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Background: In one way or another, all modern parametrizations of the nuclear energy density functional
(EDF) do not respect the exchange symmetry associated with Pauli’s principle. It has been recently shown
that this practice jeopardizes multireference (MR) EDF calculations by contaminating the energy with spurious
self-interactions that, for example, lead to finite steps or even divergences when plotting it as a function of
collective coordinates [J. Dobaczewski et al., Phys. Rev. C 76, 054315 (2007); D. Lacroix et al., Phys. Rev. C
79, 044318 (2009)]. As of today, the only viable option to bypass these pathologies is to rely on EDF kernels that
enforce Pauli’s principle from the outset by strictly and exactly deriving from a genuine, i.e., density-independent,
Hamilton operator.
Purpose: The objective is to build cutting-edge parametrizations of the EDF kernel deriving from a
pseudopotential that can be safely employed in symmetry restoration and configuration mixing calculations.
Methods: We wish to develop the most general Skyrme-like EDF parametrization containing linear, bilinear, and
trilinear terms in the density matrices with up to two gradients, under the key constraint that it derives strictly from
an effective Hamilton operator. While linear and bilinear terms are obtained from a standard one-body kinetic
energy operator and a (density-independent) two-body Skyrme pseudopotential, the most general three-body
Skyrme-like pseudopotential containing up to two gradient operators is constructed to generate the trilinear part.
The present study is limited to central terms. Spin orbit and tensor will be addressed in a forthcoming paper.
Results: The most general central Skyrme-type zero-range three-body interaction is built up to second order
in derivatives. The complete trilinear EDF, including time-odd and T = 1 pairing parts, is derived along with
the corresponding normal and anomalous fields entering the Hartree-Fock-Bogoliubov equations of motion. Its
building blocks are the same local densities that the standard Skyrme functional is constructed from. The central
three-body pseudopotential is defined out of six independent parameters. Expressions for bulk properties of
symmetric, isospin-asymmetric, and spin-polarized homogeneous nuclear matter, as well as associated Landau
parameters, are given.
Conclusions: This study establishes a first step towards a new generation of nuclear EDFs that respect Pauli’s
principle and that can be safely used in predictive and spuriosity-free SR and MR EDF calculations.
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I. INTRODUCTION

Methods based on an energy density functional (EDF) are
at present the only available microscopic tools to address
all medium- and heavy-mass nuclei within one consistent
framework. They allow for a unified description of many
phenomena in nuclear structure and dynamics over the entire
chart of nuclei [1–4]. The EDF method coexists on two
levels: One level is usually characterized as “mean-field” and
frequently identified with Hartree-Fock (HF), HF + BCS, and
Hartree-Fock-Bogoliubov (HFB) methods. The second level is
often qualified as “beyond mean-field,” a notion used for both
the random phase approximation (RPA) and its extensions on
the one hand and symmetry restorations and the generator
coordinate method (GCM) on the other hand. Throughout
this article we refer to mean-field methods as single-reference
(SR) EDF methods, as all densities entering the kernel are
constructed from a single product state. Symmetry restoration

and GCM are denoted as multireference (MR) EDF methods,
as the densities entering the kernel are constructed from pairs
of product states belonging to a large set of reference states.
An overview over the SR- and MR-EDF formalisms can be
found in Ref. [5].

In the literature, one finds nuclear EDF kernels of many
different forms, being either local or nonlocal and being either
relativistic or nonrelativistic. For the purpose of the present
study, there is a third categorization of energy functionals
that has to be made that concerns the handling of Pauli’s
exclusion principle. Its most obvious consequence, namely that
all single-particle levels are occupied by at most one nucleon, is
always satisfied at the level of individual densities used to build
the EDF given that one-body density matrices are explicitly
computed from antisymmetric product states of either Slater
or Bogoliubov type. However, a violation of Pauli’s principle
may arise when multiplying two or even more such densities
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to build bilinear, trilinear, etc., terms in the EDF kernel. Terms
of a given power in the density matrices have to combine in a
very specific way to cancel out the unphysical interaction of a
particle with itself or that of a pair of particles with itself [6–11]
and to provide an antisymmetric residual interaction [8].

As of today, the only practical way to enforce all aspects of
exchange symmetry is to set up the off-diagonal EDF kernel
as the matrix elements of a genuine, i.e., density-independent,
operator between two product states of Bogoliubov type,
taking all exchange and pairing terms into account without any
approximation or simplification. Such an effective Hamilton
operator is typically meant to be the sum of the kinetic energy
operator and a pseudopotential. By virtue of the generalized
Wick theorem [12–14], the resulting kernel takes the form of
a specific functional of one-body transition density matrices
built from the two product states. In what follows, such EDF
kernels are said to be pseudopotential based.

None of the modern, e.g., Skyrme, Gogny, or relativistic,
parametrizations belong to this category of pseudopotential-
based kernels. The most remote are kernels directly built on
the level of combinations of one-body densities or density
matrices without making reference to any underlying operator.
In what follows, such EDF kernels are said to belong to
the category of general functionals. In that case, the form
of the EDF kernel is typically constrained by all symmetries
of the nuclear Hamiltonian [15] but the exchange symmetry.
Frequently used examples are the EDF kernels constructed by
Fayans and collaborators [16] and the Barcelona-Catania-Paris
parametrization [17].

The large majority of existing parametrizations, however,
falls between the pseudopotential-based kernels and the gen-
eral functionals. We denote those as hybrid parametrizations.
The paradigm here consists of relating the interaction part of
the EDF kernel to the expectation value of a density-dependent,
and therefore state-dependent, effective interaction, keeping
all exchange and pairing terms. Prominent examples are the
Gogny family of parametrizations [18–21] and those derived
from the density-dependent M3Y interaction by Nakada [22].
Also, very few Skyrme parametrizations were constructed
along this line; examples are SkP [23], SkS1-SkS4 [24], SkE2,
and SkE4 [25]. For most of the other Skyrme parametrizations,
the link to the density-dependent effective interactions is
only kept for some terms, but not for all.1 First of all, the
particle-hole (i.e., normal) and particle-particle (i.e., pairing
or anomalous) parts of almost all Skyrme parametrizations are
entirely unrelated. As a matter of fact, only the particle-hole
part of the kernel is usually referred to as the Skyrme EDF,
which is then combined with the pairing EDF of the respective

1As a relic of the historical origin of the Skyrme effective interaction
as a pseudopotential, general or hybrid Skyrme parametrizations
are frequently defined in terms of the parameters of a density-
dependent effective interaction, to which is added a list modifications
of the EDF generated by an actual density-dependent two-body
effective interaction [3,4]. This ambivalence of the Skyrme EDF and
the representation of its parameters is a source of confusion and
frequently provokes its inconsistent use in RPA and in the calculation
of infinite nuclear-matter properties [3,10,26].

author’s preference. Second, specific exchange terms in the
energy functional are often modified or simply set to zero
for reasons of phenomenology. The latter practice mainly
concerns spin-orbit and spin-tensor terms [3,4,27–30] and the
so-called time-odd terms entering the particle-hole part of the
EDF [3,4,26,31–34]. Such modifications bring the functionals
close to the spirit of the general functionals.

Among the existing functionals, Gogny or M3Y-based
parametrizations are the closest to the concept of a
pseudopotential-based EDF kernel. Still, from the point of
view of Pauli’s exclusion principle, they are fundamentally
different given that the exchange symmetry is not respected
by the density-dependent term. In that respect, general and
hybrid functionals all belong to the same category. Indeed, it
makes no difference that the exchange symmetry is broken by
just one term in the functional or by many of them.

In spite of the many successes of general and hybrid
functionals, there are good reasons to revisit pseudopotential-
based EDF kernels. Indeed, it was recently demonstrated
[6,7] that any breaking of Pauli’s principle contaminates the
EDF kernel with spurious contributions that can jeopardize
MR-EDF calculations [35–40]. The problem manifests itself
through finite steps and/or even divergences when plotting
the symmetry-restored energy as a function of a collective
coordinate [7,35,39–41]. Even more striking, contaminated
kernels can lead to nonzero (non-normalized) energies when
restoring good negative particle number [7], which is im-
possible for projected operator matrix elements. Generally
speaking, the results of MR-EDF calculations based on hybrid
or general functionals depend on how the sums and/or integrals
over the collective coordinates are discretized. Decreasing the
step sizes often amplifies the contamination with spurious
contributions as they become better resolved [7]. In addition,
using nonanalytical functions for the density dependence,
such as the popular ρα(�r) dependence, introduces a further
problem into the MR EDF frame by making the EDF kernel a
multivalued function of the collective coordinates [41].

In the use of the Gogny functional, whose only breaking of
Pauli’s principle relates to its density-dependent term, a special
treatment of the latter has been used in some MR calculations to
bypass the problem invoked above [38,42]. Besides not being
consistent with the definition of the rest of the EDF kernel,
this recipe cannot be expected to work for all configuration
mixings of interest [43].

Isospin and angular-momentum projected MR EDF calcu-
lations of Refs. [44,45] employ a kernel that derives strictly
from a simple two-body Skyrme pseudopotential without
density dependence. In doing so, the pathologies alluded to
above are fully avoided by construction. As these calculations
neglect pairing correlations altogether, it is of no concern
that the two-body Skyrme pseudopotentials employed fail to
provide reasonable pairing correlations. To the best of our
knowledge, there has been only one recent attempt by us
to construct a Skyrme pseudopotential without any density
dependence that is meant to be used in both the particle-hole
and the particle-particle parts of the EDF [46]. This was
achieved by adding gradientless three- and four-body contact
terms to a standard velocity-dependent two-body Skyrme
pseudopotential. However, the best parameter fit generated
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in this way did, by far, not match the performance of modern
hybrids or general Skyrme parametrizations. As a matter of
fact, it turned out to be impossible to have simultaneously
appropriate empirical nuclear-matter properties, attractive
pairing and stability against infinite- and finite-size instabilities
[46]. This limitation points to the necessity of introducing
additional higher-order terms.

Aiming at a strict pseudopotential-based approach, there
are two possible directions of enriching a Skyrme-like
parametrization. One is to include terms containing a higher
number of gradient operators in the two-body pseudopotential.
Terms of this kind have already been suggested in the seminal
papers by Skyrme [47–49]. Their most general form has
recently been worked out systematically up to sixth order
[50]. The associated EDF kernel remains strictly bilinear,
but is expressed in terms of a larger set of local densities
invoking more derivatives than is the case for the standard
Skyrme functional. An alternative is to stick to the second
order in gradients, but to consider many-body operators, e.g.,
velocity-dependent three-body interactions. The associated
EDF kernel can still be expressed in terms of the same set of
local densities as the bilinear one deriving from the standard
Skyrme two-body pseudopotential, but contains higher-order
polynomials.

The number of contributions to infinite nuclear-matter
properties that originate from fourth-order gradient operators
in the two-body pseudopotential is much smaller than the
number of those originating from second-order terms [51].
In the end, one mainly obtains a multitude of contributions
that influence surface properties of finite nuclei. Consequently,
many-body terms might offer an easier access to a decoupling
of nuclear-matter properties from pairing and instabilities.
This is thus the route we wish to pursue in the present
work. Ultimately, one may, of course, combine both types of
extensions. However, and although those two extensions are
systematic, one should note that no strong formal argument
exists at this point to declare one to be superior to the other.
Even though “naturalness” can be invoked [52] in the context
of Skyrme EDF parametrizations, this concept has not yet been
proven to provide a truly meaningful and systematic power
counting at finite density.2 A formal framework that establishes
a hierarchy of terms in the EDF is currently missing and clearly
deserves attention in the future.

Skyrme-type contact three-body pseudopotentials contain-
ing up to two gradient operators have been already used in
the past [25,54–63]. None of these developments has been
systematic and aimed at the complete set of possible terms.
Also, not all of these studies have combined their three-body
pseudopotential with a Skyrme-type two-body interaction.
Additionally, all these studies limited themselves to central
interactions, and none of them aimed at the most general
structure. Only time-even contributions to the normal part
of the resulting EDF were discussed, if at all, and spherical

2We note that Weinberg’s power counting based on naive di-
mensional analysis already does not provide an appropriate power
counting for in-vacuum nuclear interactions based on chiral effective
field theory [53].

symmetry was assumed and exploited in all cases to simplify
the resulting energy functional and one-body fields.

The aim of the present study is to supersede the existing
body of work in several respects.

(1) Constructing the most general contact three-body pseu-
dopotential containing up to two gradient operators. In
the present study, we focus on its central part, i.e., on
terms that do not couple the orientation of spins and
momenta. Central terms are the most important ones for
our goal of replacing the traditional density-dependence
of the standard Skyrme EDF. At the SR-EDF level, only
central terms contribute to properties of nonpolarized
infinite nuclear matter and therefore to bulk properties
of even-even nuclei. By contrast, three-body spin-orbit
and tensor interactions produce terms that allow for the
fine-tuning of the nucleon-number dependence of shell
structure. These will be discussed elsewhere [64].

(2) Deriving the complete trilinear EDF kernel from the three-
body pseudopotential, i.e., providing time-even and time-
odd contributions to the normal part of the EDF along
with the complete pairing part, in a form that is suited
for symmetry-unrestricted SR and MR calculations. We
limit ourselves to the case where single-particle states, and
consequently the one-body density matrices, retain a good
neutron or proton character.

(3) Deriving the expressions of the corresponding one-body
fields entering the HFB Hamiltonian matrix.

(4) Computing infinite nuclear-matter properties and associ-
ated Landau parameters.

As will become clear below, there exists a large number of
possible central three-body contact operators that respect sym-
metries of the exact nuclear Hamiltonian. Only a small subset
of these, however, provide linearly independent contributions
to the EDF kernel. To find a complete irreducible set of such
operators, we proceed in the following way.

(1) Write all possible operator structures consistent with
symmetries of the underlying nuclear Hamiltonian.

(2) Derive the corresponding EDF kernel.
(3) Perform the singular-value decomposition (SVD) of the

matrix expressing the coupling constants multiplying each
contribution to the EDF kernel in terms of the parameters
entering the underlying pseudopotential and determine the
number of independent parameters defining the latter.

Owing to the large number of possible three-body terms,
the above tasks cannot be accomplished safely on the basis
of pen and paper. Consequently, a formal algebra code has
been developed to carry them out [65]. The code also derives
contributions to normal and anomalous one-body potentials,
bulk properties of infinite nuclear matter, and associated
Landau parameters.

The paper is organized as follows. Section II introduces
the building blocks needed to construct the pseudopotential in
a pedestrian, though necessary for the following discussion,
fashion. Section III outlines the use of pseudopotentials with
gradients within the context of the nuclear EDF method.
The central three-body Skyrme-like pseudopotential is then
built in Sec. IV. The construction of the standard two-body
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Skyrme pseudopotential is provided as a reference through-
out. Section V details bilinear and trilinear contributions to
the EDF kernel derived from two- and three-body central
pseudopotentials. Expressions are given there in the so-called
isoscalar-isovector representation. Section VI concludes the
discussion and gives perspectives for future work, some
already under way. Appendixes provide further details on (i)
the derivation of infinite nuclear-matter properties at zero and
nonzero spin and isospin asymmetry, as well as associated
Landau parameters, (ii) the formulation of the EDF kernel in
the so-called neutron-proton representation, (iii) the explicit
expressions of normal and anomalous one-body fields entering
the HFB Hamilton matrix, (iv) the algebraic steps needed to
derive the EDF kernel from the pseudopotential, and (v) a
verification of the local gauge invariance of the functional.

II. BASIC INGREDIENTS

This section introduces the necessary ingredients to set up
the three-body pseudopotential and to compute the EDF kernel
that derives from it.

A. Introductory remarks

In addition to invariances of the pseudopotential under
time-reversal, parity, rotational, translational, and Galilean
transformations, we also assume it to be isospin invariant.
Translational and Galilean transformations are special cases
of local gauge transformations [50]. The invariance of the
EDF under the latter has been invoked as a possible guiding
principle for the construction of pseudopotentials and general
EDF kernels [50,66–68]. We check the local gauge invari-
ance for the pseudopotential-based EDF constructed here in
Appendix E.

The EDF is derived assuming pure proton and neutron
one-body density matrices, which excludes at this stage
the possibility of having T = 0 or T = 1 proton-neutron
pairing [69,70]. Such correlations, however, have never been
addressed so far in a systematic and complete fashion in
nuclear EDF calculations anyway. When needed, extensions
of the present work to this case are straightforward.

The formulation of the three-body contact potentials,
however, is not a straightforward generalization of the for-
malism usually used to set up the standard Skyrme two-body
interaction. To illustrate these differences and to validate our
procedure, we describe two- and three-body terms side by side.

The Coulomb energy is omitted from the present discussion
because its evaluation is standard. In a strict pseudopotential-
based framework, its exchange and pairing contributions have
to be calculated exactly [38,42]. By contrast, the kinetic energy
is kept at various places throughout the paper as it contributes
to nuclear-matter properties discussed in Appendix B.

B. Coordinate basis

The coordinate representation {|�rσq〉} ≡ {|�r〉 ⊗ |σ 〉 ⊗
|q〉} labels nucleon states with the position vector �r ∈ R3,

the spin projection σ = ±1/2, and the isospin component3

q = ±1/2 such that

�̂r |�rσq〉 = �r |�rσq〉, (1a)

�̂s 2 |�rσq〉 = 3h̄2

4
|�rσq〉, (1b)

ŝz|�rσq〉 = h̄σ |�rσq〉, (1c)

τ̂ 2|�rσq〉 = 3h̄2

4
|�rσq〉, (1d)

τ̂z|�rσq〉 = h̄q|�rσq〉. (1e)

This constitutes a continuous orthonormal direct-product basis
of the one-body Hilbert space H1 = H1,�r ⊗ H1,σ ⊗ H1,q .
Associated orthogonality and completeness relations are
given by

〈�rσq|�r ′σ ′q ′〉 = δ(�r − �r ′)δσσ ′δqq ′ , (2a)∫
d3r

∑
σ

∑
q

|�rσq〉〈�rσq| = 1̂1, (2b)

where 11 = 11,�r ⊗ 11σ ⊗ 11,q is the unity operator on H1.
Introducing a complete set of orthogonal single-particle wave
functions,

〈�rσq|i〉 ≡ ϕi(�rσq), (3)

creation and annihilation operators of a nucleon at coordinates
{�rσq} are given by

a�rσq ≡
∑

i

ϕi(�rσq) ai, (4a)

a
†
�rσq ≡

∑
i

ϕ∗
i (�rσq) a

†
i . (4b)

The pseudopotentials constructed below act on two-body (H2)
and three-body (H3) Hilbert spaces. We thus introduce bases
of H2 and H3 through tensor products of the one-body basis
{|�rσq〉} ≡ {|ξ 〉}. This provides non-antisymmetrized basis
states,

|ξ3ξ4〉 ≡ |1 : �r3σ3q3, 2 : �r4σ4q4〉 (5a)

≡ |�r3σ3q3, �r4σ4q4〉, (5b)

|ξ4ξ5ξ6〉 ≡ |1 : �r4σ4q4, 2 : �r5σ5q5, 3 : �r6σ6q6〉 (5c)

≡ |�r4σ4q4, �r5σ5q5, �r6σ6q6〉, (5d)

where the shorthand notation is used whenever possible.
In such non-antisymmetrized states, each individual nucleon
occupies a well-defined single-particle state. This is made very
explicit in Eqs. (5a) and (5c), but only implicit in Eqs. (5b)
and (5d) for brevity. It is clear from the former equations that
the particle index (i.e., being the first, second, or third particle
in a two- or three-body state) should not be confused with
the indices labeling different states in the single-particle basis.
For example, in Eq. (5a) nucleon 1 occupies single-particle

3The quantum number q is sometimes labeled by a letter, i.e., n for
neutrons and p for protons, instead of +1/2 for neutrons and −1/2
for protons.
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state |�r3σ3q3〉, whereas nucleon 2 occupies the state |�r4σ4q4〉.
Associated orthogonality,

〈ξ1ξ2|ξ3ξ4〉 = δξ1ξ3δξ2ξ4 , (6a)

〈ξ1ξ2ξ3|ξ4ξ5ξ6〉 = δξ1ξ4δξ2ξ5δξ3ξ6 , (6b)

and completeness relations,∫∫
dξ1dξ2 |ξ1ξ2〉〈ξ1ξ2| = 1̂2, (7a)∫∫∫

dξ1dξ2dξ3 |ξ1ξ2ξ3〉〈ξ1ξ2ξ3| = 1̂3, (7b)

can be derived from Eq. (2), where

δξ1ξ2 ≡ δ(�r1 − �r2)δσ1σ2δq1q2 , (8a)∫
dξ ≡

∫
d3r

∑
σ=±1/2

∑
q=±1/2

. (8b)

C. δ and gradient operators

1. δ operators

The δ operator δ̂r
ij describes an interaction between nucle-

ons i and j located at the same position. Its two-body and
three-body matrix elements in coordinate representation are
given by

〈ξ1ξ2|δ̂r
12|ξ3ξ4〉 = 〈ξ1ξ2|ξ3ξ4〉δ(�r3 − �r4), (9a)

〈ξ1ξ2ξ3|δ̂r
12|ξ4ξ5ξ6〉 = 〈ξ1ξ2ξ3|ξ4ξ5ξ6〉δ(�r4 − �r5), (9b)

〈ξ1ξ2ξ3|δ̂r
13|ξ4ξ5ξ6〉 = 〈ξ1ξ2ξ3|ξ4ξ5ξ6〉δ(�r4 − �r6), (9c)

〈ξ1ξ2ξ3|δ̂r
23|ξ4ξ5ξ6〉 = 〈ξ1ξ2ξ3|ξ4ξ5ξ6〉δ(�r5 − �r6). (9d)

2. Gradient operators

The one-body gradient operator is introduced through
matrix elements connecting coordinate and configuration basis
states,

�∇�r ϕi(ξ ) ≡ 〈ξ | �̂∇|i〉 =
∫

dξ ′〈ξ | �̂∇|ξ ′〉ϕi(ξ
′). (10)

From the definition of its Hermitian conjugate 〈i| �̂∇†|ξ 〉 =
[〈ξ | �̂∇|i〉]∗ it follows that

�∇�r ϕ∗
i (ξ ) = 〈i| �̂∇†|ξ 〉 =

∫
dξ ′ϕ∗

i (ξ ′)〈ξ ′| �̂∇†|ξ 〉. (11)

Matrix elements of the gradient operator and of its Hermitian
conjugate in coordinate basis can deduce directly from
Eqs. (10) and (11)

〈ξ1| �̂∇|ξ2〉 = 〈ξ1|ξ2〉 �∇�r2 , (12a)

〈ξ1| �̂∇†|ξ2〉 = �∇�r1〈ξ1|ξ2〉, (12b)

where the convention used states that �∇�r acts on functions
depending on �r located to its right, whereas �∇�r acts on
functions depending on �r located to its left. The momentum

operator �̂p ≡ −ih̄ �̂∇ being Hermitian, it follows trivially that

〈i| �̂∇|j 〉 = −〈i| �̂∇†|j 〉 is anti-Hermitian, such that

〈ξ1| �̂∇|ξ2〉 = 〈ξ1|ξ2〉 �∇�r2 = −�∇�r1〈ξ1|ξ2〉, (13a)

〈ξ1| �̂∇†|ξ2〉 = �∇�r1〈ξ1|ξ2〉 = −〈ξ1|ξ2〉 �∇�r2 . (13b)

3. Relative momentum operators

The gradient structure of the pseudopotential involves
relative momentum operators associated with particles i
and j ,

�̂kij ≡ 1

2h̄
( �̂pi − �̂pj ) = − i

2
( �̂∇i − �̂∇j ), (14)

where �̂∇i acts on particle i. Using that �̂kij is Hermitian �̂k12 =
�̂k †

12, we first provide two- and three-body matrix elements
connecting coordinate and configuration basis states,

〈ξ1ξ2|�̂k12|ij 〉 = [�k�r1�r2
ϕi(ξ1)ϕj (ξ2)

]
, (15a)

〈ij |�̂k12|ξ1ξ2〉 = [�k ∗
�r1�r2

ϕ∗
i (ξ1)ϕ∗

j (ξ2)
]
, (15b)

〈ξ1ξ2ξ3|�̂k12|ijk〉 = [�k�r1�r2
ϕi(ξ1)ϕj (ξ2)ϕk(ξ3)

]
, (15c)

〈ijk|�̂k12|ξ1ξ2ξ3〉 = [�k ∗
�r1�r2

ϕ∗
i (ξ1)ϕ∗

j (ξ2)ϕ∗
k (ξ3)

]
, (15d)

〈ξ1ξ2ξ3|�̂k13|ijk〉 = [�k�r1�r3
ϕi(ξ1)ϕj (ξ2)ϕk(ξ3)

]
, (15e)

〈ijk|�̂k13|ξ1ξ2ξ3〉 = [�k ∗
�r1�r3

ϕ∗
i (ξ1)ϕ∗

j (ξ2)ϕ∗
k (ξ3)

]
, (15f)

〈ξ1ξ2ξ3|�̂k23|ijk〉 = [�k�r2�r3
ϕi(ξ1)ϕj (ξ2)ϕk(ξ3)

]
, (15g)

〈ijk|�̂k23|ξ1ξ2ξ3〉 = [�k ∗
�r2�r3

ϕ∗
i (ξ1)ϕ∗

j (ξ2)ϕ∗
k (ξ3)

]
, (15h)

where

�k�ri �rj
≡ − i

2

( �∇�ri
− �∇�rj

)
, (16)

while �k ∗
�ri �rj

denotes its complex conjugate. The brackets in

Eq. (15) indicate that �k�ri �rj
acts only on the wave functions

located inside. Matrix elements in the coordinate basis can be
deduced to take the form

〈ξ1ξ2|�̂k12|ξ3ξ4〉 = 〈ξ1ξ2|ξ3ξ4〉 �k�r3�r4
(17a)

= �k ∗
�r1�r2

〈ξ1ξ2|ξ3ξ4〉, (17b)

〈ξ1ξ2ξ3|�̂k12|ξ4ξ5ξ6〉 = 〈ξ1ξ2ξ3|ξ4ξ5ξ6〉 �k�r4�r5
(17c)

= �k ∗
�r1�r2

〈ξ1ξ2ξ3|ξ4ξ5ξ6〉, (17d)

〈ξ1ξ2ξ3|�̂k13|ξ4ξ5ξ6〉 = 〈ξ1ξ2ξ3|ξ4ξ5ξ6〉 �k�r4�r6
(17e)

= �k ∗
�r1�r3

〈ξ1ξ2ξ3|ξ4ξ5ξ6〉, (17f)

〈ξ1ξ2ξ3|�̂k23|ξ4ξ5ξ6〉 = 〈ξ1ξ2ξ3|ξ4ξ5ξ6〉 �k�r5�r6
(17g)

= �k ∗
�r2�r3

〈ξ1ξ2ξ3|ξ4ξ5ξ6〉, (17h)

where �k�ri �rj
acts on functions located to its right, while �k ∗

�ri �rj

acts on functions located to its left. The quantum mechanical
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operator �̂kij has to be distinguished from its position-space
matrix element �k�r3�r4 that is a differential operator on R3 ⊗ R3.

