the
nucleus-nucleus potential. As a result, the approach can
only be used to study of the effect of the couplings
to low-energy states; it provides no information on
the bare nucleus-nucleus potential. This limitation is a
significant one: A key difficulty in predicting the effect
on the barrier centroid of the couplings to vibrational
states has been attributed to a poor knowledge of the
bare nucleus-nucleus potential [40].

(3) There are indications that (multi-)nucleon transfer
channels play an important role in the fusion process
[41–44]. However, despite progress [45], a proper
treatment of the interplay between transfer channels
and fusion is still lacking so far.

From these limitations, it is clear that a consistent approach
to compute both (i) the bare nucleus-nucleus potential and (ii)
the energy and deformation parameter of the states is required.

C. Description of the proposed method

In this work, a method is proposed to describe the effect
on the fusion process of the coupling to vibrational states
where the only input is the Skyrme effective interaction [46].
It should be noted that the fit protocol of the parameters
of this interaction does not involve input from reaction
mechanisms such as cross-sections or Coulomb barriers (see,
e.g., Ref. [47]). The basic steps of the approach are as follows.

(1) The bare nucleus-nucleus potential is computed from
the frozen Hartree-Fock (HF) technique.

(2) Near-barrier TDHF calculations are used to determine
the fusion threshold including dynamical effects at the
mean-field level.

(3) The same TDHF code is used to compute the strength
function of these modes using the linear response
theory.

(4) The strength function is used to extract the energy and
deformation parameter of collective vibrational states.

(5) The bare nucleus-nucleus potential and the parameters
of the coupling are used in standard coupled-channels
calculations to determine fusion cross sections.

Note that step 2 is not really mandatory to compute the
final fusion probabilities. However it provides a benchmark
and, if the centroid of the final barrier distribution is in good
agreement with the TDHF fusion threshold, we can reasonably
conclude that the most relevant internal degrees of freedom
have been included in the coupled-channels calculations.

To reach this goal, we focus on the light symmetric doubly
magic systems. This choice is motivated by the following
reasons.

(i) Nucleon transfer is not favored in symmetric systems.
(ii) Doubly magic nuclei have no pairing; hence, the

TDHF description in terms of independent-particle
states should be sufficient.

(iii) The colliding partners are spherical, implying that no
coupling to rotational states is to be expected.
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(iv) The Z1Z2 product is small in light systems. This results
in a smaller coupling strength and the main effect of
the couplings is an adiabatic renormalization of the
potential [37], i.e., a shift of the barrier which simplifies
the comparison with the TDHF fusion threshold.

III. THE SKYRME HARTREE-FOCK
MICROSCOPIC FRAMEWORK

Vautherin and Brink made an important breakthrough in the
1970s when they performed the first Skyrme HF calculations
of atomic nuclei [48]. With a small number of parameters,
mean-field and beyond-mean-field calculations based on the
Skyrme energy-density functional [46] with pairing residual
interaction provided a good description of binding energies
and static deformations across the nuclear chart [49].

Pairing correlations play an important role in the description
of nuclear ground states [50]. These correlations have been
recently included in microscopic time-dependent approaches
as well [23,51–54]. However, to simplify the presentation of
the method, the case of doubly magic nuclei is considered
here. Indeed, the latter exhibit no pairing correlations at the
mean-field level and can be described within the HF theory.
The more general case of deformed nuclei including pairing
correlations will be the subject of future work.

A. The HF and TDHF formalisms

The static and time-dependent Hartree-Fock approaches to
the nuclear many-body problem have been discussed in many
works (see, e.g., the textbook by Ring and Schuck [12]). Here
we briefly summarize the main aspects of the theory.

The mean-field description of many interacting particles
introduced by Hartree [55] has been extended by Fock to
properly take into account the Pauli principle in the case of
identical fermions [56]. In this case, the independent-particle
state is written as a Slater determinant of single-particle wave
functions. All the information on the system is then contained
in the set of occupied single-particle states |ϕi=1···A〉, or,
equivalently, in the one-body density matrix with elements
ραβ = ∑A

i=1〈α|ϕi〉〈ϕi |β〉, where |α〉 and |β〉 are single-particle
states and A is the total number of particles.

In the HF approach, each particle evolves independently
in the self-consistent mean field Û [ρ] generated by the
other particles. The HF ground state is obtained from the A

eigenstates of ĥ[ρ] = p̂2

2m
+ Û [ρ] with the lowest eigenvalues

ei , i.e., obeying ĥ[ρ]|ϕi〉 = ei |ϕi〉.
In the original formulation of the HF theory, the elements

of the matrix representing the single-particle Hamiltonian
ĥ[ρ] are computed from the many-body Hamiltonian Ĥ
according to

hαβ[ρ] = 〈α|ĥ[ρ]|β〉 = δ〈|Ĥ |〉
δρβα

, (3)

where |〉 is the independent-particle state of the system.
The time-dependent extension of the HF theory was

proposed by Dirac in 1930 [57]. In this approach, the occupied
single-particle states obey the Schrödinger-like equations

ih̄ d
dt

|ϕi(t)〉 = ĥ[ρ]|ϕi(t)〉, which can be expressed using the
ρ and h matrices as

ih̄
dρ

dt
= [h[ρ], ρ]. (4)

Equation (4) is the TDHF equation. Its static limit, i.e., setting
the left-hand side to zero, is the HF equation.

The TDHF equation is nonlinear owing to the self-
consistency of the mean-field potential. This allows for a
proper treatment of collective phenomena, such as vibrations.
This is also crucial for the inclusion of one-body dissipation
mechanisms, for example, resulting from the collisions of the
nucleons on the mean-field wall at the surface.

