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Spurious finite-size instabilities in nuclear energy density functionals
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2IAA, CP226, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium

3Université Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
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Background: It is known that some well established parametrizations of the nuclear energy density functional
(EDF) do not always lead to converged results for nuclei. Earlier studies point towards the existence of a qualitative
link between this finding and the appearance of finite-size instabilities of symmetric nuclear matter (SNM) near
saturation density when computed within the random phase approximation (RPA).
Purpose: We aim to establish a stability criterion based on computationally friendly RPA calculations that can be
incorporated into fitting procedures of the coupling constants of the EDF. Therefore, a quantitative and systematic
connection between the impossibility to converge self-consistent calculations of nuclei and the occurrence of
finite-size instabilities in SNM is investigated for the scalar-isovector (S = 0, T = 1) instability of the standard
Skyrme EDF.
Results: Tuning the coupling constant C

ρ�ρ
1 of the gradient term that triggers scalar-isovector instabilities of

the standard Skyrme EDF, we find that the occurrence of instabilities in finite nuclei depends strongly on the
numerical scheme used to solve the self-consistent mean-field equations. Once the critical value of the coupling
constant C

ρ�ρ
1 is determined in nuclei, one can extract the corresponding lowest density ρcrit at which a pole

appears at zero energy in the RPA response function.
Conclusions: Instabilities of finite nuclei can be artificially hidden due to the choice of inappropriate numerical
schemes or overly restrictive, e.g., spherical, symmetries. Our analysis suggests a twofold stability criterion to
avoid scalar-isovector instabilities.
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I. INTRODUCTION

Energy density functionals (EDFs) are popular tools for
the description of fermionic systems within self-consistent
mean-field methods and are successfully applied to describe
atomic nuclei [1], liquid helium [2,3], helium droplets [4,5],
and cold atoms in traps [6]. A phenomenological approach is
usually adopted and the parameters of the EDF are adjusted to
selected properties of finite and idealized infinite systems, such
as electron gas or homogeneous nuclear matter. However, the
possibility that such a parametrization gives rise to unphysical
behavior cannot be discarded. Indeed, the example discussed
in the present paper manifests itself by the impossibility
to converge the iterative procedure to solve the mean-field
equations for the ground states of some nuclei (e.g., see
Refs. [7–10]). Such nonconvergence is a fingerprint of an
instability that can be characterized in the idealized system of
homogeneous isospin-symmetric nuclear matter (SNM). Two
cases must be distinguished.
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First, Landau-Migdal parameters [11] can guide the
identification of instabilities in the infinite-wavelength limit
(or zero-momentum transfer qph = 0) of the response function.
Such instabilities are characterized by the transition between
two different homogeneous phases of SNM [12]. Since state-
of-the-art ab initio many-body calculations predict SNM to be
stable in all spin-isospin channels up to several times saturation
density [13,14], the Landau-Migdal parameters are often used
to validate or even constrain the parameters of the EDF.

Second, more general finite-size instabilities may appear
at finite momentum transfer qph �= 0 [8]. A scan of the linear
response to a perturbation in each of the four spin-isospin
(S,T ) channels of the particle-hole interaction can identify
such instabilities at a given density and wavelength (or, equiv-
alently, transferred momentum qph). The necessary tools for
such studies have been developed for nonrelativistic Skyrme
parametrizations of the nuclear EDF [8,15–18]. Typically,
the instability arises as a collective mode at zero excitation
energy, signaling the transition of homogeneous matter to an
inhomogeneous phase. The only known physical example of
such a finite-size instability of homogeneous matter is the
so-called spinodal instability in the S = 0, T = 0 channel [18–
21], which sets in below about 2/3 of nuclear saturation density
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in SNM. Then, homogeneous nuclear matter becomes unstable
against the formation of finite-size clusters. To the best of our
knowledge, no ab initio prediction exists regarding the stability
of SNM with respect to finite-wavelength perturbations in the
three other spin-isospin channels. However, as we shall see
below, the very existence of nuclei excludes the possibility
of finite-size instabilities of homogeneous matter for a wide
range of densities and transferred momenta.