Thorough definitions of the matrix elements of elementary
operators have been given above. Matrix elements of a product
of such elementary operators can be computed in a pedestrian
way by inserting as many completeness relations as necessary
to invoke matrix elements of the elementary operators.4 Let
us consider as an example two types of matrix elements
that will have to be considered for the two-body Skyrme
pseudopotential. By virtue of Eqs. (17b) and (17a), and by
inserting enough completeness relations on H2, one obtains

〈ξ1ξ2|δ̂r
12

�̂k 2
12|ξ3ξ4〉 = 〈ξ1ξ2|ξ3ξ4〉δ(�r3 − �r4) �k 2

�r3�r4

= δ(�r1 − �r2) �k ∗2
�r1�r2

〈ξ1ξ2|ξ3ξ4〉, (18a)

〈ξ1ξ2|�̂k12 · δ̂r
12

�̂k12|ξ3ξ4〉 = �k ∗
�r1�r2

〈ξ1ξ2|ξ3ξ4〉δ(�r3 − �r4) �k�r3�r4

= 〈ξ1ξ2|ξ3ξ4〉�k�r3�r4
δ(�r3 − �r4) �k�r3�r4

= �k ∗
�r1�r2

· δ(�r1 − �r2) �k ∗
�r1�r2

〈ξ1ξ2|ξ3ξ4〉.
(18b)

Any of the alternative formulas can be used when evaluating
matrix elements of the interaction given that the resulting
expressions can be related by one or several integrations by
parts. Proceeding as above, one can easily show that gradient
and δ operators do not commute,

�̂kij δ̂
r
ij �= δ̂r

ij
�̂kij = (�̂kij δ̂

r
ij

)†
. (19)

D. Position-, spin-, and isospin-exchange operators

Two-body coordinate-exchange operators will be used to
formulate the pseudopotential. Additionally, such operators
are elementary building blocks of the antisymmetrizers that
will enter the calculation of the EDF kernel; see Eq. (38).
Applying the exchange operator P̂ij = P̂ji , which acts on the
coordinates of particles i and j , with i �= j , two- and three-
body basis states are transformed according to

P̂12|ξ3ξ4〉 ≡ |ξ4ξ3〉, (20a)

P̂12|ξ4ξ5ξ6〉 ≡ |ξ5ξ4ξ6〉, (20b)

P̂13|ξ4ξ5ξ6〉 ≡ |ξ6ξ5ξ4〉, (20c)

P̂23|ξ4ξ5ξ6〉 ≡ |ξ4ξ6ξ5〉, (20d)

and similarly in any other basis representation. Of course,
applying the same exchange operator twice gives back the
original state. Furthermore, different exchange operators act-
ing on the same space do, in general, not commute with one
another, i.e.,

P̂12P̂13 = P̂13P̂23 = P̂23P̂12, (21a)

P̂12P̂23 = P̂23P̂13 = P̂13P̂12. (21b)

4Taking shortcuts by “applying” operators sequentially on bras or
kets rather than resorting to matrix elements of elementary operators
might sometimes lead to ambiguous computational steps.

In coordinate representation, exchange operators factorize
into position-, spin-, and isospin-exchange operators P̂ij ≡
P̂ r

ij P̂
σ
ij P̂

q
ij that only exchange the corresponding coordinates,

e.g.,

P̂ r
12|ξ4ξ5ξ6〉 ≡ |�r5σ4q4, �r4σ5q5, �r6σ6q6〉, (22a)

P̂ σ
12|ξ4ξ5ξ6〉 ≡ |�r4σ5q4, �r5σ4q5, �r6σ6q6〉, (22b)

P̂
q
12|ξ4ξ5ξ6〉 ≡ |�r4σ4q5, �r5σ5q4, �r6σ6q6〉. (22c)

Coordinate-exchange operators do not commute with relative
momentum operators. One finds that

�̂kij P̂ r
ij = P̂ r

ij
�̂kji = −P̂ r

ij
�̂kij , (23a)

�̂kij P̂ r
kj = P̂ r

kj
�̂kik, (23b)

�̂kij P̂ r
ik = P̂ r

ik
�̂kkj , (23c)

i.e., in general, the commutation with a position-exchange
operator changes the particle indices involved in the gradient
operator. In the particular case where particle indices are the
same in both operators, they anticommute; see Eq. (23a). These
features can be established in a pedestrian way, e.g.,

〈�r1�r2�r3|�̂k12P̂
r
12|�r4�r5�r6〉 = 〈�r1�r2�r3|�r5�r4�r6〉�k�r5�r4

(24a)

= −〈�r1�r2�r3|P̂ r
12|�r4�r5�r6〉�k�r4�r5

= −〈�r1�r2�r3|P̂ r
12

�̂k12|�r4�r5�r6〉,
〈�r1�r2�r3|�̂k12P̂

r
13|�r4�r5�r6〉 = 〈�r1�r2�r3|�r6�r5�r4〉�k�r6�r5

= 〈�r1�r2�r3|P̂ r
13

�̂k32|�r4�r5�r6〉. (24b)

This indicates that it may not be equivalent to have position-
exchange operators located to the right or to the left of gradient
operators in three-body potentials. Also, while it is always
possible to replace P̂ r

ij directly with ±1 in the matrix elements
of the two-body potential by virtue of Eq. (23a), where the
sign ultimately depends on the parity associated with the
combination of gradient operators at play, this is in most cases
not possible in matrix elements of three-body operators.

To evaluate matrix elements of the pseudopotential, it turns
out to be useful to write spin-exchange operators in terms of
spin Pauli matrices [71],

P̂ σ
ij = 1

2 (1 + �̂σi · �̂σj ). (25)

Recalling that

σ̂i,μσ̂i,ν = δμν1 + i
∑

κ

εμνκ σ̂i,κ , (26)

when both Pauli matrices act on the same particle i, with
μ, ν, κ ∈ {x, y, z} and εμνκ denoting the Levi-Civita sym-
bol, the product of two spin-exchange operators can be
expressed as

P̂ σ
12P̂

σ
13 = 1

4

(
1 + �̂σ1 · �̂σ2 + �̂σ1 · �̂σ3 + �̂σ2 · �̂σ3

+ i
∑
μνκ

εμνκ σ̂1,κ σ̂2,μσ̂3,ν

)
, (27a)
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P̂ σ
12P̂

σ
23 = 1

4

(
1 + �̂σ1 · �̂σ2 + �̂σ2 · �̂σ3 + �̂σ1 · �̂σ3

+ i
∑
μνκ

εμνκ σ̂1,μσ̂2,κ σ̂3,ν

)
. (27b)

E. Antisymmetrization operators

Let us introduce Â12 and Â123 as the two- and three-body
antisymmetrizers, respectively, under the form

Â12 ≡ (1 − P̂12), (28a)

Â123 ≡ Â12(1 − P̂13 − P̂23)

= (1 − P̂12 − P̂13 − P̂23 + P̂12P̂13 + P̂12P̂23). (28b)

We introduce Â12
123 as another useful combination of exchange

operators,

Â12
123 ≡ (1 − P̂13 − P̂23). (28c)

Basic properties of two-body exchange operators lead to

P̂12Â12|ij 〉 = −Â12|ij 〉, (29a)

P̂12Â123|ijk〉 = −Â123|ijk〉, (29b)

P̂13Â123|ijk〉 = −Â123|ijk〉, (29c)

P̂23Â123|ijk〉 = −Â123|ijk〉, (29d)

from which trivially follows that

P̂ r
ijA123|ξ4ξ5ξ6〉 = −P̂ σ

ij P̂
q
ijA123|ξ4ξ5ξ6〉, (30a)

P̂ σ
ijA123|ξ4ξ5ξ6〉 = −P̂ r

ij P̂
q
ijA123|ξ4ξ5ξ6〉, (30b)

P̂
q
ijA123|ξ4ξ5ξ6〉 = −P̂ r

ij P̂
σ
ijA123|ξ4ξ5ξ6〉. (30c)

III. THE ENERGY DENSITY FUNCTIONAL

Before coming to the construction of the pseudopotential
itself, let us explain its use within the context of EDF
calculations.

A. Reference states

The EDF method originates from the picture of a nucleus as
an ensemble of quasiparticles moving independently in their
self-created average field. It relies on the use of product states
of Bogoliubov quasiparticles,

|�〉 = N�

∏
μ

βμ|0〉, (31)

where {β†
μ} and {βμ} denote quasiparticle creation and annihi-

lation operators relating to an arbitrary one-body basis {a†
α, aα}

through a unitary canonical transformation of Bogoliubov

type [13,14],

βμ =
∑

i

(U †
μiai + V

†
μia

†
i ), (32a)

β†
μ =

∑
i

(Viμai + Uiμa
†
i ). (32b)

The factor N� in Eq. (31) ensures the normalization 〈�|�〉 =
1 of the quasiparticle vacuum.

B. Pseudopotential-based EDF kernel

Within the pseudopotential-based formulation of the EDF
method, the energy kernel is derived from a pseudo-
Hamiltonian that reads, in an arbitrary basis, as

Ĥpseudo =
∑
ij

a
†
i t

(1)
ij aj (33a)

+ 1

2!

∑
ijkl

a
†
i a

†
j v

(2)
ijklalak (33b)

+ 1

3!

∑
ijklmn

a
†
i a

†
j a

†
kv

(3)
ijklmnanamal + · · · , (33c)

where

t
(1)
ij ≡ 〈i|t̂ |j 〉, (34a)

v
(2)
ijkl ≡ 〈ij |v̂12|kl〉, (34b)

v
(3)
ijklmn ≡ 〈ijk|v̂123|lmn〉, (34c)

denote matrix elements of the effective one-body kinetic
energy operator and non-antisymmetrized matrix elements of
two-body, three-body . . . (density-independent) pseudopoten-
tials. In the present work, we do limit ourselves to two- and
three-body pseudopotentials, but the further extension of the
formalism to four-body and higher operators is straightfor-
ward, though cumbersome.

The corresponding SR, i.e., diagonal, EDF kernel is
computed as

E ≡ 〈�|Ĥpseudo|�〉 (35a)

= E[ρ, κ, κ∗] (35b)

and takes the form of a functional of one-body density matrices

ρij ≡ 〈�|a†
j ai |�〉, (36a)

κij ≡ 〈�|ajai |�〉, (36b)

κ∗
ij ≡ 〈�|a†

i a
†
j |�〉, (36c)

by virtue of Wick’s theorem [72]. The normal density matrix
is Hermitian ρij = ρ∗

ji , whereas the anomalous density matrix
is skew symmetric κij = −κji .

Multireference calculations invoke an extension of the SR
EDF kernel to define the off-diagonal kernel involving two
different Bogoliubov states. As opposed to hybrid and general
functionals [73], such an extension is formally straightforward
and unambiguous for a pseudopotential-based parametriza-
tion. By virtue of the generalized (i.e., off-diagonal) Wick
theorem [12–14], the off-diagonal energy is obtained from

064326-7



J. SADOUDI, T. DUGUET, J. MEYER, AND M. BENDER PHYSICAL REVIEW C 88, 064326 (2013)

E[ρ, κ, κ∗] by replacing the density matrices of Eq. (36)
with transition (i.e., off-diagonal) density matrices [5], and
multiplying the entire EDF kernel with a norm kernel.

C. EDF kernel in a configuration basis

When evaluating Eq. (35a), the resulting terms can be
grouped according to their content in normal and anomalous
density matrices

E[ρ, κ, κ∗] ≡ Eρ + Eρρ + Eκκ + Eρρρ + Eκκρ. (37)

There are several equivalent possibilities of how these can be
expressed. We choose a form where each given product of
density matrices appears only once and where the antisym-
metrization is done explicitly in the matrix elements by virtue
of the antisymmetrization operators Â12, Â123, and Â12

123 of
Eq. (28)

Eρ =
∑
ij

〈i|t̂ |j 〉ρji, (38a)

Eρρ = 1

2

∑
ijkl

〈ij |v̂12Â12|kl〉ρkiρlj , (38b)

Eκκ = 1

2

∑
ijkl

〈ij |v̂12|kl〉κ∗
ij κkl (38c)

= 1

4

∑
ijkl

〈ij |v̂12Â12|kl〉κ∗
ij κkl, (38d)

Eρρρ = 1

6

∑
ijklmn

〈ijk|v̂123Â123|lmn〉ρliρmjρnk, (38e)

Eκκρ = 1

6

∑
ijklmn

〈ijk|Â12
123v̂123Â12

123|lmn〉κ∗
ij κlmρnk (38f)

= 1

2

∑
ijklmn

〈ijk|v̂123Â12
123|lmn〉κ∗

ij κlmρnk (38g)

= 1

4

∑
ijklmn

〈ijk|v̂123Â123|lmn〉κ∗
ij κlmρnk. (38h)

Exploiting relations (21) and the cyclic nature of the particle
trace in expressions containing normal density matrices only,
e.g.,∑

ijkl

〈ij |P̂12v̂12|kl〉ρkiρlj =
∑
ijkl

〈ij |v̂12P̂12|kl〉ρkiρlj , (39)

as well as the skew symmetry of the pairing tensor, antisym-
metrizers and exchange operators can be placed either to the
left or to the right of the pseudopotential according to what is
shown in Eqs. (38).

D. Symmetry under particle exchange

Because we are dealing with identical particles, pseudopo-
tential operators must be symmetric under the exchange of any

pair of nucleons, i.e.,

v̂12 = v̂21, (40a)

v̂123 = v̂213 = v̂132 = v̂321 = v̂231 = v̂312, (40b)

where the bar over a certain set of particle indices indicates
from here on the symmetry of the operator under any permu-
tation within that set. In matrix elements, exchanging particles
corresponds to exchanging the complete set of associated
single-particle quantum numbers in both the bra and the ket.
This leads to symmetry properties of the kind

〈ij |v̂12|kl〉 = 〈ji|v̂12|lk〉, (41a)

〈ijk|v̂123|lmn〉 = 〈kij |v̂123|nlm〉. (41b)

When constructing a two-body Hermitian operator out of δ and
relative momentum operators, along with exchange operators,
the symmetry of the potential under particle exchange is
automatically fulfilled. When the three-body potential is
constructed from the same two-body building blocks, its
symmetry under permutation of the particle indices is not as
automatically fulfilled. This property, however, can always be
enforced by constructing the pseudopotential as the sum of
six permutations over the particle indices of a nonsymmetric
potential v̂′

123. More convenient for our purpose is to take
advantage of the fact that any fully symmetric operator v̂123 can
be decomposed into the sum of three parts that are symmetric
under the exchange of two particles,

v̂123 ≡ v̂123 + v̂132 + v̂231. (42)

We use this property to build explicitly v̂123, with the other
two parts being obtained through the application of two-body
exchange operators

v̂123 = v̂123 + P̂23v̂123P̂23 + P̂13v̂123P̂13. (43)

Invoking the skew symmetry of κ [Eq. (43)] allows one to
rewrite trilinear contributions to the EDF kernel in terms of
v̂123 only, i.e.,

Eρρρ = 1

2

∑
ijklmn

〈ijk|v̂123Â123|lmn〉ρliρmjρnk, (44a)

Eκκρ = 1

2

∑
ijklmn

〈ijk|Â12
123v̂123Â12

123|lmn〉κ∗
ij κlmρnk. (44b)

IV. BUILDING THE PSEUDOPOTENTIAL

In this section, we describe the setup of two- and three-body
Skyrme-type pseudopotentials containing up to two gradient
operators.

A. Generic structure

We build Hermitian two- and three-body operators out
of two-body δ, relative momentum, and exchange operators
such that symmetries listed in Sec. II A are fulfilled. To
the best of our knowledge, all earlier attempts to construct
Skyrme-type three-body contact interactions were limited
to operator structures where v̂123 is set up by inserting an
additional δ function into a subset of the standard two-body
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Skyrme interaction [25,54–63]. As seen below, this does not
generate the most general set of three-body terms.

We separate two- and three-body pseudopotentials into a
sum of terms that all are functions of the elementary two-body
operators, i.e.,

v̂12 ≡
∑

i

v̂i

12

[
P̂

{ti ,xi }
12 , �̂k (†)

12 , δ̂r
12

]
, (45a)

v̂123 ≡
∑

i

v̂i

123

[
P̂

{ui ,yi }
123 , �̂k (†)

12 , �̂k (†)
23 , �̂k (†)

13 , δ̂r
13δ̂

r
23

]
. (45b)

The index i labels the possible coordinate-space structures,
i.e., terms with a different content in gradient operators. The
number of such terms is limited by the number of interacting
nucleons (i.e., two and three in the present case) and the
number of gradient operators allowed (i.e., up to two in
the present case). Each of these can be combined with a

large number of distinct combinations of two-body exchange
operators, represented by P̂

{ti ,xi }
12 and P̂

{ui ,yi }
123 .

B. Structure in coordinate space

Each function v̂i

12
contains a set of parameters denoted as

ti and xij , and each function v̂i

123
contains a set of parameters

denoted as ui and yij . Parameters ti and ui represent the
overall coupling strength of a given coordinate space operator,
whereas xij and yij weigh the possible combinations of spin-
and isospin-exchange operators, labeled by j .

We first specify the dependence of functions v̂i

12
and v̂i

123
on gradient operators and δ functions by forming all possible
Hermitian scalars. Using for now the most simple spin and
isospin dependence under the form of unit operators in spin
and isospin space, one obtains

v̂0
12

(
1̂2,σq , δ̂

r
12

) ≡ 1̂2,σq δ̂
r
12, (46a)

v̂1
12

(
1̂2,σq , �̂k (†)

12 , δ̂r
12

) ≡ 1̂2,σq
1
2

(�̂k †
12 · �̂k †

12δ̂
r
12 + δ̂r

12
�̂k12 · �̂k12

)
, (46b)

v̂2
12

(
1̂2,σq , �̂k (†)

12 , δ̂r
12

) ≡ 1̂2,σq
�̂k †

12δ̂
r
12 · �̂k12, (46c)

for two-body terms and

v̂0
123

(
1̂3,σq , δ̂

r
13δ̂

r
23

) ≡ 1̂3,σq δ̂
r
13δ̂

r
23, (46d)

v̂1
123

(
1̂3,σq , �̂k (†)

12 , δ̂r
13δ̂

r
23

) ≡ 1̂3,σq
1
2

(�̂k †
12 · �̂k †

12δ̂
r
13δ̂

r
23 + δ̂r

13δ̂
r
23

�̂k12 · �̂k12

)
, (46e)

v̂2
123

(
1̂3,σq , �̂k (†)

12 , δ̂r
13δ̂

r
23

) ≡ 1̂3,σq
�̂k †

12δ̂
r
13δ̂

r
23 · �̂k12, (46f)

v̂3
123

(
1̂3,σq , �̂k (†)

23 , �̂k (†)
13 , δ̂r

13δ̂
r
23

) ≡ 1̂3,σq
1
2

(�̂k †
23 · �̂k †

13δ̂
r
13δ̂

r
23 + δ̂r

13δ̂
r
23

�̂k13 · �̂k23

)
, (46g)

v̂4
123

(
1̂3,σq , �̂k (†)

23 , �̂k (†)
13 , δ̂r

13δ̂
r
23

) ≡ 1̂3,σq
1
2

(�̂k †
13δ̂

r
13δ̂

r
23 · �̂k23 + �̂k †

23δ̂
r
13δ̂

r
23 · �̂k13

)
, (46h)

for three-body terms. The list of arguments has been reduced to those that each function actually depends on.

C. Structure in spin and isospin spaces

As the next step, we deduce the most general operators P̂
{ti ,xi }
12 and P̂

{ui ,yi }
123 that accompany each term in Eq. (46). For terms

involving two Hermitian conjugate contributions, one has to employ P̂
{ti ,xi }
12 or P̂

{ui ,yi }
123 for one and P̂

{ti ,xi }†
12 and P̂

{ui ,yi }†
123 for the

other, such that the overall operator remains indeed Hermitian.
A priori, the most general form is given by the sum of two- and three-body terms obtained by multiplying position-, spin-,

and isospin-exchange operators in all possible ways. In the end, P̂
{ti ,xi }
12 and P̂

{ui ,yi }
123 can be expressed solely in terms of spin- and

isospin-exchange operators by virtue of Eq. (30). While P̂
{ti ,xi }
12 = P̂

{ti ,xi } †
12 derives from the Hermiticity of exchange operators

defined in Eq. (22), the same does not hold in general for P̂
{ui ,yi }
123 , because products of exchange operators of the same type (i.e.,

space, spin or isospin) associated with different pairs of particles do not commute.
All terms in Eq. (46) but those entering v̂4

123
are individually symmetric under the exchange of particles 1 and 2 such that

they have to be joined by a spin-isospin operator that itself is symmetric under such an exchange. These considerations lead
to the following general spin-isospin operators acting on H2 and H3 that are symmetric under the exchange of particles 1
and 2,

P̂
{ti ,xi }
12

≡ ti
(
1̂2 + xi1P̂

σ
12 + xi2P̂

q
12 + xi3P̂

σ
12P̂

q
12

)
, (47a)

P̂
{ui ,yi }
123

≡ ui

[
1̂3 + yi1P̂

σ
12 + yi2

(
P̂ σ

13 + P̂ σ
23

)+ yi3
(
P̂ σ

12P̂
σ
13 + P̂ σ

12P̂
σ
23

)+ yi10P̂
q
12

+ yi11P̂
σ
12P̂

q
12 + yi12

(
P̂ σ

13P̂
q
12 + P̂ σ

23P̂
q
12

)+ yi13
(
P̂ σ

12P̂
σ
13P̂

q
12 + P̂ σ

12P̂
σ
23P̂

q
12

)+ yi20
(
P̂

q
13 + P̂

q
23

)
+yi21

(
P̂ σ

12P̂
q
13 + P̂ σ

12P̂
q
23

)+ yi22
(
P̂ σ

13P̂
q
13 + P̂ σ

23P̂
q
23

)+ yi23
(
P̂ σ

13P̂
q
23 + P̂ σ

23P̂
q
13

)
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+ yi24
(
P̂ σ

12P̂
σ
13P̂

q
13 + P̂ σ

12P̂
σ
23P̂

q
23

)+ yi25
(
P̂ σ

12P̂
σ
23P̂

q
13 + P̂ σ

12P̂
σ
13P̂

q
23

)+ yi30
(
P̂

q
12P̂

q
13 + P̂

q
12P̂

q
23

)
+ yi31

(
P̂ σ

12P̂
q
12P̂

q
13 + P̂ σ

12P̂
q
12P̂

q
23

)+ yi32
(
P̂ σ

13P̂
q
12P̂

q
13 + P̂ σ

23P̂
q
12P̂

q
23

)+ yi33
(
P̂ σ

13P̂
q
12P̂

q
23 + P̂ σ

23P̂
q
12P̂

q
13

)
+ yi34

(
P̂ σ

12P̂
σ
13P̂

q
12P̂

q
13 + P̂ σ

12P̂
σ
23P̂

q
12P̂

q
23

)+ yi35
(
P̂ σ

12P̂
σ
13P̂

q
12P̂

q
23 + P̂ σ

12P̂
σ
23P̂

q
12P̂

q
13

)]
. (47b)

As for terms entering v̂4
123

, we have to introduce two other functions of spin- and isospin-exchange operators, the first of which
only depends on particles 1 and 2, whereas the second one depends on all particles and is not symmetric under the exchange of
particles 1 and 2,

P̂
{ui ,yi }
123,a ≡ ui

(
1̂3 + yi1P̂

σ
12 + yi2P̂

q
12 + yi3P̂

σ
12P̂

q
12

)
, (48a)

P̂
{ui ,yi }
123,b ≡ ui

(
yi2P̂

σ
13 + yi3P̂

σ
12P̂

σ
13 + yi12P̂

σ
13P̂

q
12 + yi13P̂

σ
12P̂

σ
13P̂

q
12 + yi20P̂

q
13 + yi21P̂

σ
12P̂

q
13 + yi22P̂

σ
13P̂

q
13

+ yi23P̂
σ
13P̂

q
23 + yi24P̂

σ
12P̂

σ
13P̂

q
13 + yi25P̂

σ
12P̂

σ
23P̂

q
13 + yi30P̂

q
12P̂

q
13 + yi31P̂

σ
12P̂

q
12P̂

q
13

+ yi32P̂
σ
13P̂

q
12P̂

q
13 + yi33P̂

σ
13P̂

q
12P̂

q
23 + yi34P̂

σ
12P̂

σ
13P̂

q
12P̂

q
13 + yi35P̂

σ
12P̂

σ
13P̂

q
12P̂

q
23

)
. (48b)

It has to be noted that

P̂
{ui ,yi }
123

= P̂
{ui ,yi }
123,a + P̂

{ui ,yi }
123,b + P̂

{ui ,yi }
213,b ; (49)

i.e., operators P̂
{ui ,yi }
123,a and P̂

{ui ,yi }
123,b are nothing but subparts of P̂

{ui ,yi }
123

. Also, one has that P̂
{ui ,yi }
123,a = P̂

{ui ,yi } †
123,a .

