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Elastic interaction of protons with stable and exotic light nuclei
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The proton elastic-scattering data on 4,6,8He and 6,7,9,11Li nuclei are analyzed over a wide range of incident
energies below 160 MeV/nucleon using the single-folding optical model. The real part of the folding optical
potential (OP) is calculated using the M3Y nucleon-nucleon interaction and microscopic densities. The Green’s
function Monte Carlo density is used for the stable nuclei, whereas the large-scale shell model density is used for
the exotic nuclei. The high-energy approximation calculation is used for the volume imaginary OP. The spin-orbit
and surface imaginary parts of the OP are constructed from the derivatives of the real and volume imaginary parts
of the folded potentials, respectively. The volume integrals of the OPs are studied, and it is found that they show
clear dependencies on energy and root-mean-square radii. Hence, it can be considered an important constraint
for the choice of the optical potential. A new empirical formula is assumed and successfully applied for the real
volume integrals. The obtained results of the differential and the reaction cross sections are in good agreement
with the available experimental data. In general, this OP with few and limited fitting parameters, which have
systematic behavior with incident energy, successfully describes the proton elastic-scattering data with stable
and exotic light nuclei at energies below 160 MeV/nucleon.
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I. INTRODUCTION

The cross-section data for proton elastic scattering of light
nuclei are the main sources of information constraining nuclear
structure models of these nuclei and about the mechanisms of
interaction. In addition, they are useful tools for testing and
analyzing reaction theories. The optical potential models have
been developed to study the data for proton elastic scattering of
light nuclei. Both phenomenological and microscopic optical
models are used with the adjustment of only a few parameters,
and cannot give unique values of these parameters. The
potentials are quite similar for all nuclei and vary slowly with
the incident energy [1].

Light neutron-rich exotic nuclei are characterized by weak
binding energies that lead to exotic features such as halos.
These nuclei are so short lived that they cannot be used as
targets. Instead, direct reactions with a radioactive nuclear
beam can be performed in inverse kinematics. In the phe-
nomenological approach, the potential parameters are adjusted
by being fit to scattering experimental data. It is successful in
a wide region of incident energy. However, it does not include
information regarding the structure of interacting nuclei. For
the microscopic approach, the effective potential is established
theoretically. The microscopic Glauber theory can be used to
analyze the scattering data at high energies and to obtain the
size and the shape of the nuclear matter distributions.

At relatively low incident energies, the folding model
can be considered a successful tool for the analysis of the
elastic-scattering data. The basic inputs for a single-folding
microscopic optical potential (OP) calculation of the proton-
nucleus potential are the nuclear densities of the target and the
effective nucleon-nucleon (NN ) interaction.
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A large amount of experimental data at low and intermediate
energies exist for the proton elastic scattering of light nuclei.
Most of the experimental data of p + 4,6,8He and p + 6,8,9,11Li
are at energies between 6 and 160 MeV/nucleon, and their
references are listed in Table I.

To fit these data, the angular distributions are studied
using different phenomenological and microscopic optical
potentials that are calculated using a folding model, a
Woods-Saxon phenomenological form, or a combination
of them. The OP parts that use the single-folding model
are renormalized by factors while the phenomenological
parameters are optimized to fit the data.

Proton elastic scattering of 6,7,9,11Li at about 60–65
MeV/nucleon was analyzed by Moon et al. [34]. It was
found that the cross section of 11Li + p is 30% smaller
than those of other isotopes. The breakup channel cou-
pling effect is suggested as a possible reason for this
depression.

In addition, proton elastic scattering of 4,6,8He and 6,9,11Li at
energies 60–75 MeV/nucleon was studied by Korsheninnikov
et al. [16,17]. They found that the scattering of the 6,8He and
6Li at low energies is very similar and differs essentially from
that for 4He, reflecting that 6,8He and 6Li have matter radii
greater than that of the α particle. Furthermore, the scattering is
not sensitive to a difference in neutron and proton distributions,
but it is sensitive to the matter radius of these nuclei, i.e., it
feels the density extension in these nuclei in comparison with
the α particle.

A consistent analysis is made for the proton elastic-
scattering data of 4,6,8He and 6,7,9,11Li at an energy range of
25–75 MeV/nucleon [37]. The real part of the OP is calculated
using the isospin-, density-, and momentum-dependent
modified Seyler-Blanchard (SBM) NN interaction with
different densities, while the imaginary and spin-orbit parts
are taken in a Woods-Saxon form. It is found that the real part
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TABLE I. Experimental data for proton elastic scattering of helium and lithium isotopes.

Scattering Incident energy (MeV/nucleon) [Reference]

p + 4He 12.04, 17.45 [2], 31.0 [3], 40 [4], 45, 52.3, 59.6, 64.9 [5], 71.9 [6], 85 [7], and 156 MeV/nucleon [8]
6He + p 25.1 [9–11], 38.3 [12], 40.9 [13], 41.6 [14,15], and 71 MeV/nucleon [16–20]
8He + p 15.7 [21], 26.1 [22], 32 [16,17,23], 66 [16,17], and 72 MeV/nucleon [16,17,24]
p + 6Li 6.0, 10.0 [25], 25.9, 29.9, 35, 40.1, 45.4 [26], 49.75 [27], 65 [28], 72 [29], 135 [30], and 155 MeV/nucleon [31]
p + 7Li 6.15, 10.3 [32], 24.4 [33], 49.74 [27], 65 [28], and 155 MeV/nucleon [31]
9,11Li + p 60 MeV/nucleon [34] for 9Li; 62 [34], 68.4 [35], and 75 MeV/nucleon [36] for 11Li

of the folded potentials needs a reduction factor, indicating
the possible effect of a strong breakup channel [37].

Furthermore, 6,8He + p elastic scattering data at energies
below 100 MeV/nucleon have been calculated using a com-
bination of the folded OP with the M3Y interaction and the
OP using the high-energy approximation (HEA) by Lukyanov
et al. [38,39]. Three types of densities are used: Tanihata,
the cluster orbital shell-model approximation (COSMA), and
the large-scale shell model (LSSM). The LSSM density of
6,8He is found to be the most preferable one because it leads
to the best fit to the data. The surface absorption is rather
important for the lowest incident energies [39].

Recently, the Bethe-Brueckner-Hartree-Fock approach was
used to calculate the optical potential for analyzing the
experimental differential cross section and polarization of
the proton scattering of 4,6,8He and 6,7,9,11Li nuclei [40].
The sensitivity of the calculated physical observables on the
NN interaction and the density distributions is studied. It
is observed that all the NN interactions and the different
density distributions reproduce rather well the experimental
differential cross sections.

In addition, in Ref. [41], the nucleon elastic-scattering data
of 6,7Li at incident energies up to 150 MeV were analyzed
using the continuum-discretized coupled-channels method
(CDCC) with the Jeukenne, Lejeune, and Mahaux (JLM)
interaction [42]. The energy dependence of the normalization
factors of the JLM interaction was introduced and determined
explicitly from measured neutron total and proton reaction
cross sections. Good agreement with CDCC results shows a
systematic energy dependence of the determined normaliza-
tion factors of the JLM interaction, and the importance of the
breakup effect of 6,7Li indicates the necessity of using CDCC
for systematic analyses of nucleon scattering over a wide range
of incident energies.