Several investigations of finite-size instabilities have been
undertaken [8–10,22–25] thus far. However, a systematic
analysis of the connection between the impossibility to con-
verge self-consistent calculations of nuclei and the occurrence
of finite-size instabilities in SNM is still lacking. Such a
relationship is not straightforward as nuclei are affected by
shell and surface effects that do not occur in SNM. In the
present paper, we seek to establish a transparent, that is, a
quantitative and systematic correspondence, irrespective of
the details of the EDF parametrization. We will concentrate on
scalar-isovector (S = 0, T = 1) instabilities using the standard
form of the EDF, as obtained from the density-dependent
two-body Skyrme force [1]. These instabilities are induced by
a strongly attractive scalar-isovector gradient term of the form

E
ρ�ρ
1 ≡

∫
d3r Eρ�ρ

1 (r) ≡
∫

d3r C
ρ�ρ
1 ρ1(r) �ρ1(r). (1)

and manifest themselves as unphysical strong oscillations
of the scalar-isovector density ρ1(r) ≡ ρn(r) − ρp(r) that
measures the local difference between neutron and proton
matter density distributions [7,8]. Instabilities triggered by
terms containing gradients of spin densities have been en-
countered as well [9,10,26] but are not included in the present
analysis. Finally, if a one-to-one correspondence between
instabilities in finite nuclei and SNM can be established,
we wish to introduce a criterion based on computationally
friendly random-phase approximation (RPA) calculations of
SNM to control the stability of EDF parametrization during
the adjustment of its coupling constants.

The paper is organized as follows. In Sec. II, we introduce
the protocol of our analysis and detail the methods used. The
results obtained with this protocol are presented and analyzed
in Sec. III. Conclusions are given in Sec. IV.

II. PROTOCOL OF THE ANALYSIS

A. Procedure

The present analysis is carried out for nine parametrizations
that are all based on the traditional form [1] of the Skyrme
EDF. Four of the selected parametrizations (KDE0v1, LNS,
NRAPRii,1 and SQMC700) were recently shown to be
consistent with a large set of pseudodata in SNM [28] and were
adjusted to no or a very limited number of nuclear masses. The
remaining five, SkM*, SLy5, T11, T44, and UNEDF0, were
adjusted to selected properties of finite nuclei and SNM and

1The notation ii indicates that we have doubled the strength W0 of
the spin-orbit interaction of the original NRAPR parametrization, as
suggested in [27].

TABLE I. Basic SNM properties for the nine Skyrme
parametrizations used in the present work.

Param. Ref. m∗
s /m m∗

v/m ρsat K∞ asym

KDE0v1 [29] 0.74 0.81 0.165 227 34.6
LNS [30] 0.83 0.73 0.175 211 33.4
NRAPRii [31] 0.69 0.60 0.161 226 32.8
SQMC700 [32] 0.76 0.64 0.170 220 43.5
SkM* [33] 0.79 0.65 0.160 217 30.0
SLy5 [34] 0.70 0.80 0.160 230 32.0
T11 [35] 0.70 0.80 0.161 230 32.0
T44 [35] 0.70 0.80 0.161 230 32.0
UNEDF0 [36] 1.11 0.80 0.161 230 30.5

are widely used. Basic SNM properties of each parametrization
are summarized in Table I.

As mentioned before, the instability under study is triggered
by the term E

ρ�ρ
1 and can be controlled with the coupling

constant C
ρ�ρ
1 if one uses the standard form of the Skyrme

EDF. Although the protocol to adjust the coupling constants
of the EDF strongly differs for the nine parametrizations, the
scalar-isovector instabilities arise at a rather universal critical
value of C

ρ�ρ
1 , as will be discussed later on. However, in

anticipation of the future use of more elaborate EDFs [37–39]
for which the finite-size instability in a given (S,T ) channel
may be related to several terms in the energy density, it is
preferable to associate the instability with a physical quantity
rather than a coupling constant.

