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Global phenomenological descriptions of nuclear odd-even mass staggering
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We examine the general nature of nuclear odd-even mass differences by employing neutron and proton mass
relations that emphasize these effects. The most recent mass tables are used. The possibility of a neutron excess
dependence of the staggering is examined in detail in separate regions defined by the main nuclear shells, and
a clear change in this dependency is found at Z = 50 for both neutrons and protons. A further separation into
odd and even neutron (proton) number produces very accurate local descriptions of the mass differences for each
type of nucleons. These odd-even effects are combined into a global phenomenological expression, ready to use
in a binding energy formula. The results deviate from previous parametrizations, and in particular found to be
significantly superior to a recent two term, A−1 dependence.
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I. INTRODUCTION

The systematic odd-even mass difference in nuclei was
recognized early on, see [1] for a brief historical overview.
Several effects will contribute to the experimentally observed
differences, in particular pairing and the twofold degeneracy of
orbits, see [2–4] for an overview of recent work. Traditionally
the odd-even mass staggering has been parametrized by a
power law in the mass number A (both A−1/2 and A−1/3 have
been used), but other functional forms have been used, e.g.,
a constant and a A−1 term in [3]. We emphasize that these
smoothly varying parametrizations only were meant to repro-
duce values of staggering averaged over many neighboring
nuclei. The odd-even mass differences has traditionally been
attributed to nucleon pairing (the largest part) and breaking
of the time reversal double degeneracy of the single particle
levels (the smallest part). Other effects may contribute as well.

Both experimentally and theoretically one observes sig-
nificant, systematic deviations from the simple laws [4] and
it therefore seems worthwhile to make use of the recently
updated, extensive and accurate, nuclear mass table [5] to
look more carefully for trends in the experimental odd-even
staggering. We shall in particular reinvestigate the suggestion
of an explicit dependence on neutron excess [6,7] that was
not supported by nuclear pairing models [8]. Our aim is
to find an improved phenomenological description of the
odd-even mass differences that may be used in combination
with semiempirical mass models, and perhaps reveal trends
that could inspire future more basic theoretical work.

The relevant theoretical considerations are presented in
Sec. II. In particular, the relevant mass relations designed
specifically to isolate odd-even effects are introduced. Mass
relations of this nature were investigated in detail by Jensen
et al. [7], but the relations used here are more compact, and are
applied with the sole purpose of analyzing odd-even effects in
general.

Section III contains the initial examination of odd-even
mass differences. The focus is on the general structure of
the staggering effects, and to that end the results, free of any
manipulations, are presented in this section. To provide a more
general overview of this structure Sec. III B presents a three

dimensional illustration of neutron staggering as a function of
both N and Z. Also included in Sec. III is a short evaluation
of the extent of the shell effects.

Section IV contains the examination of staggering effects as
a function of isospin projection. This includes both a separation
according to odd-even neutron and proton configurations, as
well as separation into regions defined by nuclear shells.
Having established the effect of each separation the results
are combined into one global expression, which describes the
collective odd-even staggering effect and includes neutron-
proton pairing explicitly. Finally, in the results are compared
to a very accurate recent two-term description with an A−1

dependency.

II. THEORETICAL FOUNDATION

Fundamental to all following examinations is a rather
general separation of the binding energy into three parts [9]

B(N,Z) = BLD(N,Z) + Bsh(N,Z) + �(N,Z). (1)

All smooth aspects are contained in the liquid drop term, BLD ,
whereas Bsh accounts for the smaller, but faster oscillating
localized, nuclear shells. The last term, �, has to include all
other contributions to the nuclear binding energy, that is vari-
ous types of correlations and in particular variations depending
on the parity of the nucleon numbers. The intent in the present
paper is to analyze the neutron and proton staggering included
in � looking for possible global dependencies. To that end any
influence from both BLD and Bsh must be eliminated. Since
these terms by far are the largest some care must be exercised to
isolate the desired effects from the measured binding energies.

The smooth contributions (mainly the liquid drop term,
BLD) is in principle easily eliminated to any order by appro-
priately constructed binding energy differences [7]. Removal
of first order is achieved by use of the double difference

Q(n,z) = −B(N − n,Z − z) + 2B(N,Z)

−B(N + n,Z + z). (2)
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Taylor expansion of the smooth part, BLD , of each of the three
B terms define QLD as the smooth part of Q, that is

QLD = −n2 ∂2BLD

∂N2
− 2nz

∂2BLD

∂N∂Z
− z2 ∂2BLD

∂Z2
. (3)

This reduction, to only second-order contributions of smooth
part through Eq. (2), is very significant but it might not
provide sufficient accuracy. Extension to more elaborate mass
relations would formally improve this accuracy, but introduce
other uncertainties. We shall instead use the liquid drop
model itself to eliminate remaining smooth contributions.
This amounts to use of Q − QLD instead of Q, where QLD

can be taken from Eq. (3) or directly from a liquid drop
model without any expansion. Our method to extract the
odd-even staggering eliminates almost all liquid drop smooth
background contributions. As our intention is to study the
odd-even staggering specifically, and not the liquid drop model
itself, a simple version is employed containing only the most
fundamental terms

BLD = −avA + asA
2/3 + ac

Z2

A1/3
+ aa

(Z − A/2)2

A
, (4)

where av = 15.56, as = 17,23, ac = 0.697, and aa = 93.14,
all in units of MeV. The accuracy with this expression and
those parameter values is sufficient for our purpose.

Any mass relation based on Eq. (2), and with the liquid drop
terms subtracted, will then dramatically reduce contributions
from the unwanted smooth parts of the binding energy. We
also need to eliminate unwanted contributions from Bsh. Shell
effects vary rather discontinuously across magic numbers
while relatively smooth by moving small steps from magic
number to either side of it. Therefore the three-point mass
relation in Eq. (2) would have only a very small contribution
from Bsh provided magic numbers for both N and Z are
excluded. In general only one side of magic numbers should
be allowed to enter the mass relations employed. These
expectations will be examined in greater detail in Sec. III C.