Furthermore, we studied [43] the proton elastic scattering of
exotic light nuclei (6,8He, 9,11Li, and 10,11,12Be) at an energy
range of 15–75 MeV/nucleon. The cross-section data were
analyzed using the single-folding optical model with the M3Y
interaction and phenomenological Gaussian-oscillator (GO)
density. The real, imaginary, and spin-orbit parts of the optical
potential were constructed only from the folded potentials
and their derivatives. These OP parts, their renormalization
factors, and their volume integrals were studied. We found
that the surface and spin-orbit potentials are important to fit
the experimental data. This OP with few and limited fitting
parameters, which have a systematic behavior with incident
energy, successfully describes the proton elastic-scattering

data with exotic nuclei. However, there are few data for the
proton scattering of exotic nuclei. In addition, the data do
not cover the whole angular range. Furthermore, the data are
measured in the energy region of 10–75 MeV/nucleon. A large
amount of data, with a larger energy range and a larger angular
range, exist for the proton elastic scattering of stable nuclei.
Therefore, a comparative and systematic study is essential for
the exotic nuclei and their stable isotopes and to understand
the effect of increasing the number of neutrons for a given
isotope.

In the present work, a microscopic analysis of the available
proton elastic-scattering data of the light nuclei, 4,6,8He and
6,7,9,11Li, in the range of 6 to 160 MeV/nucleon is considered.
The microscopic OP is calculated in the framework of the
single-folding model using the M3Y effective NN interaction,
with microscopic density distributions. The real part of the
OP is constructed from the single-folded potential, while the
volume imaginary part is calculated using the HEA model.
The spin-orbit and the surface imaginary terms are calculated
from the derivative of the real and the volume imaginary
OP, respectively. The values of the renormalization factors of
the microscopic OP parts are studied. The fitting parameters
are chosen according to the quality of the agreement with
available differential and reaction cross sections and restricted
by the behavior of the volume integrals with energy. The most
important goals of this work are to use a minimal number
of fitting parameters in the OP and to obtain the energy
dependence of the volume integrals. The formalism is given
in Sec. II, while the results and calculations are presented in
Sec. III. The conclusions are given in Sec. IV.

II. FORMALISM

A. Folded potential

The nucleon-nucleus potential can be obtained by single
folding the density distribution of the nucleus with the nucleon-
nucleon effective interaction [44],

VF (r) =
∫

ρ(ŕ)νnn(s)d ŕ, (1)

where s = |r − ŕ| is the distance between the two nucleons,
ρ(ŕ) is the density of the nucleus at ŕ, and νnn(s) is the effective
NN interaction between two nucleons.

The M3Y effective NN interaction is taken into consider-
ation. It was derived by Bertsch et al. [45] and obtained from
the fitting of the G-matrix element of the Reid-Elliot NN
interaction. The parametrized form of the M3Y interaction is
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given by [44]

νnn(s) = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+ J00(E)δ(s),

(2)

where the term J00(E)δ(s) is the zero-range pseudopotential
with the knock-on strength J00(E), which depends weakly on
the bombarding energy E and is given by

J00(E) = −276(1 − 0.005E/A) MeV fm3, (3)

where E is the incident energy and A is the mass number of
the projectile.

B. High-energy approximation potential

The nucleon-nucleus potential within the HEA was derived
in Ref. [46] on the basis of the eikonal phase inherent in
the optical limit of the Glauber theory. The HEA OP can be
obtained as a folding of the form factors of the nuclear density
and the NN -scattering amplitude [38,39,46,47],

UH (r) = VH (r) + WH (r) = − h̄v

(2π )2
(ᾱNN + i)σ̄NN

×
∫ ∞

0
dqq2j0(qr)ρ(q)fNN (q), (4)

where v is the velocity of the nucleon-nucleus relative
motion, ρ(q) is the form factor corresponding to the pointlike
nucleon density distribution of the nucleus, and fNN (q) is the
amplitude of the NN scattering, which depends on the transfer
momentum q and can be specified in the form of a Gaussian
function [46,47],

fNN (q) = exp(−q2r2
0 /4), (5)

where r2
0 = 0.439 fm2 [47] is the range parameter. The

quantities σ̄NN and ᾱNN are the average over isospin total
NN cross section and the ratio of the real to imaginary part of
the scattering amplitude at zero angle of free nucleons. They
both have been parametrized in Refs. [38,47,48] as a function
of energy,

σ̄NN = NP NT σnn + ZP ZT σpp + ξσnp

AP AT

, (6)

with ξ = ZP NT + NP ZT . The pp and nn cross sections are
given (in fm2) by

σpp = σnn = 1.373 − 1.504β−1 + 0.876β−2 + 6.867β2,

(7)

where

β = υ

c
=

√
1 −

(
m

εlab + m

)2

(8)

is the velocity of the projectile nucleon, εlab = E/A is the
incident energy per nucleon (in MeV), and m = 931.494
(in MeV) is the unified atomic mass unit. For the np cross
section σnp, two expressions are used. If the energy per nucleon
E > 10 MeV, then

σnp = −7.067 − 1.818β−1 + 2.526β−2 + 11.35β. (9)

For E < 10 MeV,

σnp = 273

(1 − 0.0553E)2 + 0.35E

+ 1763

(1 + 0.334E)2 + 6.8E
. (10)

The average ᾱNN is written as

ᾱNN = NP NT σnnαnn + ZP ZT σppαpp + ξσnpαnp

NP NT σnn + ZP ZT σpp + ξσnp

, (11)

where

αpp = αnn = 0.0078 + 0.1762
√

εlab + 0.014 36εlab (12)

and

αnp = −0.0301 + 0.2148
√

εlab − 0.0551εlab. (13)

C. Nuclear density distributions

The density distributions of the light nuclei have been deter-
mined using several methods. The best method is high-energy
proton scattering. Careful analyses of interaction and reaction
cross sections using model density distributions have been used
to determine experimental density distributions. The density
distributions for light nuclei have been obtained through
various theoretical models such as the density distribution of
Tanihata et al. [49], the Green’s function method [50], Hartree
Fock [51], COSMA [16,17,52,53], LSSM methods [54,55],
and others.

Different phenomenological matter density distributions
for helium and lithium isotopes have been obtained from
the measured proton elastic-scattering cross sections at high
incident energies around 700 MeV/nucleon using the Glauber
multiple-scattering theory [56–64]. The neutron halo nuclei
are assumed to be composed of a core surrounded by a halo
of one or more valence neutrons. It is found that the matter
distributions of halo nuclei are significantly more extended
than those for their cores. The obtained rms radii of the halo
nuclei, 6He, 8He, and 11Li, are found to be quite large compared
to those of their cores (4He and 9Li). These studies found that
the densities that consider the core and halo with different
spatial distributions, such as the GO, fit the data well [62–64].

For 6,8He and 9,11Li exotic nuclei, the microscopic LSSM
densities are obtained in a complete 4hw shell-model space
[55] using the Woods-Saxon (WS) single-particle wave func-
tion basis with realistic exponential asymptotic behavior.

