
PHYSICAL REVIEW C 88, 064318 (2013)

Relation between isospin-symmetry-breaking correction to superallowed β decay and the energy
of the charge-exchange giant monopole resonance
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After application of an analytical transformation, a new exact representation for the nuclear isospin-symmetry-
breaking correction δC to superallowed β decay is obtained. The correction is shown to be essentially the
reciprocal of the square of an energy parameter �M which characterizes the charge-exchange monopole strength
distribution. The proportionality coefficient in this relation is determined by basic properties of the ground state
of the even-even parent nucleus and should be reliably calculable in any realistic nuclear model. Therefore, the
single parameter �M contains all the information about the properties of excited 0+ states needed to describe
δC . This parameter can possibly be determined experimentally by charge-exchange reactions. Basic quantities of
interest are calculated within the isospin-consistent continuum random phase approximation, and the values of
δC are compared with the corresponding results from other approaches.
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I. INTRODUCTION

Superallowed 0+ → 0+ β decays (SA β decays) allow us to
test fundamental properties of the weak interaction, such as the
conserved vector current (CVC) hypothesis and the unitarity of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix Vij (see, e.g.,
a recent review [1] by Towner and Hardy). The decay rates for
SA Fermi transitions between T = 1 nuclear multiplet states
have accurately been measured in a dozen nuclei. Since the
CVC hypothesis is only true in the isospin-symmetry limit,
an uncertainty enters into the analysis of the experimental f t
values depending on the model calculation of the effect of
isospin breaking in nuclei. Although the breaking is weak, the
current situation is such that the theoretical uncertainties in the
calculated correction terms predominate over the experimental
uncertainties in the SA β decay data. This calls for better accu-
racy of the theory applied to interpret the experimental results.

From the 2009 survey of experimental data, Hardy and
Towner [2] determined |Vud | = 0.97425 ± 0.00022, which,
combined with the complementary experimental data on |Vus |
and |Vub|, gave

|Vud |2 + |Vus |2 + |Vub|2 = 0.99990 ± 0.00060 (1)

for the norm of the first row of the CKM matrix. Thus, this test
confirmed the unitarity of the CKM matrix with an accuracy
of 0.06%.

Isospin symmetry is slightly broken in nuclei, mainly by
the Coulomb interaction. This leads to a small reduction of the
nuclear matrix element MF for SA Fermi transitions between
the ground state (g.s.) of the even-even parent nucleus and its
isobaric analog state (IAS) in the odd-odd daughter nucleus:

|MF |2 = ∣∣M0
F

∣∣2
(1 − δC), (2)

where |M0
F |2 ≡ 2T0 = |N − Z| is the exact-symmetry value,

with T0 = |Tz| being the isospin of the g.s. of the even-even
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parent nucleus, and δC > 0 is the isospin-symmetry-breaking
correction.

There have been a number of methods used recently to
calculate the correction δC : a shell model with Woods-Saxon
and Hartree-Fock (HF) radial functions [2,3], relativistic
Hartree (RH) and HF approaches with the random phase
approximation (RPA) [4], an isovector monopole resonance
(IVMR) model [5], and self-consistent isospin- and angular-
momentum-projected nuclear density functional theory [6].
Still, there is a significant spread in the obtained values of
δC . Therefore, a better understanding of the aspects of nuclear
structure that are important for more accurate evaluation of δC

is needed.
The main purpose of this work is to derive a new exact

representation for the correction δC , which emphasizes the
role of the physical charge-exchange monopole strength dis-
tributions, that can be probed experimentally. After application
of an exact analytical transformation, δC is shown to be
essentially the reciprocal of the square of an energy parameter
�M which characterizes charge-exchange monopole strength
distributions. The proportionality coefficient in this relation
is determined by basic properties of the ground state of the
even-even parent nucleus, and it should be reliably calculated
in any realistic nuclear model. Therefore, the single parameter
�M contains all the information about the properties of
excited 0+ states needed to describe δC . The possibility
of experimental determination of this parameter in charge-
exchange reactions is discussed. Also in this paper basic
quantities of interest are calculated for a few nuclei within the
isospin-consistent continuum RPA, and the obtained values of
δC are compared with the corresponding results obtained by
using other approaches.