Such a connection can be established by means of RPA
calculations of SNM. Within this approach, the instability of
the density is marked by the occurrence of a pole at ω = 0 and
finite momentum in the response function χ

(S,T )
RPA (qph,ω; kF );

that is, by the existence of a zero-energy excitation mode.
The solution of this implicit equation determines domains of
instability in the (qph,kF ) plane whose boundaries define the
curve ρp(qph), where ρ ≡ 2k3

F/3π2. For the central terms of
the Skyrme EDF, the formalism to compute χ

S,T
RPA(qph,ω; kF )

is outlined in Ref. [15] and the extension to spin-orbit
and tensor terms can be found in Refs. [16] and [17,18],
respectively. In Ref. [18], it was also shown that the extraction
of unstable modes at density ρ and momentum transfer qph

can be efficiently performed on the basis of the inverse
energy-weighted sum rule.

The analysis is performed in three steps:

(1) For each of the nine parametrizations, the value of C
ρ�ρ
1

is increased from its nominal value up to a critical value
leading to nonconvergence in steps of 0.1 MeV fm5.
In the following, such an alteration of the original
parametrization is indicated with a prime (as SLy5′).
We have verified that the variation of C

ρ�ρ
1 around

its nominal value does not significantly deteriorate the
overall properties of the parametrization [40].

(2) Such a modified parametrization should be discarded
if it leads to nonconvergence in the calculation of the
ground-state energy of any finite nucleus. For reasons
of numerical manageability, we chose a representative
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set of nine spherical doubly closed-shell nuclei (16O,
40,48Ca, 56,78Ni, 100,132,176Sn, 208Pb) and one well-
deformed open-shell nucleus (170Hf) to investigate the
effect of deformation. For even-even nuclei, time-
reversal symmetry can be enforced and suppresses
possible spin (S =1) instabilities originating from time-
odd terms of the EDF. Also, pairing correlations are
neglected. For each of the nine parametrizations, the
critical value C

ρ�ρ
1,crit is defined as the smallest value

of C
ρ�ρ
1 at which an instability occurs in any of the

selected nuclei.
(3) Finally, we extract the minimum of ρp(qph), referred

to as ρcrit, for C
ρ�ρ
1 = C

ρ�ρ
1,crit and analyze whether it

displays a universal value.

As will be discussed in Sec. III, the density distribution of
40Ca exhibits a central bump of about 1.2ρsat, making this
nucleus particularly prone to instabilities. To facilitate the
further analysis of the results of steps 2 and 3 in our protocol,
we therefore introduce the scalar-isoscalar density at the center
of 40Ca, ρcent = ρ0(0), and the relative momentum distribution
at R = 0 through

fi(q) = 1

(2π )3/2

∫
e−iq·sρi(0,s) d3s, (2)

where ρi(R,s) is the nonlocal scalar density for species i = n
or p as a function of the center-of-mass and relative coordinates
R and s. This definition of fi(q) is different from the one used
in [41] and allows one to recover the central density through

ρi(0,0) = 1

(2π )3/2

∫
fi(q) d3q. (3)

B. Numerical detections of instabilities

Preliminary inquiries suggested that the detection of insta-
bilities in nuclei depends on the numerical algorithm, on the
symmetry restrictions imposed to solve the equations, and on
the accuracy required. To investigate such features and limit
the numerical bias, we therefore performed the analysis with
three methods, two of which imposing spherical symmetry.

(1) In HOSPHE [42], single-particle wave functions are ex-
panded on an optimized spherical harmonic oscillator
(HO) basis. The accuracy is varied by changing the
number of shells Nsh in the HO basis.

(2) In LENTEUR [43], one-body equations are solved in
coordinate space enforcing spherical symmetry. Radial
wave functions with an angular momentum up to
41/2 � are discretized on a mesh along a radius of
18 fm. Decreasing the step size dr of the radial mesh
increases the accuracy of the calculation.

(3) In EV8 [44], single-particle wave functions are dis-
cretized on a three-dimensional (3D) Cartesian mesh.
Three symmetry planes are imposed, corresponding
to the description of triaxially deformed shapes. The
accuracy of the calculation can be changed by means
of the step size dx of the mesh.

III. RESULTS

A. Analysis in nuclei

Here, we carry out steps 1 and 2 of the protocol described
in Sec. II B.