Furthermore, the microscopic density distributions for
A � 10 nuclei are obtained from the quantum Monte Carlo
(QMC) calculations of the ground and low-lying excited states
of these nuclei using a realistic Hamiltonian containing the
Argonne v18 (AV18) two-nucleon potential alone or with
Illinois models (IL1-IL5) [65]. The QMC methods include
both variational Monte Carlo (VMC) and Green’s function
Monte Carlo (GFMC) methods [65]. The GFMC calculations
using the AV18 + IL2 model are done to obtain the proton and
neutron point densities for 4,6,8He [66,67] and 6,7,9Li [65,68].

In this work, the GFMC density is used for the stable
nuclei, whereas the LSSM density is used for the exotic
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FIG. 1. (Color online) Densities of (a)
4,6,8He and (b) 6,7,9,11Li used in this work.

nuclei. To test the sensitivity to the radial shape of the nuclear
matter distribution, the microscopic GFMC density distribu-
tion of the 4He nucleus is used for 4He and compared with
the phenomenological one-parameter Gaussian density with
Rm = 1.49 fm [57], whereas the microscopic LSSM density
for 6,8He nuclei is compared with phenomenological GO
density, where its parameters are given by Tanihata et al. [49].

The 4,6,8He and 6,7,9,11Li densities used in this work
are presented in Fig. 1. The microscopic distributions of
4,6,8He nuclei (GFMC density for 4He and LSSM density
for 6,8He) are plotted in Fig. 1(a) and compared with the
phenomenological densities (G for 4He and GO for 6,8He).
It is shown that the microscopic densities have tails longer
than the phenomenological densities for 4,6,8He. One can see
that the 4He density is largest at a small distance (r < 1.5 fm),
while it falls more rapidly than the 6,8He densities for large
r . Figure 1(b) represents the nuclear densities of the lithium
isotopes. In general, the distributions of the halo isotopes, 6,8He
and 11Li, have extended tails that reflect their halo structure
with large radii.

D. Method of calculation

The total optical potential can be generally written as

Uopt(r) = VR(r) + iWI (r) + Uc(r) + USO(r), (14)

where VR , WI , and USO are the real, imaginary, and spin-
orbit parts, respectively. Uc(r) is the Coulomb potential of a
uniformly charged sphere of radius 1.2A1/3.

The phenomenological potential parts are taken in the
following forms [37,69]:

VR(r) = −V0f0(r), (15)

WI (r) = −Wvfv(r) + 4asWs

d

dr
fs(r), (16)

USO(r) = 2λ2
πVso

1

r

d

dr
fso(r)L · S, (17)

where fx(r) = [1 + exp ( r−Rx

ax
)]−1, Rx = rxA

1/3, and λ2
π =

( h̄
mπ c

)2 ≈ 2 fm2. The subscripts x = 0, v, s and so denote
the central real, volume imaginary, surface imaginary, and
spin-orbit potentials, respectively. V0, Wv (Ws), and Vso are
the strengths of the real, volume (surface) imaginary, and the
spin-orbit potentials, respectively.

In the present work, the elastic-scattering cross sections
are calculated using the single-folding approach VF . The
phenomenological real and volume imaginary parts of the OP
are replaced by the folded potential VF as seen in Refs. [35,37].
The derivative (−r d

dr
VF ) of the folded potential is added

as a surface potential [43,70,71]. The spin-orbit part can be
obtained microscopically by replacing fso(r) in Eq. (17) by
a folding potential VF [38,43]. The renormalization factors
NR , NI , NIS, and NSO are introduced for the real, volume
imaginary, surface imaginary, and spin-orbit microscopic
potentials, respectively. They correspond to the strengths V0,
Wv , Ws , and Vso, respectively. The total microscopic optical
potential then can be constructed only from VF (r) and its
derivative and rewritten as

Uopt(r) = NRVF (r) + i

[
NIVF (r) − NISr

d

dr
VF (r)

]

− 2λ2
πNSO

1

r

d

dr
VF (r)L · S. (18)

In addition, the imaginary part of the OP can be taken
with the high-energy approximation model, where VF (r) is
replaced by WH (r) in the imaginary part of the OP in Eq. (18).
Therefore, the OP can be rewritten as

Uopt(r) = NRVF (r) + i

[
NIWH (r) − NISr

d

dr
WH (r)

]

− 2λ2
πNSO

1

r

d

dr
VF (r)L · S. (19)

The volume integrals of the real and imaginary parts of the
OP are denoted by JR and JI , respectively. They are defined
as [44,69]

JR = −4π

A

∫
[NRVF (r)]r2dr, (20)

JI = −4π

A

∫
[NIW (r) − NISr

d

dr
W (r)]r2dr, (21)

where W = WH ,VF .
The renormalization factors are determined by a fitting

procedure of the cross-sections data which is carried out to
achieve minimum χ2. The χ2 is given by [44]

χ2 = 1

N

N∑
k=1

[
σth(θk) − σex(θk)

�σex(θk)

]2

, (22)
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FIG. 2. (Color online) Differential cross sections of proton elastic scattering of helium isotopes (4,6,8He) at different energies (in
MeV/nucleon). The solid lines represent the results of calculations with microscopic densities, GFMC for 4He and LSSM for 6,8He. The
dashed lines represent the results with the phenomenological densities, G for 4He and GO for 6,8He.

where σth(θk) and σex(θk) are the theoretical and experimental
cross sections at the angle θk , respectively, �σex(θk) is the
experimental error, and N is the number of data points.

III. RESULTS AND DISCUSSION

A. Differential cross sections

For Figs. 2 and 3, the incident laboratory energies are
indicated in MeV/nucleon. The curves and data points at the
top represent true values of differential cross sections, while
the others must be multiplied by factors of 10, 100, and so on.

The elastic angular distribution data for the proton elastic
scattering of helium isotopes (4,6,8He) at different energies are

calculated using the optical potential [Eq. (19)] and shown in
Fig. 2. The real part of the OP is calculated using the single
folding model with the M3Y interaction, and the imaginary
part is calculated with the high-energy approximation model.
A comparison between the microscopic and phenomenological
densities is presented for each reaction. The renormalization
factors of this microscopic OP (NR , NI , NIS, and NSO), the
reaction cross sections (σR), and the minimum χ2 of these
results are listed in Tables II and III. Figures 2(a) and 2(b)
present the results of the proton elastic scattering of the 4He
nucleus at different energies calculated using two different
densities: the microscopic GFMC and the phenomenological
one-parameter Gaussian (G).

064602-5



M. Y. H. FARAG, E. H. ESMAEL, AND H. M. MARIDI PHYSICAL REVIEW C 88, 064602 (2013)

FIG. 3. (Color online) Differential cross sections of proton elastic scattering of lithium isotopes (6,7,9,11Li) at different energies (in
MeV/nucleon). The solid and dashed lines represent the results of calculations with HEA [as in Eq. (19)] and M3Y [as in Eq. (18)]
folded potentials for the imaginary OP, respectively.