Whenever a given term displays good parity under the exchange of the spatial coordinates of particles i and j , one can replace
P̂ r

ij by ±1 in its matrix elements a priori. For instance, it can be easily seen that v̂2
12

changes its sign under particle exchange;

hence, it has negative parity. As a consequence, one can make the replacement v̂2
12

P̂ r
12 = v̂2

12
in its matrix elements. Whenever

such property can be exploited, one can use Eq. (30) to re-express P̂
q
ij in terms of P̂ σ

ij . This can be done in Eqs. (46a), (46b),

(46c), (46e), and (46f) for P̂
q
12, as well as in Eq. (46d) for P̂

q
12, P̂

q
13, and P̂

q
23. In the end, these considerations bring P̂

{ti ,xi }
12

and

P̂
{ui ,yi }
123

into the simpler form,

P̂
{ti ,xi }
12,α

= ti
(
1̂2 + xiP̂

σ
12

)
, (50a)

P̂
{ui ,yi }
123,α

= ui

[
1̂3 + yi1P̂

σ
12 + yi2

(
P̂ σ

13 + P̂ σ
23

)+ yi3
(
P̂ σ

12P̂
σ
13 + P̂ σ

12P̂
σ
23

)]
, (50b)

P̂
{ui ,yi }
123,β

= ui

[
1̂3 + yi1P̂

σ
12 + yi2

(
P̂ σ

13 + P̂ σ
23

)+ yi3
(
P̂ σ

12P̂
σ
13 + P̂ σ

12P̂
σ
23

)+ yi20
(
P̂

q
13 + P̂

q
23

)
+ yi21

(
P̂ σ

12P̂
q
13 + P̂ σ

12P̂
q
23

)+ yi22
(
P̂ σ

13P̂
q
13 + P̂ σ

23P̂
q
23

)+ yi23
(
P̂ σ

13P̂
q
23 + P̂ σ

23P̂
q
13

)
+ yi24

(
P̂ σ

12P̂
σ
13P̂

q
13 + P̂ σ

12P̂
σ
23P̂

q
23

)+ yi25
(
P̂ σ

12P̂
σ
23P̂

q
13 + P̂ σ

12P̂
σ
13P̂

q
23

)]
. (50c)

No such reductions, however, are possible in Eqs. (46g) and (46h). In the end, the complete exploitation of the symmetry relations
listed above leads to the following set of the most general possible structures,

v̂0
12

≡ P̂
{t0,x0}
12,α

δ̂r
12, (51a)

v̂1
12

≡ 1
2 P̂

{t1,x1}
12,α

[�̂k †
12 · �̂k †

12δ̂
r
12 + δ̂r

12
�̂k12 · �̂k12

]
, (51b)

v̂2
12

≡ P̂
{t2,x2}
12,α

�̂k †
12δ̂

r
12 · �̂k12, (51c)

for two-body terms and

v̂0
123

≡ 1
2

[
P̂

{u0,y0},†
123,α

+ P̂
{u0,y0}
123,α

]
δ̂r

13δ̂
r
23, (51d)

v̂1
123

≡ 1
2

[
P̂

{u1,y1},†
123,β

�̂k †
12 · �̂k †

12δ̂
r
13δ̂

r
23 + P̂

{u1,y1}
123,β

δ̂r
13δ̂

r
23

�̂k12 · �̂k12

]
, (51e)

v̂2
123

≡ 1
2

[
P̂

{u2,y2},†
123,β

+ P̂
{u2,y2}
123,β

]�̂k †
12δ̂

r
13δ̂

r
23 · �̂k12, (51f)

v̂3
123

≡ 1
2

[
P̂

{u3,y3},†
123

�̂k †
23 · �̂k †

13δ̂
r
13δ̂

r
23 + P̂

{u3,y3}
123

δ̂r
13δ̂

r
23

�̂k13 · �̂k23

]
, (51g)

v̂4
123

≡ 1
2 P̂

{u4,y4}
123,a

[�̂k †
13δ̂

r
13δ̂

r
23 · �̂k23 + �̂k †

23δ̂
r
13δ̂

r
23 · �̂k13

]
+ 1

2

[
P̂

{u4,y41},†
123,b + P̂

{u4,y41}
213,b

]�̂k †
23δ̂

r
13δ̂

r
23 · �̂k13 + 1

2

[
P̂

{u4,y41},†
213,b + P̂

{u4,y41}
123,b

]�̂k †
13δ̂

r
13δ̂

r
23 · �̂k23

+ 1
2

[
P̂

{u4,y42},†
213,b + P̂

{u4,y42}
123,b

]�̂k †
23δ̂

r
13δ̂

r
23 · �̂k13 + 1

2

[
P̂

{u4,y42},†
123,b + P̂

{u4,y42}
213,b

]�̂k †
13δ̂

r
13δ̂

r
23 · �̂k23, (51h)
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for three-body terms. At this stage, v̂12 is defined out of six
coupling constants, whereas v̂123 includes altogether about 70
parameters. The two-body terms correspond already to the
final form of Skyrme’s standard central two-body vertex. For
the three-body pseudopotential, however, it can be expected
that many terms are, in fact, linearly dependent. Further re-
dundancies among these terms, however, become increasingly
difficult to detect, and we do not attempt to find them by
hand. Instead, the task is carried out by a formal algebra code
that constructs first the complete energy functional deriving
from Eq. (51) and then analyzes the correlations between the
original terms in the pseudopotential.

V. DERIVING THE EDF KERNEL

We now provide the full expression of the EDF kernel
obtained from the two- and three-body pseudopotentials
given in Eq. (51). The mathematical steps actually taken
by the numerical code to derive the results are sketched in
Appendix C. Correlations among the terms in the original
pseudopotentials are then identified using a SVD. This allows
us to deduce a set of linearly independent central three-body
Skyrme-like pseudopotentials.

A. Ingredients of the EDF kernel

1. Density matrices

In coordinate representation, the normal and anomalous
one-body density matrices read

ρ(�rσq, �r ′σ ′q ′) ≡ 〈�|a†
�r ′σ ′q ′a�rσq |�〉

=
∑
ij

ϕ∗
j (�r ′σ ′q ′)ϕi(�rσq)ρij , (52a)

κ(�rσq, �r ′σ ′q ′) ≡ 〈�|a�r ′σ ′q ′a�rσq |�〉
=
∑
ij

ϕj (�r ′σ ′q ′)ϕi(�rσq)κij . (52b)

We assume pure proton and neutron density matrices, such
that ρ(�rσq, �r ′σ ′q ′) = κ(�rσq, �r ′σ ′q ′) = 0 when q �= q ′. As
already noted, the normal density matrix is Hermitian, i.e.,
ρ(�rσq, �r ′σ ′q ′) = ρ∗(�r ′σ ′q ′, �rσq), whereas the pair tensor is
skew symmetric, i.e., κ(�rσq, �r ′σ ′q ′) = −κ(�r ′σ ′q ′, �rσq).

B. Nonlocal densities

When assuming pure proton and neutron single-particle
states, the most straightforward representation of the densities
is obtained in terms of proton and neutron densities. In this
case, nonlocal normal and anomalous densities take the form

ρq(�r, �r ′) ≡
∑

σ

ρ(�rσq, �r ′σq), (53a)

sq,ν(�r, �r ′) ≡
∑
σ ′σ

ρ(�rσq, �r ′σ ′q)〈σ ′|σ̂ν |σ 〉, (53b)

ρ̃q(�r, �r ′) ≡
∑

σ

2σ̄ κ(�rσq, �r ′σ̄ q), (53c)

s̃q,ν(�r, �r ′) ≡
∑
σ ′σ

2σ̄ ′κ(�rσq, �r ′σ̄ ′q)〈σ ′|σ̂ν |σ 〉. (53d)

One further introduces kinetic densities

τq(�r, �r ′) ≡
∑

μ

∇�r,μ∇�r ′,μρq(�r, �r ′), (53e)

Tq,ν(�r, �r ′) ≡
∑

μ

∇�r,μ∇�r ′,μsq,ν(�r, �r ′), (53f)

τ̃q(�r, �r ′) ≡
∑

μ

∇�r,μ∇�r ′,μρ̃q(�r, �r ′), (53g)

T̃q,ν(�r, �r ′) ≡
∑

μ

∇�r,μ∇�r ′,μs̃q,ν(�r, �r ′), (53h)

and currents

jq,μ(�r, �r ′) ≡ − i

2
(∇�r,μ − ∇�r ′,μ)ρq(�r, �r ′), (53i)

Jq,μν(�r, �r ′), ≡ − i

2
(∇�r,μ − ∇�r ′,μ)sq,ν(�r, �r ′), (53j)

j̃q,μ(�r, �r ′) ≡ − i

2
(∇�r,μ − ∇�r ′,μ)ρ̃q(�r, �r ′), (53k)

J̃q,μν(�r, �r ′) ≡ − i

2
(∇�r,μ − ∇�r ′,μ)s̃q,ν(�r, �r ′), (53l)

where σ̄ = −σ . Greek indices taking values x, y, or z refer to
Cartesian components of spatial vectors and tensors. Densities
without Greek index such as ρ and ρ̃ are scalars. Densities
in Eq. (53) denote nonlocal matter, spin, pair, pair-spin,
kinetic, spin-kinetic, pair-kinetic, pair-spin-kinetic, current,
spin-current, pair-current, and pair-spin-current densities for
a given nucleon species q, respectively.

The particular definition of the pairing densities ρ̃q(�r, �r ′)
and s̃q,ν(�r, �r ′) involves the time reversal of coordinates �r ′σ ′q ′,
which is done to provide a compact representation of the EDF
kernel derived from contact interactions in terms of a local
densities, which cannot be achieved in terms of κ owing to its
being skew symmetric [23,66].

The nonlocal pair density is symmetric under coordinate
exchange, whereas the pair-spin density is skew symmetric

ρ̃q(�r ′, �r) = +ρ̃q(�r, �r ′), (54a)

s̃q,ν(�r ′, �r) = −s̃q,ν(�r, �r ′). (54b)

Instead of constructing them from the pair tensor (52b), the
pair densities could alternatively also be derived from a pair
density matrix defined as [23,66]

ρ̃(�rσq, �r ′σ ′q ′) ≡ 2σ ′κ(�rσq, �r ′σ ′q ′). (55)

The full normal and pair density matrices can be expressed
in terms of the nonlocal densities, which is equivalent to
expanding a complex 2 × 2 matrix in spin space over the unit
matrix and Pauli matrices, which together form a complete
basis of that space,

ρ(�rσq, �r ′σ ′q ′)
= 1

2

[
ρq(�r, �r ′)δσσ ′ + �sq(�r, �r ′) · 〈σ | �̂σ |σ ′〉]δqq ′ , (56a)

ρ̃(�rσq, �r ′σ ′q ′)
= 1

2

[
ρ̃q(�r, �r ′)δσσ ′ + �̃sq(�r, �r ′) · 〈σ | �̂σ |σ ′〉]δqq ′ . (56b)

C. Local densities

Ultimately, the expression of the EDF kernel in-
vokes local densities obtained from the nonlocalones
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through

Pq(�r) ≡ Pq(�r, �r), (57)

P̃q(�r) ≡ P̃q(�r, �r), (58)

where Pq and P̃q represent any of the normal or anomalous
densities in Eq. (53). The local pair densities s̃q,ν(�r), T̃q,ν(�r),
and j̃q,μ(�r) turn out to be zero,

s̃q,ν(�r) = T̃q,ν(�r) = j̃q,μ(�r) = 0, (59)

because the corresponding nonlocal densities (53) are skew
symmetric under the exchange of �r and �r ′ [Eq. (54)].

Single-reference EDF calculations based on time-reversal-
breaking quasiparticle vacua [Eq. (31)] involve pair densi-
ties that are, in general, complex. The energy being real,
the EDF kernel necessarily contains also their complex
conjugate deriving from ρ̃∗

q (�r, �r ′) =∑σ 2σ̄ κ∗(�rσq, �r ′σ̄ q) =∑
σ 2σ̄ 〈�|a†

�rσqa
†
�r ′σ̄ q |�〉, etc.

D. Isoscalar and isovector densities

We now recouple the density matrices to isoscalars and
isovectors, which allow for a more transparent representation
of the physics contained in an energy functional,

ρ0(�r, �r ′) ≡
∑
σq

ρ(�rσq, �r ′σq), (60a)

ρ1,a(�r, �r ′) ≡
∑
σq ′q

ρ(�rσq, �r ′σq ′)τa,q ′q, (60b)

s0,ν(�r, �r ′) ≡
∑
σ ′σq

ρ(�rσq, �r ′σ ′q)σν,σ ′σ , (60c)

s1,a,ν(�r, �r ′) ≡
∑

σ ′σq ′q

ρ(�rσq, �r ′σ ′q ′)σν,σ ′σ τa,q ′q, (60d)

ρ̆0(�r, �r ′) ≡
∑
σq

4σ̄ q̄κ(�rσq, �r ′σ̄ q̄), (60e)

ρ̆1,a(�r, �r ′) ≡
∑
σq ′q

4σ̄ q̄ ′κ(�rσq, �r ′σ̄ q̄ ′)τa,q ′q, (60f)

s̆0,ν(�r, �r ′) ≡
∑
σ ′σq

4σ̄ ′q̄κ(�rσq, �r ′σ̄ ′q̄)σν,σ ′σ , (60g)

s̆1,a,ν(�r, �r ′) ≡
∑

σ ′σq ′q

4σ̄ ′q̄ ′κ(�rσq, �r ′σ̄ ′q̄ ′)σν,σ ′σ τa,q ′q, (60h)

where σν,σ ′σ ≡ 〈σ ′|σ̂ν |σ 〉 and τa,q ′q ≡ 〈q ′|τ̂a|q〉 are matrix
elements of spin and isospin Pauli matrices, respectively,
whereas q̄ ≡ −q. Densities with index 0 are isoscalar, whereas
densities with index (1, a) are Cartesian components of
isovector densities, with the index in fractur labeling its
components a ∈ {1, 2, 3}.

In this representation, local densities are obtained in the
same manner as above in Eq. (57).

When limiting oneself to pure proton and neutron density
matrices as done here, it follows that [69,70]

(i) the first (a = 1) and second (a = 2) isovector compo-
nents of all normal densities are zero,

(ii) all isoscalar pairing densities are zero,

(iii) the third component (a = 3) of all isovector pairing
densities is zero.

For the sake of compact notation, normal isovector densities
are written without reference to the isospin component

ρ1 ≡ ρ1,3 (61)

in what follows. For pair densities, however, the index for the
third isospin component has to be kept.

E. Link between the two representations

The definition of the pair densities in isoscalar/isovector
representation labeled with a “breve,” such as ρ̆t (�r), differs
from the ones labeled with a “tilde,” such as ρ̃q(�r), by
a transformation in isospin that is the homolog of the
transformation in spin space that leads from κ(�rσq, �r ′σ ′q ′) to
ρ̃(�rσq, �r ′σ ′q ′) [69,70]. Both transformations are performed
to obtain local pair densities from the skew-symmetric
κ(�rσq, �r ′σ ′q ′). As long as densities are represented in
proton-neutron representation, only the transformation in spin
space is needed, whereas the recoupling of the local densities
in isospin space requires also the transformation in isospin
space. For any normal density P , the transformation between
the two representations is given by

Pn ≡ 1
2 (P0 + P1), (62a)

Pp ≡ 1
2 (P0 − P1). (62b)

The first (P̆1,1) and second (P̆1,2) isovector components of
the pairing densities are related to neutron and proton pairing
densities P̃q , q ∈ {n, p}, according to [69]

P̃n ≡ 1
2 (P̆1,1 + iP̆1,2), (63a)

P̃p ≡ 1
2 (P̆1,1 − iP̆1,2). (63b)

F. Deriving the energy functional

The analytical derivation of the EDF kernel from the three-
body pseudopotential considered here is more cumbersome
than for the usual two-body Skyrme pseudopotential. The main
reason relates to the large number of terms obtained by multi-
plying the antisymmetrizer A123 with the exchange operators
of Eqs. (48), (48a), and (50). Still, the intrinsic difficulty of
calculating each individual term is the same and, for most of
them, the evaluation can be done in the same manner as for the
two-body Skyrme interaction. A slight complication arises in
a small number of terms where position-exchange operators
cannot be directly replaced with ±1 in the matrix elements.
For those terms, one has to pay additional attention to which
nonlocal density the gradient operators do act.

In the end, the main challenge is to handle the sheer
number of terms to be evaluated. The numerical code that
performs the necessary algebraic manipulations is based
on shape recognition and has been written as a Unix shell
script [65]. To present how the calculation proceeds in the
code, Appendix C lists the steps to be taken to reduce the
matrix elements of the pseudopotential to an EDF kernel that
depends on local densities only for a few typical terms arising
from the three-body pseudopotential.
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G. Redundant terms in the pseudopotential

Having derived the energy functional from the two- and
three-body pseudopotentials, we are now looking for strict
correlations between its terms. The analysis is performed at
the level of the EDF kernel, i.e., examining whether the energy
functional deriving from different potential terms are linearly
dependent. To do so, we apply the SVD to the matrix relating
the coupling constants multiplying each term in the EDF
kernel to the set of parameters entering the pseudopotential.
Whenever such a correlation is identified, the number of
independent terms in the original pseudopotential is reduced.

Two-body terms in Eq. (51) serve as a consistency check
for the procedure. In this case, the formal algebra code gives
the well-known energy functional of Refs. [23,69,70], and
the correlation analysis confirms that all terms are linearly
independent, as expected.

Most of the redundancies in the three-body pseudopotential
are easily identified given that the functional obtained from one
term is often directly proportional to the functional derived
from another term; see Table I for the identification of such
strict proportionality. For a smaller number of terms, however,
only the SVD can reveal their more intricate interdependency;
see Table II. For example, the energy functional obtained
from the term with parameter u2y221 in Eq. (51) equals the
sum of the energy functionals obtained from the terms with
parameters u2, u2y21, and u2y22 with relative weights −1, +2,
and −1, respectively. The two terms containing a single spin
or isospin-exchange operator in P̂

{u0,y0}
123,α

[Eq. (51d)] give an
energy functional that is zero. The term with simultaneous spin
and isospin exchange (or, equivalently, a position exchange)
in Eq. (51d) provides the same energy functional as the
term without an exchange operator, such that the three-body
term without gradient is in the end defined by a single free
parameter, as expected from earlier studies [8,59]. Last, but
not least, it turns out that all gradient terms of Eqs. (51g) and
(51h) are fully correlated to those in Eqs. (51e) and (51f),
respectively.

TABLE I. Equivalent terms in the three-body
pseudopotential of Eq. (51).

Term Correlated terms

u0 ← u0y03

u0y01 ← u0y02

u1 ← u1y13, u3y30, u3y33, u1y121, u1y122,
u3y321, u3y322, u1y123, u3y323

u1y11 ← u1y12, u3y31, u3y32, u1y120, u1y125,
u3y320, u3y325, u1y124, u3y324

u2 ← u4, u4y43, u5y522, u6y622, u2y222,
u5y534, u6y634

u2y21 ← u5y52, u5y513, u6y62, u5y520,
u6y620, u2y225, u5y525, u5y531,
u6y624, u2y224, u6y632, u6y633

u2y22 ← u4y42, u6y613, u5y532, u5y533

u2y23 ← u5y512, u6y612, u5y530, u5y535

u2y220 ← u4y41, u5y524, u6y625, u6y631

u2y221 ← u5y53, u5y521, u6y621, u6y635

u2y223 ← y63, u5y523, u6y623, u6y630

TABLE II. Correlations between terms of the pseudopotential
Eq. (51). See text.

Term u2 u2y21 u2y22

u2y23 = −1 +1 +1
u2y220 = +1 −1
u2y221 = −1 +2 −1
u2y223 = +2 −3

H. Final form of the pseudopotential

The irreducible set of central three-body operators contain-
ing two gradients is not unique as there are many equivalent
possibilities to select independent terms. For consistency with
the standard representation of the central part of the two-body
Skyrme interaction,

v̂12 = t0
(
1̂2 + x0P̂

σ
12

)
δ̂r

12 (64a)

+ t1

2

(
1̂2 + x1P̂

σ
12

)(�̂k †2
12 δ̂r

12 + δ̂r
12

�̂k 2
12

)
(64b)

+ t2
(
1̂2 + x2P̂

σ
12

)�̂k †
12 δ̂r

12 · �̂k12, (64c)

we choose a form that contains only spin-exchange operators.
This leads to

v̂123 = u0 δ̂r
13δ̂

r
23 (64d)

+ u1

2

(
1̂3 + y1P̂

σ
12

)(�̂k †2
12 δ̂r

13δ̂
r
23 + δ̂r

13δ̂
r
23

�̂k 2
12

)
(64e)

+u2
(
1̂3 + y21P̂

σ
12

)�̂k †
12 δ̂r

13δ̂
r
23 · �̂k12 (64f)

+u2y22
(
P̂ σ

13 + P̂ σ
23

)�̂k †
12 δ̂r

13δ̂
r
23 · �̂k12, (64g)

where u0, u1, y1, u2, y21, and y22 denote the final set of free
parameters complementing t0, x0, t1, x1, t2, and x2. There are
altogether 12 parameters for the central terms.

The complexity of the final three-body pseudopotential is
tremendously reduced compared to the original expression
[Eq. (51)]. As a matter of fact, its spatial content can be
obtained by inserting a mere δ operator δ̂r

23 into the central
two-body terms. Still, the spin-isospin structure in Eq. (64g)
is richer than that of the corresponding two-body operator of
Eq. (64c), such that the form of the three-body pseudopotential
could not have been completely guessed by analogy with the
two-body terms.

Compared to three-body contact potentials with two gra-
dients studied in the past, our final form contains one term,
Eq. (64g), that, to the best of our knowledge, has never
been considered before; see Table III. As a matter of fact,
most published work considered an even smaller subset.
Most importantly, these earlier works [54–58,60,62] discussed
only nuclear matter and/or spherical nuclei and ignored the
possibility of pairing correlations, such that they present only
incomplete expressions for the energy functional and the
corresponding one-body fields.

I. Energy functional

Starting from a Skyrme-like pseudopotential, each term of
the resulting energy functional can be expressed as the integral
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TABLE III. Three-body terms in Eq. (64) labeled by their
parameters that have been considered in earlier work as indicated
by +.

Reference u0 u1 u1y1 u2 u2y21 u2y22

[54] + + − − − −
[55] + + − − − −
[56] + − − + + −
[60] + + − − − −
[57] + + − + + −
[58] + + − − − −
[62] + + + + + −

over a local energy density, i.e.,

Eρ ≡
∫

d3r Eρ(�r), (65a)

Eρρ ≡
∫

d3r Eρρ(�r), (65b)

Eκκ ≡
∫

d3r Eκκ (�r), (65c)

Eρρρ ≡
∫

d3r Eρρρ(�r), (65d)

Eκκρ ≡
∫

d3r Eκκρ(�r). (65e)

We give now the energy functional in a representation using
isoscalar and isovector densities. Its representation in terms of
proton and neutron densities can be found in Appendix A.

1. Linear part

Omitting the argument �r of the local densities for
brevity, the linear energy density associated with the effective

one-body kinetic energy operator is given by

Eρ = h̄2

2m
τ0. (66)

2. Bilinear part

The normal part of the bilinear energy density is well known
and reads

Eρρ =
∑
t=0,1

[
A

ρ
t ρtρt + Aτ

t ρtτt + A
∇ρ
t ( �∇ρt ) · ( �∇ρt )

+
∑
μν

AJ
t Jt,μνJt,μν + As

t �st · �st + AT
t �st · �Tt

+A
j
t
�jt · �jt +

∑
μν

A∇s
t (∇μst,ν)(∇μst,ν)

]
, (67)

whereas its anomalous part is given by

Eκκ =
∑

a=1,2

[
Aρ̆ρ̆∗

1,aρ̆1,a + Aτ̆ ∗
τ̆ ∗

1,aρ̆1,a + Aτ̆ τ̆1,aρ̆
∗
1,a

+A∇ρ̆( �∇ρ̆∗
1,a) · ( �∇ρ̆1,a) +

∑
μν

AJ̆ J̆ ∗
1,a,μν J̆1,a,μν

]
.

(68)

The relations between the coupling constants of the energy
functional and the pseudopotential parameters are listed in
Tables IV and V.