1. Detection of finite-size instabilities within different
numerical schemes

As the one-body equations of motion are solved iteratively,
an instability in the S = 0, T = 1 channel occurs when
it becomes energetically favorable to build oscillations of
neutrons against protons of unlimited amplitude [8]. In a code
based on an oscillator-basis expansion such as HOSPHE, this
manifests itself differently than in codes using a discretization
on a 1D or a 3D mesh. Indeed, for LENTEUR, the calculation is
halted when density oscillations make the isovector gradient
term unreasonably large, whereas for EV8 the convergence
criteria are never reached. This permits a clear determination
of the instability at all accuracies. By contrast, the detection
of C

ρ�ρ
1,crit is less obvious with HOSPHE. Figure 1 illustrates

this for the N = Z nucleus 40Ca and for 208Pb. The binding
energy is plotted as a function of C

ρ�ρ
1 for different choices

of the number of oscillator shells Nsh. For both nuclei, the
energy decreases up to a value of C

ρ�ρ
1 where the convergence

criteria on energy cannot be met in spite of an unusually large
number of iterations (up to 40 000 in our calculations). For
small Nsh (Nsh � 40 for 40Ca and Nsh � 50 for 208Pb), one
obtains an apparent convergence for values of C

ρ�ρ
1 in the

vicinity of C
ρ�ρ
1,crit but with an unphysical large value of the

binding energy, indicating that the instability in fact occurs
already at smaller values of C

ρ�ρ
1 . In 40Ca, a 1 MeV fm5

increase of C
ρ�ρ
1 leads to a change in total energy of the

order of tens of keV for Nsh = 20 and of tens of MeV for
Nsh = 30,40 in that region of the plot. These numbers have

FIG. 1. (Color online) Binding energy of (a) 40Ca and (b) 208Pb
obtained from HOSPHE and SLy5′ [34] as a function of C

ρ�ρ
1 .

Calculations are performed for several values of the number of
shells Nsh. The curves end at the largest value of C

ρ�ρ
1 for which

the convergence criteria are reached within 40 000 iterations.
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FIG. 2. (Color online) Maximum value of C
ρ�ρ
1 for which a

solution is found for the ground state of a given nucleus. Results
are displayed for SLy5′ [(a) and (c)] and LNS′ [(b) and (d)]. Results
are displayed in the upper (lower) panel as a function of the mesh
(basis) size used in LENTEUR (HOSPHE).

to be compared with those of EV8 where, for all mesh sizes,
the energy only varies by a few keV for a 1 MeV fm5 step in
C

ρ�ρ
1 below C

ρ�ρ
1,crit. Increasing Nsh to unusually large values

makes the detection of instabilities easier, but still leads to
values of C

ρ�ρ
1,crit significantly larger than those found with

LENTEUR and EV8, even for Nsh = 60. This result clearly
illustrates the shortcomings of an oscillator basis for the
accurate determination of C

ρ�ρ
1,crit. It also demonstrates that the

manifestation of finite-size instabilities can be obscured by
a choice of Nsh leading to an apparent convergence of the
binding energies but artificially suppressing the instability.

2. Determination of instabilities with the spherical codes

Systematic calculations with both HOSPHE and LENTEUR

for 16O, 40,48Ca, 56,78Ni, 100,132,176Sn, and 208Pb have shown
that the lowest C

ρ�ρ
1 at which the instability sets in is always

found for either 40Ca or 208Pb. This is illustrated in Fig. 2
for 16O, 40Ca, 78Ni, 176Sn, and 208Pb with SLy5′ and LNS′.
Results for 56Ni and 100,132Sn were omitted for reasons of
presentation but are in all cases situated between the lowest
and highest curves. For LNS′, the critical value of C

ρ�ρ
1 is

obtained in 40Ca whereas for SLy5′ it is found in 208Pb. In the
latter case, several nuclei lead to similar values. Throughout
our analysis and at the highest accuracy of the two spherical
codes, the lowest values of C

ρ�ρ
1,crit are systematically obtained

with LENTEUR.