Clearly, from Figs. 2(a) and 2(b) and from the values of χ2

that are given in Tables II and III, the two densities yield
reasonable results for p + 4He elastic scattering. However,
at high energies, the results using the GFMC density are
slightly better than those using the G density. At large angles
(θ > 120◦), the results disagree with the experimental data.
This is because we use three parameters only for the fitting
procedure, whereas more than ten parameters are used in a
fitting with the phenomenological Woods-Saxon potential.
Hence, the behavior of the differential cross sections is
weakly sensitive to the selection of density. Similar results
are mentioned in Refs. [39,57,63,70].

It is found that the NR values of the real OP using the G
density are slightly larger than those using the GFMC density.
They decrease slowly if the energy is increased with similar
rates. On the other hand, NI values of the imaginary OP
using the two densities are found to be sharply increased with
energy up to a definite value and then they slowly change.
Furthermore, the values of NSO are in the range of 0.1–0.2 for
all the considered energies.

Figures 2(c) and 2(d) present the differential cross sections
of 6,8He + p elastic scattering at different energies calculated
using the OP [Eq. (19)]. The microscopic LSSM density is
used for the two halo nuclei 6,8He and compared with the
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TABLE II. Values of the fitting parameters and the calculated reaction cross sections obtained by fitting the experimental cross-section data
for the proton elastic scattering of 4,6,8He at different energies using Uopt [Eq. (19)] with microscopic densities; GFMC for 4He and LSSM for
6,8He.

Nucleus E/A (MeV) NR NI NIS Nso χ 2 σR (mb)

4He 12.04 1.35 0.005 0.00 0.10 11.85 27.0
17.45 1.37 0.01 0.00 0.10 2.88 28.4
31.0 1.30 0.07 0.00 0.10 30.0 69.8
40.0 1.29 0.14 0.00 0.10 4.48 88.2
52.3 1.19 0.36 0.00 0.18 796.0a 121.2
64.9 1.19 0.59 0.00 0.13 443.2a 132.5
71.9 1.22 0.80 0.00 0.16 676.0a 142.0
85.0 1.14 0.90 0.00 0.13 58.0 130.0

156.0 1.12 1.03 0.00 0.05 38. 90.0
6He 25.1 0.95 0.00 0.15 0.46 0.62 479.4

38.3 1.0 0.14 0.16 0.34 5.01 406.8
40.9 1.0 0.15 0.15 0.34 1.82 384.8
41.6 1.0 0.20 0.16 0.27 1.86 381.1
71.0 0.93 0.72 0.06 0.00 0.74 277.6
82.3 0.85 0.80 0.07 0.00 103.71 264.5

8He 15.7 1.00 0.00 0.064 1.12 2.48 578.7
26.1 1.23 0.00 0.13 0.43 1.70 568.8
32.5 1.15 0.00 0.15 0.47 0.23 512.7
66.0 1.05 0.30 0.11 0.20 0.58 310.9
72.0 1.05 0.40 0.10 0.20 0.93 303.4

aχ 2 values are large because the experimental errors are very small, but the visual fit is acceptable.

phenomenological GO density. It is clear that the data fit well
with the two densities, LSSM and GO.

From Tables II and III, it is noted that the surface imaginary
part of the optical potential is not needed to fit the data of proton

elastic scattering on the stable nucleus 4He but it is important
to give an agreement with the proton elastic-scattering data of
the halo nuclei 6,8He. This is because of the large radii and
unusual structures of the halo nuclei. The values obtained for

TABLE III. The same as Table II but with phenomenological densities; G for 4He and GO for 6,8He.

Nucleus E/A (MeV) NR NI NIS Nso χ 2 σR (mb)

4He 12.04 1.52 0.004 0.00 0.11 9.05 19.61
17.45 1.50 0.01 0.00 0.12 2.67 25.7
31.0 1.42 0.077 0.00 0.11 30.6 69.8
40.0 1.45 0.18 0.00 0.11 4.54 99.0
52.3 1.34 0.33 0.00 0.14 779.0a 108.
64.9 1.3 0.54 0.00 0.13 437.0a 118.
71.9 1.28 0.79 0.00 0.19 839.0a 133.
85.0 1.25 1.00 0.00 0.16 121.0a 143.5

156.0 1.30 0.97 0.00 0.00 50.53 81.45
6He 25.1 1.0 0.00 0.16 0.47 0.60 457.1

38.3 1.0 0.00 0.21 0.32 6.10 388.7
40.9 1.0 0.00 0.20 0.38 1.18 361.1
41.6 1.0 0.00 0.20 0.25 2.41 355.0
71.0 0.93 0.74 0.07 0.00 0.82 263.6
82.3 0.87 0.82 0.07 0.00 113.4 245.3

8He 15.7 0.50 0.00 0.09 1.21 4.21 609.8
26.1 1.33 0.00 0.14 0.29 1.75 546.7
32.5 1.0 0.00 0.15 0.46 0.27 476.1
66.0 1.0 0.88 0.00 0.20 0.40 328.4
72.0 1.0 0.00 0.23 0.27 1.10 326.9

aχ 2 values are large because the experimental errors are very small, but the visual fit is acceptable.
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TABLE IV. Renormalization factors and the reaction cross sections, obtained by fitting the experimental cross-section data for the proton
elastic scattering of 6,7,9,11Li isotopes using Uopt [Eq. (19)] with HEA imaginary OP. GFMC density is used for 6,7Li and LSSM density for
9,11Li.

Nucleus E/A (MeV) NR NI NIS Nso χ 2 σR (mb)

6Li 6.0 1.48 0.00 0.02 0.38 1.51 365.1
10.0 1.48 0.00 0.047 0.56 3.59 529.1
25.9 1.25 0.45 0.00 0.28 7.75 378.0
29.9 1.17 0.50 0.00 0.30 3.78 352.8
35.0 1.09 0.53 0.00 0.32 9.31 319.6
40.1 1.07 0.58 0.00 0.29 28.29 300.4
45.4 1.04 0.63 0.00 0.17 54.73 283.0
49.75 1.04 0.64 0.00 0.29 16.44 266.7
65.0 1.03 0.82 0.00 0.23 4.57 247.7
72.0 1.02 0.88 0.00 0.13 1056.0a 237.8

135.0 0.80 0.95 0.00 0.15 15.75 154.0
155.0 0.78 1.14 0.00 0.14 7.81 160.8

7Li 6.15 1.42 0.046 0.00 0.37 1.61 465.0
10.3 1.51 0.132 0.00 0.46 2.87 584.1
24.4 1.20 0.30 0.00 0.61 3.82 389.2
49.74 1.05 0.47 0.00 0.34 14.00 258.3
65.0 1.02 0.79 0.00 0.17 1.63 274.3

155.0 1.0 1.0 0.00 0.14 17.68 170.1
9Li 60.0 0.94 0.45 0.00 0.06 1.17 271.9
11Li 62.0 0.94 0.82 0.00 0.00 1.91 441.6

aχ 2 values are large because the experimental errors are very small, but the visual fit is acceptable.

NIS for 6He + p are slightly larger than those for 8He + p,
because the 6He nucleus has a stronger halo structure than the
8He nucleus. In addition, the surface imaginary OP is found
to decrease with an increase of the incident energy. NIS is no
longer needed at relatively high energies.