B. The Skyrme energy-density functional

In nuclear physics, the average energy 〈|Ĥ |〉 in Eq. (3) is
usually replaced with an energy density functional (EDF) E[ρ]
derived from Skyrme [46] or Gogny [58] phenomenological
effective interactions and containing the Coulomb repulsion
between protons. Effective interactions are used instead of
the bare interaction (i) to avoid divergences of the mean-field
owing to the hard-core repulsion at short distances and (ii) to
sum up some many-body effects (see Chapter 4 of Ref. [12]
for more details).

The main difference between the Skyrme and the Gogny
interactions is their ranges: The Skyrme interaction is a contact
(zero-range) interaction, while the Gogny one has a finite
range. Owing to its zero-range nature, it is easier to use the
Skyrme interaction on Cartesian grids. For this reason, almost
all TDHF calculations have been done using the Skyrme EDF
(see Ref. [53] for recent TDHF calculations of vibrations with
the Gogny interaction).

In general, the EDF is a function of the entire one-
body density-matrix including nonlocal terms ρ(rsq, r′s ′q ′),
where s and q are, respectively, the spin and isospin of the
nucleons. In the Skyrme case, however, the zero-range nature
of the interaction implies that the EDF is a functional of
local densities only. The Skyrme EDF is then expressed as
E[ρq, τq, jq, Jq, Sq, . . .], where ρq(r) are the proton (q = − 1

2 )
and neutron (q = + 1

2 ) densities, τq(r) are the kinetic energy
densities, jq(r) are the current densities, Jq(r) are the spin-orbit
densities, and Sq(r) are the spin densities (see, e.g., Ref. [59]
for explicit expressions of these densities as well as of the
Skyrme functional and mean field).

For time-reversal invariant systems, e.g., HF ground states
of even-even nuclei, the time-odd densities jq and Sq vanish.
However, they need to be included in time-dependent calcula-
tions of heavy-ion collisions to ensure Galilean invariance [60].
In particular, they provide an important contribution to the
one-body energy dissipation [61]. The spin-orbit interaction
also plays a crucial role in the dissipation mechanisms [62].
This is true even for light systems for which the spin-orbit
energy is almost zero in the ground states of the collision
partners (e.g., magic numbers up to 20 are reproduced without
spin-orbit interaction).

The most general expression of the Skyrme EDF contains
densities other than the ones described above, such as the
spin-current pseudotensor

↔
J (only the antisymmetric part of
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↔
J , which is the spin-orbit density J, is included) and the spin-
kinetic energy density T. These densities have not always
been included in the fit of the EDF parameters as they are
expected to provide only small corrections to the energy [47].
The contribution of these additional densities in the dynamics
of heavy-ion collisions has been recently tested by Loebl and
collaborators [63]. Although they have been shown to increase
dissipation at high energy, their effect in nonviolent reactions
such as heavy-ion collisions around the Coulomb barrier can
be neglected. The SLy4d parametrization [64] of the Skyrme
EDF, which is used in this work and which has been obtained
without these additional densities, is therefore expected to
provide a very reliable mean-field description of the reaction
dynamics at low energies [10].

C. Numerical aspects

The increase of computational power has allowed
the development of three-dimensional HF and TDHF
codes using modern Skyrme functional including spin-
orbit interaction. Realistic TDHF calculations of nuclear
vibrations [13,15,16,19,20,65] and of heavy-ion collisions
[26,32,61,66,67] have then been made possible. Reference [10]
provides details of the numerical implementation of the TDHF
equation.

In this work, the HF ground states are computed using the
EV8 code [68] without pairing and center-of-mass corrections.
The SLy4d parametrization of the Skyrme EDF is used
[64]. The single-particle wave functions are developed on a
Cartesian grid with hard boundary conditions. Using similar
numerical approximations, the TDHF equation is solved
iteratively in time with a plane of symmetry using the TDHF3D

code [64].
To study nuclear vibrations, a time-dependent perturbation

V̂ (t) is applied to the HF ground state (see Sec. VI A). In
these calculations, good convergence of the vibrational state
properties are obtained with a time step �t = 1.5 × 10−24 s
and a grid size (28�x)3 with a mesh grid �x = 0.8 fm.

At the initial time of the TDHF calculations of heavy-ion
collisions, a Galilean boost of the form

|ϕi(t = 0)〉 = exp

(
i

h̄
pα · r̂

)∣∣ϕHF
i

〉
(5)

is applied to the single-particle states ϕHF
i of the HF ground

state of the nucleus α, inducing a momentum pα to its nucleons.
The initial distance between the centers of mass of the nuclei
is D0 = 45.6 fm. This value is large enough to include most of
the long-range Coulomb excitation which could affect slightly
the position of the barrier.

Numerical Cartesian grids preserve exactly Galilean invari-
ance only in the limit �x → 0. Indeed, finite mesh grids may
induce a small spurious excitation of the collision partners.
To minimize this effect while keeping the computational time
to a reasonable level, we found that the choice of numerical
parameters �x = 0.6 fm and �t = 5 × 10−25 s provided a
good compromise, with a spurious excitation energy owing to
violation of Galilean invariance less than 0.1 MeV. The TDHF
calculations for central collisions are performed using a grid
size 114 × 38 × 38�x3.