3. Determination of instabilities with the 3D code

Because the calculations with the 3D code are very time
consuming at small mesh sizes, they were limited to these two
doubly-magic nuclei and a deformed one, 170Hf, and C

ρ�ρ
1 was

initially varied in steps of 1 MeV fm5. Results with LENTEUR
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FIG. 3. (Color online) Contribution of E
ρ�ρ
1 to the binding en-

ergy of 40Ca as a function of the number of iterations. Four modified
SLy5′ [34] parametrizations with values of C

ρ�ρ
1 around its critical

value C
ρ�ρ
1,crit are represented. Calculations are performed with the EV8

code for a value dx = 0.4 fm of the Cartesian mesh. During the
iterations, the Coulomb term in the EDF is switched off, such that the
exact value of E

ρ�ρ
1 should be zero for 40Ca.

and EV8 are consistent but C
ρ�ρ
1,crit systematically takes lower

values with EV8, as can be seen for example by comparing
Figs. 2 and 4. This can be explained by the lower degree of
symmetry of the latter code, which allows more freedom to
develop oscillations in a “spherical” nucleus. Our observation
that 170Hf and 208Pb give rise to almost identical C

ρ�ρ
1,crit can

be understood from this argument. For all parametrizations
studied with EV8, the value of C

ρ�ρ
1 at which the instability

sets in is systematically the lowest in 40Ca. Therefore, in the
following, we concentrate on the results obtained with EV8 for
40Ca. At dx = 0.40 fm, the size of the box in all directions was
chosen equal to 26 fm and for larger values of dx the number
of points on the mesh was adjusted accordingly.

In a next step, we compute the energy of 40Ca without
Coulomb interaction to obtain an accurate determination of
C

ρ�ρ
1,crit up to a precision of 0.1 MeV fm5. Indeed, 40Ca being

an N = Z nucleus, E
ρ�ρ
1 should be zero at convergence. The

starting point of the iterations is a converged wave function of

TABLE II. Nominal values of C
ρ�ρ
1 (MeV fm5). The critical

coupling constant C
ρ�ρ
1,crit is obtained for 40Ca with EV8 and dx =

0.4 fm. The ρmin/ρsat and ρcrit/ρsat are extracted from Figs. 7 and 8,
respectively. Values indicated with a star (∗) are extracted from the
asymptotic behavior of ρp(qph) (see Sec. III B for more details).

Param. Ref. C
ρ�ρ
1 ρmin/ρsat C

ρ�ρ
1,crit ρcrit/ρsat

KDE0v1 [29] 11.498 2.39 30.8(1) 1.18
LNS [30] 33.750 1.25∗ 28.5(1) 1.35∗

NRAPRii [31] 16.599 4.21 33.1(1) 1.67∗

SQMC700 [32] 15.884 4.77 31.1(1) 1.45∗

SkM* [33] 17.109 2.94 32.7(2) 1.36∗

SLy5 [34] 16.375 1.72 31.7(2) 1.08
T11 [35] 14.252 1.92 31.6(2) 1.08
T44 [35] −4.300 6.63 31.8(2) 1.05
UNEDF0 [36] −55.623 4.13 29.0(1) 1.02∗
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FIG. 4. (Color online) C
ρ�ρ
1,crit obtained for 40Ca with the EV8 code

for the various (modified) parametrizations as a function of the step
size dx.

50Ca for which E
ρ�ρ
1 is nonzero (∼ 10−1 MeV). The code is

then run for 4000 iterations. Parametrizations are considered
stable when the linear slope with which E

ρ�ρ
1 changes in log

scale after 1000 iterations is negative (see Fig. 3) and E
ρ�ρ
1 is

at most of the order 10−10 MeV. This allows us to pin down
C

ρ�ρ
1,crit with a numerical uncertainty of about 0.2 MeV fm5 (see

Table II for dx = 0.4 fm). Figure 4 illustrates the sensitivity
of C

ρ�ρ
1,crit to the mesh size for the nine parametrizations

under study. One observes a large change with dx for LNS′,
NRAPRii′, SQMC700′, SkM*′, and UNEDF0′, whereas that
variation is much milder for KDE0v1′, SLy5′, T11′, and T44′.
While C

ρ�ρ
1,crit varies over a range similar to its numerical

uncertainty for the latter group, it continues to decrease linearly
for the former group as one lowers the mesh to dx = 0.4 fm,
which is half of the value typically used in nuclear structure
studies. The same effect is observed for the results obtained
with HOSPHE and LENTEUR, as can be seen from Fig. 2 for
SLy5′ and LNS′.