3. Trilinear part

The normal part of the trilinear energy density reads

Eρρρ =
∑
t=0,1

{
B

ρ
t ρtρtρ0 + Bs

t �st · �stρ0 + Bτ
t ρtτtρ0 + Bτs

t τt�st · �s0 + BT
t �st · �Ttρ0 + BT

tt̄ �st · �Tt̄ρ1

+B
∇ρ
t ( �∇ρt ) · ( �∇ρt )ρ0 + B

j
t
�jt · �jtρ0 +

∑
μν

[
B∇s

t (∇μst,ν)(∇μst,ν)ρ0 + B
∇ρs
t (∇μρt )(∇μst,ν)s0,ν

+B
∇ρs
t t̄ (∇μρt )(∇μst̄,ν)s1,ν + BJ

t Jt,μνJt,μνρ0 + BJs
t jt,μJt,μνs0,ν + BJs

t t̄ jt,μJt̄,μνs1,ν

]
+
∑
μνλκ

ενλκ

[
B∇sJ

t (∇μst,ν)Jt,μλs0,κ + B∇sJ
t t̄ (∇μst,ν)Jt̄,μλs1,κ

]}+ Bs
10�s1 · �s0ρ1 + Bτ

10ρ1τ0ρ1 + Bτs
10τ0�s1 · �s1

+B
∇ρ
10 ( �∇ρ1) · ( �∇ρ0)ρ1 +

∑
μν

B∇s
10 (∇μs1,ν)(∇μs0,ν)ρ1 + B

j
10

�j1 · �j0ρ1 +
∑
μν

BJ
10J1,μνJ0,μνρ1, (69)

whereas its anomalous part is given by

Eκκρ =
∑

a=1,2

{
B

ρ̆
0 ρ̆∗

1,aρ̆1,aρ0 + Bτ̆ ∗
0 τ̆ ∗

1,aρ̆1,aρ0 + Bτ̆
0 ρ̆∗

1,aτ̆1,aρ0 + B
ρ̆τ
0 ρ̆∗

1,aρ̆1,aτ0 + B
∇ρ̆
0 ( �∇ρ̆∗

1,a) · ( �∇ρ̆1,a)ρ0

+B
∇ρ̆∗ρ̆
0 ( �∇ρ̆∗

1,a)ρ̆1,a · ( �∇ρ0) + B
ρ̆∗∇ρ̆
0 ρ̆∗

1,a( �∇ρ̆1,a) · ( �∇ρ0) + iB∇ρ̆∗j
0 ( �∇ρ̆∗

1,a)ρ̆1,a · �j0 + iB∇ρ̆j
0 ρ̆∗

1,a( �∇ρ̆1,a) · �j0

+
∑
μν

[
BJ̆

0 J̆ ∗
1,a,μν J̆1,a,μνρ0 + B

J̆ ∗ρ̆
0 J̆ ∗

1,a,μνρ̆1,aJ0,μν + B
ρ̆∗J̆
0 ρ̆∗

1,aJ̆1,a,μνJ0,μν + iB∇ρ̆∗J̆
0 (∇μρ̆∗

1,a)J̆1,a,μνs0,ν

+ iBJ̆ ∗∇ρ̆
0 J̆ ∗

1,a,μν(∇μρ̆1,a)s0,ν + iBJ̆ ∗∇s
0 J̆ ∗

1,a,μνρ̆1,a(∇μs0,ν) + iBJ̆∇s
0 ρ̆∗

1,aJ̆1,a,μν(∇μs0,ν)
]
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+
∑
μνλκ

ενλκ

[
iBJ̆ 2s

0 J̆ ∗
1,a,μν J̆1,a,μλs0,κ

]}+
∑

a,b=1,2

∑
c=3

εabc

{
iBρ̆

1 ρ̆∗
1,aρ̆1,bρ1,c + iBτ̆ ∗

1 τ̆ ∗
1,aρ̆1,bρ1,c + iBτ̆

1 ρ̆∗
1,aτ̆1,bρ1,c

+ iBρ̆τ
1 ρ̆∗

1,aρ̆1,bτ1,c + iB∇ρ̆
1 ( �∇ρ̆∗

1,a) · ( �∇ρ̆1,b)ρ1,c + iB∇ρ̆∗ρ̆
1 ( �∇ρ̆∗

1,a)ρ̆1,b · ( �∇ρ1,c) + iBρ̆∗∇ρ̆
1 ρ̆∗

1,a( �∇ρ̆1,b) · ( �∇ρ1,c)

+B
∇ρ̆∗j
1 ( �∇ρ̆∗

1,a)ρ̆1,b · �j1,c + B
∇ρ̆j
1 ρ̆∗

1,a( �∇ρ̆1,b) · �j1,c +
∑
μν

[
iBJ̆

1 J̆ ∗
1,a,μν J̆1,b,μνρ1,c + iBJ̆ ∗ρ̆

1 J̆ ∗
1,a,μνρ̆1,bJ1,c,μν

+ iBρ̆∗J̆
1 ρ̆∗

1,aJ̆1,b,μνJ1,c,μν + B
∇ρ̆∗J̆
1 (∇μρ̆∗

1,a)J̆1,b,μνs1,c,ν + B
J̆ ∗∇ρ̆
1 J̆ ∗

1,a,μν(∇μρ̆1,b)s1,c,ν

+BJ̆ ∗∇s
1 J̆ ∗

1,a,μνρ̆1,b(∇μs1,c,ν) + BJ̆∇s
1 ρ̆∗

1,aJ̆1,b,μν(∇μs1,c,ν)
]+

∑
μνλκ

ενλκ

[
BJ̆ 2s

1 J̆ ∗
1,a,μν J̆1,b,μλs1,c,κ

]}
. (70)

Sums over Greek indices run over x, y, and z components
of spatial vectors, whereas sums over indices in fractur are
over isovector components. In the normal part of the trilinear
EDF, the notation t̄ is such that t̄ = 1 (0) whenever t = 0 (1).
Coupling constants are related to pseudopotential parameters
according to Tables VI and VII.

4. Discussion

A few further comments on the structure of bilinear and
trilinear contributions to the EDF kernel are in order.

In the case of pure proton and neutron density matrices,
as considered here, only a pairing functional of isovector
character remains [69,70], as all isoscalar pair densities are
zero; see Sec. V D. The generic isospin structure of the terms
containing isovector densities is∑

a

P1,aP ′
1,a = P1,3 P ′

1,3, (71a)

∑
a

P̆∗
1,aP̆ ′

1,a = P̆∗
1,1P̆ ′

1,1 + P̆∗
1,2P̆ ′

1,2, (71b)

TABLE IV. Coefficients of the normal part of the bilinear EDF
kernel [Eq. (67)] as a function of the parameters of the pseudopotential
of Eqs. (64a)–(64c). Missing entries are zero.

t0 t0x0 t1 t1x1 t2 t2x2

A
ρ
0 = + 3

8

A
ρ
1 = − 1

8 − 1
4

As
0 = − 1

8 + 1
4

As
1 = − 1

8

Aτ
0 = + 3

16 + 5
16 + 1

4

Aτ
1 = − 1

16 − 1
8 + 1

16 + 1
8

AT
0 = − 1

16 + 1
8 + 1

16 + 1
8

AT
1 = − 1

16 + 1
16

A
∇ρ
0 = + 9

64 − 5
64 − 1

16

A
∇ρ
1 = − 3

64 − 3
32 − 1

64 − 1
32

A∇s
0 = − 3

64 + 3
32 − 1

64 − 1
32

A∇s
1 = − 3

64 − 1
64

A
j
0 = − 3

16 − 5
16 − 1

4

A
j
1 = + 1

16 + 1
8 − 1

16 − 1
8

AJ
0 = + 1

16 − 1
8 − 1

16 − 1
8

AJ
1 = + 1

16 − 1
16

∑
a

P1,aP ′
1,aP ′′

0 = P1,3 P ′
1,3P ′′

0 , (71c)

∑
a

P̆∗
1,aP̆ ′

1,aP ′′
0 = (P̆∗

1,1P̆ ′
1,1 + P̆∗

1,2P̆ ′
1,2)P ′′

0 , (71d)

∑
abc

εabcP̆∗
1,aP̆ ′

1,bP ′′
1,c = (P̆∗

1,1P̆ ′
1,2 − P̆∗

1,2P̆ ′
1,1)P ′′

1,3. (71e)

Equations (71a) to (71d) correspond to scalar products of
two isovectors coupled to isospin zero (and which might be
multiplied by a normal isoscalar density), whereas Eq. (71e)
displays a triple product of three isovectors that are thereby
also coupled to an isoscalar.

As all pair densities are, in general, complex, all terms
containing two different pair densities P̆∗ and P̆ ′ taking the
form P̆∗P̆ ′ + P̆P̆ ′∗ for the functional kernel to be real.

The bilinear part of the functional does not contain all
possible combinations of local densities compatible with
spatial symmetries [15,69]. Indeed, some of those combina-
tions only emerge in the functional derived from spin-orbit
and -tensor forces [28,34]. The same applies to the trilinear
part of the functional. We postpone the discussion of spin-orbit
and -tensor terms to a future publication [64].

There are two equivalent ways of writing the terms with
derivatives of local densities in the bilinear part of the EDF, i.e.,
the third and last term in Eq. (67) and the last term in Eq. (68),
which differ from each other by an integration by parts [15].
Usually, these terms are expressed in terms of Laplacians
[3,15,28,30,34]. Trilinear terms, however, do not offer such
a freedom. For internal consistency, we thus define associated
terms in the bilinear part of the EDF in terms of first derivatives
of local densities, at variance with most of the literature.

Trilinear terms Eρρρ and Eκκρ display a much more complex
structure than would be obtained by adding a mere density

TABLE V. Same as Table IV, but for the anomalous part of the
bilinear EDF kernel [Eq. (68)].

t0 t0x0 t1 t1x1 t2 t2x2

Aρ̆ = + 1
8 − 1

8

Aτ̆∗ = + 1
16 − 1

16

Aτ̆ = + 1
16 − 1

16

A∇ρ̆ = + 1
32 − 1

32

AJ̆ = + 1
8 + 1

8
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TABLE VI. Same as Table IV for the normal part of the trilinear
EDF [Eq. (69)].

u0 u1 u1y1 u2 u2y21 u2y22

B
ρ
0 = + 3

16

B
ρ
1 = − 3

16

Bτ
0 = + 3

32 + 15
64 + 3

16 + 3
32

Bτ
10 = − 1

32 + 1
32 − 5

64 − 1
16 − 7

32

Bτ
1 = − 1

16 − 1
32 + 1

32 + 1
16 − 1

16

B
∇ρ
0 = + 15

128 − 15
256 − 3

64 − 3
128

B
∇ρ
10 = − 5

64 + 1
32 + 5

128 + 1
32 + 7

64

B
∇ρ
1 = − 5

128 − 1
32 − 7

256 − 1
32 − 5

128

BJ
0 = + 1

32 − 1
16 − 7

64 − 1
8 + 1

32

BJ
10 = − 1

16 + 1
16 + 1

32 + 3
16

BJ
1 = + 1

32 − 7
64 − 1

16 − 1
32

Bs
0 = − 3

16

Bs
10 = + 3

8

Bs
1 = − 3

16

BT
0 = − 1

16 + 1
32 + 1

32 + 1
16 + 1

8

BT
10 = + 1

16 − 1
32 − 1

32 − 1
16 − 1

8

BT
01 = + 1

16 − 1
32

BT
1 = − 1

16 + 1
32

Bτs
0 = − 1

32 − 1
32 − 5

64 − 1
16 + 5

32

Bτs
10 = − 1

32 − 5
64 − 1

16 − 1
32

Bτs
1 = + 1

16 + 1
32 − 1

32 − 1
16 + 1

16

B∇s
0 = − 5

128 + 1
32 − 7

256 − 1
32 + 1

128

B∇s
10 = + 5

64 − 1
32 + 1

128 + 3
64

B∇s
1 = − 5

128 − 7
256 − 1

64 − 1
128

B
∇ρs
0 = − 5

64 − 1
32 + 5

128 + 1
32 − 5

64

B
∇ρs
01 = − 5

64 + 5
128 + 1

32 + 1
64

B
∇ρs
10 = + 5

64 + 1
128 + 1

32 + 1
64

B
∇ρs
1 = + 5

64 + 1
32 + 1

128 − 3
64

BJs
0 = + 1

16 + 1
16 + 5

32 + 1
8 − 5

16

BJs
01 = + 1

16 + 5
32 + 1

8 + 1
16

BJs
10 = − 1

16 + 1
32 + 1

8 + 1
16

BJs
1 = − 1

16 − 1
16 + 1

32 − 3
16

B∇sJ
0 = − 3

64 − 3
32 + 3

32

B∇sJ
01 = + 1

16 − 3
64 − 1

32 + 1
32

B∇sJ
10 = − 1

32 − 3
64 − 1

32 + 1
32

B∇sJ
1 = − 1

32 − 3
64 − 1

32 + 1
32

B
j
0 = − 3

32 − 15
64 − 3

16 − 3
32

B
j
10 = + 1

16 − 1
16 + 5

32 + 1
8 + 7

16

B
j
1 = + 1

32 + 1
16 − 7

64 − 1
8 − 5

32

dependence to the coupling constants entering Eρρ and Eκκ .
Although one can find trilinear terms that do have the structure
of terms appearing in the bilinear part of the functional times
ρ0(�r), relative weights between isoscalar and isovector terms,
or between time-even, time-odd, and pairing terms, are not the
same as in their bilinear counterparts. This is a consequence
of Pauli’s exclusion principle that is fully preserved for energy
functionals deriving from a three-body pseudopotential, but
violated for functionals deriving from density-dependent two-
body interactions; see the discussion in Refs. [8,60] regarding
terms without gradients.

TABLE VII. Same as Table IV, but for the anomalous part of the
trilinear EDF kernel [Eq. (70)].

u0 u1 u1y1 u2 u2y21 u2y22

B
ρ̆
0 = + 3

16

Bτ̆∗
0 = + 3

64 − 3
128

Bτ̆
0 = + 3

64 − 3
128

B
ρ̆τ
0 = + 1

32 + 1
64 + 5

64 + 1
16 − 1

16

B
∇ρ̆
0 = + 1

32 − 1
128 + 5

256 + 1
64 − 1

64

B
∇ρ̆∗ ρ̆
0 = + 5

128 + 1
128 − 5

256 − 1
64 + 1

64

B
ρ̆∗∇ρ̆
0 = + 5

128 + 1
128 − 5

256 − 1
64 + 1

64

B
∇ρ̆∗j
0 = − 1

64 − 1
128 − 5

128 − 1
32 + 1

32

B
∇ρ̆j
0 = + 1

64 + 1
128 + 5

128 + 1
32 − 1

32

BJ̆
0 = + 9

64 + 1
8 + 1

16

B
J̆ ∗ ρ̆
0 = − 1

64 − 3
64 − 1

16 + 1
16

B
ρ̆∗ J̆
0 = − 1

64 − 3
64 − 1

16 + 1
16

B
∇ρ̆∗ J̆
0 = + 1

128 + 3
128 + 1

32 − 1
32

B
J̆ ∗∇ρ̆
0 = − 1

128 − 3
128 − 1

32 + 1
32

BJ̆ ∗∇s
0 = − 1

64 + 3
128 + 1

32 − 1
32

BJ̆∇s
0 = + 1

64 − 3
128 − 1

32 + 1
32

BJ̆ 2s
0 = + 3

64 + 1
32 − 1

8

B
ρ̆
1 = − 3

16

Bτ̆∗
1 = − 3

64 + 3
128

Bτ̆
1 = − 3

64 + 3
128

B
ρ̆τ
1 = − 1

32 − 1
64 + 1

64 + 1
32 − 1

32

B
∇ρ̆
1 = − 1

32 + 1
128 + 1

256 + 1
128 − 1

128

B
∇ρ̆∗ ρ̆
1 = − 5

128 − 1
128 − 1

256 − 1
128 + 1

128

B
ρ̆∗∇ρ̆
1 = − 5

128 − 1
128 − 1

256 − 1
128 + 1

128

B
∇ρ̆∗j
1 = − 1

64 − 1
128 + 1

128 + 1
64 − 1

64

B
∇ρ̆j
1 = + 1

64 + 1
128 − 1

128 − 1
64 + 1

64

BJ̆
1 = − 3

64 − 1
32 − 5

32

B
J̆ ∗ ρ̆
1 = + 1

64 − 3
64 − 1

32 + 1
32

B
ρ̆∗ J̆
1 = + 1

64 − 3
64 − 1

32 + 1
32

B
∇ρ̆∗ J̆
1 = + 1

128 − 3
128 − 1

64 + 1
64

B
J̆ ∗∇ρ̆
1 = − 1

128 + 3
128 + 1

64 − 1
64

BJ̆ ∗∇s
1 = − 1

64 − 3
128 − 1

64 + 1
64

BJ̆∇s
1 = + 1

64 + 3
128 + 1

64 − 1
64

BJ̆ 2s
1 = − 3

64 − 1
16 − 1

32

Keeping the coupling constants consistent with Tables IV,
V, VI, and VII, the energy functional (66)–(70) is invariant
under arbitrary local gauge transformations; see Appendix E.
This property indicates the local character of the underlying
pseudopotential [14]. Galilean invariance, which is a necessary
requirement for interactions to be meaningfully used in
dynamical calculations such as time-dependent HF, is one
special case of the more general invariance under arbitrary
gauge transformations and therefore automatically fulfilled.

The first critical check that the formal algebra code is
proceeding correctly is provided by the fact that well-known
results (EDF, one-body fields, infinite matter properties)
associated with the central part of the (density-independent)
two-body Skyrme interaction are recovered. For the trilinear
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part, two nontrivial, though indirect, tests give us further
confidence; i.e., (i) the local gauge invariance of the EDF
kernel is exactly fulfilled as mentioned above and (ii) the
numerical code that tracks both the real and the imaginary
parts of the EDF kernel computes the latter to be strictly zero
for each Hermitian piece of the pseudopotential.

Properties of homogeneous nuclear matter, both symmetric
and asymmetric in isospin and/or spin, along with Landau
parameters, are discussed in in Appendix B. Additionally, the
energy functional in the often-used proton-neutron represen-
tation is provided in Appendix B, whereas the expressions for
the associated one-body fields entering the HFB equations of
motion are listed in Appendix D.

VI. CONCLUSIONS AND OUTLOOK

We have constructed the most general central Skyrme-type
three-body pseudopotential containing up to two derivatives,
derived the corresponding EDF (i.e., time-even and time-odd
contributions to the normal part of the EDF along with
the complete anomalous part) and one-body fields as well
as computed an extensive set of infinite nuclear-matter
properties. Our objective is to build EDF parametrizations
that derive strictly from (density-independent) two- and
three-body Skyrme-like pseudopotentials as required for
spuriosity-free MR calculations.

The main observations and conclusions of the present work
are as follows.

(i) The central three-body pseudopotential is defined out of
six independent parameters in total. Combined with the
central part of the two-body Skyrme pseudopotential,
this leads to a total of 12 parameters prior to considering
spin-orbit and -tensor terms.

(ii) The structure of some of the three-body terms contain-
ing gradients cannot be conjectured by just inserting
an additional δ function into a two-body Skyrme
interaction of standard form.

(iii) The EDF trilinear kernel possesses a much more
complex structure than the functional resulting from
a density-dependent two-body vertex, in particular as
far as time-odd and pairing parts are concerned.

The main points for future studies are as follows.

(i) The structure of the effective three-body interaction
to be used in nuclear EDF calculations has been
investigated in Ref. [74] on the basis of a general
analysis of low-density finite fermion systems. The
starting point of the inquiry is the Lee and Yang
expansion of the ground-state energy of an homo-
geneous low-density fermionic gas governed by a
short-range two-body interaction [75]. Combining this
expansion with ab initio Green’s function Monte Carlo
calculations of dilute fermions in a harmonic trap, it is
concluded that the finite range and nonlocality of the
effective three-body interaction, resulting in a nonlocal
trilinear energy kernel, may play an important role
in inhomogeneous systems. Whether our much more
computationally friendly Skyrme-like parametrization
of the trilinear energy kernel based on a momentum
expansion to second order can fully account for these

nonlocality effects remains to be demonstrated. The toy
system studied in Ref. [74] could constitute a useful test
case to address this question in the near future, at the
price of extending the analysis to the part of the effective
three-body interaction induced by genuine three-body
forces.

(ii) The discussion regarding three-body spin-orbit
and -tensor pseudopotentials constructed along the
same lines as here will be given elsewhere [64]. These
do not contribute to bulk properties of nonpolarized
nuclear matter, but can be used to fine tune the
nucleon-number dependence of the shell structure with
more freedom than when using two-body spin-orbit and
-tensor interactions only [28,30].

(iii) A first tentative adjustment of the parameters of the
newly derived EDF kernel, complemented by the
Coulomb interaction, is currently under way [76].
The most important question to answer before pro-
ceeding further regards the capacity of the presently
developed pseudopotential-based EDF to give a satis-
fying description of bulk properties of nuclei, including
pairing correlations.

(iv) To avoid ultraviolet divergences, a contact interaction
such as ours has to be accompanied by a cutoff when
used in HFB [77] or beyond-mean-field calculations,
such as RPA, Quasiparticle RPA or many-body per-
turbation theory [78,79]. The preservation of the Pauli
principle, which is the prime motivation of our work,
demands that one and the same cutoff is consistently
used everywhere. An important question to be answered
will concern how to formulate such a cutoff that can be
efficiently used in all many-body methods of interest in
a representation-independent manner.

(v) When combined with a Coulomb energy functional
that contains exact exchange and pairing contributions,
the pseudopotential-based EDF constructed here can be
safely used in MR EDF calculations performing sym-
metry restoration and/or configuration mixing based on
the GCM.
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APPENDIX A: NEUTRON-PROTON
REPRESENTATION OF THE EDF

A widely used alternative to the representation of the EDF
kernel in terms of isoscalar and isovector densities presented
in Sec. V I is a representation in terms of proton and neutron
densities.

1. Energy density

a. Linear part

The kinetic energy density is given by

Eρ = h̄2

2m

∑
q

τq . (A1)
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b. Bilinear part

The normal part of the bilinear energy density reads

Eρρ =
∑

q

{
Aρ1ρ1ρqρq + Aρ1ρ2ρqρq̄ + As1s1 �sq · �sq + As1s2 �sq · �sq̄ + Aτ1ρ1τqρq + Aτ1ρ2τqρq̄ + AT1s1 �Tq · �sq + AT1s2 �Tq · �sq̄

+A∇ρ1∇ρ1 ( �∇ρq) · ( �∇ρq) + A∇ρ1∇ρ2 ( �∇ρq) · ( �∇ρq̄) +
∑
μν

[
A∇s1∇s1 (∇μsq,ν)(∇μsq,ν) + A∇s1∇s2 (∇μsq,ν)(∇μsq̄,ν)

+AJ1J1Jq,μνJq,μν + AJ1J2Jq,μνJq̄,μν

]+ Aj1j1 �jq · �jq + Aj1j2 �jq · �jq̄

}
, (A2)

whereas its anomalous part takes the form

Eκκ =
∑

q

[
Aρ̃∗

1 ρ̃1 ρ̃∗
q ρ̃q + Aτ̃ ∗

1 ρ̃1 τ̃ ∗
q ρ̃q + Aτ̃1ρ̃

∗
1 τ̃q ρ̃

∗
q + A∇ρ̃∗

1 ∇ρ̃1 ( �∇ρ̃∗
q ) · ( �∇ρ̃q) +

∑
μν

A
J̃ ∗

1 J̃1

1 J̃ ∗
q,μνJ̃q,μν

]
. (A3)

Index q̄ appearing in the sums over nucleon species q denotes nucleons of the other kind, q̄ �= q. The relation between the
parameters of the pseudopotential and the coefficients of the energy functional are given in Tables VIII and IX.

c. Trilinear part

The normal part of the trilinear energy density reads

Eρρρ =
∑

q

{
Bρ1ρ1ρ2ρqρqρq̄ + Bs1s1ρ2 �sq · �sqρq̄ + Bτ1ρ1ρ2τqρqρq̄ + Bτ1ρ1ρ1τqρqρq + Bτ1ρ2ρ2τqρq̄ρq̄ + BT1s1ρ2 �Tq · �sqρq̄

+BT1s2ρ1 �Tq · �sq̄ρq + Bτ1s1s1τq�sq · �sq + Bτ1s1s2τq�sq · �sq̄ + Bτ1s2s2τq�sq̄ · �sq̄ + B∇ρ1∇ρ1ρ1 ( �∇ρq) · ( �∇ρq)ρq

+B∇ρ1∇ρ1ρ2 ( �∇ρq) · ( �∇ρq)ρq̄ + B∇ρ1∇ρ2ρ1 ( �∇ρq) · ( �∇ρq̄)ρq + Bj1j1ρ1 �jq · �jqρq + Bj1j1ρ2 �jq · �jqρq̄ + Bj1j2ρ1 �jq · �jq̄ρq

+
∑
μν

[
B∇s1∇s1ρ1 (∇μsq,ν)(∇μsq,ν)ρq + B∇s1∇s1ρ2 (∇μsq,ν)(∇μsq,ν)ρq̄ + B∇s1∇s2ρ1 (∇μsq,ν)(∇μsq̄,ν)ρq

+B∇ρ1∇s1s1 (∇μρq)(∇μsq,ν)sq,ν + B∇ρ1∇s1s2 (∇μρq)(∇μsq,ν)sq̄,ν + B∇ρ1∇s2s1 (∇μρq)(∇μsq̄,ν)sq,ν

+B∇ρ1∇s2s2 (∇μρq)(∇μsq̄,ν)sq̄,ν+BJ1J1ρ1Jq,μνJq,μνρq + BJ1J1ρ2Jq,μνJq,μνρq̄ + BJ1J2ρ1Jq,μνJq̄,μνρq

+ Bj1J1s1jq,μJq,μνsq,ν + Bj1J1s2jq,μJq,μνsq̄,ν + Bj1J2s1jq,μJq̄,μνsq,ν + Bj1J2s2jq,μJq̄,μνsq̄,ν