IV. BARE POTENTIAL FROM THE FROZEN
HARTREE-FOCK TECHNIQUE

The bare nucleus-nucleus potential is defined as the
interaction potential between the nuclei in their ground states.
At an energy well above the barrier, the two nuclei do not
have time to rearrange their density before they overcome the
barrier, and this potential describes properly the interaction
between the reactants. At an energy closer to the barrier,
however, the fusion process is slower and the density has
time to encounter rearrangements induced by the couplings
to internal degrees of freedom. This variation of the density
can also induce a change of the potential. As a result, the latter
can exhibit an energy dependence owing to the couplings.

Several techniques have been recently introduced to com-
pute nucleus-nucleus potentials from dynamical microscopic
approaches [26,69,70]. In particular, the density-constrained
(DC-TDHF) [69] and dissipative-dynamics (DD-TDHF) [26]
approaches have been developed to extract the nucleus-nucleus
potential from TDHF trajectories and to determine its energy
dependence. The effect of the couplings is then directly
included on the potential, but only in average as the potential
extracted from a TDHF trajectory exhibits a single barrier. It
is also difficult to disentangle the effects of different collective
modes as all of them contribute coherently to the TDHF
evolution.

Here we look for a different approach, as our goal is
to investigate the effect of the different vibrational states
on the barrier distribution. Thus, we aim to produce a bare
potential which does not include any dynamical contribution.
In particular, we want to exclude the effect of the coupling
between relative motion and internal degrees of freedom
on the barrier as these couplings will be included in the
coupled-channels calculations.

To preserve the consistency with the microscopic calcu-
lations, it is necessary to compute the potential from the
same EDF as in the HF and TDHF calculations. This is
possible using the frozen HF technique [10]. Let us define an
energy density H[ξ (r)] such that E[ρ] = ∫

drH[ξ (r)], where
ξ represents the set of local densities defined in Sec. III B. We
get the expression for the frozen potential

V (R) =
∫

dr H[ξ1(r) + ξ2(r − R)] − E[ρ1] − E[ρ2], (6)

where ξ1,2 and ρ1,2 are the local densities and one-body density
matrices of the HF ground states of the fragments, respectively,
and R is the distance between their centers of mass. The isospin
label q has been omitted for simplicity.

Equation (6) neglects the effect of the Pauli principle
between pairs of nucleons belonging to different collision
partners. In principle, one can include corrections to account
for this effect using, e.g., the Thomas-Fermi approach [71,72].
However, for light systems, the barrier is almost unaffected by
the Pauli principle between the two reactants. This is because,
for such systems, the barrier is found at a relatively large
distance between the nuclei where the overlap between the
density distributions is small. Of course, the inner part of
the potential is associated to larger overlaps of the densities
where the Pauli principle is expected to play a more important
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FIG. 1. (Color online) Frozen HF calculation of the nucleus-
nucleus potential in the 40Ca + 40Ca system (solid line). The Coulomb
part is shown with a dotted line. The DD-TDHF potential (dashed
line) is from Ref. [26].

role. In the present work, we focus on the behavior of fusion
cross sections near the barrier and, then, we neglect the Pauli
principle in the determination of the nucleus-nucleus potential.
A better description of the inner part of the potential barrier
should be considered to investigate, e.g., deep-sub-barrier
fusion.

The frozen HF potential of the 40Ca + 40Ca system is shown
in Fig. 1 (solid line). The barrier height is V frozen

B � 54.6
MeV at a distance Dfrozen

B � 9.9 fm. The DD-TDHF potential
obtained from a TDHF calculation in Ref. [26] at an energy
close to the barrier is also reported. It is interesting to note
that the dynamical effects included in the DD-TDHF potential
lower the barrier by ∼1.25 MeV.

In addition, the experimental barrier distribution for this
system is presented in Fig. 2. Its centroid is located ∼2 MeV
below the frozen HF prediction. This indicates a possible effect
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FIG. 2. (Color online) Experimental barrier distribution for
40Ca + 40Ca from data by Aljuwair et al. [73] (solid circles) and from
Montagnoli et al. [74] (open triangles). The solid arrow indicates the
TDHF fusion threshold (i.e., the expected position of the centroid
of the barrier distribution), while the dashed one shows the position
of the barrier from the frozen-HF technique. The difference between
frozen HF and TDHF barriers is attributable to collective couplings
(see text).

of dynamical couplings (as expected owing to vibrational cou-
plings) not included in the frozen HF potential. However, these
dynamical effects are included in the DD-TDHF potential at
the mean-field level [26]. As a result, the DD-TDHF barrier
is in better agreement with the centroid of the experimental
barrier distribution than the frozen HF barrier.

Now the question is as follows: Can we recover the lowering
of the barrier using standard coupled-channels calculations
with the HF-frozen potential and couplings to collective
vibrations? Before addressing this question, however, we
present a brief study of the dynamics of the 40Ca + 40Ca system
at the barrier. As mentioned in the Introduction, this step is not
absolutely necessary to answer the above question. Neverthe-
less, these calculations may provide valuable information on
the dynamics and could be used to select the most important
collective modes affecting the reaction outcome. In particular,
such calculations can be used to quantify the time during which
the rearrangement of the density induced by the couplings and
responsible for the dynamical modification of the potential
occurs.

V. NEAR-BARRIER TDHF CALCULATIONS

TDHF calculations of 40Ca + 40Ca central collisions have
been performed at energies around the barrier. Figure 3 shows
the time evolution of the separation between the fragments for
three selected energies. The lowest energy leads to reseparation
of the fragments, while the outcome of the reactions at higher
energies is the formation of a compound nucleus.