A few comments are in order before the further presentation
of our results. First, we have verified that pairing correlations
do not alter the outcome of the analysis. Second, we note
that the number of iterations necessary for the unambiguous
identification of the instability is significantly larger than what
is routinely used. It is thus easy to overlook the unstable
nature of a given parametrization [8]. The same is true when
imposing overly restrictive symmetries. As such, the values of
C

ρ�ρ
1,crit extracted with EV8 should be seen as upper bounds, as

one cannot rule out that a completely symmetry-unrestricted
numerical representation might result in even lower values.
Last but not least, overly restrictive numerical parameters may
also hide the instability as already mentioned for the code
employing a HO basis expansion.

B. Connection with RPA in SNM

We now proceed to step 3 of our protocol (see Sec. II B)
and aim to establish a connection between the nonconvergence
occurring in calculations of finite nuclei with results obtained
using the RPA in SNM.

In Fig. 5, we display a representative RPA calculation of
ρp(qph). The parametrization SLy5′ has been used for a value

 0
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FIG. 5. (Color online) The function ρp(qph) for a SLy5′

parametrization corresponding to C
ρ�ρ
1 = 30.0 MeV fm5. The min-

imum of the ρp(qph) defines the lowest density ρmin at which a pole
occurs for this value of C

ρ�ρ
1 .

of C
ρ�ρ
1 slightly below C

ρ�ρ
1,crit. The value of ρmin is defined

as the minimum of ρp(qph) and corresponds to a momentum
transfer qph = qmin. Its dependence on C

ρ�ρ
1 is illustrated in

Fig. 6 and the critical density ρcrit is extracted as the value of
ρmin obtained for C

ρ�ρ
1 = C

ρ�ρ
1,crit. However, one has to check

that a lower value of ρmin is not obtained for very large values
of the momentum transfer. This is illustrated in Figs. 7 and 8
which provide the same information as Fig. 5 for the nine
parametrizations but extended to much larger values of qph. In
Fig. 7, Cρ�ρ

1 was taken at its nominal value. All curves present
a well defined minimum at a small qph, except for LNS, where
ρp(qph) decreases monotonically above qph = 4 fm−1. This
different behavior of the LNS curve can be attributed to the
fact that LNS is already unstable at the nominal value of C

ρ�ρ
1 .

In Fig. 8, C
ρ�ρ
1 was chosen at its critical value. For all EDFs,

ρmin is significantly reduced as compared to Fig. 7. For the
four parametrizations (KDE0v1′, SLy5′, T11′, and T44′) with
small error bars in ρcrit/ρsat, this minimal value corresponds to
a well defined minimum beyond which the curve increases in a
monotonic way. By contrast, for the other five parametrizations
(LNS′, SQMC700′, SkM*′, UNEDF0′, NRAPRii′), there is
a monotonic decrease of the density corresponding to the

 0
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ρ m
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]

CρΔρ
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FIG. 6. (Color online) ρmin as defined in Fig. 5 as a function of
C

ρ�ρ
1 . The vertical band C

ρ�ρ
1,crit intersects the curve to define the

horizontal band ρcrit. The dashed line denotes the saturation density
ρsat of SNM corresponding to SLy5′.
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FIG. 7. (Color online) ρp(qph) for the parametrizations given in
Table II at the nominal value of the coupling constant C
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pole for large values of qph which seemingly approaches an
asymptotic value. Then, the value of ρp at qph = 15 fm−1 is
chosen as an upper bound for ρmin.

The values of ρcrit thus extracted for the nine EDF
parametrizations are listed in Table II and plotted in Fig. 9.
The uncertainty on ρcrit is estimated from that on C

ρ�ρ
1,crit,

combining both the uncertainty found at a certain dx and the
overall dx dependence of the results. Figure 9 also presents
the interval between ρsat and ρcent, which is the highest density
attained in 40Ca. Note that ρcent is typically about 20 % larger
than ρsat.