Choosing a specific mass relation which emphasizes either
neutron or proton odd-even staggering now allows detailed
and accurate investigations of this effect contained in � from
Eq. (1). Two mass relations are in particular ideally suited to
study the neutron and proton staggering. They are given as

�n = 1
2πn(Q(1,0) − QLD(1,0)), (5)

�p = 1
2πp(Q(0,1) − QLD(0,1)), (6)

where πn and πp assure a positive result, when defined as

πn = (−1)N,πp = (−1)Z. (7)

The definition and normalization of �n corresponds to an
additional binding energy of �n for even compared to odd
values of N . The nuclei contributing to �n and �p in the NZ
plane are seen in Fig. 1. They are ideal for isolating odd-even
effects as either horizontal or vertical with alternating sign
for each isotope. When we have extracted �n and �p from
experimental masses, either as numbers or as parametrized
analytic expressions, the corresponding contribution to � in
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FIG. 1. The structure of �n, �p , �(4)
n , �(4)

p , �(5)
n , and �(5)

p given
in the NZ plane. The relative weight of each individual isotope, not
including normalizing factors, is also included.

Eq. (1) could be expected to be

� = 1
2 (πn�n + πp�p). (8)

This expression has the classical form for the odd-even mass
difference, often referred to as pairing effects although other
substantial contributions also can be included.

It may appear as if �n and �p are expressions related
solely to either neutron or proton odd-even mass differences.
However, the three-point mass relation in Eq. (2) also includes
a contribution from neutron-proton pairing effects that are
known to be sizable [7,10]. Assuming the neutron-proton
pairing effect results in a term, Cπnp = C(1 − πn)(1 − πp)/4
(i.e., only a contribution for odd-odd nuclei), then �n would
receive a contribution −C(1 − πp)/2, and analogously for �p

and Eq. (8) must be corrected for this. Equations (5) and (6)
therefore reflect odd-even effects in general, including terms
arising from possible neutron-proton couplings.

It is a choice to use three-point mass relations to study
odd-even effects. In fact, any number of neighboring masses
can be combined to provide information about similar effects.
Still in any case, unwanted contributions must be eliminated.
Replacing the binding energies in Eq. (2) with separation
energies of the form S(N,Z) = B(N,Z) − B(N − n′,Z −
z′) would eliminate the smooth terms to second order, as
demonstrated by Jensen et al. [7]. The corresponding mass
relations with n = z = n′ = z′ = 1 result in a combination
of four nuclei, denoted �(4)

n and �(4)
p as shown in Fig. 1.

This type of four-point nuclear mass relation contains unequal
weights on even and odd nuclei which only results in minor
inaccuracies. It is ideal for studying the neutron and proton
pairing, but it will average the results for odd and even particle
numbers and is therefore not recommended [3,11].

Alternatively, a structure eliminating smooth terms to third
order could be constructed. This would combine five nuclei
as demonstrated by �(5)

n,p in Fig. 1. The main drawback is
the extent of the structure which implies averaging over more
nuclei further apart. By combining five nuclei relatively far
apart the odd-even effects would be significantly diminished
as a result of the implicit averaging, see also the detailed
comparison between � and �(5) in Ref. [12].
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In summary, for investigation of odd-even mass staggering
the most suitable structure is the compact, three nuclei structure
with the liquid drop contribution subtracted as presented in
Eqs. (5) and (6).

In general, the term � in B from Eq. (1) by definition
contains all the effects beyond those included in BLD and
Bsh. Extraction of specific contributions to the nuclear binding
energy is done by construction of mass relations dedicated
to isolate the desired effects and simultaneously remove
all significant contributions from BLD and Bsh. These two
requirements are not altogether mutually compatible. Removal
of smooth parts in B cannot distinguish between the different
terms, BLD , Bsh or �. Only the form of the parts of the assumed
� contribution is distinguishable, but within such a form still
smooth contributions would vanish, even when it is desirable
to know them.

We emphasize that extraction of each type of correlation
contribution has to be done with a precisely corresponding
mass relation. The result is an additive piece (not everything)
to the � term in B which then should be included in future
binding energy expressions. A number of different terms can
then accumulate.

III. EXAMINING ODD-EVEN NEUTRON AND
PROTON STAGGERING

In the following section the mass relations defined in
Eqs. (5) and (6) are used to examine neutron and proton mass
staggering respectively. In Sec. III B a detailed look at the
neutron effect in three dimensions is presented. This should
provide a more general insight into the nature and structure
of the odd-even effects. Finally, in Sec. III C the extent of the
shell effects is examined based on work by Dieperink and Van
Isacker [13]. All measurements used are taken from the recent
compilation by Audi et al. [5].

A. Isolated odd-even effects

Before any description of general tendencies is attempted
the odd-even effects in isolation are presented. Applying the
fundamental �n and �p relations from Eqs. (5) and (6) results
in Figs. 2(a) and 2(b), respectively. These figures very directly
show the odd-even effects in almost complete isolation. All
available nuclei have been included as these figures’ main
purpose is to offer a general impression of the effects. Later,
when making more quantitative examinations, some nuclei
influenced by unaccountable effects are excluded.

The global behavior seen in the figures is well known.
Included in both figures are just over 2100 nuclei, and their
conformity immediately suggests a deeper lying structure.
Initially, the decline in energy could suggest a power-law
dependence on A, but there is a considerable scatter and also
clear substructures, most noticeably for �n with A > 100 as
we shall see later. These structures will be examined in detail
in the following sections.

It is also important to note the similarities between Figs. 2(a)
and 2(b). Both the scale and the general structure is essentially
identical. This similarity between the results for neutron and
proton mass relations occurs in all following examinations.
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FIG. 2. The odd-even staggering �n and �p as a function of A

evaluated using Eqs. (5) and (6).