From these calculations, we deduce a TDHF energy
threshold for this system V TDHF

B � 53.15 MeV (indicated by
a solid arrow in Fig. 2). This energy is ∼1.45 MeV below
the frozen HF barrier, in good agreement with the DD-TDHF
calculations of Ref. [26]. The latter point was expected because
the DD-TDHF potential (see Fig. 1) is obtained from a TDHF
evolution near the barrier. Note that the DD-TDHF barrier is
still slightly higher than the present TDHF fusion threshold by
∼0.2 MeV. This small difference can be attributed to the larger
mesh size of �x = 0.8 fm used in Ref. [26]. As discussed
in Sec. III C, the present calculations are performed with
�x = 0.6 fm so that the violation of the Galilean invariance

2 2.5 3 3.5 4
t (zs)
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10

15

20

D
(t)

 (f
m

)

53.1 MeV
53.2 MeV
53.3 MeV

FIG. 3. (Color online) Time evolution of the distance between the
fragments in 40Ca + 40Ca central collisions.
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t=2.25 zs
D=11.08 fm

t=2.5 zs
D=10.56 fm

t=2.75 zs
D=10.54 fm

t=3 zs
D=10.18 fm

FIG. 4. (Color online) Isodensity surfaces with ρ0/2 = 0.08 fm−3

on a 40Ca + 40Ca central collision at Ec.m. = 53.3 MeV. The reference
time t = 0 corresponds to the initial condition of the TDHF
calculation, i.e., with a separation distance between the nuclei
D0 = 45.6 fm.

owing to the grid affects the center-of-mass energy by less
than 0.1 MeV. This allows us to investigate how the details
of the trajectories shown in Fig. 3 are affected by a small
change of the energy. In particular, these calculations indicate
that, at these near-barrier energies, the distance between the
fragments is approximately constant at D ∼ 10–11 fm for
∼1 zs. This is when the bifurcation between fusion and
reseparation trajectories occurs.

A deeper insight into the dynamics of the system during
this critical period can be obtained from the density evolution.
The latter is illustrated in Fig. 4. It indicates that, at these
distances, the system undergoes a rapid change of shape. The
couplings induce then a rearrangement of the density within
about 1 zs. It is interesting to note that, together with the
formation of a neck between the fragments, the latter acquire
a large octupole deformation. This indicates, qualitatively,
that the collective octupole modes in 40Ca seem to play an
important role in the dynamics near the barrier. Note that other
modes, such as quadrupole vibrations, might also affect the
dynamics, although their effect cannot be directly deduced
from a simple observation of the density evolution in Fig. 4.

In the next section, we present a method to investigate these
collective vibrations with a TDHF code.

VI. STRENGTH FUNCTIONS

Modern TDHF codes have been used to perform real-time
calculations of nuclear vibrations [13,15,16,19,20,65]. Indeed,
the RPA, which is a standard tool to investigate harmonic
vibrations, can be obtained from the linearization of the
TDHF equation. The strength functions (which are used to
get the properties of the vibrational states in Sec. VII) are then
computed within the linear response theory.

A. Linear response theory

Let us consider a time-dependent perturbation,

V̂ (t) = εf (t)Q̂, (7)

applied on the ground state |0〉 of the system. The amplitude
of the perturbation is quantified by ε, and its time dependence
by the function f (t). The excitation operator Q̂ can be chosen,
e.g., to be a multipole moment which, for λ � 2, reads

Q̂λμ =
A∑

i=1

r̂λŶλμ. (8)

This perturbation induces a time-evolution of the
expectation value of the excitation operator Qλμ(t) =
〈(t)|Q̂λμ|(t)〉. The strength function of the operator Q̂λμ,
defined as

Sλμ(E) =
∑

ν

|〈ν|Q̂λμ|0〉|2δ(E − Eν + E0), (9)

where |ν〉 are the eigenstates of the Hamiltonian with energy
Eν , is then obtained from [14]

f̃ (ω)Sλμ(h̄ω) = lim
ε→0

−1

πε
ImQ̃λμ(ω), (10)

where f̃ (ω) and Q̃λμ(ω) are the Fourier transforms of f (t) and
Qλμ(t), respectively.

In calculating the strength function Sλμ from Eq. (10), we
then need

(i) to specify the time-dependence of the excitation f (t),
or, equivalently, its Fourier transform f̃ (ω);

(ii) to consider an excitation intensity ε to be sufficiently
small to be in the linear regime, i.e., such that Qλμ(t) ∝
ε;

(iii) to determine Qλμ(t) and its Fourier transform from a
time-dependent model.

These points are described in more detail in the following.

B. TDHF numerical applications

In the present work, we are interested in the effect
of both low-lying and high-energy collective vibrations on
fusion. From a numerical point of view, the case of unbound
states should be considered with care owing to the echo
generated by the reflection of emitted nucleons from the
box boundaries [75]. In principle, these reflections could
have numerical effects on the entire strength distribution,
including low-lying states. Note that emitted nucleons could
be partially absorbed by applying an imaginary potential at
the box boundaries [65,75,76]. However, to avoid the increase
of computational time associated with this technique, another
approach is considered to make sure that nucleons reflected
on the box boundaries do not affect the transition amplitudes.
For this purpose, different techniques are used to compute the
transition amplitudes of low-lying vibrations and those of giant
resonances.

To avoid spurious effects of emitted nucleons on the
strength distribution of bound states, we can adjust the time
dependence of the excitation operator in Eq. (7) in such a
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way that unbound states are not excited. Indeed, we see in
the left-hand side of Eq. (10) that the strength distribution
is multiplied by f̃ (ω), which can be chosen to be equal to
1 for E � � and 0 for E > �. This can be achieved by
setting f (t) = sin(�t/h̄)

πt
. � is chosen to be the particle emission

threshold (neglecting tunneling), i.e., � � min{Sn; Sp + B},
where Sn,p are neutron and proton emission thresholds and B
is the Coulomb barrier for protons.