]
+
∑
μνλκ

ενλκ

[
B∇s1J1s1 (∇μsq,ν)Jq,μλsq,κ + B∇s1J1s2 (∇μsq,ν)Jq,μλsq̄,κ + B∇s1J2s1 (∇μsq,ν)Jq̄,μλsq,κ

+ B∇s1J2s2 (∇μsq,ν)Jq̄,μλsq̄,κ

]⎫⎬⎭ , (A4)

whereas its anomalous part is given by

Eκκρ =
∑

q

{
Bρ̃∗

1 ρ̃1ρ2 ρ̃∗
q ρ̃qρq̄ + Bτ1ρ̃

∗
1 ρ̃1τq ρ̃

∗
q ρ̃q + Bτ2ρ̃

∗
1 ρ̃1τq̄ ρ̃

∗
q ρ̃q + Bτ̃ ∗

1 ρ̃1ρ2 τ̃ ∗
q ρ̃qρq̄ + Bτ̃1ρ̃

∗
1 ρ2 τ̃q ρ̃

∗
qρq̄

+B∇ρ̃∗
1 ∇ρ̃1ρ1 ( �∇ρ̃∗

q ) · ( �∇ρ̃q)ρq + B∇ρ̃∗
1 ∇ρ̃1ρ2 ( �∇ρ̃∗

q ) · ( �∇ρ̃q)ρq̄ + B∇ρ̃∗
1 ∇ρ1ρ̃1 ( �∇ρ̃∗

q ) · ( �∇ρq)ρ̃q

+B∇ρ̃1∇ρ1ρ̃
∗
1 ( �∇ρ̃q) · ( �∇ρq)ρ̃∗

q + B∇ρ̃∗
1 ∇ρ2ρ̃1 ( �∇ρ̃∗

q ) · ( �∇ρq̄)ρ̃q + B∇ρ̃1∇ρ2ρ̃
∗
1 ( �∇ρ̃q) · ( �∇ρq̄)ρ̃∗

q

+ iB∇ρ̃∗
1 j1ρ̃1 ( �∇ρ̃∗

q ) · �jq,μρ̃q + iB∇ρ̃∗
1 j2ρ̃1 ( �∇ρ̃∗

q ) · �jq̄ ρ̃q + iB∇ρ̃1j1ρ̃
∗
1 ( �∇ρ̃q) · �jqρ̃

∗
q + iB∇ρ̃1j2ρ̃

∗
1 ( �∇ρ̃q) · �jq̄ ρ̃

∗
q

+
∑
μν

[
BJ̃ ∗

1 J̃1ρ1 J̃ ∗
q,μν J̃q,μνρq + BJ̃ ∗

1 J̃1ρ2 J̃ ∗
q,μν J̃q,μνρq̄ + BJ̃ ∗

1 J1ρ̃1 J̃ ∗
q,μνJq,μνρ̃q + BJ̃ ∗

1 J2ρ̃1 J̃ ∗
q,μνJq̄,μνρ̃q

+BJ̃1J1ρ̃
∗
1 J̃q,μνJq,μνρ̃

∗
q + BJ̃1J2ρ̃

∗
1 J̃q,μνJq̄,μνρ̃

∗
q + iB∇ρ̃∗

1 J̃1s1 (∇μρ̃∗
q )J̃q,μνsq,ν + iB∇ρ̃∗

1 J̃1s2 (∇μρ̃∗
q )J̃q,μνsq̄,ν

+ iB∇ρ̃1J̃
∗
1 s1 (∇μρ̃q)J̃ ∗

q,μνsq,ν + iB∇ρ̃1J̃
∗
1 s2 (∇μρ̃q)J̃ ∗

q,μνsq̄,ν + iB∇s1J̃
∗
1 ρ̃1 (∇μsq,ν)J̃ ∗

q,μνρ̃q

+ iB∇s2J̃
∗
1 ρ̃1 (∇μsq̄,ν)J̃ ∗

q,μνρ̃q + iB∇s1J̃1ρ̃
∗
1 (∇μsq,ν)J̃q,μνρ̃

∗
q + iB∇s2J̃1ρ̃

∗
1 (∇μsq̄,ν)J̃q,μνρ̃

∗
q

]
+
∑
μνλκ

ενλκ

[
iBJ̃ ∗

1 J̃1s1 J̃ ∗
q,μν J̃q,μλsq,κ + iBJ̃ ∗

1 J̃1s2 J̃ ∗
q,μν J̃q,μλsq̄,κ

]}
. (A5)

The relations between the parameters of the pseudopotential and the coefficients of the energy functional are listed in Tables X
and XI.
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TABLE VIII. Coupling constants of the normal bilinear part of
the EDF in neutron-proton representation [Eq. (A2)] as a function of
the pseudopotential parameters of Eqs. (64a) to (64c). Missing entries
are zero.

t0 t0x0 t1 t1x1 t2 t2x2

Aρ1ρ1 = + 1
4 − 1

4

Aρ1ρ2 = + 1
2 + 1

4

As1s1 = − 1
4 + 1

4

As1s2 = + 1
4

Aτ1ρ1 = + 1
8 − 1

8 + 3
8 + 3

8

Aτ1ρ2 = + 1
4 + 1

8 + 1
4 + 1

8

AT1s1 = − 1
8 + 1

8 + 1
8 + 1

8

AT1s2 = + 1
8 + 1

8

A∇ρ1∇ρ1 = + 3
32 − 3

32 − 3
32 − 3

32

A∇ρ1∇ρ2 = + 3
16 + 3

32 − 1
16 − 1

32

A∇s1∇s1 = − 3
32 + 3

32 − 1
32 − 1

32

A∇s1∇s2 = + 3
32 − 1

32

Aj1j1 = − 1
8 + 1

8 − 3
8 − 3

8

Aj1j2 = − 1
4 − 1

8 − 1
4 − 1

8

AJ1J1 = + 1
8 − 1

8 − 1
8 − 1

8

AJ1J2 = − 1
8 − 1

8

APPENDIX B: INFINITE NUCLEAR MATTER

1. General definitions

A first insight into the physics described by a given energy
functional is provided by the analysis of the model system
of homogeneous infinite nuclear matter (INM), where the
Coulomb interaction is neglected. Although it is an idealized
system, INM has relevance to the study of several real systems,
e.g., the physics of neutron stars or the dynamics of supernovae
explosions. In this context, one is first and foremost interested
in computing the equation of state (EOS) of such a system,
i.e., its energy per nucleon as a function of its density.
Below, pairing correlations are omitted as they little impact
bulk properties such as the EOS. However, one should note
that pairing properties, such as pairing gaps, of INM are of
importance to the physics of neutron stars; see, e.g., Ref. [80].

Infinite nuclear matter being translationally invariant, it is
convenient to use a plane-wave basis,

〈�rσq|�kσ ′q ′〉 = ϕ�kσ ′q ′(�rσq) = (2π )−
3
2 exp(i�k · �r)δσσ ′δqq ′ ,

(B1)

TABLE IX. Same as Table VIII, but for the anomalous bilinear
part of the EDF [Eq. (A3)].

t0 t0x0 t1 t1x1 t2 t2x2

Aρ̃∗
1 ρ̃1 = + 1

4 − 1
4

Aτ̃∗
1 ρ̃1 = + 1

8 − 1
8

Aτ̃1 ρ̃∗
1 = + 1

8 − 1
8

A∇ρ̃∗
1 ∇ρ̃1 = + 1

16 − 1
16

A
J̃ ∗

1 J̃1
1 = + 1

4 + 1
4

TABLE X. Same as Table VIII for the normal part of the trilinear
EDF kernel [Eq. (A4)].

u0 u1 u1y1 u2 u2y21 u2y22

Bρ1ρ1ρ2 = + 3
4

Bs1s1ρ2 = − 3
4

Bτ1ρ1ρ1 = + 3
16 + 3

16 − 3
16

Bτ1ρ1ρ2 = + 1
4 − 1

16 + 5
8 + 1

2 + 5
8

Bτ1ρ2ρ2 = + 1
8 + 1

16 + 1
8 + 1

16 − 1
16

BT1s1ρ2 = − 1
4 + 1

16 + 1
8 + 1

8 + 1
4

BT1s2ρ1 = + 1
16 + 1

8 + 1
4

Bτ1s1s1 = − 3
16 − 3

16 + 3
16

Bτ1s1s2 = − 1
16 + 3

8

Bτ1s2s2 = − 1
8 − 1

16 − 1
8 − 1

16 + 1
16

B∇ρ1∇ρ1ρ1 = − 3
64 − 3

64 + 3
64

B∇ρ1∇ρ1ρ2 = + 5
32 − 1

16 − 1
8 − 7

64 − 11
64

B∇ρ1∇ρ2ρ1 = + 5
16 + 1

16 − 1
16 − 1

32 + 1
32

B∇s1∇s1ρ1 = − 3
64 − 3

64 + 3
64

B∇s1∇s1ρ2 = − 5
32 + 1

16 − 1
16 − 3

64 − 3
64

B∇s1∇s2ρ1 = + 1
16 − 1

32 + 1
32

B∇ρ1∇s1s1 = + 3
32 + 3

32 − 3
32

B∇ρ1∇s1s2 = − 1
32 − 5

32

B∇ρ1∇s2s1 = − 1
16 + 1

32 − 1
32

B∇ρ1∇s2s2 = − 5
16 − 1

16 + 1
16 + 1

32 − 1
32

Bj1j1ρ1 = − 3
16 − 3

16 + 3
16

Bj1j1ρ2 = − 1
8 + 1

8 − 1
2 − 7

16 − 11
16

Bj1j2ρ1 = − 1
4 − 1

8 − 1
4 − 1

8 + 1
8

BJ1J1ρ1 = − 3
16 − 3

16 + 3
16

BJ1J1ρ2 = + 1
8 − 1

8 − 1
4 − 3

16 − 3
16

BJ1J2ρ1 = − 1
8 − 1

8 + 1
8

Bj1J1s1 = + 3
8 + 3

8 − 3
8

Bj1J1s2 = − 1
8 − 5

8

Bj1J2s1 = + 1
8 + 1

8 − 1
8

Bj1J2s2 = + 1
4 + 1

8 + 1
4 + 1

8 − 1
8

B∇s1J1s1 = − 3
16 − 3

16 + 3
16

B∇s1J1s2 = − 1
16 − 1

16 + 1
16

B∇s1J2s1 = − 1
16 − 1

16 + 1
16

B∇s1J2s2 = + 1
8 − 1

16 + 1
16

where qσ = {n ↑, n ↓, p ↑, p ↓} labels proton/neutron states
with spin up/down. Neglecting pairing, the SR state reduces
to a Slater determinant obtained by filling individual orbitals
ϕ�kσ ′q ′ (�rσq) up to the Fermi momentum; i.e., the normal
density matrix is diagonal in the plane-wave basis and equal
to 1 for states characterized by |�k| � kF,qσ and 0 otherwise,
where kF,qσ denotes the spin- and isospin-dependent Fermi
momentum. In doing so, we make the usual assumption that the
respective Fermi surface is spherical for each particle species
and spin direction.

When calculating densities for each of the combinations
qσ , the sum over basis states (i, j ) in Eq. (57) becomes an
integral over the Fermi spheres of radius kF,qσ , leading to
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TABLE XI. Same as Table VIII, but for the anomalous part of the
trilinear EDF kernel [Eq. (A5)].

u0 u1 u1y1 u2 u2y21 u2y22

Bρ̃∗
1 ρ̃1ρ2 = + 3

4

Bτ̃∗
1 ρ̃1ρ2 = + 3

16 − 3
32

Bτ̃1 ρ̃∗
1 ρ2 = + 3

16 − 3
32

Bτ1 ρ̃∗
1 ρ̃1 = + 3

16 + 3
16 − 3

16

Bτ2 ρ̃∗
1 ρ̃1 = + 1

8 + 1
16 + 1

8 + 1
16 − 1

16

B∇ρ̃∗
1 ∇ρ̃1ρ1 = + 3

64 + 3
64 − 3

64

B∇ρ̃∗
1 ∇ρ̃1ρ2 = + 1

8 − 1
32 + 1

32 + 1
64 − 1

64

B∇ρ̃∗
1 ∇ρ1 ρ̃1 = − 3

64 − 3
64 + 3

64

B∇ρ̃∗
1 ∇ρ2 ρ̃1 = + 5

32 + 1
32 − 1

32 − 1
64 + 1

64

B∇ρ̃1∇ρ1 ρ̃∗
1 = − 3

64 − 3
64 + 3

64

B∇ρ̃1∇ρ2 ρ̃∗
1 = + 5

32 + 1
32 − 1

32 − 1
64 + 1

64

BJ̃ ∗
1 J̃1ρ1 = + 3

16 + 3
16 − 3

16

BJ̃ ∗
1 J̃1ρ2 = + 3

8 + 5
16 + 7

16

BJ̃ ∗
1 J1 ρ̃1 = − 3

16 − 3
16 + 3

16

BJ̃ ∗
1 J2 ρ̃1 = − 1

16 − 1
16 + 1

16

BJ̃1J1 ρ̃∗
1 = − 3

16 − 3
16 + 3

16

BJ̃1J2 ρ̃∗
1 = − 1

16 − 1
16 + 1

16

BJ̃ ∗
1 J̃1s1 = + 3

16 + 3
16 − 3

16

BJ̃ ∗
1 J̃1s2 = − 1

16 − 5
16

B∇ρ̃∗
1 J̃1s1 = + 3

32 + 3
32 − 3

32

B∇ρ̃∗
1 J̃1s2 = + 1

32 + 1
32 − 1

32

B∇ρ̃∗
1 j1ρ̃1 = − 3

32 − 3
32 + 3

32

B∇ρ̃∗
1 j2ρ̃1 = − 1

16 − 1
32 − 1

16 − 1
32 + 1

32

B∇ρ̃1 J̃ ∗
1 s1 = − 3

32 − 3
32 + 3

32

B∇ρ̃1 J̃ ∗
1 s2 = − 1

32 − 1
32 + 1

32

B∇s1 J̃ ∗
1 ρ̃1 = + 3

32 + 3
32 − 3

32

B∇s2 J̃ ∗
1 ρ̃1 = − 1

16 + 1
32 − 1

32

B∇ρ̃1j1 ρ̃∗
1 = + 3

32 + 3
32 − 3

32

B∇ρ̃1j2 ρ̃∗
1 = + 1

16 + 1
32 + 1

16 + 1
32 − 1

32

B∇s1 J̃1 ρ̃∗
1 = − 3

32 − 3
32 + 3

32

B∇s2 J̃1 ρ̃∗
1 = + 1

16 − 1
32 + 1

32

expressions for the matter and kinetic densities of the form

ρqσ = 1

6π2
k3
F,qσ , (B2a)

τqσ = 3

20

2

3π2
k5
F,qσ . (B2b)

With the choice of a Fermi surface centered at �k = 0, current
densities vanish �jqσ = 0. Also, all gradients of local densities
are zero ∇νρqσ = 0 by construction, as are the pair densities.

The densities (B2a) for the four different combinations
of spin and particle species can be recoupled to scalar-
isoscalar ρ0, scalar-isovector ρ1, vector-isoscalar s0, and
vector-isovector s1 densities [26],

ρ0 = ρn↑ + ρn↓ + ρp↑ + ρp↓, (B3a)

ρ1 = ρn↑ + ρn↓ − ρp↑ − ρp↓, (B3b)

s0 = ρn↑ − ρn↓ + ρp↑ − ρp↓, (B3c)

s1 = ρn↑ − ρn↓ − ρp↑ + ρp↓. (B3d)

The inverse relationships read

ρn↑ = 1
4 (1 + Iτ + Iσ + Iστ )ρ0, (B4a)

ρn↓ = 1
4 (1 + Iτ − Iσ − Iστ )ρ0, (B4b)

ρp↑ = 1
4 (1 − Iτ + Iσ − Iστ )ρ0, (B4c)

ρp↓ = 1
4 (1 − Iτ − Iσ + Iστ )ρ0, (B4d)

where the relative isospin Iτ ≡ ρ1/ρ0, spin Iσ ≡ s0/ρ0, and
spin-isospin Iστ ≡ s1/ρ0 excesses, taking values −1 � Ii �
1, have been introduced. Typical cases of interest are (i)
symmetric nuclear matter (Iτ = Iσ = Iστ = 0), (ii) isospin-
asymmetric nuclear matter (Iτ �= 0), (iii) spin-polarized nu-
clear matter (Iσ �= 0), and (iv) isospin-asymmetric spin-
polarized nuclear matter (Iτ �= 0, Iσ �= 0 and Iστ �= 0), but
the definitions given above allow also for the coverage of all
intermediate cases.

In analogy to Eq. (B3) one can also define isoscalar and
isovector kinetic densities using Eqs. (B2a) and (B2b),

τ0 = τn↑ + τn↓ + τp↑ + τp↓ = 3
5csρ

5
3

0 F
(0)
5/3(Iτ , Iσ , Iστ ),

(B5a)

τ1 = τn↑ + τn↓ − τp↑ − τp↓ = 3
5csρ

5
3

0 F
(τ )
5/3(Iτ , Iσ , Iστ ),

(B5b)

T0 = τn↑ − τn↓ + τp↑ − τp↓ = 3
5csρ

5
3

0 F
(σ )
5/3(Iτ , Iσ , Iστ ),

(B5c)

T1 = τn↑ − τn↓ − τp↑ + τp↓ = 3
5csρ

5
3

0 F
(στ )
5/3 (Iτ , Iσ , Iστ ),

(B5d)

where cs ≡ (3π2/2)
2
3 and cn ≡ (3π2)

2
3 and where functions

F of the relative isospin, spin, and spin-isospin excesses
introduced in Ref. [26] have been used. Their definitions are
listed in Appendix B 2 along with useful properties.

As mentioned above, the main quantity of interest is the
EOS that can be easily calculated from Eqs. (66), (67), and
(69). The fact that most of the local densities are zero in INM
implies that quantities of interest will be expressed in terms of
a limited number of couplings.

2. F functions

The kinetic densities in INM can be expressed in a
very compact manner in terms of functions F (0)

m (Iτ , Iσ , Iστ ),
F (τ )

m (Iτ , Iσ , Iστ ), F (σ )
m (Iτ , Iσ , Iστ ), and F (στ )

m (Iτ , Iσ , Iστ ) that
have been introduced in Ref. [26]:

F (0)
m ≡ 1

4

[
(1 + Iτ + Iσ + Iστ )m + (1 + Iτ − Iσ − Iστ )m

+ (1 − Iτ + Iσ − Iστ )m + (1 − Iτ − Iσ + Iστ )m
]
,

(B6a)

F (τ )
m ≡ 1

4

[
(1 + Iτ + Iσ + Iστ )m + (1 + Iτ − Iσ − Iστ )m

− (1 − Iτ + Iσ − Iστ )m − (1 − Iτ − Iσ + Iστ )m
]
,

(B6b)

F (σ )
m ≡ 1

4

[
(1 + Iτ + Iσ + Iστ )m − (1 + Iτ − Iσ − Iστ )m

+ (1 − Iτ + Iσ − Iστ )m − (1 − Iτ − Iσ + Iστ )m
]
,

(B6c)
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F (στ )
m ≡ 1

4

[
(1 + Iτ + Iσ + Iστ )m − (1 + Iτ − Iσ − Iστ )m

−(1 − Iτ + Iσ − Iστ )m + (1 − Iτ − Iσ + Iστ )m
]
.

(B6d)

Their first derivatives with respect to spin, isospin, and spin-
isospin excesses that are needed for the derivation of some
nuclear-matter properties are

∂F (τ )
m

∂Iτ

= ∂F (σ )
m

∂Iσ

= ∂F (στ )
m

∂Iστ

= mF
(0)
m−1, (B7a)

∂F (0)
m

∂Iτ

= ∂F (σ )
m

∂Iστ

= ∂F (στ )
m

∂Iσ

= mF
(τ )
m−1, (B7b)

∂F (0)
m

∂Iσ

= ∂F (τ )
m

∂Iστ

= ∂F (στ )
m

∂Iτ

= mF
(σ )
m−1, (B7c)

∂F (0)
m

∂Iστ

= ∂F (τ )
m

∂Iσ

= ∂F (σ )
m

∂Iτ

= mF
(στ )
m−1, (B7d)

whereas their second derivatives are given by

∂2F
(j )
m

∂I 2
i

= m(m − 1)F (j )
m−2, (B8)

for any i, j ∈ {0, τ, σ, στ }. Special values that are appear in
the nuclear-matter properties discussed below are

F
(0)
0 (Iτ , Iσ , Iστ ) = 1, F

(i)
0 (Iτ , Iσ , Iστ ) = 0, (B9a)

F
(0)
1 (Iτ , Iσ , Iστ ) = 1, F

(i)
1 (Iτ , Iσ , Iστ ) = Ii, (B9b)

and

F (0)
m (0, 0, 0) = 1, (B10a)

F (i)
m (0, 0, 0) = 0, (B10b)

F (τ )
m (0, 1, 0) = F (τ )

m (0, 0, 1) = 0, (B10c)

F (σ )
m (1, 0, 0) = F (σ )

m (0, 0, 1) = 0, (B10d)

F (στ )
m (1, 0, 0) = F (στ )

m (0, 1, 0) = 0, (B10e)

F (0)
m (1, 0, 0) = F (0)

m (0, 1, 0) = F (0)
m (0, 0, 1) = 2m−1,

(B10f)

F (τ )
m (1, 0, 0) = F (σ )

m (0, 1, 0) = F (στ )
m (0, 0, 1) = 2m−1,

(B10g)

F (0)
m (1, 1, 1) = F (i)

m (1, 1, 1) = 4m−1, (B10h)

where i ∈ {τ, σ, στ }.

3. Symmetric nuclear matter

Symmetric nuclear matter (SNM) is characterized by an
equal number of protons and neutrons as well as of spin-up and
spin-down particles in both nucleons species, ρ1 = Iτ = 0 and

Iσ = Iστ = 0. Only ρ0 and τ0 are nonzero, i.e., ρn = ρp = 1
2ρ0

and τn = τp = 1
2τ0. The resulting energy per particle reads

EH

A
≡ EH

ρ0
= 3

5

h̄2

2m
cs ρ

2
3

0 + (Aρ
0 + B

ρ
0 ρ0

)
ρ0

+ 3

5
cs

(
Aτ

0 + Bτ
0 ρ0
)
ρ

5
3

0 . (B11)

Symmetric nuclear matter presents a stable state such that
a minimum energy is obtained for some finite value of the
density ρsat. The pressure of the fluid relates to the first
derivative of the EOS with respect to the isoscalar density,
which in SNM reads

P ≡ ρ2
0
∂EH/A

∂ρ0

∣∣∣∣
A

= 2

5

h̄2

2m
cs ρ

5
3

0 + (Aρ
0 + 2B

ρ
0 ρ0

)
ρ2

0

+ cs

(
Aτ

0 + 8

5
Bτ

0 ρ0

)
ρ

8
3

0 . (B12)

The saturation density ρsat is naturally obtained as the solution
of P (ρsat) = 0.

The incompressibility of the nuclear fluid relates to the
second derivative of the EOS with respect to the isoscalar
density and expresses the energy cost to compress the nuclear
fluid. It is defined as

K ≡ 18P

ρ0
+ 9ρ2

0
∂2EH/A

∂ρ2
0

, (B13)

such that at equilibrium

K∞ ≡ 9ρ2
0
∂2EH /A

∂ρ2
0

∣∣∣∣
ρ0=ρsat

= −6

5

h̄2

2m
cs ρ

2
3

sat + 18B
ρ
0 ρ2

sat + 6cs

(
Aτ

0 + 4Bτ
0 ρ0

)
ρ

5
3

sat,

(B14)

which needs to be positive for the system to be stable against
density fluctuations.

4. Asymmetric nuclear matter

More general cases of homogeneous nuclear matter are
characterized by (i) unequal proton- and neutron-matter
densities, i.e., Iτ �= 0, (ii) a global spin polarization, i.e.,
Iσ �= 0 and (iii) a spin polarization that differs for neutron
and proton species, i.e., Iστ �= 0. Based on Eqs. (66), (67), and
(69), the EOS of such a nuclear fluid is given by

EH

A
= 3

5

h̄2

2m
csF

(0)
5/3(Iτ , Iσ , Iστ )ρ

2
3

0 + (Aρ
0 + B

ρ
0 ρ0

)
ρ0 + (Aρ

1 + B
ρ
1 ρ0

)
ρ0I

2
τ + (As

0 + Bs
0 ρ0

)
ρ0I

2
σ + Bs

10 ρ2
0Iσ Iτ Iστ

+ (As
1 + Bs

1 ρ0
)
ρ0I

2
στ + 3

5

[(
Aτ

0 + Bτ
0 ρ0 + Bτ

10 ρ0I
2
τ + Bτs

0 ρ0I
2
σ + Bτs

10 ρ0I
2
στ

)
F

(0)
5/3(Iτ , Iσ , Iστ )

+ (Aτ
1 Iτ + Bτ

1 ρ0Iτ + Bτs
1 ρ0Iσ Iστ

)
F

(τ )
5/3

(
Iτ , Iσ , Iστ

)+ (AT
0 Iσ + BT

0 ρ0Iσ + BT
10 ρ0Iτ Iστ

)
F

(σ )
5/3(Iτ , Iσ , Iστ )

+ (AT
1 Iστ + BT

1 ρ0Iστ + BT
01 ρ0Iσ Iτ

)
F

(στ )
5/3 (Iτ , Iσ , Iστ )

]
csρ

5
3

0 . (B15)
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Spin, isospin, and spin-isospin symmetry energies are analogs of K∞ with respect to spin, isospin, and spin-isospin excesses,
respectively, i.e., they characterize the stiffness of the EOS with respect to generating such nonzero excesses. At saturation of
SNM, i.e., when Iσ = Iτ = Iστ = 0 and ρ0 = ρsat, the three symmetry energies are given by

aτ ≡ 1

2

∂2EH/A

∂I 2
τ

∣∣∣∣
Iσ =Iτ =Iστ =0

= 1

3

h̄2

2m
csρ

2
3

0 + (Aρ
1 + B

ρ
1 ρ0

)
ρ0 +

[
1

3

(
Aτ

0 + Bτ
0 ρ0

)+ Aτ
1 + Bτ

1 ρ0 + 3

5
Bτ

10 ρ0

]
csρ

5
3

0 ,

(B16a)

aσ ≡ 1

2

∂2EH/A

∂I 2
σ

∣∣∣∣
Iσ =Iτ =Iστ =0

= 1

3

h̄2

2m
csρ

2
3

0 + (As
0 + Bs

0 ρ0
)

ρ0 +
[

1

3

(
Aτ

0 + Bτ
0 ρ0

)+ AT
0 + BT

0 ρ0 + 3

5
Bτs

0 ρ0

]
csρ

5
3

0 ,

(B16b)

aστ ≡ 1

2

∂2EH/A

∂I 2
στ

∣∣∣∣
Iσ =Iτ =Iστ =0

= 1

3

h̄2

2m
csρ

2
3

0 + (As
1 + Bs

1 ρ0
)

ρ0 +
[

1

3

(
Aτ

0 + Bτ
0 ρ0

)+ AT
1 + BT

1 ρ0 + 3

5
Bτs

10 ρ0

]
csρ

5
3

0 ,

(B16c)

and must be positive for the minimum of the EOS to be
stable.