To avoid tedious repetitions, figures displaying proton mass
relations will not be included.

Although a few very light isotopes (A < 10) have rather
large values, the general scale is almost constant around
∼ 0.5–1.5 MeV. This change in structure from the light to the
heavy nuclei has led to the suggestion of more sophisticated
models in place of the simplest power law dependence used
traditionally. Friedman and Bertsch suggested [3] a two term
expression given by � = c1 + c2/A, which provides a more
than reasonable global description of the odd-even staggering.
This description will be examined more closely in Sec. IV B.

B. General structure of the odd-even effect

A more detailed view of the odd-even effects could be useful
when attempting to identify general trends. Trying to describe
the effects as functions of only one variable is an unfounded
restriction. The possibilities are limited, even if expressing �n

and �p as a function of A or N − Z. In Fig. 3 �n is shown as a
function of both N and Z, which provides a detailed look at the
actual structure of the staggering effect in the table of nuclides.

The purpose of these three dimensional figures is to study
the substructures visible in Fig. 2 more closely, and to
determine which kind of odd-even effects are immediately
visible. Inspired by Fig. 2 the three-dimensional figures are
limited to the heavier isotopes. The effect of shells are clearly
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FIG. 3. (Color online) The (N,Z) dependence of �n. Figure (a) shows 49 < N < 84 and 30 < Z < 69, and Figure (b) shows
81 < N < 127 and 49 < Z < 91.

seen around magic numbers, but as expected they are very
localized. Figure 3(a) shows the isotopes between the neutron
shells at N = 50 and N = 82 and Fig. 3(b) the isotopes
between the neutron shells at N = 82 and N = 126. The
proton number has an obvious effect on �n: when Z is odd
�n is significantly lower compared to the neighboring even-Z
nuclei. In both figures another, albeit smaller, odd-even effect
is also seen when changing neutron number. When N is even
�n is slightly smaller for the neighboring odd-N nuclei.

In addition to the neutron shells a smaller effect at the magic
proton numbers Z = 50 and Z = 82 is also seen. Given that a
correlation between �n and proton number has already been

established, this result is only somewhat surprising. The effect
is also less sharply defined compared to the effect of neutron
shells.

Generally, �n has a clear tendency to decrease away from
N = Z, and the tendency is more pronounced for heavier
nuclei. This could indicate a neutron excess dependency, which
will be examined in detail in Sec. IV.

C. Extent of shell effects

As seen in Fig. 3 the effect of nuclear shells around
magic numbers is very distinct. Although it appears to be
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FIG. 4. The extent of shell effects. Values calculated using
Dieperink and Van Isacker’s expression Eq. (9) are combined as in
Eq. (2) using Q(1,0) to estimate the remaining shell contribution for
�n.

very localized, a more precise estimation of the actual extent
would be useful. The extent can be estimated by applying the
fundamental relations from Eqs. (5) and (6) to a quantitative
expression of the shell effect. To this end Dieperink and Van
Isacker’s [13] general expression is used:

Eshell(N,Z) = (−1.39S2 + 0.020(S2)2

+ 0.003S3 + 0.075Snp) MeV, (9)

where

S2 = nvn̄v

Dn

+ zvz̄v

Dz

,

S3 = nvn̄v(nv − n̄v)

Dn

+ zvz̄v(zv − z̄v)

Dz

, (10)

Snp = nvn̄vzvz̄v

DnDz

.

Here nv and zv are the number of valence nucleons or holes,
and Dn,z is the degeneracy of the shell. Finally, n̄v ≡ Dn − nv

and z̄v ≡ Dz − zv . The magic numbers used by Dieperink and
Van Isacker are 2, 8, 14, 28, 50, 82, 126, 184.

The result is presented in Fig. 4, and as expected the effect
is extremely localized. A contribution on the scale of 1 MeV
around magic numbers seems reasonable when compared to
Fig. 3, but otherwise the effect is less than ∼ 0.1 MeV, and
essentially negligible. The same localized result with respect
to Z is found when using Eq. (6) instead of Eq. (5).

Based on these results the exclusion of mass relation
evaluations which includes magic numbers should be justified.
Unless otherwise stated no corrections are made for the shell
effects, the relevant nuclei are merely excluded from the
calculations.

Alternatively, the nuclei, which deviates because of shell
effects could be determined by using a mass relation like
Eq. (2) with n = 2 and z = 2. Then the odd-even effects would
be canceled, and the shell effects would be left in relative
isolation. This is done successfully in detail in [14] with a four
nucleus mass relation.

IV. DETAILED SEGMENTED ANALYSIS

Section IV A looks at a possible neutron-excess dependency
for �n and �p. The nuclei are separated into groups according
to even and odd neutron and proton numbers. In addition, the
nuclei are divided into regions defined by shells in a similar
manner as in Ref. [15] in order to see possible related structure
changes. In Sec. IV B the separated nuclei are combined into
a globally valid model of the odd-even effects. This is in
Sec. IV C compared to a global, two term description, with
an A−1 dependence.

A. Neutron-excess dependency

As indicated by Figs. 3(b) and 3(a) the general nature of the
staggering effects seems to change around Z = 50. In order to
examine this possibility closer the following results are divided
into areas defined by shells.

The structures in question given by Eqs. (5) and (6) involves
an odd number of nuclei as seen in Fig. 1. Either a change
in proton number or neutron number should then result in a
staggering effect, as a result of Pauli’s principle. To thoroughly
explore both possible staggering effects we consider separately
nuclei with (N,Z) being even-even, even-odd, odd-even, and
odd-odd.