1. Application to low-lying vibrations in 40Ca

As an example of application, the TDHF response to an
octupole excitation εf (t)Q̂30 applied on the 40Ca HF ground
state has been computed in the linear regime over a finite time
T = 15 zs with � = 12 MeV. To account for the fact that
T is finite and to avoid spurious oscillations in the Fourier
transform, Q30(t) is multiplied by a time-filtering function
cos πt

2T
[75], inducing an additional width of ∼0.3 MeV to the

peaks.
The strength function computed from Eq. (10) is shown

with a dashed line in Fig. 5. It is compared with the strength
function obtained with f (t) = δ(t) (shaded spectrum), which
is equivalent to � → ∞, i.e., all bound and unbound states
are excited with no energy selection. In this case, states above
12 MeV are excited, in particular the high-energy octupole
resonance (HEOR) at 30–35 MeV. As expected, the peaks
above 12 MeV are suppressed in the spectrum represented by
the dashed line. Below this value, both spectra are identical,
indicating that particles emitted by the HEOR and reflected on
the boundaries do not affect the strength of the low-lying states.
This is, however, not necessarily the case with quadrupole
vibrations as the GQR is much more collective than the HEOR.
Hence, a filtering function with finite � MeV is applied
consistently for the extraction of low-lying collective modes.

As seen in Fig. 5, the octupole strength distribution in 40Ca
is dominated by the 3−

1 state at ETDHF
3−

1
= 3.44 MeV, which is

reasonably close to the experimental value E
Exp
3−

1
= 3.74 MeV

[39]. The transition amplitude for this state, obtained by
integrating the peak, is |〈3−

1 |Q̂30|0〉| � 113 fm3. The other
states, including the HEOR, are at higher energy and have a
smaller strength. The 3−

1 state is then expected to have a much
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FIG. 5. (Color online) Strength function of the multipole mo-
ments in 40Ca.

stronger effect on near-barrier reaction mechanisms than the
other octupole states. Thus, the latter will be neglected in the
coupled-channels calculations.

No other low-lying collective states were found in our
calculations of quadrupole vibrations (λ = 2) in 40Ca. This
is consistent with the fact that, in this nucleus, the 2+

1 state
does not exhibit a strong increase of collectivity as compared
to the single-particle picture [77].

2. Low-lying states in 56Ni and the role of magic numbers

It is well known that all magic numbers induce an increase
of the energy of the 2+

1 state [77,78]. A reduction of the
collectivity of the 2+

1 states is also observed for all magic
numbers. However, the effect is stronger for 20 than for
28 [77]. This is in qualitative agreement with the present
TDHF calculations in which we found no low-lying collective
2+ state in 40Ca, while the 2+

1 state in 56Ni is found to be
collective, with ETDHF

2+
1

� 3.02 MeV and βTDHF
2 = 0.114. Note

that these predictions are in relatively good agreement with
the experimental data E

Exp
2+

1
� 2.7 MeV and β

Exp
2 � 0.15–0.17

[79,80].
The energy of the 3−

1 states also increases in magic nuclei,
but only for magic numbers 28 and above. Indeed, no increase
of E3−

1
is observed at N,Z = 8 and 20 in the systematics of

Refs. [39,78]. This is why the 3−
1 is found at a rather low

energy of 3.44 MeV in 40Ca, but at a relatively high energy
E3−

1
� 9.64 MeV in 56Ni, with a deformation parameter β3 �

0.127. In fact, this state is found to be (quasi-)bound only by
the Coulomb barrier.

We see that the low-lying vibrational spectra varies for
magic numbers 20 and 28. These differences are attributable
to the spin-orbit interaction which is responsible for the magic
number 28. The above discussion shows the importance of a
dynamical model, which accounts for the specificities of the
vibrational spectra in each nuclei. This is possible in modern
TDHF calculations thanks to a fully microscopic treatment of
both the structure and the reaction dynamics using modern
energy density functionals including spin-orbit interactions.

3. Case of giant resonances

The giant monopole resonance (GMR, λ = 0), the isovec-
tor giant dipole resonance (IVGDR, λ = 1), and the giant
quadrupole resonance (GQR, λ = 2) are known to account for
a large part (if not all) of their associated energy weighted
sum rule [81]. Owing to its isovector nature, the IVGDR
modifies essentially the difference between proton and neutron
densities, while their sum is almost unchanged. It is then
reasonable to assume that the IVGDR may affect only the
Coulomb part of the nucleus-nucleus potential. For light
systems, however, Z1Z2 is small and the Coulomb coupling to
the IVGDR can be neglected in a first approximation.

The GMR and GQR are both isoscalar modes and might
modify the nuclear attraction between the reactants. However,
the GMR is usually located at a higher energy than the GQR
and then should be less coupled to the relative motion. An
estimate of the effect of couplings to giant resonances on fusion
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will then be obtained by focusing on the GQR, while neglecting
couplings to the other resonances.

The details of the strength distribution in the giant resonance
region, in particular their fragmentation, are known to be
sensitive to the spurious reflection of particles on the numerical
box boundaries [75]. For the purpose of this work, however,
it is sufficient to assume that the giant resonances are
concentrated in one single peak. With this assumption, the
characteristics of the GQR can be extracted from the first
minimum of Q20(t) following the perturbation εδ(t)Q̂20 in the
linear regime using [13,18]

Q20(t) � −2ε

h̄
|〈GQR|Q̂20|0〉|2 sin(EGQRt/h̄). (11)

As a result, we get for 40Ca an energy ETDHF
GQR � 18.1 MeV

and a transition amplitude |〈GQR|Q̂20|0〉| � 20.53 fm2. For
the 56Ni nucleus, we get ETDHF

GQR = 16.8 MeV and β2 = 0.116.