Naively, ρcrit is expected at values of the density that are
explored in a nucleus; stated differently, one would expect
ρcrit � ρcent. This is the case for UNEDF0, KDE0v1, SLy5,
T11, and T44 over the whole uncertainty band. By contrast,
for LNS, SQMC700, and SkM* it is only true at the lowest
accuracies (thus, corresponding to the largest mesh size dx).
With NRAPRii, ρcrit even corresponds to densities that are
never probed inside a nucleus. Clearly, the picture is more
complicated than a naive one-to-one correspondence between
the densities occurring in a finite nucleus and those probed
by SNM. This could be expected when considering that the
density at each point inside the nucleus is not behaving as if
it simply were a piece of SNM with the same density. Not
surprisingly, the four parametrizations (KDE0v1, SLy5, T11,

 0.15
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FIG. 8. (Color online) ρp(qph) for the parametrizations given in
Table II at the critical value of the coupling constant C

ρ�ρ
1 . Note the

smaller scale of the y axis in comparison to Fig. 7.

 0.8  1  1.2  1.4  1.6  1.8  2

ρcrit / ρsat

KDE0v1
LNS
NRAPRii
SQMC700
SkM*
SLy5
T11
T44

UNEDF0

FIG. 9. (Color online) Critical density ρcrit/ρsat. The uncertainty
band comes both from the numerical extraction and the variation with
dx. The vertical bar indicates the value for the lowest mesh size used
dx = 0.4 fm. The dashed line indicates the interval [1,ρcent/ρsat].

and T44) for which the value of C
ρ�ρ
1,crit does not vary much with

dx (see Fig. 4 ) present much smaller error bars than the five
others.

C. Discussion

Let us now look at the distribution of relative neutron
momenta fn(q) in the center of 40Ca, where its density is
maximal. The calculation is performed in spherical symmetry
with the code LENTEUR. The converged wave function for the
nominal value C

ρ�ρ
1 of a given parametrization is taken as a

starting point of the calculation. We then set C
ρ�ρ
1 to a value

just above C
ρ�ρ
1,crit and run the calculation for several hundreds of

iterations. Figures 10 and 11 display f 2
n (q) at various numbers

of iterations on the way to the nonconvergence for SLy5′ and
SQMC700′, respectively.

Both parametrizations display a very different behavior. For
SLy5′, f 2

n (q) starts to grow around q = 2.2 fm−1 (see Fig. 7)
and increases significantly at low q values during the iterations
(note the logarithmic scale). This indicates that the divergence
is highly dominated by these low q values and is consistent
with the fact that ρp(qph) exhibits a clear global minimum at
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0
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FIG. 10. (Color online) Square of the relative momentum dis-
tribution f 2

n (q) at R = 0 for neutrons in 40Ca with SLy5′ taking
C

ρ�ρ
1 slightly above C

ρ�ρ
1,crit. The four curves (see text) correspond to

different numbers of Hartree-Fock iterations and the vertical dashed
line indicates q = 2kF .
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FIG. 11. (Color online) Same as Fig. 10 but for SQMC700′

(Cρ�ρ
1 slightly above C

ρ�ρ
1,crit).

small qph for SLy5′. For SQMC700′, there is only an increase
of f 2

n (q) for high q values. Indeed, when the calculation
starts to diverge, all the weights of momenta larger than q =
3.1 fm−1 increase. This seems to be consistent with ρp(qph)
being a monotonously decreasing function for qph tending to
∞, without a distinct global minimum.

The observations made above for SLy5′ (SQMC700′) are
valid for any parametrization belonging to the first (second)
group (as defined in Sec. III B). Hence, the very different
behavior of f 2

n (q) at the onset of and during the divergence
seems to support the hypothesis that there is a direct link
between the qmin in SNM and the onset of instabilities in finite
nuclei.

IV. CONCLUSIONS

The present study aimed at relating instabilities in energy
density functional calculations of nuclei to finite-wavelength
instabilities of homogeneous symmetric nuclear matter com-
puted at the RPA level. A detailed study of the various
numerical aspects in finite nuclei and of the relation between
results in SNM and finite nuclei has lead us to the following
conclusions:

(1) Instabilities of finite nuclei can be artificially hidden
when using inappropriate numerical schemes, such
as an insufficiently large basis, a too coarse mesh,
or overly restrictive, e.g., spherical, symmetries. An
unusually high accuracy of the calculation is required
for the unambiguous detection of instabilities. Also, a
code breaking spherical symmetry and relying on the
discretization of a 3D mesh appears to be better fit for
this task.