The isospin projection dependency employed here is, as in
[6,7], a scaled (A1/3) quadratic neutron-excess dependency

A1/3�n,p = a

(
N − Z

A

)2

+ b, (11)

where a and b are constants.
A linear neutron excess dependence was suggested in

connection with the Duflo-Zuker mass formula [16]. The
corresponding global parametrization with a single parameter
was in [17] added to a liquid drop formula to describe the
odd-even staggering. As is seen in Fig. 5 the data do not clearly
distinguish the different functional forms of the neutron excess
dependence. The dashed, blue line is the best fit with a linear
(absolute value) neutron excess dependence, as used in the
Duflo-Zuker mass formula [16]. The difference between the
curves is minute compared to the scatter of the points. When
evaluating the root mean squared error of �n,p a difference
of 0.01 MeV out of a value of 0.16 MeV is found for the
two functional forms. Comparing fits for a series of different
regions in the isotopic map we find differences amounting only
by at most 0.01 MeV for all cases shown in Table I for the
quadratic relation.

We shall focus on nuclei with A > 50, where the one-
parameter, linear neutron excess dependence is less suited
for extrapolation into unknown mass regions. This is mainly
due to the linear form which would increase �p away from
stability for the proton rich nuclei with N > Z. The global
value of the single parameter would produce less accurate
results for any specific region of nuclei. This global versus local
parametrizations will be demonstrated in Table I in connection
with descriptions based on Eq. (11). Thus, we choose to use the
quadratic structure as it is naturally obtained, when expanding
with respect to nucleon number and neutron excess as in
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)2 dependency for all even-even
nuclei with A > 50. The line is the best possible fit based on Eq. (11).
The nuclei indicated in red (fat and full) are influenced either by
the Wigner effect or by shell effects and are not included in the
calculations. The dashed, blue line is the best result when using a
model with a linear dependence on the absolute value of neutron
excess, |N−Z

A
|.

droplet models [18]. We shall briefly return to this question
in Sec. IV C.

We have also explored whether other functional forms could
reproduce the dependency seen in the two-dimensional plots.
In particular, fits have been made replacing the (N − Z)2/A2

term in Eq. (11) with P = nvzv/(nz + zv) that has been used to
trace the transition to collective behavior [19]. Such transitions
depend on the distance from closed shells precisely as the
shell effects which as well might be a plausible reasons for
the decreasing �n,p values from magic numbers towards the
middle of the shells. The resulting fits for 50 < Z are better
than with constant terms, but not as good as with the (N − Z)2

dependence. Furthermore, the sign of the coefficient in front
of P differs for different regions whereas the isospin term has
a more consistent behavior. Fits have also been performed
replacing the A1/3 in Eq. (11) with A1/2 and A. Rather
similar overall quality of fits were obtained, but with a slight
preference for A1/3 over A1/2, and somewhat better than the
1/A dependence.

In all following calculations nuclei influenced by shell
effects or the Wigner effect [18] are excluded. They are,
however, indicated in red (fat and full) in the figures. All light
nuclei with A < 50 are also excluded.

Figure 5 shows the result of applying Eq. (11) to all relevant
even-even nuclei for A1/3�n. As expected the excluded nuclei
indicated in red (fat and full) deviate significantly from the ob-
served tendencies. These tendencies are otherwise reasonable
well described by Eq. (11), but upon closer inspection Fig. 5
appears to be a combination of two straight lines; an almost
constant line around ∼6 MeV, and a slightly decreasing line
superimposed on the first.

This is examined more closely by separating the nuclei
in three regions. The data for even-even nuclei are shown
in Fig. 6 and the parameters of the fitted lines are given in

TABLE I. Fit parameters for Eq. (11) divided into regions defined
by shells, and separated for even-even, even-odd, odd-even, and odd-
odd nuclei. RMSE is the root mean squared error of A1/3�n,p , and
RMSE(�) is the root mean squared error of �n,p only.

Type Nuclei Region limits a b RMSE RMSE (�)
(N ,Z) N Z [MeV]

A1/3�n (e, e) All All −42(5) 6.7(2) 0.81 0.16
A1/3�n (o, e) All All −58(6) 7.6(2) 0.96 0.19
A1/3�n (e, o) All All −30(5) 5.1(2) 0.80 0.16
A1/3�n (o, o) All All −44(6) 5.9(2) 0.91 0.18
A1/3�n (e, e) 28,82 28,50 −28(10) 6.5(3) 0.93 0.20
A1/3�n (o, e) 28,82 28,50 −41(12) 7.4(4) 1.06 0.23
A1/3�n (e, o) 28,82 28,50 −15(8) 4.6(2) 0.76 0.16
A1/3�n (o, o) 28,82 28,50 −26(9) 5.4(3) 0.87 0.19
A1/3�n (e, e) 50,82 50,− −32(12) 6.7(2) 0.48 0.09
A1/3�n (o, e) 50,82 50,− −34(13) 7.4(2) 0.47 0.09
A1/3�n (e, o) 50,82 50,− 2(14) 4.8(3) 0.59 0.12
A1/3�n (o, o) 50,82 50,− 6(15) 5.4(3) 0.57 0.11
A1/3�n (e, e) 82,− 50,− −60(7) 7.3(2) 0.71 0.12
A1/3�n (o, e) 82,− 50,− −69(8) 7.8(3) 0.91 0.16
A1/3�n (e, o) 82,− 50,− −50(8) 5.8(3) 0.74 0.13
A1/3�n (o, o) 82,− 50,− −64(9) 6.5(3) 0.86 0.15
A1/3�p (e, e) All All −27(5) 6.9(1) 0.73 0.15
A1/3�p (o, e) All All −13(5) 5.1(2) 0.76 0.16
A1/3�p (e, o) All All −43(6) 7.9(2) 0.86 0.17
A1/3�p (o, o) All All −26(6) 6.1(2) 0.85 0.17
A1/3�p (e, e) 28,82 28,50 −6(7) 6.5(2) 0.62 0.14
A1/3�p (o, e) 28,82 28,50 4(8) 4.6(2) 0.72 0.16
A1/3�p (e, o) 28,82 28,50 −16(9) 7.5(3) 0.74 0.16
A1/3�p (o, o) 28,82 28,50 −2(9) 5.6(3) 0.78 0.17
A1/3�p (e, e) 50,82 50,− −43(16) 7.2(3) 0.58 0.11
A1/3�p (o, e) 50,82 50,− −13(18) 5.3(4) 0.74 0.15
A1/3�p (e, o) 50,82 50,− −39(14) 7.9(3) 0.46 0.09
A1/3�p (o, o) 50,82 50,− −10(19) 6.0(4) 0.64 0.12
A1/3�p (e, e) 82,− 50,− −42(7) 7.4(2) 0.70 0.13
A1/3�p (o, e) 82,− 50,− −35(7) 6.0(2) 0.64 0.11
A1/3�p (e, o) 82,− 50,− −53(9) 8.0(3) 0.89 0.16
A1/3�p (o, o) 82,− 50,− −45(9) 6.6(3) 0.84 0.15