VII. DEFORMATION PARAMETERS
OF VIBRATIONAL STATES

The deformation parameter β
(ν)
λ of a vibrational state |ν〉

with angular momentum λ is a critical input to describe its
coupling to relative motion in coupled-channels calculations.
Here we show how to extract these parameters directly from
the strength distribution.

Consider a small excitation potential εδ(t)Q̂λ0 with λ � 2.
In the first order in ε, the wave function reads (see, e.g.,
Refs. [13,18])

|(t > 0)〉 � e−iE0t/h̄

(
|0〉 − iε

h̄

∑
ν

qνe
−iων t |ν〉

)
, (12)

where qν = 〈ν|Q̂λ0|0〉 is the transition amplitude between the
ground state |0〉 and the Hamiltonian eigenstate |ν〉 with energy
Eν and angular momentum λν = λ. We have introduced ων =
(Eν − E0)/h̄. For simplicity, we assume that qν is real.

Using Eq. (12) and the observable R̂(θφ) measuring the
distance to the surface of the nucleus, defined in Eq. (2), and
noting that 〈ν|â†

λ0|0〉 = δλλν

√
2λ + 1, we get

〈δR̂(θφ)〉 = −2ε

h̄
R0Yλ0(θ )

∑
ν

β
(ν)
λ qν sin ωνt, (13)

where δR̂ = R̂ − R0. Assuming a constant density with a
sharp surface, this surface variation can be related to the
expectation value of the multipole moment as

Qλ0(t) = −3ε

2πh̄
ARλ

0

∑
ν

β
(ν)
λ qν sin ωνt. (14)

Using Eq. (10), the strength function can be expressed as

Sλ0(E) = −1

πε

∫ ∞

0
dt Qλ0(t) sin(Et/h̄)

= 3

4π
ARλ

0

∑
ν

β
(ν)
λ qνδ(E − Eν + E0). (15)

0 2 4 6 8
r (fm)

0

0.05

0.1

0.15

0.2

ρ 
(f

m
-3

)

total
proton
exp. (charge)

FIG. 6. (Color online) Radial density in 40Ca. The total (solid
line) and proton (dashed line) densities are those of the HF ground
state. The circles are the experimental charge density [11].

Identifying with Eq. (9), we get

β
(ν)
λ = 4πqν

3ARλ
0

. (16)

Usually, the deformation parameters are determined
from the experimental reduced electric transition probability
B(Eλ; 0+

1 → ν) data using [36]

β
(ν)
λ = 4π

3ZRλ
0

√
B(Eλ; 0+

1 → ν)

e2
. (17)

Equations (16) and (17) are equivalent if one assumes an exact
proton-neutron symmetry. This assumption should be valid
for light N = Z nuclei like the one studied here. However, for
heavier nuclei, corrections might have to be considered on the
experimental deformation parameter extracted from Eq. (17)
owing to differences between proton and neutron densities.

It is important to note that the deformation parameter is
quite sensitive to the radius of the nucleus, in particular for
high multipolarities, because it is proportional to R−λ

0 . The
HF proton density shown in Fig. 6 with a dashed line for
40Ca is, in fact, in excellent agreement with the experimental
charge density [11]. Note that the HF calculations predict a
neutron density (not shown in Fig. 6 for clarity) which is
very similar to the proton one, supporting the validity of the
proton-neutron symmetry in this nucleus. The nuclear radius
R0 is then determined from the total HF ground-state density
shown by the solid line in Fig. 6. Using ρ0/2 = 0.08 fm−3,
we get R0 � 3.67 fm. This corresponds to a radius parameter
r0 = R0A

− 1
3 � 1.07 fm.

Using Eq. (16) and the strength distribution in Fig. 5, we
then obtain a deformation parameter of the 3−

1 state in 40Ca
of β3 � 0.24. This value is smaller than the experimental
deformation parameter β3 � 0.3–0.4 obtained from angular
distributions of inelastically scattered protons [39]. However,
it should be emphasized that it is obtained from purely
microscopic calculations, as the only input parameters are
those of the Skyrme EDF.

The deformation parameter associated with the GQR can
also be extracted from Eq. (16). As a result, we get β2 � 0.16.
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TABLE I. Woods-Saxon parametrization of the nucleus-nucleus
potentials.

System V0 (MeV) r0 (fm) a (fm)

40Ca + 40Ca 98.7 1.146 0.629
56Ni + 56Ni 132.5 1.103 0.631

The fact that the deformation parameter is smaller, and the
energy higher, than the low-lying octupole state implies that the
GQR is only expected to provide a small correction to the bar-
rier distribution and that the main effects will be obtained from
the coupling to the 3−

1 state. This will be confirmed with the
coupled-channels calculations presented in the next section.

VIII. COUPLED-CHANNELS CALCULATIONS

The coupled-channels calculations are performed with the
CCFULL code [82]. The bare nucleus-nucleus potential obtained
with the frozen HF model [Eq. (6)] is used. However, the
nucleus-nucleus potential is assumed to have a Woods-Saxon
form in the CCFULL code. The nuclear part of the frozen HF
potential in Fig. 1 has then been fitted with a Woods-Saxon
function [Eq. (1)] The fit is performed in the region R > 8.3 fm
to allow an accurate reproduction of the barrier height and
position. The parameters of the fit are given in Table I. Note
that, in the CCFULL code, this potential is also used to evaluate
the coupling matrix elements. In principle, one may extract
the coupling form factors (that is, the off-diagonal part of the
potential) directly from TDHF calculations. This extension of
the present method will be the subject future investigations.