In Fig. 3, the results of the differential cross sections for the
proton elastic scattering of lithium isotopes (6,7,9,11Li) at differ-
ent energies using Uopt [Eq. (19)] are presented in comparison
with Uopt [Eq. (18)]. In this calculation, the imaginary part is
calculated with two models: the single-folding M3Y model
[W = VF as in Eq. (18)] and the high-energy approximation
model [W = WH as in Eq. (19)]. The microscopic distributions
are used, namely the GFMC density for 6,7Li and the LSSM
density for 9,11Li nuclei. The renormalization factors of the
microscopic OPs NR , NI , NIS, NSO, the reaction cross sections,
and the minimum χ2 are listed in Tables IV and V.

From Fig. 3 and the values of χ2 given in Tables V
and IV, the results indicate that the two types of imaginary
OP reproduce the experimental data well. The M3Y folding
imaginary OP gives results with a slightly better fit than the
results using the HEA imaginary OP at low energies. However,
the HEA imaginary OP gives the best fit at high energies.
Furthermore, the value of NR using the HEA OP is found to
be smaller than that using the M3Y folding OP. In addition,
the NI values of the HEA imaginary OP are larger than
that of the M3Y folding OP, because the volume integrals
of the imaginary OP using W = WH are smaller than those
using W = VF .

In general, from the results of the proton elastic scattering
of helium and lithium isotopes, it is noted that NR values
decrease slowly and exponentially with increasing energy. At

the same energy, NR for the halo nuclei is less than that for the
stable isotopes. For the imaginary part of the OP, NI values
sharply increase with energy until they reach a maximum
value and then slowly change. The value of NIS decreases
with increasing incident energy. It has larger values for the
halo nuclei. Furthermore, NSO values decrease if the energy
increased for most of the considered reactions. More details
about the energy dependence of the renormalized OPs and
their volume integrals are mentioned in Sec. III C.

B. The reaction cross sections

The total nuclear reaction cross sections (σR) tell us about
the radii of the scattering nuclei and give information about
their structure. In addition, they are considered important
constraints for choosing the optical potential parameters.
There are available experimental values of the reaction cross
sections for reactions of stable nuclei: p + 4He [72,73] and
p + 6,7Li [72,74] at some energies below 100 MeV/nucleon.
In addition, for exotic nuclei, there are available experimental
data of the total reaction cross section for 6He + p at
36.2 MeV/nucleon [72,75] and 9Li + p at 34.2 MeV/nucleon
[72].

The energy dependence of the reaction cross sections for
proton elastic scattering of stable nuclei are presented in Fig. 4.
The total reaction cross sections, using both G and GFMC
densities, are in agreement with the experimental values and
give similar results for p + 4He elastic scattering as shown
in Fig. 4(a). They increase with increases in the bombarding
energy to about 70 MeV/nucleon. Thereafter, they decrease.
The calculated reaction cross sections obtained by using the
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TABLE V. The same as Table IV but using Uopt [Eq. (18)] with the M3Y single-folded imaginary OP.

Nucleus E/A (MeV) NR NI NIS Nso χ 2 σR (mb)

6Li 6.0 1.48 0.00 0.06 0.28 1.25 368.9
10.0 1.54 0.00 0.13 0.56 2.37 547.9
25.9 1.34 0.54 0.00 0.25 5.09 388.7
29.9 1.22 0.54 0.00 0.30 8.76 357.5
35.0 1.12 0.53 0.00 0.34 17.14 324.3
40.1 1.08 0.55 0.00 0.36 28.91 308.7
45.4 1.04 0.56 0.00 0.31 59.36 291.6
49.75 1.04 0.52 0.00 0.43 12.17 266.2
65.0 1.03 0.50 0.00 0.36 2.35 221.6
72.0 0.90 0.34 0.07 0.35 1055.0a 237.8

135.0 0.97 0.11 0.23 0.14 12.57 196.4
155.0 1.20 0.00 0.30 0.05 70.98 185.6

7Li 6.15 1.36 0.128 0.00 0.53 2.06 517.9
10.3 1.50 0.345 0.00 0.46 2.03 591.1
24.4 1.10 0.42 0.00 0.66 2.82 391.3
49.74 1.00 0.47 0.00 0.43 18.0 277.0
65.0 1.05 0.53 0.00 0.26 1.91 257.7

155.0 1.10 0.90 0.00 0.16 61.6 196.2
9Li 60.0 1.03 0.39 0.00 0.00 6.83 275.7
11Li 62.0 1.0 0.62 0.00 0.00 4.30 427.7

aχ 2 values are large because the experimental errors are very small, but the visual fit is acceptable.

two types of the imaginary OP, HEA OP and the folding M3Y
OP, for p + 6,7Li scattering are shown in comparison with
the corresponding experimental data in Figs. 4(b) and 4(c).
Clearly, the two types of imaginary parts of OP reproduce the
data well and have similar behaviors for the two reactions. In
addition, below 10 MeV/nucleon, the expected behavior of σR

values is that they increase with increasing energy. However,
above about 10 MeV/nucleon they decrease with an increase
in the bombarding energy.

Figure 5 presents the calculated reaction cross section for
proton elastic scattering with helium and lithium isotopes
at different energies. The σR values obtained for 8He + p
elastic scattering are found to be greater than values for
6He + p elastic scattering. They decrease with an increase
in bombarding energy, as shown in Fig. 5(a). In addition,
these values for 6,8He + p are larger than those for p + 4He.
In general, the calculated σR for the halo nuclei scattering
(6,8He + p and 11Li + p) are found to be larger than the

calculated σR for the scattering of their isotopes (p + 4He
and p + 6,7Li); see Fig. 5. This is related to the rms radius
of the scattered nuclei. Furthermore, the results of σR for
the considered reactions are in agreement with the available
experimental data.

In addition, to show the effect of increasing neutron number,
Fig. 6 presents the dependence of the reaction cross sections
for the proton scattering of helium and lithium isotopes on
the mass number and the rms radii. The σR are shown in
three different energy groups (25, 40, and 71 MeV/nucleon)
for helium isotopes in Fig. 6(a). The first group includes
p + 4He at 31 MeV/nucleon, 6He + p at 25.1 MeV/nucleon,
and 8He + p at 26.1 MeV/nucleon. The second group contains
p + 4He at 40 MeV/nucleon, 6He + p at 38.3 MeV/nucleon,
and 8He + p at 32.5 MeV/nucleon. The third group includes
p + 4,6,8He at about 71 MeV/nucleon. Moreover, the σR

for proton scattering of lithium isotopes at an energy range
of 60–65 MeV/nucleon are shown in one energy group in

FIG. 4. (Color online) Dependence of the σR on the incident energy for the proton elastic scattering of stable isotopes.
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FIG. 5. (Color online) Dependence of the
σR on the incident energy for the proton elastic
scattering of (a) helium and (b) lithium isotopes.

Fig. 6(b). Clearly, the behaviors of the σR are similar for the
different energy groups for p + 4,6,8He elastic scattering. At
the same energy, it is found that the values of σR that are
obtained approximately depend on the matter rms radii of the
isotopes presented in Figs. 6(c) and 6(d).