Table I. Figure 6(a) shows the result for the region given by
28 < N < 82, and 28 < Z < 50. Likewise, Fig. 6(b) is for
50 < N < 82, and 50 < Z, and Fig. 6(c) is for 82 < N , and
50 < Z. It is clear that the neutron-excess dependency is less
pronounced for lighter nuclei. In Fig. 6(a) the results are almost
constant, when considering the scattering, despite the fact that
the a-coefficient indicates a small decrease. In Fig. 6(b), and
in particular in Fig. 6(c) there is an unmistakable decrease as
a function of isospin.

This change around Z = 50 occurs for both �n and �p

with even-even nuclei. The change is less definitive, but still
observable, when considering odd-even nuclei.

The effect of separating the nuclei according to even-odd,
odd-even, and odd-odd is seen in Fig. 7, where the region
with 50 < N < 82 and 50 < Z is presented for the three
configurations. Figure 7(a) shows the result for even-odd,
Fig. 7(b) for odd-even, and Fig. 7(c) for odd-odd. The
even-even nuclei are shown in Fig. 6(b).
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(a) 28<N<82 and 28<Z<50
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(b) 50<N<82 and 50<Z
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(c) 82<N and 50<Z

FIG. 6. (Color online) The ( N−Z
A

)2 dependency of even-even
nuclei divided into regions defined by major nuclear shells as given
in the figures.

The results for even-odd and odd-odd when accounting for
scattering are constant, whereas even-even and odd-even very
clearly decrease. This superficially indicates that neutrons and
protons behave differently. However, their numbers and the
valence shells are different as well. For �p in the region where
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(a) Even−Odd nuclei
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(b) Odd−Even nuclei
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(c) Odd−Odd nuclei

FIG. 7. (Color online) The ( N−Z
A

)2 dependency for nuclei with
50 < N < 82 and 50 < Z divided according to whether (N,Z) is
even-odd, odd-even or odd-odd. The even-even nuclei are included
in Fig. 6.

50 < N < 82 and 50 < Z a “symmetric” result is found:
even-even and even-odd have a clear N − Z dependence,
while odd-odd and odd-even are constant. However, all
(even-even, even-odd, odd-even, odd-odd for both �n and
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�p) show a clear N − Z dependency for the heavier nuclei
where 82 < N and 50 < Z.

The change in neutron-excess dependency at Z = 50 for the
staggering effect of one type of nucleon is clearly connected
to the other nucleon type.

The parameters of the best linear fits in (N − Z)2/A2 are
collected in Table I that includes the results for even-even,
even-odd, odd-even, and odd-odd nuclei for both �n and �p.
The overall results are presented as well as results for three
regions in the nuclear chart. The structure changes seen at
Z = 50 are even more pronounced for �p. Also included in
Table I is the root mean squared error (RMSE) for all four
quantities, A1/3�n,p and �n,p.

At first glance the fitted parameters seems to reflect rather
different dependencies, simply because of the large variation of
the parameters. However, all the constant shifts, b, are between
5 and 8 MeV each with uncertainties of about 0.2 MeV. The
slope parameter, a, has a much larger range of variation but
also determined with much larger uncertainty. In the region
where 28 < N < 82 and 28 < Z < 50, the neutron shell at
N = 50 does not signal change of behavior and therefore the
full region is always included. The a-parameter is sometimes
consistent with zero or very small reflecting the flat behavior
discussed in connection with the Figs. 6 and 7.

It is highly significant that the overall uncertainty of
the �n,p-values are very small. The RMSE is always
(significantly) less than 0.20 MeV demonstrating that the
parametrization reproduce the observed values very well.
These absolute uncertainties are comparable to the underlying
chaotic component of 0.1 − 0.2 MeV in nuclear masses [20].
This can usually be considered as a lower limit for systematic
reproduction of nuclear binding energies. In addition, this
suggests that the division into individually fitted regions are
unnecessary. We shall return and explore this avenue in the
next subsection.

The current data reach out to (N − Z)2/A2 around 0.05–
0.06 and �n has for the heaviest region, where 82 <
N and 50 < Z, by then decreased by a factor two. A
naive extrapolation would give zero odd-even staggering
for (N − Z)2/A2 around 0.10–0.12. This value is obtained
for N � 2Z which is not too far from estimates of the
neutron dripline position. There is no physical basis for
extrapolating this far, but let us briefly discuss the implications
this has.

In the traditional interpretation zero odd-even staggering
implies that the cost, d, of one lifted particle at the drip
line precisely has to be compensated by the pairing gain,
d ≈ 0.5�2/d, where � is the usual pairing gap, that is
d = �/

√
2. However, looking further into the basic meaning

quickly reveal inconsistencies, because also �, as proportional
to the odd-even mass difference, has to vanish. Speculations
about small d due to small binding energy and/or vicinity to the
continuum is not convincing, since close-lying levels usually
produce larger pairing gap and pairing energy gain. Therefore,
first the indication of small odd-even mass difference at the
drip line is based on an extrapolation and therefore not in
itself sufficient evidence. Second, we emphasize that the reason
for vanishing gaps is due to coupling between neutrons and
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FIG. 8. (Color online) The ( N−Z
A

)2 dependency for all even-even
nuclei with A > 50 with a shell effect correction given by Eq. (9).

protons simply because the decrease is as function of the
neutron excess.