The coupled-channels calculations of the 40Ca + 40Ca
reaction include couplings to the 3−

1 and GQR states. Note that
the coupling to higher energy and less collective octupole states
(neglected here) could also affect the fusion cross sections as
shown in Ref. [83]. The energy of the vibrational states and
the coupling strengths (deformation parameters) have been
computed with the TDHF3D code using the linear response
theory (see Table II).

In principle, the CCFULL code allows for the inclusion of two
vibrational modes in the target and one in the projectile [82].
However, for symmetric systems, the mutual excitation of
one-phonon states in each collision partner can be included
by considering only one phonon with a coupling constant√

2βλ [84]. Using this, we are then able to include up to three
vibrational modes in both symmetric collision partners.

The resulting fusion cross sections are shown in Fig. 7(a)
for the 40Ca + 40Ca reaction. The barrier distributions are

TABLE II. Energy and deformation parameter of the collective
vibrational states from TDHF calculations.

Nucleus State Eν βν

40Ca 3−
1 3.44 0.240

GQR 18.1 0.160
56Ni 2+

1 3.02 0.114
3−

1 9.64 0.127
GQR 16.8 0.116
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FIG. 7. (Color online) Coupled-channels calculations of (a) fu-
sion cross sections and (b) barrier distributions in 40Ca + 40Ca. The
solid arrow indicates the TDHF fusion threshold, while the dashed
one shows the position of the barrier from the frozen-HF technique.

computed from these cross sections using a three-point formula
with �E = 0.2 MeV. The barrier distribution is shown in
Fig. 7(b). The variation of the centroids of these distributions
are given in Table III. The coupling to the 3−

1 state has a strong
effect on the barrier distribution. Indeed, it induces a lowering
of the centroid by ∼1.1 MeV, while the coupling to the GQR
renormalizes the potential by only ∼−0.3 MeV. The inclusion
of the second phonon of the octupole low-lying vibrational
mode (not shown in Fig. 7 for clarity) has a negligible effect
on the barrier centroid, because it reduces it by less than
40 keV compared to the one-phonon case. We see in Fig. 7
that these couplings explain well the global lowering of the
fusion threshold obtained with TDHF in comparison with the
frozen HF barrier. As a result, they increase the sub-barrier
fusion cross section by more than one order of magnitude.
Note that other collective vibrations not considered explicitly
here, such as the GDR and the GMR, will reduce further the

TABLE III. Difference between the centroids of the barrier
distributions and the frozen HF barrier.

System 2+
1 3−

1 GQR {2+
1 , 3−

1 , GQR} TDHF

40Ca + 40Ca −1.1 −0.4 −1.3 −1.45
56Ni + 56Ni −0.6 −0.8 −0.5 −1.7 −2.5
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FIG. 8. (Color online) Coupled-channels calculations of barrier
distributions in 56Ni + 56Ni with quadrupole phonons only. The n-
phonon states in each collision partner are included explicitly, i.e.,
without using the effective coupling

√
2β2 for symmetric systems.

barrier centroid. However, their effect is expected to be smaller
than the GQR, as discussed in Sec. VI B3.

IX. COMPARISON WITH THE 56Ni + 56Ni SYSTEM

The 56Ni isotope is not stable, with a half-life of ∼6 days.
This makes the experimental study of the 56Ni + 56Ni system
with present accelerator facilities almost impossible. However,
experimental barrier distributions have been measured for the
58,60Ni + 60Ni systems [2,85]. The shape of the experimental
barrier distributions were found to be similar for these
two systems and could be explained by invoking low-lying
quadrupole vibrations alone. However, the energy of the
2+

1 states being very low in 58,60Ni (around 1.4 MeV, i.e.,
approximatively half the energy of the 2+

1 state in the doubly
magic 56Ni isotope), up to four phonons were needed to
reproduce the shape of the barrier distribution in these systems.

The situation is different in the 56Ni + 56Ni because the 2+
1

state is at higher energy in 56Ni, calculated to be ETDHF
2+

1
�

3.02 MeV with the SLy4d parametrization. Coupled-channels
calculations have been performed to investigate the role of the
number of quadrupole phonons on the barrier distributions.
The parameters of the Woods-Saxon fit of the frozen HF
potential are given in Table I and the parameters of the
quadrupole coupling in Table II. The barrier distributions
are presented in Fig. 8 for couplings to one, two, and three
phonons. The inclusion of more than one quadrupole phonon
in this system has little effect on the centroid of the barrier
distribution. Indeed, the centroid varies by less than 70 keV
when one increases the number of phonons from one to three.
In fact, adding more phonons essentially smears out the barrier
distribution at higher energies.