C. The energy and mass dependencies of the volume integrals

1. The energy dependence

Many comparisons are done in this study. The density of
the helium isotopes is taken in two forms: phenomenological
and microscopic density distributions. The imaginary OP is
calculated with two models: M3Y single-folded OP (W = VF )
and HEA OP (W = WH ).

The volume integrals of the optical potentials for proton
elastic scattering with stable nuclei for these comparisons at
different energies are plotted in Fig. 7. The volume integrals
of the real and imaginary potentials (JR and JI ) depend on
their renormalization factors (NR and NI ) as seen in Eqs. (20)
and (21). The renormalization factors of the OPs are listed in
Tables II–V.

It is clear from Fig. 7 and Tables II–V that the real and
imaginary volume integrals show a strong dependence on
energy. JR decreases as the energy increases. On the other

hand, JI increases rapidly with energy up to a saturated
value. Using both the G and GFMC densities gives similar
results for JR and JI for p + 4He scattering, as shown in
Fig. 7(a). Figures 7(b) and 7(c) show that the volume integrals
have similar behaviors for the two reactions, p + 6,7Li elastic
scattering. Further, the JI values of the OP with the HEA
imaginary potential [Eq. (19)] are found to be slightly larger
than those using the folding M3Y potential [Eq. (18)]. This is
true for the two reactions.

From these comparisons, the volume integrals of the
different types of the OP have similar behaviors for the same
reaction. In addition, these different OPs give a good fit for the
cross-section experimental data. The question here is in regard
to what the most important feature in the OP is: depth, shape,
density, interaction, or the volume integral. To get a better
understanding, the different types of the OP that are used in
this work are plotted in Fig. 8. They are presented with the
renormalization factors. The real part of the microscopic OP is
calculated using the M3Y single-folding model (VF ) and the
imaginary part is obtained within the HEA OP (WH ).

The real and imaginary potentials of 4,6,8He + p at
71 MeV/nucleon, which are calculated at the two different
densities: GFMC and G for 4He and LSSM and GO for 6,8He
nuclei, are shown in Figs. 8(a) and 8(b). It is shown that the

FIG. 6. (Color online) Dependence of σR on
the mass number for the proton elastic scatter-
ing of helium and lithium isotopes using Uopt

[Eq. (19)]. They are compared with the experi-
mental matter rms radii given in Ref. [76].
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FIG. 7. (Color online) The obtained volume integrals for the proton elastic scattering of stable isotopes [(a) 4He, (b) 6Li, and (c) 7Li].

p + 4He potentials fall more rapidly at large distances than
6,8He + p potentials, which have a tail. This is related to the
density type of each isotope.

Figures 8(c) and 8(d) present the real and imaginary optical
potentials of the proton elastic scattering with lithium isotopes
in an energy range of 60–65 MeV/nucleon with the two
different forms of the OP as in Eqs. (18) and (19). Here, the
imaginary part is obtained within the two forms: the HEA OP
(WH ) and the M3Y single-folded OP (VF ).

At small distances, the renormalized real potentials with
HEA imaginary OP (W = WH ) are shallower than that with
folded OP (W = VF ) [see Fig. 8(c)]. But this behavior is found
to be reversed for the imaginary potentials where the HEA
potential has depth larger than the M3Y folded potential for
each isotope of lithium [see Fig. 8(d)]. However, the two types
of the imaginary OP are close to each other in the surface
region.

Clearly, the potentials with different densities or interac-
tions are close to each other at the surface (at r > 5 fm), but the

FIG. 8. (Color online) Imaginary optical potentials with many comparisons for proton elastic scattering of helium and lithium isotopes.
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FIG. 9. (Color online) Simulated volume integrals of the OPs [Eq. (19)] as functions of energy for the proton elastic scattering of stable
isotopes.

depths of these potentials differ at smaller distances. The fitting
procedure, which renormalizes the potential on the whole
range, may not give a correct potential at small distances.
For the same reaction, the different OPs have different depths
and shapes according to the type of density or interaction as
mentioned before. Although these OPs differ, at the same time,
they give similar fittings to the cross-section data for most
of the considered reaction, and their corresponding volume
integrals are similar and have closer values as shown in Fig. 7.
Hence, the different potentials that give an agreement with
the cross-section data should have similar values for their
volume integrals. Different energy parametrizations have been
proposed for the strengths and the volume integrals of the real
and imaginary OP. See, for example, Refs. [77–83].

The energy dependence of the JR shows a characteristic
behavior for all nuclei considered. JR increases with increasing
energy until a maximum is reached at a definite energy (de-
noted by E0). Below this energy, a Gaussian parametrization
is applied to JR as [77,84,85]

JR(E) = JR0 exp −(E − E0)2/�2. (23)

In the present work, the scattering data at very low energies
are not included.

Above E0, the JR begin to decrease with energy. Different
parametrizations are used for JR above E0. The real volume
integral can be parametrized in a polynomial form as in
Ref. [79],

JR(E) � JR0[1 + υ1(E − EF ) + υ2(E − EF )2], (24)

where JR0 is the zero crossing of JR(E). Another parametriza-
tion of the real volume integral can be parametrized by the

exponential decay function as [78]

JR(E) = A0 + A1 exp(−κE), (25)

with the zero crossing JR0 = A0 + A1.
It is noted that for high energies (about 200 MeV) up

to 1000 MeV for proton elastic scattering, the real central
potential is known to become repulsive at very high energy
and a functional form JR(E) ∼ log(E) is suitable for the real
volume integrals [78,86].

Furthermore, we propose a new empirical formula with two
parameters only for the real volume integral. It has a reciprocal
form given by

JR(E) = JR0

1 + ηE
, (26)

where η is a global fitting parameter. On the other hand, the
volume integral JI of the imaginary part depends strongly on
the energy because many reaction channels open at energies
around the Coulomb barrier [85,87]. The imaginary part of the
potential takes into account the absorption of the flux in the
nonelastic channels, so it increases when a new channel is open
from JI = 0 below the lowest inelastic channel to a saturation
value JI = JI0 observed at relatively high energies [84,87].

The Jeukenne-Mahaux (JM) formula [78,82] is used to
express the energy dependence of the volume integrals per
nucleon of the imaginary potential as

JI (E) = JI0
(E − EF )4

(E − EF )4 + β4
, (27)

where EF is the Fermi energy, which is defined as the energy
halfway between the last occupied and the first unoccupied

TABLE VI. Parameters of the parametrizations of the real volume integral JR for proton elastic scattering of stable isotopes.