The results in Table I still include remnants of the shell
effect. If Eq. (9) is used to correct for shell effects one
obtains Fig. 8 that can be compared to Fig. 5. The best
linear fit is now A1/3�n = −43(5) MeV(N−Z

A
)2 + 6.9(2) MeV

with RMSE(�n) = 0.16 MeV. The only nuclei significantly
influenced by the correction are the ones marked in red (fat
and full). Based on Fig. 8, Eq. (9) seems to overcompensate for
about half of the affected nuclei. This is most likely a result of
the different liquid drop parameters used here and in Dieperink
and Van Isacker’s paper [13].

B. Global descriptions

Although the neutron-excess parametrization when sepa-
rating into regions defined by shells allows for a very accurate
description of the odd-even staggering, it also results in a
rather cumbersome model. The scale of the difference when
changing between even and odd isotopes can be inferred from
Table I. This can be used to combine some of the separated
nuclei.

Changing from odd to even Z with �p only changes the
constant term b by less than 1 MeV, and the scaling factors a
are mostly overlapping. As a very reasonable approximation
the separation of �p into even and odd Z can therefore be
ignored. The best linear fits based on Eq. (11) when neglecting
the separation according to even and odd Z are presented in
Table II.

The effect of changing from odd to even N with �p can
most easily be inferred from Table II. This is by no means
negligible. Instead the effect can be viewed as a constant
addition, and as such it can be accounted for. This would
result in an expression for the odd-even proton staggering of
the form

A1/3�p = a

(
N − Z

A

)2

+ b − (1 − πn)c/2, (12)
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TABLE II. Similar to Table I, but the nuclei are separated
according to odd and even nucleon number.

Type Nuclei Region limits a b RMSE RMSE (�)
N Z [MeV]

A1/3�n Even Z All All −49(4) 7.1(1) 0.91 0.18
A1/3�n Odd Z All All −37(4) 5.5(1) 0.89 0.18
A1/3�n Even Z 28,82 28,50 −33(8) 6.9(2) 1.04 0.23
A1/3�n Odd Z 28,82 28,50 −20(7) 5.0(2) 0.87 0.19
A1/3�n Even Z 50,82 50,− −33(11) 7.1(2) 0.58 0.11
A1/3�n Odd Z 50,82 50,− 3(11) 5.1(2) 0.67 0.13
A1/3�n Even Z 82,− 50,− −65(5) 7.6(2) 0.83 0.14
A1/3�n Odd Z 82,− 50,− −57(6) 6.2(2) 0.82 0.14
A1/3�p Even N All All −35(4) 7.3(1) 0.86 0.17
A1/3�p Odd N All All −19(4) 5.6(1) 0.86 0.18
A1/3�p Even N 28,82 28,50 −10(6) 7.0(2) 0.79 0.18
A1/3�p Odd N 28,82 28,50 1(7) 5.1(2) 0.85 0.19
A1/3�p Even N 50,82 50,− −44(14) 7.6(3) 0.67 0.13
A1/3�p Odd N 50,82 50,− −13(15) 5.6(3) 0.80 0.16
A1/3�p Even N 82,− 50,− −48(6) 7.7(2) 0.82 0.15
A1/3�p Odd N 82,− 50,− −40(6) 6.3(2) 0.76 0.13

where a and b are the parameters from Eq. (11), and c is the
difference between the constants b for even and odd N .

The region with 50 < N < 82 and 50 < Z is the most
problematic, as even and odd N have conflicting tendencies.
However, any global description based on a combination of
local descriptions must necessarily be an approximation. The
result of displacing odd-N nuclei, and then finding the best
linear fit based on Eq. (11) is given in Table III. Also included
is the size of the displacement, c.

The most interesting result is the combined expression
for all nuclei. A noticeable improvement is the reduction in
uncertainty for the constants a and b. Though more important
is the size of the root mean squared error, which is comparable
to RMSE of �p for even-even nuclei in Table I. This global
expression should then have almost the same overall accuracy
as the former subdivided expressions, while being much more
practicable.

A completely analogous combination can be made for �n.
Here the separation into odd and even N is neglected, and the
calculated displacement is from odd to even Z. Neglecting the

TABLE III. Similar to Tables I and II, but without separation
according to odd-even configuration. The value of c in Eq. (12)
signifies the displacement of odd nuclei.

Type Region limits c a b RMSE RMSE (�)
N Z [MeV]

A1/3�n All All 1.7 −44(3) 7.2(1) 0.92 0.18
A1/3�n 28,82 28,50 1.9 −27(5) 6.9(2) 0.97 0.21
A1/3�n 50,82 50,− 2.0 −11(9) 7.0(2) 0.72 0.14
A1/3�n 82,− 50,− 1.4 −62(4) 7.6(1) 0.83 0.15
A1/3�p All All 1.8 −27(3) 7.3(1) 0.89 0.19
A1/3�p 28,82 28,50 1.9 −5(5) 7.0(1) 0.84 0.19
A1/3�p 50,82 50,− 1.9 −26(11) 7.6(2) 0.80 0.16
A1/3�p 82,− 50,− 1.4 −44(4) 7.7(2) 0.81 0.14

first separation is a less good approximation for �n than for
�p. The result is also included in Table II.

The result of displacing odd Z nuclei is presented in
Table III, and the value of the displacement is almost identical
to the result for �p. Based on RMSE �n is as valid as �p.

It might initially appear as if the N − Z dependency of
the proton staggering is less pronounced than the neutron
staggering. As stated earlier this dependency increases for
heavier nuclei. In other words, the N − Z dependency of the
neutron staggering effect is larger, when neutrons are abundant
and analogously for protons. The nuclei examined generally
have a majority of neutrons, and the N − Z dependence of the
neutron staggering is therefore seemingly greater. In the region
where 50 < N < 82 and 50 < Z the N − Z dependence is
seen to be greater for the proton staggering.