(2) Choosing too coarse a numerical representation to nu-
merically hide a finite-size instability is not equivalent
to suppressing it. Although a seemingly converged
solution of the self-consistent mean-field equations
might be found for a given set of numerical parameters,
the observables remain strongly dependent on the
choices made for these parameters.

(3) Omitting the UNEDF0 parametrization for the mo-
ment, the parametrizations studied can be sys-
tematically classified in two groups. The first
one (SLy5, KDE0v1, T11, T44) corresponds to

parametrizations for which the uncertainty in C
ρ�ρ
1,crit

is small and ρp(qph) has a marked absolute min-
imum as a function of qph. The behavior of
f 2

n (q) indicates that the divergence is dominated
by low q values. For this group of parametriza-
tions, ρcrit within error bars is smaller than ρcent.
For the second group (LNS, NRAPRii, SQMC700,
SkM*), the uncertainty in C

ρ�ρ
1,crit is large, ρp(qph)

is monotonously decreasing beyond qph ≈ 3 fm−1,
and f 2

n (q) grows predominantly for large q values when
the calculations diverge.

(4) The same grouping of the parametrizations is observed
when considering the quality of their prediction of
nuclear masses. SLy5, T44, T11, and KDE0v1 were
adjusted treating properties of nuclear matter and
finite nuclei on similar footing. By contrast, no data
on nuclear masses were included in the protocol
for LNS and SQMC700. As already pointed out
in the original references, the mass residuals for
these parametrizations are prohibitively large (>5%).
NRAPR was adjusted in a similar manner, with only the
spin-orbit part of the EDF being tuned to the binding
energies of 208Pb, 90Zr, and 40Ca, but with very poor
results. Finally, SkM∗ has been constructed using a
semiclassical approximation of the mean field and also
leads to nonsatisfactory results for binding energies.

(5) Finally, let us consider UNEDF0. It has a large
uncertainty in C

ρ�ρ
1,crit and a ρp(qph) that decreases

systematically with qph, hence placing it in the second
group of parametrizations. However, ρcrit < ρcent and
properties of nuclear matter and finite nuclei were
treated on equal footing during its adjustment, thus
associating it with the first group of parametrizations.
We do not see a clear explanation for this mixed
behavior. One can, however, note that the value found
for C

ρ�ρ
1,crit is far from its nominal value, even if it falls

within the error bars reported in [36].

Combining all aspects of the study carried out in the present
article, no universal quantitative picture emerges regarding the
value of ρcrit when scanning various Skyrme parametrizations.
Omitting UNEDF0, which has a large uncertainty in ρcrit and
for which C

ρ�ρ
1,crit is far from its nominal value, one finds a group

of parametrizations (SLy5, KDE0v1, T11, T44) that delivers a
high quality prediction of nuclear masses and for which the ρcrit

determined by means of RPA for SNM corresponds to densities
that are probed in a finite nucleus. On the other hand, one
finds a group of parametrizations (LNS, NRAPRii, SQMC700,
SkM*) that lead to less satisfactory results in the description of
nuclear masses and for which there seems to be no easy one-to-
one correspondence between ρcrit and the densities probed in a
nucleus. Note, however, that LNS, NRAPRii, and SQMC700
are shown to be consistent with a large set of pseudodata in
SNM.

For the purpose of constructing parametrizations for the
description of finite nuclei that are stable with respect to
scalar-isovector perturbations, we propose a twofold criterion.
First the minimum of ρp(qph) should be larger than the central
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density in 40Ca, in practice around 1.2 times the saturation
density. In addition, one also has to verify that ρp(qph)
exhibits a distinct global minimum and is not a monotonously
decreasing function for large transferred momenta.

Since RPA calculations of SNM can be performed at
no computational cost, the above stability criterion can be
easily incorporated in fitting protocols to identify and reject
(near-) unstable regions of the parameter space when adjusting
the coefficients of the EDF. The value of this threshold
should of course be increased if one is interested in nuclear
systems exploring densities higher than those encountered in
nuclear ground states, such as they appear in neutron stars for
example.
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