Nucleus Exponential Polynomial Reciprocal

A0 A1 κ χ 2 JR0 υ1 υ2 χ 2 JR0 η χ 2

(MeV fm3) (MeV fm3) (MeV−1) (MeV fm3) (MeV−1) (MeV−2) (MeV fm3) (MeV−1)

4He 36.6 623.3 0.0068 121.1 691.3 −0.005 85 1.23E-5 119.8 694.4 0.009 37 282.3
6Li 138.8 565.6 0.0161 449.4 709.4 −0.009 77 3.23E-5 751.5 735.3 0.017 19 340.5
7Li 193.8 506.2 0.0183 938.9 776.7 −0.009 65 3.21E-5 1144.2 704.2 0.015 15 733.1

064602-12



ELASTIC INTERACTION OF PROTONS WITH STABLE AND . . . PHYSICAL REVIEW C 88, 064602 (2013)

TABLE VII. Parameters of the BR, JM, and Fermi parametrizations of the imaginary volume integral JI for proton elastic scattering of
stable isotopes.

Nucleus EF (MeV) BR parametrization JM parametrization Fermi parametrization

JI0(MeV fm3) �(MeV) χ 2 JI0(MeV fm3) β(MeV) χ 2 JI0(MeV fm3) E∗(MeV) a∗(MeV) χ 2

4He −8.922 294.3 67.44 1835.2 244.4 57.52 579.7 225.8 48.82 8.94 204.1
6Li −5.098 248.5 12.75 918.7 238.3 13.71 432.9 236.7 8.88 3.21 387.8
7Li −13.616 230.9 23.17 1346.7 213.6 22.53 927.9 205.4 8.39 2.37 813.1

shell of the nucleus and given by [79,80]

EF = − 1
2 [Sp(Z,N) + Sp(Z + 1, N)], (28)

where Sp(Z,N ) is the proton separation energy for a nucleus
with proton number Z and neutron number N . We have used
the Audi et al. mass table [88] to obtain the values of the
separation energies.

Some phenomenological global optical model potentials
for the interaction of protons with nuclei as in Refs. [79,80]
found that the functional forms from Brown and Rho (BR)
[81] gave the best description for all nuclei studied. In the
BR parametrization, the energy dependence of the imaginary
volume integral can be given in the expression

JI (E) = JI0
(E − EF )2

(E − EF )2 + �2
. (29)

In addition, this formula is also used by Refs. [77,84,85,87]
for α scattering. In the JM and BR parametrizations, JI0 is
denoted to the fitted saturation parameter. β and � are the rise
parameters.

Another Fermi-like parametrization of the imaginary vol-
ume integral, first introduced in Ref. [83], reads

JI (E) = JI0
1

1 + exp (E∗ − E)/a∗ (30)

with a similar saturation value JI0 and the global parameters
E∗ and a∗. This expression is also used in Refs. [84,85] for α
scattering.

The stimulated volume integrals of the OPs for the proton
scattering with stable nuclei as a function of energy are shown
in Fig. 9. The microscopic OP is calculated using Eq. (19). The

fitted parameters of the different parametrizations are listed in
Table VI for JR and in Table VII for JI .

From this figure and the χ2 values in Tables VI and VII, it
is found that the reciprocal and exponential parametrizations
give a fit that is better than the polynomial one for JR . JM and
Fermi parametrizations give a good fit to the JI values, better
than that with the BR formula. But the Fermi formula gives
the best fit.

For JR parametrization, the zero crossing (JR0) and the
decay parameters (κ , υ1, and η) for p + 4He scattering are
less than those for the two other scattering reactions (p +
6,7Li). In addition, the decay parameters of the JR for p + 6,7Li
scattering have closer values as shown in Table VI.

On the other hand, the saturation parameter JI0 for different
JI parametrizations has approximately the same value for each
of the stable nuclei. It has a large value for 4He and a smaller
one at 7Li, whereas the slope parameters �, β, and a∗ have the
largest value for 4He.

2. The mass dependence

To study the effect of increasing the neutron number for the
same nuclide, Fig. 10 presents the mass number dependence of
the volume integrals for the proton elastic scattering with he-
lium and lithium isotopes using the microscopic OP [Eq. (19)].
The renormalization parameters of the OPs are listed in Tables
II and IV. The reciprocal parametrization is used for JR and
the JM parametrization for JI ; they have two parameters only.
The fitted parameters are listed in Table VIII. For 9,11Li + p
scattering at about 60 MeV/nucleon, the JI is expected to be
saturated at this relatively higher energy, because there are

FIG. 10. (Color online) Dependence of the
volume integrals on the incident energy for the
proton elastic scattering of helium and lithium
isotopes. The microscopic OP is calculated by
Eq. (19). The symbols represent the calculated
volume integrals, and the lines represent the fit-
ted volume integrals using the reciprocal formula
for JR and JM parametrization for JI .
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TABLE VIII. Parameters of the reciprocal and JM parametriza-
tions of the real and imaginary volume integrals for proton elastic
scattering of light nuclei.

Nucleus EF (MeV) Reciprocal JM parametrization

JR0 η χ 2 JI0 β χ 2

4He −8.92 694.4 0.009 37 282.3 244.4 57.5 579.7
6He −16.28 595.3 0.012 78 79.7 308.5
8He −19.13 628.9 0.017 26 282.3 253.8 24.2 1044.7
6Li −5.10 735.3 0.017 19 340.5 238.3 13.7 432.9
7Li −13.62 704.2 0.015 15 733.1 213.6 22.5 927.9
9Li −16.79 173.7
11Li −19.16 319.9

no further data for these two scatterings. So, the JI0 value is
approximately the JI value at this energy.

Figure 10(a) presents the real and imaginary volume
integrals for p + 4,6,8He elastic scattering. Clearly, JR for
p + 4He is greater than the two halo nuclei scattering reactions
6,8He + p. Furthermore, the JR values for 8He + p elastic
scattering are found to be greater than those values for
6He + p elastic scattering. On the other hand, the JI values for
6He + p are the greatest, whereas the JI values for p + 4He
scattering are the smallest. The JR values for p + 6,7,9,11Li lie
approximately in the same range of values. However, the JI

of p + 6Li is slightly larger than that of p + 7Li scattering, as
shown in Fig. 10(b), whereas the JI for 11Li + p scattering is
the greatest in the scattering of lithium isotopes. Clearly, the
halo nuclei have imaginary volume integrals larger than their
stable isotopes. The behavior of JI then may be related to the
rms radius of the scattered nuclei.

In general, the volume integrals of the different OPs have a
similar behavior for all the reactions considered in this work.
With energy increasing, it is found that JR increases until a
definite value of energy which differs from one isotope to the
other. This energy value is found at about 30 MeV/nucleon
for 6,8He + p systems. It may be smaller than 6 MeV/nucleon
for stable nuclei scattering, but no scattering data at low
energies exist for the exotic case. Therefore, we cannot
determine this energy, and more experimental data at low
energies are needed. Above this value of energy, JR decreases

exponentially at a slow rate and seems to be saturated at
high energies. On the other hand, JI starts off small at low
energies, and then increases rapidly up to a specific energy
that depends on the scattering nucleus. This definite energy
decreases with increasing rms radius as shown in Fig. 10. More
experimental data at relatively high energies, in particular
for the exotic nuclei scattering, are needed to determine this
energy. Thereafter, JI values are saturated and seem to be
constant. The saturated values are at about 200–300 MeV fm3.
Similar behaviors of the volume integrals are shown in Refs.
[78,89–91] for proton elastic scattering with intermediate
and heavy nuclei and in Refs. [77,84,85,87] for α-nucleus
scattering.