To obtain the term which has to be added to the liquid
drop model, Eq. (12) is combined with Eq. (8). However, we
have a term in �n proportional to −(1 − πp)/2 and one in
�p proportional to −(1 − πn)/2 but otherwise of the same
magnitude, this is, as remarked in Sec. II, indicative of a
neutron-proton pairing term that must be taken out before
the two separate expressions are added. Noting that the b
coefficients for neutrons and protons in Table III are also
essentially identical we obtain the following final relations,
for Z < 50:

� = A−1/3
( (

N − Z

A

)2

(−13πn − 2.5πp) + 3.4(πn + πp)

+ 1.85πnp

)
MeV, (13)

and for Z > 50

� = A−1/3
( (

N − Z

A

)2

(−28πn − 20.5πp) + 3.8(πn + πp)

+ 1.55πnp

)
MeV. (14)

The RMSE is still slightly below 0.2 MeV in these fits. Note
that the neutron-proton pairing term here is taken to have a
A−1/3 mass dependence as the other terms in contrast to earlier
works [10]. Since all terms depend on N and Z one should in
principle correct for higher-order effects when going from the
mass differences �n,p to the � that should be included in mass
formulas. However, the correction terms are at most of order
10−3 and have been neglected. The effects would be larger for
mass relations involving more nuclei, as an example we find
that the values obtained for �(5)

n,p are systematically 10–20 %
smaller than the ones for �n,p.

We could take seriously the observation that for Z < 50 the
N − Z dependence is either zero or very small. A fit for these
nuclei to Eq. (12) with a = 0 gives

� = A−1/3(5.9πn + 6.6πp + 1.6πnp) MeV, (15)

corresponding to RMSE = 0.21 and 0.25 MeV for �p and �n,
respectively. As expected these uncertainties are not as good
as obtained by maintaining the N − Z dependent term. They
are, however, reasonably close, as well as somewhat simpler.
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TABLE IV. The results for the two-term model from Eq. (16),
where the RMSE in each region is calculated based on the best local
fit.

Type Nuclei Region limits c2 c1 RMSE
N Z [MeV]

�n Even Z All All 58(5) 0.7(0) 0.24
�n Odd Z All All 32(4) 0.6(0) 0.21
�n Even Z 50,82 50,− 168(34) 0.0(3) 0.11
�n Odd Z 50,82 50,− 107(36) 0.2(3) 0.12
�n Even Z 82,− 50,− 123(21) 0.3(1) 0.20
�n Odd Z 82,− 50,− 54(23) 0.5(1) 0.20
�p Even N All All 60(4) 0.8(0) 0.20
�p Odd N All All 34(4) 0.7(0) 0.19
�p Even N 50,82 50,− −13(51) 1.5(4) 0.15
�p Odd N 50,82 50,− −76(46) 1.6(4) 0.14
�p Even N 82,− 50,− 143(18) 0.3(1) 0.17
�p Odd N 82,− 50,− 86(18) 0.4(1) 0.16

C. Comparisons

To determine the viability of our expression a comparison
with other more established models is useful. The previously
mentioned two term model suggested by Friedman and Bertsch
[3] yields very accurate results, and is well suited as a
comparison. We shall also briefly compare to the very similar
model presented by Jensen et al. [7].

The two term expression suggested by Friedman and
Bertsch on the basis of a more detailed physical modeling
is

�n,p = c1 + c2/A, (16)

where c1 and c2 are constants to be determined. In our fits
to this expression we again exclude light nuclei, and nuclei
otherwise influenced by shell effects or the Wigner effect. The
remains of the smooth aspects are also removed, as in Eqs. (5)
and (6). Based on the tendencies observed in Fig. 3, �n is
separated according to odd and even Z, and vice versa for �p.
The relevant nuclei are also examined both collectively and
separated into the two heaviest regions given by 50 < N < 82
and 50 < Z, and 82 < N and 50 < Z.

The RMSE for the results is calculated in two ways. First,
the error will be calculated as the RMSE of the nuclei in a given
region in relation to the best local fit based on Eq. (16). The
result of this calculation is presented in Table IV. The intent
with the two term model was never to separate it according to
shells, so the most interesting results are those which covers
all regions. Comparing Tables IV and II the error for �n and
�p is seen to be noticeably larger for the two-term model in
Eq. (16). For most regions the isospin dependence also gives
a smaller RMSE.

In a second step, the error is calculated as the RMSE of
the nuclei in a region relative to the best global fit again based
on Eq. (16). The result is presented in Table V. The collective
result for all the nuclei would be the same as in Table IV, and is
not included. The RMSE is inevitably larger than in Table IV,
but it is still very reasonable.

This is illustrated in Fig. 9, which also shows the neutron
staggering for even nuclei as a function of A−1. The line is

TABLE V. The same as in Table IV, but the RMSE in each region
is calculated based on the best global fit.

Type Nuclei Region limits c2 c1 RMSE
N Z [MeV]

�n Even Z 50,82 50,− 58(5) 0.7(0) 0.22
�n Odd Z 50,82 50,− 32(4) 0.6(0) 0.21
�n Even Z 82,− 50,− 58(5) 0.7(0) 0.21
�n Odd Z 82,− 50,− 32(4) 0.6(0) 0.20
�p Even N 50,82 50,− 61(4) 0.8(0) 0.19
�p Odd N 50,82 50,− 35(4) 0.7(0) 0.18
�p Even N 82,− 50,− 61(4) 0.8(0) 0.19
�p Odd N 82,− 50,− 35(4) 0.7(0) 0.17

the best global fit based on Eq. (16), and the nuclei indicated
in blue belongs to the region with 82 < N and 50 < Z. The
RMSE in Table V is calculated based on a group of nuclei,
such as those marked in blue, with respect to the global fit
indicated by the line. As such it will always be larger than the
RMSE from Table IV. From Fig. 9 it is clear that Eq. (16) does
not reproduce the general tendencies observed in the odd-even
staggering. It can, however, still be used as a very accurate
approximation.