Two other quantities of interest are intimately con-
nected to the skin thickness of heavy isospin-asymmetric
nuclei, i.e., to the difference between their neutron and
proton radii. These quantities are the density-symmetry
coefficient L,

L ≡ 3ρ
∂

∂ρ

(
1

2

∂2EH/A

∂I 2
τ

) ∣∣∣∣
Iσ =Iτ =Iστ =0

= 2

3

h̄2

2m
csρ

2
3

0 + 3
(
A

ρ
1 + 2B

ρ
1 ρ0

)
ρ0

+
(

5

3
Aτ

0 + 8

3
Bτ

0 ρ0 + 5Aτ
1 + 8Bτ

1 ρ0 + 24

5
Bτ

10 ρ0

)
csρ

5
3

0 ,

(B17)

and the symmetry incompressibility coefficient,

Ksym ≡ 9ρ2 ∂2

∂ρ2

(
1

2

∂2EH/A

∂I 2
τ

) ∣∣∣∣
Iσ =Iτ =Iστ =0

= −2

3

h̄2

2m
csρ

2
3

0 + 10

3

(
Aτ

0 + 4Bτ
0 ρ0

)
csρ

5
3

0

+ 18B
ρ
1 ρ2

0 + [10
(
Aτ

1 + 4Bτ
1 ρ0
)+ 24Bτ

10ρ0
]
csρ

5
3

0 .

(B18)

5. Pure neutron matter

A particular case of isospin-asymmetric nuclear matter is
(spin-saturated) pure neutron matter (PNM) obtained for Iτ =
1, Iσ = Iστ = 0. The EOS of PNM reads

EH

A
= 3

5

h̄2

2m
cnρ

2
3

0 + (Aρ
0 + B

ρ
0 ρ0

)
ρ0

+ (Aρ
1 + B

ρ
1 ρ0

)
ρ0 + 3

5
cn

(
Aτ

0 + Bτ
0 ρ0

)
ρ

5
3

0

+ 3

5
cn

(
Aτ

1 + Bτ
1 ρ0 + Bτ

10 ρ0
)
ρ

5
3

0 . (B19)

6. Effective masses

The average energy of a nucleon inside the nuclear medium
is the sum of a kinetic term plus a momentum-dependent self-
energy term5 coming from its interaction with all the other
nucleons. This energy can be rewritten as a kinetic energy
term involving an effective mass. One can thus define four
different effective masses for neutron or proton with spin-up
or -down, i.e., m∗

n↑, m∗
n↓, m∗

p↑, and m∗
p↓. The expressions for

such effective masses at arbitrary values of the spin, isospin,
and spin-isospin excesses read as

m

m∗
qσ

≡ 2m

h̄2

∂EH

∂τqσ

= 1 + 2m

h̄2

[(
Aτ

0 + Bτ
0 ρ0
)
ρ0

+ (Aτ
1 + Bτ

1 ρ0
)
ηqIτρ0 + (AT

0 + BT
0 ρ0
)
ησ Iσ ρ0

+ (AT
1 + BT

1 ρ0
)
ησηqIστρ0

+ (Bτ
10I

2
τ + Bτs

0 I 2
σ + Bτs

10I 2
στ + Bτs

1 ηqIσ Iστ

+BT
10ησ Iτ Iστ + BT

01ησηqIτ Iσ

)
ρ2

0

]
, (B20)

where

ηq =
{+1 for q = n,

−1 for q = p,
(B21)

ησ =
{+1 for σ =↑,

−1 for σ =↓.
(B22)

One can further define effective masses of the particle
species q

m

m∗
q

≡ 1

2

(
m

m∗
q↑

+ m

m∗
q↓

)

= 1 + 2m

h̄2

[(
Aτ

0 + Bτ
0 ρ0
)
ρ0 + (Aτ

1 + Bτ
1 ρ0
)
ηqIτρ0

+ (Bτ
10I

2
τ + Bτs

0 I 2
σ + Bτs

10I 2
στ + Bτs

1 ηqIσ Iστ

)
ρ2

0

]
,

(B23a)

5The standard notion of (physical) self-energy that appears in many-
body theories is not to be confused with the notion of spurious self-
interaction in energy functionals as invoked in the Introduction.
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and of particles with spin orientation σ

m

m∗
σ

≡ 1

2

(
m

m∗
nσ

+ m

m∗
pσ

)

= 1 + 2m

h̄2

[(
Aτ

0 + Bτ
0 ρ0
)
ρ0 + (AT

0 + BT
0 ρ0
)
ησ Iσρ0

+ (Bτ
10I

2
τ + Bτs

0 I 2
σ + Bτs

10I 2
στ + BT

10ησ Iτ Iστ

)
ρ2

0

]
.

(B23b)

Equivalently, one can define scalar-isoscalar, scalar-isovector,
vector-isoscalar, and vector-isovector effective masses m∗

st ,

m

m∗
00

≡ 1

4

(
m

m∗
n↑

+ m

m∗
n↓

+ m

m∗
p↑

+ m

m∗
p↓

)
= 2m

h̄2

∂EH

∂τ0
,

(B24a)

m

m∗
01

≡ 1

4

(
m

m∗
n↑

+ m

m∗
n↓

− m

m∗
p↑

− m

m∗
p↓

)
= 2m

h̄2

∂EH

∂τ1
,

(B24b)

m

m∗
10

≡ 1

4

(
m

m∗
n↑

− m

m∗
n↓

+ m

m∗
p↑

− m

m∗
p↓

)
= 2m

h̄2

∂EH

∂T0
,

(B24c)

m

m∗
11

≡ 1

4

(
m

m∗
n↑

− m

m∗
n↓

− m

m∗
p↑

+ m

m∗
p↓

)
= 2m

h̄2

∂EH

∂T1
,

(B24d)

which for our functional gives

m

m∗
00

= 1 + 2m

h̄2

[(
Aτ

0 + Bτ
0 ρ0
)
ρ0

+ (Bτ
10I

2
τ + Bτs

0 I 2
σ + Bτs

10I 2
στ

)
ρ2

0

]
, (B25a)

m

m∗
01

= 2m

h̄2

[(
Aτ

1 + Bτ
1 ρ0
)
Iτρ0 + Bτs

1 Iσ Iστ ρ
2
0

]
, (B25b)

m

m∗
10

= 2m

h̄2

[(
AT

0 + BT
0 ρ0
)
Iσ ρ0 + BT

10Iτ Iστ ρ
2
0

]
, (B25c)

m

m∗
11

= 2m

h̄2

[(
AT

1 + BT
1 ρ0
)
Iστ ρ0 + BT

01Iτ Iσ ρ2
0

]
. (B25d)

The implication of these nonstandard definitions of the effec-
tive masses will be expanded on in a forthcoming publication
[81]. Note that m∗

01 is different than the usual definition of
the isovector effective mass. The various effective masses at
the saturation point of SNM can be trivially obtained from
the expressions given above by setting Iτ = Iσ = Iστ = 0.

7. Landau parameters

a. Introduction

Landau parameters are interesting quantities [82–84] to
compute for several reasons. Two sum rules must be fulfilled by
Landau parameters for the Pauli principle to be respected [85].
In the present case where the EDF kernel does derive from a
pseudopotential, the two sum rules are fulfilled analytically by
construction.

There are also two other sum rules that derive from the
antisymmetry of the scattering amplitude, which is determined
by the residual interaction. The antisymmetry of the residual
interaction itself, to which Landau parameters are related,
however, does not ensure the antisymmetry of the observable
scattering amplitude [86].

Landau parameters can also be used to detect and con-
trol infinite-wavelength instabilities. Such instabilities appear
when Landau parameters do not respect the stability conditions
[85,87],

1 + Xl

2l + 1
> 0, (B26)

where Xl = {Fl, F
′
l , Gl,G

′
l} with l = 0, 1 denotes the Landau

parameters. In particular, four of the Landau parameters, F0,
F ′

0, G0, and G′
0 are also related to the stiffness of the EOS,

i.e., its second derivatives with respect to density, isospin,
spin, and spin-isospin fluctuations. This leads to the following
relationships at saturation:

K∞ = 6
h̄2k2

F

2m∗
0

(1 + F0), (B27a)

aτ = 1

3

h̄2k2
F

2m∗
0

(1 + F ′
0), (B27b)

aσ = 1

3

h̄2k2
F

2m∗
0

(1 + G0), (B27c)

aστ = 1

3

h̄2k2
F

2m∗
0

(1 + G′
0). (B27d)

For the EOS of SNM to have a stable minimum, all these
second derivatives have to be larger than zero, such that F0,
F ′

0, G0, and G′
0 are greater than −1, which is equivalent to the

stability conditions (B26).
It has to be noted that parametrizations must not only

be stable against infinite wavelength instabilities signaled by
Landau parameters, but also against finite-size instabilities that
probe gradient terms in the EDF [32–34,88,89]. The control
of finite-size instabilities for the newly proposed Skyrme-
like parametrizations will be discussed in a forthcoming
publication.

b. Definition

Landau parameters are calculated via the residual particle-
hole interaction in INM, which, in general, is defined through

vres
12 ≡ 〈�r ′

1σ
′
1q1, �r ′

2σ
′
2q2|v̂res

12 |�r1σ1q1, �r2σ2q2〉

= ∂2E
∂ρ(�r ′

2σ
′

2 q2, �r2σ2q2)∂ρ(�r ′
1σ

′
1 q1, �r1σ1q1)

(B28)

and can be written in INM, for momenta lying on the Fermi
surface, as

vres
12 = N−1

0

∑
l

[Fl + F ′
l τ 1 ◦ τ2 + Gl �σ1 · �σ2

+G′
l �σ1 · �σ2 τ1 ◦ τ2]Pl(cos θ ), (B29)
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TABLE XII. Landau parameters expressed in terms of the
pseudopotential parameters. Missing entries are zero.

f0 f ′
0 g0 g′

0 f1 f ′
1 g1 g′

1

t0
3
4 − 1

4 − 1
4 − 1

4

t0x0 − 1
2

1
2

t1k
2
F

3
8 − 1

8 − 1
8 − 1

8 − 3
8

1
8

1
8

1
8

t1x1k
2
F − 1

4
1
4

1
4 − 1

4

t2k
2
F

5
8

1
8

1
8

1
8 − 5

8 − 1
8 − 1

8 − 1
8

t2x2k
2
F

1
2

1
4

1
4 − 1

2 − 1
4 − 1

4

u0ρ0
9
8 − 3

8 − 3
8 − 3

8

u1ρ0k
2
F

39
80 − 13

80 − 13
80 − 13

80 − 3
16

1
16

1
16

1
16

u1y1ρ0k
2
F − 1

40
1
40

1
8 − 1

8

u2ρ0k
2
F

39
32 − 1

32 − 1
32 − 1

32 − 15
32 − 7

32 − 7
32 − 7

32

u2y21ρ0k
2
F

39
40

1
20

1
20 − 3

40 − 3
8 − 1

4 − 1
4 − 1

8

u2y22ρ0k
2
F

39
80 − 31

80
35
80 − 3

80 − 3
16 − 5

16
1
16 − 1

16

where coefficients Fl, F ′
l , Gl , and G′

l are Landau parameters,
N0 ≡ 2m∗

0kF /π2h̄2 is a normalization factor, Pl(x) are Legen-
dre polynomials, and θ is the angle between the incoming
momentum of nucleon 1 and the outgoing momentum of
nucleon 2. In the present case, Landau parameters read
explicitly as

f0 = 2A
ρ
0 + 2Aτ

0 k2
F + 6B

ρ
0 ρ0 + 2Bτ

0 τ0 + 4Bτ
0 k2

F ρ0,

(B30a)

f ′
0 = 2A

ρ
1 + 2Aτ

1 k2
F + 2B

ρ
1 ρ0 + 2Bτ

10 τ0 + 2Bτ
1 k2

F ρ0,

(B30b)

g0 = 2As
0 + 2AT

0 k2
F + 2Bs

0 ρ0 + 2Bτs
0 τ0 + 2BT

0 k2
F ρ0,

(B30c)

g′
0 = 2As

1 + 2AT
1 k2

F + 2Bs
1 ρ0 + 2Bτs

10 τ0 + 2BT
1 k2

F ρ0,

(B30d)

f1 = 2A
j
0 k2

F + 2B
j
0 k2

F ρ0, (B30e)

f ′
1 = 2A

j
1 k2

F + 2B
j
1 k2

F ρ0, (B30f)

g1 = 2AJ
0 k2

F + 2BJ
0 k2

F ρ0, (B30g)

g′
1 = 2AJ

1 k2
F + 2BJ

1 k2
F ρ0, (B30h)

where fl ≡ Fl/N0, f ′
l ≡ F ′

l /N0, gl ≡ Gl/N0, and g′
l ≡

G′
l/N0 and where we have used Eq. (B5) to express τ0 in

terms of k2
F and ρ0. The Landau parameters with l � 2 are zero

for a Skyrme-type interaction with only up to two gradients.
The expressions for the Landau parameters in terms of the
pseudopotential parameters are given in Table XII.

c. Sum rules from the residual interaction

The EDF from which the residual interaction derives has
been constructed from an antisymmetrized vertex such that
the Pauli principle is respected throughout. When the anti-
symmetrized vertex is a two-body pseudopotential multiplied
by a two-body antisymmetrizer, taking two derivatives of the
EDF with respect to nonlocal densities gives back the original
antisymmetrized vertex. When the antisymmetrized vertex is
made of two- plus three-body pseudopotentials multiplied

by appropriate antisymmetrizers, the residual particle-hole
interaction remains an antisymmetrized two-body vertex. Con-
sequently, the exclusion principle demands that the residual
interaction Eq. (B29) is antisymmetric under the exchange
of incoming or outgoing particles. This is equivalent to
requiring that incoming and outgoing two-body states carry
odd values of L + S + T , where L denotes the two-body
orbital angular momentum of the relative motion, whereas S
and T characterize the two-body spin and isospin, respectively.
Starting from Eq. (B29) with �p1 = �p ′

2, i.e., θ = 0, and
requiring that the antisymmetry holds for each spin-isospin
channel separately, provides two sum rules,∑

l

(Fl + F ′
l + Gl + G′

l) = 0, (B31a)

∑
l

(Fl − 3F ′
l − 3Gl + 9G′

l) = 0, (B31b)

where we have used that Pl(1) = 1 for all l. Equation (B31a)
holds for spin and isospin triplet (S = T = 1) two-body states,
for which �σ1 · �σ2 = τ1 ◦ τ2 = 1. Equation (B31b) holds for
spin and isospin singlet (S = T = 0) two-body states for
which �σ1 · �σ2 = τ1 ◦ τ2 = −3. In both cases the relative orbital
angular momentum of the two-body state is odd.

Sum rules (B31) are fulfilled for Landau parameters
derived from the presently developed two- plus three-body
pseudopotential; see Table XII. This property provides a
stringent test that the derivation of the EDF and of the residual
interaction are correct.

Note that in the presence of tensor-type pseudopotentials
there are additional contributions to the sum rules [84,89,90].

d. Sum rules from the scattering amplitude

The residual particle-hole interaction is not a physically
observable quantity in contrast to the scattering amplitude �12

associated with the motion of a particle-hole pair [86]. The
latter is related to the former through an integral equation, such
that the particle-hole interaction can be seen as the irreducible
vertex and the scattering amplitude as the total vertex. Analogs
to Eq. (B31) can be derived from the antisymmetry of the
scattering amplitude. Plugging the expansion of the scattering
amplitude on Legendre polynomials,

�12 ≡ N−1
0

∑
l

[Bl + Cl τ1 ◦ τ2 + Dl �σ1 · �σ2

+El �σ1 · �σ2 τ1 ◦ τ2]Pl(cos θ ), (B32)

into the integral equation that relates it to the residual
interaction (B29), one obtains, in the absence of tensor terms,
the relationships [82,86,91]

Bl = Fl

1 + Fl/(2l + 1)
, (B33a)

Cl = F ′
l

1 + F ′
l /(2l + 1)

, (B33b)

Dl = Gl

1 + Gl/(2l + 1)
, (B33c)

El = G′
l

1 + G′
l/(2l + 1)

. (B33d)
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The reasoning used in Appendix B 7 c now provides sum rules
for the expansion coefficients of �12,∑

l

(Bl + Cl + Dl + El) = 0, (B34a)

∑
l

(Bl − 3Cl − 3Dl + 9El) = 0, (B34b)

which can be rearranged as [91]∑
l

(Bl + 3El) = 0, (B35a)

∑
l

(
2

3
Bl + Cl + Dl

)
= 0. (B35b)

In Born approximation, i.e., when the magnitude of Landau
parameters entering Eq. (B33) are negligible compared to
2l + 1, Eq. (B34) reduces to Eq. (B31). However, Landau
parameters are not small in nuclear matter, such that, physically
speaking, sum rule (B31) cannot be justified starting from the
scattering amplitude.

Interestingly, the antisymmetric character of the residual
particle-hole interaction does not guarantee the antisymmetry
of the scattering amplitude, which is frequently broken in
practice. Through the iteration process of the integral equation,

reducible diagrams might appear without their Pauli principle
counterparts [86,92], which is a fingerprint of the lack of
complexity of the irreducible residual interaction. Inserting
density dependencies into the pseudopotential has allowed
in some cases to effectively compensate for such missing
diagrams [86] at the price of compromising the antisymmetry
of the residual interaction itself and thus of violating Eq. (B31).
In the end, fulfilling both the antisymmetry of the irreducible
vertex and of the scattering amplitude is a difficult task. In the
present case, the former is ensured analytically, whereas the
latter is not. The extent to which it is violated will depend on
the values of the parameters that result from a given fit.

APPENDIX C: STEPS TO DERIVE THE EDF KERNEL

This section lists the steps to derive the energy functional
in proton-neutron representation from the pseudopotentials
defined in Eq. (51). We limit the illustration to a few
normal and anomalous terms resulting from the operator v̂ex =
u2y21 P̂ σ

12
�̂k †

12δ̂
r
13δ̂

r
23 · �̂k12, one of the terms contained in v̂2

123
[Eq. (46f)]. Such an operator is used in Eqs. (44a) and
(44b) where one has to multiply it to the antisymmetrizers.
For the normal part one must thus evaluate P̂ σ

12Â123, which
leads to

P̂ σ
12Â123 = P̂ σ

12 − P̂ r
12P̂

q
12 − P̂ r

23P̂
σ
12P̂

σ
23P̂

q
23 − P̂ r

13P̂
σ
12P̂

σ
13P̂

q
13 + P̂ r

12P̂
r
23P̂

σ
23P̂

q
12P̂

q
23 + P̂ r

12P̂
r
13P̂

σ
13P̂

q
12P̂

q
13. (C1)

Selecting only the third term as an example, i.e., −v̂exP23, which is also obtained in the pairing part when evaluating Â12
123P̂

σ
12Â12

123,
one computes its matrix elements by inserting closure relations on H3 in the coordinate basis according to

−〈ijk|v̂exP23|lmn〉 = −
∫

dξ1dξ2dξ3dξ4dξ5dξ6 ϕ
†
i (ξ1)ϕ†

j (ξ2)ϕ†
k(ξ3)〈ξ1ξ2ξ3|v̂exP23|ξ4ξ5ξ6〉ϕl(ξ4)ϕm(ξ5)ϕn(ξ6). (C2)

1. Spatial part of the matrix element

Using Eqs. (17) and (22), one obtains

〈�r1�r2�r3|�̂k †
12δ̂

r
13δ̂

r
23 · �̂k12P̂

r
23|�r4�r5�r6〉 = �k ∗

�r1�r2
〈�r1�r2�r3|δ̂r

13δ̂
r
23|�r4�r6�r5〉 �k�r4�r6

. (C3)

Applying the gradients on the wave functions to the right and to the left, one can write

−〈ijk|v̂exP23|lmn〉 = −
∫

dξ1dξ2dξ3dξ4dξ5dξ6 〈σ1q1σ2q2σ3q3|P̂ σ
12P̂

σ
23P̂

q
23|σ4q4σ5q5σ6q6〉 〈�r1�r2�r3|δ̂r

13δ̂
r
23|�r4�r6�r5〉

× �k ∗
�r1�r2

�k�r4�r6
ϕ
†
i (ξ1)ϕ†

j (ξ2)ϕ†
k(ξ3)ϕl(ξ4)ϕm(ξ5)ϕn(ξ6) (C4a)

= −
∫

dξ1dξ2dξ3dξ4dξ5dξ6 〈σ1q1σ2q2σ3q3|P̂ σ
12P̂

σ
23P̂

q
23|σ4q4σ5q5σ6q6〉 δ(�r1 − �r4)δ(�r2 − �r6)

× δ(�r3 − �r5)δ(�r4 − �r5)δ(�r6 − �r5) �k ∗
�r1�r2

�k�r4�r6
ϕ
†
i (ξ1)ϕ†

j (ξ2)ϕ†
k(ξ3)ϕl(ξ4)ϕm(ξ5)ϕn(ξ6). (C4b)

With that at hand, Eqs. (44a) and (44b) become

Eρρρ
ex = −1

2

∑
ijklmn

〈ijk|v̂exP23|lmn〉ρliρmjρnk (C5a)

= −1

2

∫
dξ1dξ2dξ3dξ4dξ5dξ6

〈
P̂ σ

12P̂
σ
23P̂

q
23

〉
δ({�r} = �r) �k ∗

�r1�r2
�k�r4�r6

ρ(ξ4, ξ1)ρ(ξ5, ξ2)ρ(ξ6, ξ3), (C5b)
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Eκκρ
ex = −1

2

∑
ijklmn

〈ijk|v̂exP23|lmn〉κ∗
ij κlmρnk (C5c)

= −1

2

∫
dξ1dξ2dξ3dξ4dξ5dξ6

〈
P̂ σ

12P̂
σ
23P̂

q
23

〉
δ({�r} = �r) �k ∗

�r1�r2
· �k�r4�r6

κ∗(ξ1, ξ2)κ(ξ4, ξ5)ρ(ξ6, ξ3), (C5d)

where we have introduced the shorthands〈
P̂ σ

12P̂
σ
23P̂

q
23

〉 ≡ 〈σ1q1σ2q2σ3q3|P̂ σ
12P̂

σ
23P̂

q
23|σ4q4σ5q5σ6q6〉, (C6a)

δ({�r} = �r) ≡ δ(�r1 − �r4)δ(�r2 − �r6)δ(�r3 − �r5)δ(�r4 − �r5)δ(�r6 − �r5). (C6b)

2. Isospin part of the matrix element

The matrix element of the isospin-exchange operator is trivially evaluated using Eq. (22),

〈q1q2q3|P̂ q
23|q4q5q6〉 = 〈q1q2q3|q4q6q5〉 = δq1q4δq2q6δq3q5 . (C7)

Recalling that local densities are diagonal in isospin, the integrand is null if q4 �= q1, q5 �= q2, q6 �= q3 for the normal part and if
q1 �= q2, q4 �= q5, q6 �= q3 for the anomalous part. One thus obtains

Eρρρ
ex = −1

2

∫
dζ1dζ2dζ3dζ4dζ5dζ6

∑
q1,q2

〈
P̂ σ

12P̂
σ
23

〉
δ({�r} = �r)�k ∗

�r1�r2
· �k�r4�r6

ρq1 (ζ4, ζ1)ρq2 (ζ5, ζ2)ρq2 (ζ6, ζ3), (C8a)

Eκκρ
ex = −1

2

∫
dζ1dζ2dζ3dζ4dζ5dζ6

∑
q1

〈
P̂ σ

12P̂
σ
23

〉
δ({�r} = �r) �k ∗

�r1�r2
· �k�r4�r6

κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)ρq1 (ζ6, ζ3), (C8b)

where ζ ≡ �r, σ and 〈P̂ σ
12P̂

σ
23〉 ≡ 〈σ1σ2σ3|P̂ σ

12P̂
σ
23|σ4σ5σ6〉. More generally, matrix elements at play in the normal part of the EDF

are

〈q1q2q3|1|q4q5q6〉 →
∑

q1,q2,q3

ρq1 (ζ4, ζ1)ρq2 (ζ5, ζ2)ρq3 (ζ6, ζ3), (C9a)