Coupled-channels calculations have been also performed to
investigate the effect of the different vibrational modes on the
barrier distribution in 56Ni + 56Ni. The fusion cross sections
and resulting barrier distributions are presented in Figs. 9(a)
and 9(b), respectively. The barrier centroids are reported in
Table III. Although the low-lying quadrupole vibration is the

(b)
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FIG. 9. (Color online) Coupled-channels calculations of (a) fu-
sion cross sections and (b) barrier distributions in 56Ni + 56Ni. Only
one-phonon states are considered. The effective coupling

√
2βλ for

symmetric systems is used. The solid arrow indicates the TDHF
fusion threshold, while the dashed one shows the position of the
barrier from the frozen-HF technique.

only one to affect the shape of the barrier distribution, each
phonon, i.e., the 2+

1 , the 3−
1 , and the GQR state, lowers the

centroid by a similar energy of 0.5 to 0.8 MeV.
Comparing the TDHF fusion threshold with the barrier dis-

tribution when all these couplings are included (see Table III),
we see that the TDHF prediction is lying ∼0.8 MeV lower
than the barrier centroid calculated with the coupled-channels
approach. This indicates that other states should probably be
included. For instance, other high-lying modes like the GDR
might play a more significant role than in the 40Ca + 40Ca
case owing to the larger value of Z1Z2. The coupling to 1−
isovector states should be included in coupled-channels codes
to test their effect on barrier distributions.

Finally, we conclude this section by studying the evolution
of the shape of the system near the barrier in Fig. 10. As in
the 40Ca + 40Ca case, we see that the two fragments spend a
relatively long time (about 1 zs in the 56Ni + 56Ni reaction just
above the barrier at Ec.m. = 100.5 MeV) at an almost fixed dis-
tance, during which their shapes undergo large deformations.
However, comparing with the 40Ca + 40Ca system when the
neck is forming (see dashed contour in Fig. 10), we see that
the two systems encounter rather different shapes. At variance
with the 40Ca fragments, the 56Ni collision partners do not
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t=2 zs
D=11.26 fm

t=2.3 zs
D=10.98 fm

t=2.6 zs
D=11.10 fm

t=2.9 zs
D=10.72 fm

FIG. 10. (Color online) Isodensity surfaces with ρ0/2 =
0.08 fm−3 in a 56Ni + 56Ni central collision at Ec.m. = 100.5 MeV.
The dashed contour shows the same isodensity [with a magnification
factor R0(56Ni)/R0(40Ca)] in a 40Ca + 40Ca central collision at
Ec.m. = 53.3 MeV at the time when the neck is formed (see Fig. 4).

acquire a strong octupole deformation. This is consistent with
the smaller effect of the 3−

1 state on 56Ni + 56Ni fusion.

X. CONCLUSIONS

A technique is introduced to investigate the effect of
collective vibrations on fusion cross sections where the only
inputs are the choice of the collective phonons and the
parameters of the Skyrme energy density functional. The
coupled-channels model is used with potential and coupling
parameters extracted from microscopic quantum calculations.
The bare nucleus-nucleus potential is computed from the
frozen HF technique, while the energy and deformation of
the collective vibrational states are calculated with a TDHF
code using the linear response theory. The same TDHF code is
used to investigate the dynamics of the density at near-barrier
energies and to determine the fusion threshold where all
the dynamical couplings are included to all orders in the
mean-field approximation.

The near-barrier fusion of two 40Ca and of two 56Ni nuclei
has been investigated. The TDHF fusion threshold, which
automatically incorporates effects of collective couplings at the
mean-field level, is considerably lower than the bare potential
barrier in these systems, as would be expected. Low-lying
collective vibrations, such as the 3−

1 state in 40Ca and the 2+
1

state in 56Ni, affect both the shape of the barrier distribution
and the position of the main barrier. While in the 40Ca + 40Ca
reaction the inclusion of the coupling to the 3−

1 state accounts
for almost all the dynamical lowering of the barrier, the
situation is more complex in the 56Ni + 56Ni system. Indeed,
in the latter case, states at higher energies, such as the GQR or

the octupole mode, induce a renormalization of the potential of
the same order as the low-lying 2+

1 state. In fact, a comparison
with the TDHF fusion threshold indicates that other modes,
not included in the present description (e.g., the giant dipole
resonance), might contribute to the lowering of the barrier
as well.

An interesting aspect of the method is the consistency
between each step of the description as they all use the same
Skyrme EDF. In particular, the calculations do not depend on a
particular choice of nucleus-nucleus potential parametrization,
neither do they rely on experimental data. This technique can
then be applied to systems where little is known, such as
reactions involving exotic nuclei.

It is important to note, however, that a perfect agreement
with experimental data should not always be expected as
both the TDHF and the coupled-channels calculations have
underlying approximations. For instance, the TDHF approach
neglects pairing correlations and other residual interactions.
Nevertheless, the technique is quite general and could benefit
from improvements in one or the other models. As an example,
recent beyond-TDHF codes including pairing correlations
[23,51,52,86] could be used as well.

The calculations could also be affected by the choice
of the parametrization of the Skyrme functional. Although
most Skyrme functionals have been tested on giant resonance
properties, few calculations have been made for low-lying
collective states. It is shown in the present work that the
expected behavior of the quadrupole and octupole modes
with the magic numbers 20 and 28 is qualitatively well
reproduced with the present functional. Nevertheless, more
tests across the nuclear chart should be performed. Systematic
calculations of low-lying collective vibrations with different
Skyrme functionals will be the subject of future works.

Finally, the present paper focuses on the role of couplings
to vibrational states; hence, our choice of spherical symmetric
systems to avoid effects from static deformations and from
transfer. The present technique needs to be tested with de-
formed systems and in the more challenging case of couplings
to transfer channels in asymmetric systems. Improvements of
the method are also considered, such as extracting directly
the coupling form factors from TDHF calculations and taking
into account anharmonic effects in the vibrational spectra by
going beyond the linear response regime. Deep sub-barrier
fusion could also be investigated with an improvement of the
description of the nucleus-nucleus potential at small relative
distances between the collision partners.
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