Let us also compare briefly to the final expression obtained
by Jensen et al. [7] that, in addition to the smooth terms, is
given by

�̃(N,Z) = A−1/3

(
3.68πn

(
1 − 8.15

(
N − Z

A

)2
)

+ 3.78πp

(
1 − 6.07

(
N − Z

A

)2
))

− 43
|N − Z|

A
+ πnp(34 − 24δN,Z)

A
, (17)

where δN,Z is a Kronecker delta. All constants are in units of
MeV. The last two terms account for Wigner effects, and are
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FIG. 9. (Color online) Best global fit with Eq. (16) for even Z

nuclei and A > 50. The nuclei marked in blue are restricted by 82 <

N and 50 < Z. Nuclei influenced by shells or the Wigner effect are
not shown.
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FIG. 10. (Color online) The equivalent to Fig. 5 only with respect
to |N−Z

A
|. Here the dashed, blue line is the best fit quadratic in neutron

excess.

not relevant in the comparison since we do not include nuclei
with N = Z. The first terms have the same dependencies as
our result in Eq. (14) and can be compared directly, the main
difference being that we have used a three-point mass formula
whereas [7] used four-point mass formulas and evaluated
neutron pairing, proton pairing and neutron-proton pairing
separately. The πn and πp terms are very similar, and the
coefficients on the (N − Z)2 terms are 5–10 % larger than
in the new fits. This is presumably due to our substantially
larger data set where most added nuclei have relatively large
neutron excess. The neutron-proton pairing term has a similar
magnitude for mid to heavy mass nuclei in spite of the different
assumed mass dependence.

Finally, the question of whether to use a model which is
linear or quadratic in neutron excess deserves some attention.
In Fig. 5 the results were shown in relation to a quadratic
neutron excess for all even-even nuclei with A > 50, and
the best linear fit was shown with a dashed, blue line. The
same figure, but in relation to a linear neutron excess can be
seen in Fig. 10. The result of the best linear fit is A1/3�n =
−12|N−Z

A
| + 7.5 with RMSE = 0.83, and RMSE(�n) = 0.17

all in units of MeV. The dashed, blue line in Fig. 10 is the best
quadratic fit, the values of which can be found in Table I.

The difference between the two descriptions is perhaps
surprisingly small. Possible reasons could be that both forms
only are approximations to a better generic dependence, or the
range of nuclei is too small to distinguish, or the individual
scatter of points arise from a chaotic behavior prohibiting
substantial improvements in simple fits [20]. A significant
increase in the number of measurements of far off stability
nuclei would be very helpful to address these questions.

V. CONCLUSION

Our phenomenological study of odd-even staggering terms
in the nuclear binding energy makes use of the three-point mass
relations, �n and �p. This second order difference eliminates
most smooth aspects of the binding energy and the liquid
drop model was used to eliminate the remains of the smooth

variations. By also avoiding isotopes with magic numbers,
on the N = Z line, or generally very light only non-mooth,
odd-even contributions remains.

The starting point of our description is the trends seen
in Fig. 3. The odd-even configuration of both neutrons and
protons was seen to have an influence on the general scale
of the staggering. The region in question also influenced
the result. To examine, and possibly account, for these
observations the nuclei were separated according to odd-even
configuration, and into regions defined by nuclear shells. We
find that the difference in �n for odd and even Z and the
corresponding differences in �p is naturally described in
terms of a common neutron-proton pairing term. This is in
line with the findings [7,10] made using second order mass
differences. By construction we end up with the same overall
mass dependence for the neutron-proton pairing term as for
the other terms, namely A−1/3, where the other works employ
A−1 and A−2/3. There is as yet no basic theoretical framework
that can explain the neutron-proton pairing systematics [10]
so a closer look at the data may be warranted.

It is well known that the data on odd-even staggering
fluctuate systematically around a power-law fit, and odd-even
mass differences calculated from self-consistent mean field
theory [4] displays a similar behavior. These systematic
deviations are also clearly visible in Fig. 3 and suggest a
description in terms of a dependence on N − Z, as attempted
earlier [6,7]. It turns out that the N − Z dependent terms vary
in importance as we go from light to heavy nuclei. For Z < 50
the results were almost constant, when considering scattering,
but for 50 < Z there was a clear decrease as a function of
neutron excess. This transition was seen for both neutrons
and protons.

To make the model globally applicable the separated results
were recombined. Since the odd-even Z configuration had a
very modest influence on �p it was neglected. The neutron-
proton pairing term accounted for the displacement of the
odd-N nuclei relative to the even-N nuclei. Similarly, odd-Z
nuclei were displaced for �n. This resulted in two global
expressions for the odd-even staggering effect as given in
Eqs. (13) and (14). These odd-even terms have to be included in
phenomenological expressions of the nuclear binding energy
where the largest contributions, liquid drop and shell effects,
can be maintained from previous studies.

The separated and the combined expressions were com-
pared to a two-term model, with a A−1 dependency, and our
(N − Z)2 dependence showed greater accuracy both locally
and globally. The overall root mean square deviations in all
our fits are always (significantly) less than 0.2 MeV. There is as
yet no theoretical explanation for a systematic neutron excess
dependence of the odd-even staggering for heavy nuclei, i.e.,
when nuclei fill the large shells, but the fact that the data
follow the fit curves suggests that a—direct or indirect—
dependence on isospin projection should be considered on top
of the previously included physical explanations for odd-even
staggering [1,3]. Finally, we note that calculations including
three-nucleon forces have now been used [21] to study the
variation of the odd-even staggering in the heavy Ca isotopes.
The rapid progress in nuclear theory these years may give a
new perspective on this old problem.
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