〈q1q2q3|P̂ q
12|q4q5q6〉 →

∑
q1,q3

ρq1 (ζ4, ζ1)ρq1 (ζ5, ζ2)ρq3 (ζ6, ζ3), (C9b)

〈q1q2q3|P̂ q
23|q4q5q6〉 →

∑
q1,q2

ρq1 (ζ4, ζ1)ρq2 (ζ5, ζ2)ρq2 (ζ6, ζ3), (C9c)

〈q1q2q3|P̂ q
13|q4q5q6〉 →

∑
q1,q2

ρq1 (ζ4, ζ1)ρq2 (ζ5, ζ2)ρq1 (ζ6, ζ3), (C9d)

〈q1q2q3|P̂ q
12P̂

q
23|q4q5q6〉 →

∑
q1

ρq1 (ζ4, ζ1)ρq1 (ζ5, ζ2)ρq1 (ζ6, ζ3), (C9e)

〈q1q2q3|P̂ q
12P̂

q
13|q4q5q6〉 →

∑
q1

ρq1 (ζ4, ζ1)ρq1 (ζ5, ζ2)ρq1 (ζ6, ζ3), (C9f)

whereas those at play for the pairing part are
〈q1q2q3|1|q4q5q6〉 →

∑
q1,q2

κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)ρq2 (ζ6, ζ3), (C10a)

〈q1q2q3|P̂ q
12|q4q5q6〉 →

∑
q1,q2

κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)ρq2 (ζ6, ζ3), (C10b)

〈q1q2q3|P̂ q
23|q4q5q6〉 →

∑
q1

κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)ρq1 (ζ6, ζ3), (C10c)

〈q1q2q3|P̂ q
13|q4q5q6〉 →

∑
q1

κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)ρq1 (ζ6, ζ3), (C10d)

〈q1q2q3|P̂ q
12P̂

q
23|q4q5q6〉 →

∑
q1

κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)ρq1 (ζ6, ζ3), (C10e)

〈q1q2q3|P̂ q
12P̂

q
13|q4q5q6〉 →

∑
q1

κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)ρq1 (ζ6, ζ3). (C10f)
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3. Spin part of the matrix element for the normal energy

Using Eqs. (27), one arrives straightforwardly after one step of algebraic computation at

Eρρρ
ex = −1

8

∫
d3r1d

3r2d
3r3d

3r4d
3r5d

3r6

∑
q1,q2

δ({�r} = �r) �k ∗
�r1�r2

· �k�r4�r6

[
ρq1 (�r4, �r1)ρq2 (�r5, �r2)ρq2 (�r6, �r3)

+ �sq1 (�r4, �r1) · �sq2 (�r5, �r2)ρq2 (�r6, �r3) + ρq1 (�r4, �r1)�sq2 (�r5, �r2) · �sq2 (�r6, �r3) + �sq1 (�r4, �r1)ρq2 (�r5, �r2) · �sq2 (�r6, �r3)

+ i
∑
νκλ

ενκλsq1,ν(�r4, �r1)sq2,λ(�r5, �r2)sq2,κ (�r6, �r3)

]
, (C11)

where Eqs. (53a) and (53b) have been utilized under the form∑
σ1σ4

〈σ1|1|σ4〉ρq1 (ζ4, ζ1) = ρq1 (�r4, �r1), (C12a)

∑
σ1σ4

〈σ1|σ̂ν |σ4〉ρq1 (ζ4, ζ1) = sq1,ν(�r4, �r1). (C12b)

4. Spin part of the matrix element for the pairing energy

Expressing the pairing part of the EDF kernel in terms of nonlocal pair-spin densities is trickier. Using Eq. (27) to express
spin-exchange operators in terms of spin Pauli matrices, let us take one resulting term, i.e., the one proportional to �̂σ1 · �̂σ2, to
illustrate the procedure. One needs to compute

∑
σ1σ2σ3σ4σ5σ6

〈�̂σ1 · �̂σ2〉 κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)ρq1 (ζ6, ζ3) =
∑

σ1σ2σ3σ4σ5σ6

〈σ1| �̂σ |σ4〉 · 〈σ2| �̂σ |σ5〉 δσ3σ6κ
∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)ρq1 (ζ6, ζ3)

=
∑

σ1σ2σ4σ5

〈σ1| �̂σ |σ4〉 · 〈σ2| �̂σ |σ5〉 κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)ρq1 (�r6, �r3). (C13)

To do so, one exploits the relations

κq(�rσ, �r ′σ ′) = 2σ̄ ′ρ̃q(�rσ, �r ′σ̄ ′), (C14a)

κ∗
q (�rσ, �r ′σ ′) = 2σ̄ ′ρ̃∗

q (�rσ, �r ′σ̄ ′) (C14b)

[Eqs. (56) and (54)], as well as the following set of relations involving matrix elements of spin Pauli matrices,

〈σ1|σ̂μ|σ2〉 = −4σ1σ2〈σ̄2|σ̂μ|σ̄1〉, (C15a)

σ̂ν σ̂ν = δνν, (C15b)∑
σ

〈σ |σ̂ν |σ 〉 = 0, (C15c)

∑
σ

〈σ |σ 〉 = 2, (C15d)

∑
σ

〈σ |σ̂μσ̂ν σ̂λσ̂κ |σ 〉 = δμνδλκ − δμλδνκ + δμκδνλ, (C15e)

to perform the following algebraic manipulations:

∑
σ1σ2σ4σ5

〈σ1| �̂σ |σ4〉 · 〈σ2| �̂σ |σ5〉 κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5)

=
∑

σ1σ2σ4σ5

〈σ1| �̂σ |σ4〉 · 〈σ2| �̂σ |σ5〉 4σ2σ5ρ̃
∗
q1

(�r1σ1, �r2σ̄2)ρ̃q1 (�r4σ4, �r5σ̄5)

= −
∑

σ1σ2σ4σ5

〈σ1| �̂σ |σ4〉 · 〈σ̄5| �̂σ |σ̄2〉 ρ̃∗
q1

(�r1σ1, �r2σ̄2)ρ̃q1 (�r4σ4, �r5σ̄5)

= −
∑

σ1σ2σ4σ5

〈σ1| �̂σ |σ4〉 · 〈σ5| �̂σ |σ2〉 ρ̃∗
q1

(�r1σ1, �r2σ2)ρ̃q1 (�r4σ4, �r5σ5)
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= −1

4

∑
σ1σ2σ4σ5

∑
ν

〈σ1|σ̂ν |σ4〉 〈σ5|σ̂ν |σ2〉
[
ρ̃∗

q1
(�r1, �r2)δσ1σ2 +

∑
κ

s̃∗
q1,κ

(�r1, �r2) 〈σ2|σκ |σ1〉
]

×
[
ρ̃q1 (�r4, �r5)δσ4σ5 +

∑
λ

s̃q1,λ(�r4, �r5) 〈σ4|σλ|σ5〉
]

= −1

4

[∑
σ

∑
ν

〈σ |σ̂ν σ̂ν |σ 〉 ρ̃∗
q1

(�r1, �r2)ρ̃q1 (�r4, �r5) +
∑

σ

∑
νλ

〈σ |σ̂ν σ̂ν σ̂λ|σ 〉 ρ̃∗
q1

(�r1, �r2)s̃q1,λ(�r4, �r5)

+
∑

σ

∑
νκ

〈σ |σ̂ν σ̂ν σ̂κ |σ 〉 s̃∗
q1,κ

(�r1, �r2)ρ̃q1 (�r4, �r5) +
∑

σ

∑
νλκ

〈σ |σ̂ν σ̂λσ̂ν σ̂κ |σ 〉 s̃∗
q1,κ

(�r1, �r2)s̃q1,λ(�r4, �r5)

]

= −1

2

[
3ρ̃∗

q1
(�r1, �r2)ρ̃q1 (�r4, �r5) −

∑
λ

s̃∗
q1,λ

(�r1, �r2)s̃q1,λ(�r4, �r5)

]
. (C16)

The normal density matrix ρq1 (�r6, �r3) in Eq. (C13) is not involved in these manipulations and has been omitted for brevity.
Altogether, the evaluation of Eq. (C5d) requires the identities

∑
σ1σ2σ4σ5

〈σ1σ2|1|σ4σ5〉 κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5) = 1

2

[
ρ̃∗

q1
(�r1, �r2)ρ̃q1 (�r4, �r5) +

∑
ν

s̃∗
q1,ν

(�r1, �r2) s̃q1,ν(�r4, �r5)

]
, (C17a)

∑
σ1σ2σ4σ5

〈σ1σ2|σ̂1,ν |σ4σ5〉 κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5) = 1

2

[
ρ̃∗

q1
(�r1, �r2)s̃q1,ν(�r4, �r5) + s̃∗

q1,ν
(�r1, �r2)ρ̃q1 (�r4, �r5)

− i
∑
λκ

ενλκ s̃
∗
q1,λ

(�r1, �r2)s̃q1,κ (�r4, �r5)

]
, (C17b)

∑
σ1σ2σ4σ5

〈σ1σ2|σ̂2,ν |σ4σ5〉 κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5) = −1

2

[
ρ̃∗

q1
(�r1, �r2)s̃q1,ν(�r4, �r5) + s̃∗

q1,ν
(�r1, �r2)ρ̃q1 (�r4, �r5)

+ i
∑
λκ

ενλκ s̃
∗
q1,λ

(�r1, �r2)s̃q1,κ (�r4, �r5)

]
, (C17c)

∑
σ1σ2σ4σ5

〈σ1σ2|σ̂1,ν σ̂2,ν |σ4σ5〉 κ∗
q1

(ζ1, ζ2)κq1 (ζ4, ζ5) = −1

2

[
3ρ̃∗

q1
(�r1, �r2)ρ̃q1 (�r4, �r5) − s̃∗

q1,ν
(�r1, �r2)s̃q1,ν(�r4, �r5)

]
. (C17d)

5. Applying gradient operators

Now that the matrix element has been evaluated, the
integrand contains δ functions and differential operators acting
on nonlocal densities. The latter must be evaluated prior to
utilizing the former. Simple rules can be obtained that express
the action of specific combinations of gradient operators on
nonlocal densities in terms of local densities [93,94]. Those
rules work identically for ρq(�r, �r ′), sq,μ(�r, �r ′), ρ̃q(�r ′, �r), or
s̃q,ν(�r ′, �r). Defining P �r�r ′

q,(ν), P �r
q,(ν), T �r

q,(ν), and J �r
q,μ(ν) as generic

notation for the densities, for each column on the right-hand
side of the table,

P �r �r ′
q,(ν) ≡ {ρq(�r ′, �r) ; sq,ν(�r ′, �r) ; ρ̃q(�r ′, �r) ; s̃q,ν(�r ′, �r)},

P �r
q,(ν) ≡ {ρq(�r) ; sq,ν(�r) ; ρ̃q(�r) ; s̃q,ν(�r)},

T �r
q,(ν) ≡ {τq(�r) ; Tq,ν(�r) ; τ̃q(�r) ; T̃q,ν(�r)},

J �r
q,μ(ν) ≡ {jq,μ(�r) ; Jq,μν(�r) ; j̃q,μ(�r) ; J̃q,μν(�r)},

there is a set of four relations

∇�r,μ P �r�r ′
q,(ν)

∣∣
�r=�r ′ = 1

2∇μP �r
q,(ν) + iJ �r

q,μ(ν), (C18a)

∇�r ′,μ P �r�r ′
q,(ν)

∣∣
�r=�r ′ = 1

2∇μP �r
q,(ν) − iJ �r

q,μ(ν), (C18b)

��r P �r�r ′
q,(ν)

∣∣
�r=�r ′ = 1

2�P �r
q,(ν) − T �r

q,(ν) + i �∇ · �J �r
q,(ν), (C18c)

��r ′ P �r�r ′
q,(ν)

∣∣
�r=�r ′ = 1

2�P �r
q,(ν) − T �r

q,(ν) − i �∇ · �J �r
q,(ν). (C18d)

Applying those rules and exploiting the δ functions, one ends
up with a local energy density expressed in terms of the local
densities of interest.

APPENDIX D: ONE-BODY FIELDS

Having the explicit expression of the EDF kernel at hand,
its contributions to the one-body fields entering the HFB
equations can be derived. Normal and anomalous fields are
gathered into the HFB Hamiltonian matrix [13,14],

H ≡
(

hq �q

−�q∗ −hq∗

)
, (D1)
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and are respectively defined as

h
q
βα ≡ δE

δρ
q
αβ

, �
q
αβ ≡ δE

δκ
q∗
αβ

, (D2)

for β � α. Field h is Hermitian, h
q
βα = h

q∗
αβ , whereas �q is

skew symmetric �
q
βα = −�

q
αβ . These fields can be specified

either in a configuration basis {α, β} ∈ {i, j} or in coordinate
representation {α, β} ∈ {ξ, ξ ′}.

Below, we explicitly provide contributions to the HFB
Hamiltonian that derive from the energy functional defined by
Eqs. (A2), (A3), (A4), and (A5), which constitutes just a part of
the complete EDF kernel. In a realistic calculation, additional
terms contribute to the one-body fields in the HFB equation,
such as the center-of-mass correction, the Coulomb interac-
tion, as well as constraints, in particular the obligatory one on
neutron and proton numbers. None of these are specified here.

The EDF being a functional of local densities, it is of
advantage to calculate contributions to the matrix elements
of the one-body fields in a configuration basis through the
chain rule

h
q
ji =

∫
d3r

[
δE

δρq(�r)

δρq(�r)

δρ
q
ij

+ δE
δτq(�r)

δτq(�r)

δρ
q
ij

+
∑
μν

δE
δJq,μν(�r)

δJq,μν(�r)

δρ
q
ij

+
∑

μ

δE
δsq,μ(�r)

δsq,μ(�r)

δρ
q
ij

+
∑

μ

δE
δTq,μ(�r)

δTq,μ(�r)

δρ
q
ij

+
∑

μ

δE
δjq,μ(�r)

δjq,μ(�r)

δρ
q
ij

]
,

(D3a)

�
q
ij =

∫
d3r

[
δE

δρ̃∗
q (�r)

δρ̃∗
q (�r)

δκ
q∗
ij

+ δE
δτ̃ ∗

q (�r)

δτ̃ ∗
q (�r)

δκ
q∗
ij

+
∑
μν

δE
δJ̃ ∗

q,μν(�r)

δJ̃ ∗
q,μν(�r)

δκ
q∗
ij

]
. (D3b)

The functional derivatives of the local densities can be obtained
for j � i as

δρq(�r)

δρ
q
ij

=
∑

σ

ϕ∗
j (�rσq)ϕi(�rσq), (D4a)

δτq(�r)

δρ
q
ij

=
∑

σ

[ �∇ϕ∗
j (�rσq)] · [ �∇ϕi(�rσq)], (D4b)

δJq,μν(�r)

δρ
q
ij

= −
∑
σσ ′

i

2
{ϕ∗

j (�rσ ′q)〈σ ′|σ̂ν |σ 〉∇μϕi(�rσq)

−∇μϕ∗
j (�rσ ′q)〈σ ′|σ̂ν |σ 〉ϕi(�rσq)}, (D4c)

δsq,ν(�r)

δρ
q
ij

=
∑
σσ ′

ϕ∗
j (�rσ ′q)〈σ ′|σ̂ν |σ 〉ϕi(�rσq), (D4d)

δTq,ν(�r)

δρ
q
ij

=
∑
σσ ′

�∇ϕ∗
j (�rσ ′q)〈σ ′|σ̂ν |σ 〉 · �∇ϕi(�rσq), (D4e)

δjq,μ(�r)

δρ
q
ij

= −
∑

σ

i

2
{ϕ∗

j (�rσq)[∇μϕi(�rσq)]

− [∇μϕ∗
j (�rσq)]ϕi(�rσq)}, (D4f)

δρ̃∗
q (�r)

δκ
q∗
ij

=
∑

σ

4σ̄ ϕ∗
i (�rσ̄ q)ϕ∗

j (�rσq), (D4g)

δτ̃ ∗
q (�r)

δκ
q∗
ij

=
∑

σ

4σ̄ [ �∇ϕ∗
i (�rσ̄ q)] · [ �∇ϕ∗

j (�rσq)], (D4h)

δJ̃ ∗
q,μν(�r)

δκ
q∗
ij

= −
∑
σσ ′

4σ̄ ′ i

2
{ϕ∗

i (�rσ̄ ′q)〈σ ′|σ̂ν |σ 〉∇μϕ∗
j (�rσq)

−∇μϕ∗
i (�rσ̄ ′q)〈σ ′|σ̂ν |σ 〉ϕ∗

j (�rσq)}. (D4i)

The functional derivatives of the local energy density E define
the local potentials,

Uq(�r) ≡ δE
δρq(�r)

, (D5a)

Bq(�r) ≡ δE
δτq(�r)

, (D5b)

Wq,μν(�r) ≡ δE
δJq,μν(�r)

, (D5c)

Sq,μ(�r) ≡ δE
δsq,μ(�r)

, (D5d)

Cq,μ(�r) ≡ δE
δTq,μ(�r)

, (D5e)

Aq,μ(�r) ≡ δE
δjq,μ(�r)

, (D5f)

Ũq(�r) ≡ δE
δρ̃∗

q (�r)
, (D5g)

B̃q(�r) ≡ δE
δτ̃ ∗

q (�r)
, (D5h)

W̃q,μν(�r) ≡ δE
δJ̃ ∗

q,μν(�r)
. (D5i)

Matrix elements in the configuration basis can be related to
those in the coordinate basis through

h
q
ji ≡

∫∫
d3rd3r ′∑

σσ ′
ϕ∗

j (�r ′σ ′q)hq(�rσ, �r ′σ ′)ϕi(�rσq),

(D6a)

�
q
ij ≡

∫∫
d3rd3r ′∑

σσ ′
4σ̄ ′ϕ∗

j (�r ′σ̄ ′q)h̃q(�rσ, �r ′σ ′)ϕ∗
i (�rσq).

(D6b)

In the present case, fields are local in coordinate space
representation, i.e.,

hq(�rσ, �r ′σ ′) ≡ δ(�r − �r ′)hq
σσ ′(�r), (D7a)

h̃q(�rσ, �r ′σ ′) ≡ δ(�r − �r ′)h̃q
σσ ′(�r), (D7b)
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with the generic structure

h
q
σσ ′(�r) = Uq(�r)δσσ ′ −

∑
μ

∇μBq(�r)∇μδσσ ′ − i

2

∑
μν

[Wq,μν(�r)∇μ〈σ ′|σ̂ν |σ 〉 + ∇μ〈σ ′|σ̂ν |σ 〉Wq,μν(�r)]

+
∑

ν

Sq,ν(�r)〈σ ′|σ̂ν |σ 〉 −
∑
μν

∇μCq,ν(�r)〈σ ′|σ̂ν |σ 〉∇μ −
∑

μ

i

2
[Aq,μ(�r)∇μ + ∇μAq,μ(�r)]δσσ ′, (D8a)

h̃
q
σσ ′(�r) = Ũq(�r)δσσ ′ −

∑
μ

∇μB̃q(�r)∇μδσσ ′ − i

2

∑
μν

[W̃q,μν(�r)∇μ〈σ ′|σ̂ν |σ 〉 + ∇μ〈σ ′|σ̂ν |σ 〉W̃q,μν(�r)]. (D8b)

In Eq. (D8a), gradient operators act to their right on both the local potentials and on the wave function the fields h
q
σσ ′(�r) and

h̃
q
σσ ′(�r) are applied to. For the functional constructed here, the overall structure of the two fields is the same as for traditional

Skyrme EDF parametrizations, the only difference being additional terms the local potentials.

1. Local potentials

Explicit expressions of the local potentials deriving from the EDF kernel defined through Eqs. (A2), (A3), (A4), and (A5) are
given by

Uq = 2Aρ1ρ1ρq + 2Aρ1ρ2ρq̄ + Aτ1ρ1τq + Aτ1ρ2τq̄ − 2A∇ρ1∇ρ1�ρq − 2A∇ρ1∇ρ2�ρq̄

+2Bρ1ρ1ρ2ρqρq̄ + Bρ1ρ1ρ2ρq̄ρq̄ + Bs1s1ρ2 �sq̄ · �sq̄ + Bρ̃∗
1 ρ̃1ρ2 ρ̃∗

q̄ ρ̃q̄ + 2Bτ1ρ1ρ1τqρq

+Bτ1ρ1ρ2τqρq̄ + Bτ1ρ1ρ2τq̄ρq̄ + 2Bτ1ρ2ρ2τq̄ρq + BT1s1ρ2 �Tq̄ · �sq̄ + BT1s2ρ1 �Tq · �sq̄ + Bτ̃ ∗
1 ρ̃1ρ2 τ̃ ∗

q̄ ρ̃q̄ + Bτ̃1ρ̃
∗
1 ρ2 τ̃q̄ ρ̃

∗
q̄

− 2B∇ρ1∇ρ1ρ1 (�ρq)ρq − B∇ρ1∇ρ1ρ1 ( �∇ρq) · ( �∇ρq) − 2B∇ρ1∇ρ1ρ2 (�ρq)ρq̄ − 2B∇ρ1∇ρ1ρ2 ( �∇ρq) · ( �∇ρq̄)

+B∇ρ1∇ρ1ρ2 ( �∇ρq̄) · ( �∇ρq̄) − B∇ρ1∇ρ2ρ1 (�ρq̄)ρq − B∇ρ1∇ρ2ρ1 (�ρq̄)ρq̄ − B∇ρ1∇ρ2ρ1 ( �∇ρq̄) · ( �∇ρq̄)

+
∑
μν

[B∇s1∇s1ρ1 (∇μsq,ν)(∇μsq,ν) + B∇s1∇s1ρ2 (∇μsq̄,ν)(∇μsq̄,ν) + B∇s1∇s2ρ1 (∇μsq,ν)(∇μsq̄,ν)]

−B∇ρ1∇s1s1 (��sq) · �sq − B∇ρ1∇s1s2 (��sq) · �sq̄ − B∇ρ1∇s2s1 (��sq̄) · �sq − B∇ρ1∇s2s2 (��sq̄) · �sq̄

+
∑
μν

[−B∇ρ1∇s1s1 (∇μsq,ν)(∇μsq,ν) − B∇ρ1∇s1s2 (∇μsq,ν)(∇μsq̄,ν) − B∇ρ1∇s2s1 (∇μsq̄,ν)(∇μsq,ν)

−B∇ρ1∇s2s2 (∇μsq̄,ν)(∇μsq̄,ν)] + B∇ρ̃∗
1 ∇ρ̃1ρ1 ( �∇ρ̃∗

q ) · ( �∇ρ̃q) + B∇ρ̃∗
1 ∇ρ̃1ρ2 ( �∇ρ̃∗

q̄ ) · ( �∇ρ̃q̄)

−B∇ρ̃∗
1 ∇ρ1ρ̃1 (�ρ̃∗

q )ρ̃q − B∇ρ̃∗
1 ∇ρ1ρ̃1 ( �∇ρ̃∗

q ) · ( �∇ρ̃q) − B∇ρ̃∗
1 ∇ρ2ρ̃1 (�ρ̃∗

q̄ )ρ̃q̄ − B∇ρ̃∗
1 ∇ρ2ρ̃1 ( �∇ρ̃∗

q̄ ) · ( �∇ρ̃q̄)

−B∇ρ̃1∇ρ1ρ̃
∗
1 (�ρ̃q)ρ̃∗

q − B∇ρ̃1∇ρ1ρ̃
∗
1 ( �∇ρ̃q) · ( �∇ρ̃∗

q ) − B∇ρ̃1∇ρ2ρ̃
∗
1 (�ρ̃q̄)ρ̃∗

q̄ − B∇ρ̃1∇ρ2ρ̃
∗
1 ( �∇ρ̃q̄) · ( �∇ρ̃∗

q̄ )

+Bj1j1ρ1 �jq · �jq + Bj1j1ρ2 �jq̄ · �jq̄ + Bj1j2ρ1 �jq · �jq̄ +
∑
μν

[BJ1J1ρ1Jq,μνJq,μν + BJ1J1ρ2Jq̄,μνJq̄,μν

+BJ1J2ρ1Jq,μνJq̄,μν + BJ̃ ∗
1 J̃1ρ1 J̃ ∗

q,μν J̃q,μν + BJ̃ ∗
1 J̃1ρ2 J̃ ∗

q̄,μν J̃q̄,μν], (D9a)

Sq,ν = 2As1s1sq,ν + 2As1s2sq̄,ν + AT1s1Tq,ν + AT1s2Tq̄,ν − 2A∇s1∇s1�sq,ν − 2A∇s1∇s2�sq̄,ν

+ 2Bs1s1ρ2sq,νρq̄ + BT1s1ρ2Tq,νρq̄ + BT1s2ρ1Tq̄,νρq̄

+ 2Bτ1s1s1τqsq,ν + Bτ1s1s2τqsq̄,ν + Bτ1s1s2τq̄sq̄,ν + 2Bτ1s2s2τq̄sq,ν − 2B∇s1∇s1ρ1 (�sq,ν)ρq

− 2B∇s1∇s1ρ1 ( �∇sq,ν) · ( �∇ρq) − 2B∇s1∇s1ρ2 (�sq,ν)ρq̄ − 2B∇s1∇s1ρ2 ( �∇sq,ν) · ( �∇ρq̄)