At low energies, the energy dependencies of JR and JI

are similar to the well-known “threshold anomalies” which
are caused by rapid changes in the absorption as the inelastic
channels open up near the Coulomb barrier [91].

Furthermore, it is found that the fitted volume integrals
using reciprocal parametrization for JR and JM parametriza-
tion for JI are in good agreement with the calculated volume
integrals. In many studies [78–80] for the nucleon elastic
scattering of nuclei with an intermediate and heavy mass
number (A � 24), the saturation parameter JI0 is assumed
to be dependent on the mass number. However, JI0 depends
strongly on the rms radius in the present work, which studies
the proton scattering of light nuclei (A � 12).

In addition, Fig. 11 presents the mass dependence of the
saturation value of the fitted imaginary volume integrals (JI0).
The values of JI0 are obtained from the JM parametrization of
JI and are listed in Table VIII. They are compared to the matter
and charge rms radii. The experimental matter and charge rms
radii of light nuclei are given by Ref. [92] and references
therein, namely Refs. [76,93] for matter radii and Refs. [94,95]
for charge radii of the helium and lithium isotopes. It is found
that the behavior of the JI0 value is similar to the behavior
of the rms radius for the helium and lithium isotopes. Clearly,
the JI0 values depend strongly on the charge rms radii of
these isotopes as shown in Fig. 11. Generally, most of the
experimental data of both the differential and reaction cross
sections for the proton scattering with the light nuclei fit well
with the microscopic OP used in this work.

FIG. 11. (Color online) Dependence of the
saturation value of the imaginary volume in-
tegrals (JI0) on the mass number. JI0 values
obtained from JM parametrization are listed
in Table VIII. They are compared with the
experimental matter and charge rms radii which
are given by Ref. [92] and references therein.
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There are some properties for this OP that are better than the
phenomenological and semimicroscopic OPs that were used
in the previous works for the same considered reactions, see,
for example, Refs. [34,37,70,96,97]. First, the OP parts are
constructed only from the folded potential and its derivative.
Second, it has only a few and limited fitting parameters, so
it is not necessary to introduce a large number of arbitrary
fitting parameters used in the phenomenological and semimi-
croscopic OPs. Third, the fitting parameters showed systematic
behaviors with respect to the incident energy and the rms
radius. Fourth, this microscopic OP is related to the matter den-
sity, whereas the phenomenological potential is a generalized
description and does not include any information regarding the
structure of interacting nuclei. Finally, the volume integrals of
this microscopic OP depend strongly on the rms radius so it
can be used to give information regarding structure.

More experimental data for the exotic nuclei with a whole
angular range and more studies for scattering data of different
light nuclei that were not considered in this work are needed
to present a complete picture.

IV. CONCLUSIONS

The optical potentials and cross sections for the proton
elastic scattering of some light stable and exotic nuclei,
namely 4,6,8He and 6,7,9,11Li, were calculated at energies below
160 MeV/nucleon. The real and spin-orbit parts of the optical
potentials were constructed from the single-folding potentials
and their derivatives using the M3Y effective nucleon-nucleon
interaction and the microscopic densities. The GFMC density
was used for stable nuclei, whereas the LSSM density was
used for exotic nuclei. The volume imaginary part of the OP
was obtained from the HEA and compared with that obtained
with the single-folded M3Y potential. The surface imaginary
OP was added as the derivative of the volume imaginary OP.
The renormalization factors NR , NI , NIS, and Nso for the real,
volume imaginary, surface imaginary, spin-orbit microscopic
potentials were introduced, respectively. These factors and the
volume integrals of the OP parts were studied.

Many comparisons were taken into consideration for
different types of densities and interactions. A comparison of
the phenomenological and microscopic density distributions
were performed for the helium isotopes and the sensitivity of
the cross sections to these densities was tested. In addition, a
comparison for the imaginary OP with the M3Y single-folded
and HEA models was taken in the study of p + 6,7,9,11Li
elastic scattering.

The calculated reaction and differential cross sections are
in good agreement with the corresponding experimental data
for most of the considered data. This is true for using the
different types of the OP.

The σR decreases with increasing projectile incident energy
for most of the reactions, except for the σR for p + 4He elastic
scattering, which increases with energy. At the same energy,
the calculated values of σR are clearly dependent on the matter
rms radii of the scattering nucleus.

Using the microscopic densities obtained from experimen-
tal data produced results as good as those of the phenomeno-
logical ones. The imaginary OP using the M3Y folding model

gives results with a slightly better fit than results using the
HEA model at low energies, but the HEA imaginary OP gives
the best fit at high energies. In general, the two types of the
imaginary OP give a good fit to the data. The results show
that the volume imaginary part is more important than the
surface part to fit the experimental data of the stable nuclei
scattering. However, the surface part is significant to fit the
data of exotic nuclei. This is related to the unusual structures
of these nuclei. In addition, the surface imaginary OP is not
needed at relatively high energies (>70 MeV/nucleon).

The volume integrals of the different OPs have a similar
behavior regarding energy for all the reactions considered in
this work. JR increases with energy to a definite value of
energy. Thereafter, with an increase in the incident energy,
the JR values decrease slowly and exponentially. On the other
hand, the JI values increase rapidly up to a definite value of
energy that depends on the rms radius of the scattering nucleus.
After this value of energy, the JI values are saturated or may be
decreasing linearly with a very slow rate. The dependence of
the imaginary volume integrals on the increasing of the neutron
number shows a strong dependence between JI values and the
rms radius of the scattered isotope at the same incident energy.
The JI values increase with an increase in the rms radius of
the isotope and vice versa.

In the fitting procedure, the renormalized OPs and their
depths, which give an agreement with the cross-section data,
may vary depending on the shape, density, or interaction type
used. However, at the same time, they give similar volume
integrals. Hence, the volume integral that gives the fitting with
data is more important than the other features of the OP, and
it can be considered an important constraint for the choice of
the optical potential.

For the energy dependence of real volume integrals,
different parametrizations such as exponential and polynomial
forms with three parameters are employed. In addition, we
suppose and apply a new parametrization (reciprocal form)
with two parameters for JR . On the other hand, the energy
dependence of the imaginary volume integral is given by the
conventional BR, the JM, and Fermi-type parametrizations.
The reciprocal formula for JR and JM parametrization for JI

are preferred because they consist of two free parameters only
and give a good fit.

The mass dependence of the volume integrals shows a
clear dependence on the radii of the scattering nuclei, not
on the mass number, as obtained in several studies for nucleon
scattering with intermediate and heavy nuclei. Also, the imag-
inary volume integrals of the OP for the proton-halo nuclei
scattering have the largest values in comparison with their
isotopes.

Generally, the microscopic OP that was used in this work
has only a few limited fitting parameters. The renormalization
factors showed clear systematic behaviors with respect to the
incident energy and strong dependencies on the rms radii.
Hence, it is possible to predict a realistic strength of the
real and imaginary part of the proton-nucleus potential for
systems without needing to use the fitting procedure. There-
fore, more experimental data for exotic nuclei with a whole
angular range are needed to give accurate parameters of the
parametrizations.
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