−B∇s1∇s2ρ1 (�sq̄,ν)ρq − B∇s1∇s2ρ1 (�sq̄,ν)ρq̄ − B∇s1∇s2ρ1 ( �∇sq̄,ν) · ( �∇ρq) − B∇s1∇s2ρ1 ( �∇sq̄,ν) · ( �∇ρq̄)

−B∇ρ1∇s1s1 (�ρq)sq,ν − B∇ρ1∇s1s2 (�ρq)sq̄,ν − B∇ρ1∇s1s2 ( �∇ρq) · ( �∇sq̄,ν) + B∇ρ1∇s1s2 ( �∇ρq̄) · ( �∇sq̄,ν)

−B∇ρ1∇s2s1 (�ρq̄)sq̄,ν − B∇ρ1∇s2s1 ( �∇ρq̄) · ( �∇sq̄,ν) + B∇ρ1∇s2s1 ( �∇ρq) · ( �∇sq̄,ν) − B∇ρ1∇s2s2 (�ρq̄)sq,ν

+
∑

μ

[Bj1J1s1jq,μJq,μν + Bj1J1s2jq̄,μJq̄,μν + Bj1J2s1jq,μJq̄,μν + Bj1J2s2jq̄,μJq,μν]
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+
∑
μλκ

ενλκ [−B∇s1J1s1 (∇μJq,μλ)sq,κ − B∇s1J1s1Jq,μλ(∇μsq,κ ) + B∇s1J1s1 (∇μsq,λ)Jq,μκ

−B∇s1J1s2 (∇μJq,μλ)sq̄,κ − B∇s1J1s2Jq,μλ(∇μsq̄,κ ) + B∇s1J1s2 (∇μsq̄,λ)Jq̄,μκ − B∇s1J2s1 (∇μJq̄,μλ)sq,κ

+ 2B∇s1J2s1 (∇μsq,λ)Jq̄,μκ − B∇s1J2s2 (∇μJq̄,μλ)sq̄,κ − B∇s1J2s2Jq̄,μλ(∇μsq̄,κ ) + B∇s1J2s2 (∇μsq̄,λ)Jq,μκ

+ iBJ̃ ∗
1 J̃1s1 J̃ ∗

q,μλJ̃q,μκ + iBJ̃ ∗
1 J̃1s2 J̃ ∗

q̄,μλJ̃q̄,μκ ] +
∑

μ

[iB∇ρ̃∗
1 J̃1s1 (∇μρ̃∗

q )J̃q,μν + iB∇ρ̃∗
1 J̃1s2 (∇μρ̃∗

q̄ )J̃q̄,μν

+ iB∇ρ̃1J̃
∗
1 s1 (∇μρ̃q)J̃ ∗

q,μν + iB∇ρ̃1J̃
∗
1 s2 (∇μρ̃q̄)J̃ ∗

q̄,μν − iB∇s1J̃
∗
1 ρ̃1 (∇μJ̃ ∗

q,μν)ρ̃q − iB∇s1J̃
∗
1 ρ̃1 J̃ ∗

q,μν(∇μρ̃q)

− iB∇s2J̃
∗
1 ρ̃1 (∇μJ̃ ∗

q̄,μν)ρ̃q̄ − iB∇s2J̃
∗
1 ρ̃1 J̃ ∗

q̄,μν(∇μρ̃q̄) − iB∇s1J̃1ρ̃
∗
1 (∇μJ̃q,μν)ρ̃∗

q − iB∇s1J̃1ρ̃
∗
1 J̃q,μν(∇μρ̃∗

q )

− iB∇s2J̃1ρ̃
∗
1 (∇μJ̃q̄,μν)ρ̃∗

q̄ − iB∇s2J̃1ρ̃
∗
1 J̃q̄,μν(∇μρ̃∗

q̄ )], (D9b)

Bq = h̄2

2m
+ Aτ1ρ1ρq + Aτ1ρ2ρq̄ + Bτ1ρ1ρ1ρqρq + Bτ1ρ1ρ2ρqρq̄ + Bτ1ρ2ρ2ρq̄ρq̄ + Bτ1s1s1 �sq · �sq

+Bτ1s1s2 �sq · �sq̄ + Bτ1s2s2 �sq̄ · �sq̄ + Bτ1ρ̃
∗
1 ρ̃1 ρ̃∗

q ρ̃q + Bτ2ρ̃
∗
1 ρ̃1 ρ̃∗

q̄ ρ̃q̄ , (D9c)

Cq,ν = AT1s1sq,ν + AT1s2sq̄,ν + BT1s1ρ2sq,νρq̄ + BT1s2ρ1sq̄,νρq, (D9d)

Aq,μ = 2Aj1j1jq,μ + 2Aj1j2jq̄,μ + 2Bj1j1ρ1jq,μρq + 2Bj1j1ρ2jq,μρq̄ + Bj1j2ρ1jq̄,μρq + Bj1j2ρ1jq̄,μρq̄

+
∑

ν

(Bj1J1s1Jq,μνsq,ν + Bj1J1s2Jq,μνsq̄,ν + Bj1J2s1Jq̄,μνsq,ν + Bj1J2s2Jq̄,μνsq̄,ν)

+ iB∇ρ̃∗
1 j1ρ̃1 (∇μρ̃∗

q )ρ̃q + iB∇ρ̃∗
1 j2ρ̃1 (∇μρ̃∗

q̄ )ρ̃q̄ + iB∇ρ̃1j1ρ̃
∗
1 (∇μρ̃q)ρ̃∗

q + iB∇ρ̃1j2ρ̃
∗
1 (∇μρ̃q̄)ρ̃∗

q̄ , (D9e)

Wq,μν = 2AJ1J1Jq,μν + 2AJ1J2Jq̄,μν + 2BJ1J1ρ1Jq,μνρq + 2BJ1J1ρ2Jq,μνρq̄

+BJ1J2ρ1Jq̄,μνρq + BJ1J2ρ1Jq̄,μνρq̄ + Bj1J1s1jq,μsq,ν + Bj1J1s2jq,μsq̄,ν + Bj1J2s1jq̄,μsq̄,ν

+Bj1J2s2jq̄,μsq,ν + BJ̃ ∗
1 J1ρ̃1 J̃ ∗

q,μνρ̃q + BJ̃ ∗
1 J2ρ̃1 J̃ ∗

q̄,μν ρ̃q̄ + BJ̃1J1ρ̃
∗
1 J̃q,μνρ̃

∗
q + BJ̃1J2ρ̃

∗
1 J̃q̄,μν ρ̃

∗
q̄

+
∑
λκ

ενλκ [−B∇s1J1s1 (∇μsq,λ)sq,κ − B∇s1J1s2 (∇μsq,λ)sq̄,κ − B∇s1J2s1 (∇μsq̄,λ)sq̄,κ

−B∇s1J2s2 (∇μsq̄,λ)sq,κ ], (D9f)

Ũq = Aρ̃∗
1 ρ̃1 ρ̃q + Aτ̃1ρ̃

∗
1 τ̃q − A∇ρ̃∗

1 ∇ρ̃1�ρ̃q + Bρ̃∗
1 ρ̃1ρ2 ρ̃qρq̄ + Bτ̃1ρ̃

∗
1 ρ2 τ̃qρq̄ + Bτ1ρ̃

∗
1 ρ̃1τq ρ̃q + Bτ2ρ̃

∗
1 ρ̃1τq̄ ρ̃q

−B∇ρ̃∗
1 ∇ρ̃1ρ1 (�ρ̃q)ρq − B∇ρ̃∗

1 ∇ρ̃1ρ1 ( �∇ρ̃q) · ( �∇ρq) − B∇ρ̃∗
1 ∇ρ̃1ρ2 (�ρ̃q)ρq̄ − B∇ρ̃∗

1 ∇ρ̃1ρ2 ( �∇ρ̃q) · ( �∇ρq̄)

−B∇ρ̃∗
1 ∇ρ1ρ̃1 (�ρq)ρ̃q − B∇ρ̃∗

1 ∇ρ1ρ̃1 ( �∇ρq) · ( �∇ρ̃q) − B∇ρ̃∗
1 ∇ρ2ρ̃1 (�ρq̄)ρ̃q − B∇ρ̃∗

1 ∇ρ2ρ̃1 ( �∇ρq̄) · ( �∇ρ̃q)

+B∇ρ̃1∇ρ1ρ̃
∗
1 ( �∇ρ̃q) · ( �∇ρq) + B∇ρ̃1∇ρ2ρ̃

∗
1 ( �∇ρ̃q) · ( �∇ρq̄) +

∑
μν

[BJ̃1J1ρ̃
∗
1 J̃q,μνJq,μν + BJ̃1J2ρ̃

∗
1 J̃q,μνJq̄,μν

− iB∇ρ̃∗
1 J̃1s1∇μJ̃q,μνsq,ν − iB∇ρ̃∗

1 J̃1s1 J̃q,μν∇μsq,ν − iB∇ρ̃∗
1 J̃1s2∇μJ̃q,μνsq̄,ν − iB∇ρ̃∗

1 J̃1s2 J̃q,μν∇μsq̄,ν]

− iB∇ρ̃∗
1 j1ρ̃1 ( �∇ · �jq)ρ̃q − iB∇ρ̃∗

1 j1ρ̃1 �jq · ( �∇ρ̃q) − iB∇ρ̃∗
1 j2ρ̃1 ( �∇ · �jq̄)ρ̃q − iB∇ρ̃∗

1 j2ρ̃1 �jq̄ · ( �∇ρ̃q)

+ iB∇ρ̃1j1ρ̃
∗
1 ( �∇ρ̃q) · �jq + iB∇ρ̃1j2ρ̃

∗
1 ( �∇ρ̃q) · �jq̄ +

∑
μν

[iB∇s1J̃1ρ̃
∗
1 (∇μsq,ν)J̃q,μν + iB∇s2J̃1ρ̃

∗
1 (∇μsq̄,ν)J̃q,μν], (D9g)

B̃q = Aτ̃ ∗
1 ρ̃1 ρ̃q + Bτ̃ ∗

1 ρ̃1ρ2 ρ̃qρq̄ , (D9h)

W̃q,μν = A
J̃ ∗

1 J̃1

1 J̃q,μν + BJ̃ ∗
1 J̃1ρ1 J̃q,μνρq + BJ̃ ∗

1 J̃1ρ2 J̃q,μνρq̄ + BJ̃ ∗
1 J1ρ̃1Jq,μνρ̃q

+BJ̃ ∗
1 J2ρ̃1Jq̄,μνρ̃q + iB∇ρ̃1J̃

∗
1 s1 (∇μρ̃q)sq,ν + iB∇ρ̃1J̃

∗
1 s2 (∇μρ̃q)sq̄,ν + iB∇s1J̃

∗
1 ρ̃1 (∇μsq,ν)ρ̃q

+ iB∇s2J̃
∗
1 ρ̃1 (∇μsq̄,ν)ρ̃q +

∑
λκ

ενλκ [iBJ̃ ∗
1 J̃1s1 J̃q,μλsq,κ + iBJ̃ ∗

1 J̃1s2 J̃q,μλsq̄,κ ]. (D9i)
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APPENDIX E: LOCAL GAUGE INVARIANCE

1. Gauge transformations

The invariance of the energy under local gauge transforma-
tion traces back to the locality of the underlying interaction
[14]. Given that realistic nuclear interactions have no reason
to be local, invariance of the diagonal EDF kernel under
general local gauge transformations does not have to be
required. However, invariance under Galilean transformations
is mandatory. Given that Galilean transformations are nothing
but a particular case of local gauge transformations, we now
test the invariance of the nuclear EDF under the latter as a way
to verify its invariance under the former. That the the newly
developed EDF kernel happens to be invariant under general
local gauge transformations indicates that the dependence of
the pseudopotential up to second order in gradients represents
an internally consistent approximation to a local finite-range
three-body potential.

Let us now characterize the behavior of the EDF kernel
under general gauge transformations [66]. To do so, we first
define the transformation law of the one-body density matrices,
i.e.,

ρ ′(�r σq, �r ′σ ′q ′) = ei(φ(�r )−φ(�r ′))ρ (�rσq, �r ′σ ′q ′), (E1a)

κ ′(�r σq, �r ′σ ′q ′) = ei(φ(�r )+φ(�r ′))κ (�rσq, �r ′σ ′q ′). (E1b)

Galilean transformations are nothing but the particular
gauge transformations obtained for φ(�r ) = �p · �r/h̄, where
�p characterizes the Galilean boost. Based on Eq. (E1), the
transformation law of the local densities from which the EDF
kernel is built is obtained as

ρ ′
q = ρq, (E2a)

τ ′
q = τq + 2 �jq · ( �∇φ) + ρq( �∇φ)2, (E2b)

�j ′
q = �jq + ρq( �∇φ), (E2c)

s ′
q,ν = sq,ν, (E2d)

T ′
q,ν = Tq,ν +

∑
μ

[2Jq,μν(∇μφ) + sq,ν(∇μφ)2], (E2e)

J ′
q,μν = Jq,μν + sq,ν(∇μφ), (E2f)

ρ̃ ′
q = e2iφρ̃q, (E2g)

τ̃ ′
q = e2iφ[τ̃q + i( �∇ρ̃q) · ( �∇φ) − ρ̃q(�r )( �∇φ)2], (E2h)

J̃ ′
q,μν = e2iφJ̃q,μν. (E2i)

Although Eq. (E2) makes use of neutron and proton
densities, the same transformation laws hold for isoscalar and
isovector densities. The latter are used in the following to
characterize the gauge invariance of the EDF kernel.

2. Normal part of the EDF kernel

The gauge invariance of the normal part of the EDF kernel
requires that

Eρρ′ − Eρρ ≡ [Eρρ]G = 0, (E3a)

Eρρρ′ − Eρρρ ≡ [Eρρρ]G = 0, (E3b)

where Eρρ′ and Eρρρ′ denote energy densities computed
from the gauge-transformed densities defined in Eq. (E2).
In Eq. (E3), square brackets with index G have to be zero
for the EDF kernel to be gauge invariant. Such conditions
can be fulfilled only if specific correlations between coupling
constants are at play. Gauge transformation only affects normal
densities τt , Tt,ν , jt,μ, and Jt,μν , following Eq. (E2). The
fact that τ ′

t − τt , T ′
t,ν − Tt,ν , j ′

t,μ − jt,μ, and J ′
t,μν − Jt,μν

depend on densities jt,μ, Jt,μν , ρt , and st,ν in addition to the
gauge function φ(�r), implies that correlations only involve
coefficients multiplying densities τt , Tt,ν , jt,μ, and Jt,μν having
the same spin and isospin character.

For the bilinear functional, the two densities involved in
a given term are either both isoscalar or isovector and both
scalar or vector, such that each gauge invariant combination
involves only two terms of the functional. As a result, condition
Eq. (E3a) is equivalent to requiring that

[
Aτ

t τtρt + A
j
t

�jt · �jt

]
G = 0, (E4a)[

AT
t �st · �Tt +

∑
μν

AJ
t Jt,μνJt,μν

]
G

= 0, (E4b)

for t ∈ {0, 1} and is fulfilled whenever [66]

Aτ
t = −A

j
t , AT

t = −AJ
t . (E5)

For the trilinear functional, such combinations can involve
many more terms as two isovector or vector densities are
always multiplied by an isoscalar or scalar density. Condition
(E3b) gives rise to seven independent relations that read

0 = [
Bτ

0 ρ0τ0ρ0 + B
j
0 ρ0 �j0 · �j0

]
G, (E6a)

0 =
[
BT

0 ρ0 �T0 · �s0 + Bτs
0 �s0τ0 · �s0 +

∑
μν

BJ
0 ρ0J0,μνJ0,μν

+
∑
μν

BJs
0 s0,νj0,μJ0,μν

]
G
, (E6b)

0 = [
Bτ

1 ρ0τ1ρ1 + Bτ
10ρ1τ0ρ1 + B

j
1 ρ0 �j1 · �j1 + B

j
10ρ1 �j1 · �j0

]
G,

(E6c)

0 =
[
BT

1 ρ0 �T1 · �s1 + Bτs
10 �s1τ0 · �s1 +

∑
μν

BJ
1 ρ0J1,μνJ1,μν

+
∑
μν

BJs
01 s1,νj0,μJ1,μν

]
G
, (E6d)

0 =
[
BT

10ρ1 �T0 · �s1 + BT
01ρ1 �T1 · �s0 + Bτs

1 �s0τ1 · �s1

+
∑
μν

BJ
10ρ1J1,μνJ0,μν +

∑
μν

BJs
1 s0,νj1,μJ1,μν

+
∑
μν

BJs
10 s1,νj1,μJ0,μν

]
G
, (E6e)

0 =
⎡
⎣∑

μνλk

ενλkB
∇sJ
0 s0,k(∇μs0,ν)J0,μλ

⎤
⎦

G

, (E6f)
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0 =
{∑

μνλk

ενλk

[
B∇sJ

1 s0,k(∇μs1,ν)J1,μλ

+B∇sJ
10 s1,k(∇μs1,ν)J0,μλ + B∇sJ

01 s1,k(∇μs0,ν)J1,μλ

]}
G
.

(E6g)

Condition (E6a) involves functional terms containing scalar-
isoscalar densities. Condition (E6b) involves functional terms
containing isoscalar densities among which two are vector
densities. Condition (E6c) involves functional terms contain-
ing two isovector densities and no vector densities. Conditions
(E6d) and (E6e) involve functional terms containing two
isovector densities and two vector densities. Condition (E6f)
involves functional terms containing three vector-isoscalar
densities. Finally, condition (E6g) involves all the functional
terms with three spin densities, among which two are isovec-
tor. Correlations between coupling constants resulting from
conditions Eq. (E6) read

Eq. (E6a) ⇒ Bτ
0 + B

j
0 = 0, (E7a)

Eq. (E6b) ⇒
{

2Bτs
0 + BJs

0 = 0,

2BT
0 + 2BJ

0 + BJs
0 = 0,

(E7b)

Eq. (E6c) ⇒
{

2Bτ
10 + B

j
10 = 0,

2Bτ
1 + 2B

j
1 + B

j
10 = 0,

(E7c)

Eq. (E6d) ⇒
{

2Bτs
10 + BJs

01 = 0,

2BT
1 + 2BJ

1 + BJs
01 = 0,

(E7d)

Eq. (E6e) ⇒

⎧⎪⎨
⎪⎩

2Bτs
1 + BJs

1 + BJs
10 = 0,

2BT
10 + BJ

10 + BJs
10 = 0,

2BT
01 + BJ

10 + BJs
1 = 0,

(E7e)

Eq. (E6g) ⇒ B∇sJ
1 − B∇sJ

10 = 0, (E7f)

while Eq. (E6f) is respected for all B∇sJ
0 . Conditions (E7) are

fulfilled by our functional coefficients; see Tables IV and VI.

3. Anomalous part of the EDF kernel

The same strategy is followed for the anomalous part of the
EDF kernel. The analog of condition (E3) is

Eκκ′ − Eκκ ≡ [Eκκ ]G = 0, (E8a)

Eκκκ′ − Eκκκ ≡ [Eκκκ ]G = 0. (E8b)

As seen from Eq. (E2), all anomalous local densities are
affected by gauge transformations. However, each pairing
density enters the energy density with the complex conjugate
of another pairing density, such that bilinear products of the
form ρ̆∗ρ̆, J̆ ∗J̆ , ρ̆∗J̆ , or J̆ ∗ρ̆ are effectively gauge invariant.
As a result, only τ̆ or derivatives of ρ̆ and J̆ have to be
explicitly dealt with. For trilinear terms a gauge dependence
might also arise from the third, then normal, local density.
Again, correlations will only involve coefficients multiplying
densities of same spin and isospin character.

For the bilinear functional, condition (E8a) is equivalent to
requiring

[
Aτ̆ ∗ ∑

a=1,2

τ̆ ∗
1,aρ̆1,a + Aτ̆

∑
a=1,2

τ̆1,aρ̆
∗
1,a

+A∇ρ̆
∑

a=1,2

( �∇ρ̆∗
1,a) · ( �∇ρ̆1,a)

]
G

= 0, (E9)

which is fulfilled for

A∇ρ̆ = 1
2Aτ̆ ∗ = 1

2Aτ̆ . (E10)

For the trilinear functional, condition (E8b) gives rise to eight
independent gauge-invariant conditions that read

0 =
[∑

a=1,2

{
Bτ̆ ∗

0 τ̆ ∗
1,aρ̆1,aρ0 + Bτ̆

0 ρ̆∗
1,aτ̆1,aρ0 + B

ρ̆τ
0 ρ̆∗

1,aρ̆1,aτ0 + B
∇ρ̆
0 ( �∇ρ̆∗

1,a) · ( �∇ρ̆1,a)ρ0

+ iB∇ρ̆∗j
0 ( �∇ρ̆∗

1,a)ρ̆1,a · �j0 + iB∇ρ̆j
0 ρ̆∗

1,a( �∇ρ̆1,a) · �j0
}]

G

, (E11a)

0 =
[∑

a=1,2

{
B

∇ρ̆∗ρ̆
0 ( �∇ρ̆∗

1,a)ρ̆1,a · ( �∇ρ0) + B
ρ̆∗∇ρ̆
0 ρ̆∗

1,a( �∇ρ̆1,a) · ( �∇ρ0)
}]

G

, (E11b)

0 =
[∑

a=1,2

∑
μν

{
B

ρ̆∗J̆
0 ρ̆∗

1,aJ̆1,a,μνJ0,μν + iB∇ρ̆∗J̆
0 (∇μρ̆∗

1,a)J̆1,a,μνs0,ν

}]
G

, (E11c)

0 =
[∑

a=1,2

∑
μν

{
B

J̆ ∗ρ̆
0 J̆ ∗

1,a,μνρ̆1,aJ0,μν + iBJ̆ ∗∇ρ̆
0 J̆ ∗

1,a,μν(∇μρ̆1,a)s0,ν

}]
G

, (E11d)

0 =
⎡
⎣ ∑

a,b=1,2

∑
c=3

εabc

{
iBτ̆ ∗

1 τ̆ ∗
1,aρ̆1,bρ1,c + iBτ̆

1 ρ̆∗
1,aτ̆1,bρ1,c + iBρ̆τ

1 ρ̆∗
1,aρ̆1,bτ1,c + iB∇ρ̆

1 ( �∇ρ̆∗
1,a) · ( �∇ρ̆1,b)ρ1,c

+B
∇ρ̆∗j
1 ( �∇ρ̆∗

1,a)ρ̆1,b · �j1,c + B
∇ρ̆j
1 ρ̆∗

1,a( �∇ρ̆1,b) · �j1,c

}⎤⎦ , (E11e)
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0 =
⎡
⎣ ∑

a,b=1,2

∑
c=3

εabc

{
iB∇ρ̆∗ρ̆

1 ( �∇ρ̆∗
1,a)ρ̆1,b · ( �∇ρ1,c) + iBρ̆∗∇ρ̆

1 ρ̆∗
1,a( �∇ρ̆1,b) · ( �∇ρ1,c)

}⎤⎦
G

, (E11f)

0 =
⎡
⎣ ∑

a,b=1,2

∑
c=3

εabc

∑
μν

{
iBρ̆∗J̆

1 ρ̆∗
1,aJ̆1,b,μνJ1,c,μν + B

∇ρ̆∗J̆
1 (∇μρ̆∗

1,a)J̆1,b,μνs1,c,ν

}⎤⎦
G

, (E11g)

0 =
⎡
⎣ ∑

a,b=1,2

∑
c=3

εabc

∑
μν

{
iBJ̆ ∗ρ̆

1 J̆ ∗
1,a,μν ρ̆1,bJ1,c,μν + B

J̆ ∗∇ρ̆
1 J̆ ∗

1,a,μν(∇μρ̆1,b)s1,c,ν

}⎤⎦
G

. (E11h)

These relations must be independently fulfilled, which requires that the coupling constants satisfy

Eq. (E11a) ⇒

⎧⎪⎪⎨
⎪⎪⎩

−Bτ̆ ∗
0 + 2B

∇ρ̆
0 + B

∇ρ̆∗j
0 = 0,

Bτ̆
0 − 2B

∇ρ̆
0 + B

∇ρ̆j
0 = 0,

B
ρ̆τ
0 + B

∇ρ̆∗j
0 − B

∇ρ̆j
0 = 0,

(E12a)

Eq. (E11b) ⇒ B
∇ρ̆∗ρ̆
0 = B

ρ̆∗∇ρ̆
0 , (E12b)

Eq. (E11c) ⇒ B
ρ̆∗J̆
0 = −2B

∇ρ̆∗J̆
0 , (E12c)

Eq. (E11d) ⇒ B
J̆ ∗ρ̆
0 = 2B

J̆ ∗∇ρ̆
0 , (E12d)

Eq. (E11e) ⇒

⎧⎪⎪⎨
⎪⎪⎩

−Bτ̆ ∗
1 + 2B

∇ρ̆
1 − B

∇ρ̆∗j
1 = 0,

Bτ̆
1 − 2B

∇ρ̆
1 − B

∇ρ̆j
1 = 0,

B
ρ̆τ
1 − B

∇ρ̆∗j
1 + B

∇ρ̆j
1 = 0,

(E12e)

Eq. (E11f) ⇒ B
∇ρ̆∗ρ̆
1 = B

ρ̆∗∇ρ̆
1 , (E12f)

Eq. (E11g) ⇒ B
ρ̆∗J̆
1 = 2B

∇ρ̆∗J̆
1 , (E12g)

Eq. (E11h) ⇒ B
J̆ ∗ρ̆
1 = −2B

J̆ ∗∇ρ̆
1 , (E12h)

which is indeed the case our EDF kernel; see Tables V and VII.
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