II. A NEW EXPRESSION FOR THE NUCLEAR
COULOMB CORRECTION δC

In all the experimental cases of interest, the IAS of the g.s.
|0〉 of a even-even parent nucleus with T = 1 is an isolated
low-lying state (or, in most of the cases, even the g.s.) in
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the daughter odd-odd nucleus. This physical IAS contains,
along with the major T = 1 component, various small isospin
admixtures.

The representation for |MF |2 can identically be transformed
as follows:

|MF |2 ≡ 〈0|T̂ (+)|IAS〉〈IAS|T̂ (−)|0〉 = 2T0 + S
(+)
F − S

(−)
F .

(3)

Here, S
(+)
F ≡ ∑

j |〈j |T̂ (+)|0〉|2, S
(−)
F ≡ ∑′

i |〈i|T̂ (−)|0〉|2, and∑′
i ≡ ∑

i −
∑

i=IAS runs over all physical 0+ states, but
the IAS, in the daughter nucleus, T̂ − = ∑

a τ−
a and T̂ (+) =

(T̂ (−))†, are the standard isospin lowering and raising opera-
tors, respectively. Note that Eq. (3) represents simply a version
of the Ikeda sum rule for Fermi transitions: |MF |2 + S

(−)
F −

S
(+)
F = 2T0 = N − Z. Hereafter we consider for definiteness

the case N > Z, which can readily be generalized for the case
N < Z.

Therefore, the Coulomb correction δC can be represented
in the following form:

δC = 1

2T0
(S(−)

F − S
(+)
F ). (4)

It proves very useful to further transform Eq. (4) to ex-
plicitly relate δC to isospin-breaking terms of the total nuclear
Hamiltonian Ĥ , which include the Coulomb interaction and
the small isospin-violating part of the nuclear forces. For this,
one introduces auxiliary operators V̂

(∓)
C ≡ ±[Ĥ ,T (∓)] which

are determined by these isospin-breaking terms, and one uses
an exact relation between the matrix elements of V̂

(∓)
C and

T̂ (∓):

〈s|V̂ (∓)
C |0〉 = ωs〈s|T̂ (∓)|0〉, (5)

with ωs = Es − E0 being the excitation energy of a state of
the isobaric odd-odd daughter nucleus measured from the g.s.
of the parent nucleus. The degree of fulfillment of Eq. (5) in a
nuclear model can serve as an important check of the isospin
consistency of the model. In particular, Eq. (5) ensures the
equalities

S
(−)
F = S

(−)
C[−2]; S

(+)
F = S

(+)
C[−2], (6)

where S
(−)
C[L] ≡ ∑′

i |〈i|V̂ (−)
C |0〉|2ωL

i and S
(+)
C[L] ≡∑

j |〈j |V̂ (+)
C |0〉|2ωL

j are the energy-weighted Coulomb
sum rules. As a result, one gets a representation equivalent to
Eq. (4):

δC = 1

2T0
(S(−)

C[−2] − S
(+)
C[−2]). (7)

Although physically Eqs. (4) and (7) are equivalent, it is
preferable to use Eq. (7) in a model calculation as this
representation is much less sensitive to possible residual
isospin inconsistencies of the model.

The charge-dependent isospin-breaking interaction is dom-
inated by the Coulomb interaction between protons. Because
the Coulomb force is of long range, the one-body Coulomb
mean field is mainly determining the transition operators V̂

(±)
C

in Eq. (7), which in this case also become one-body monopole

charge-exchange operators. Therefore, most of the strength for
the transition operators is exhausted by the corresponding gi-
ant isovector charge-exchange monopole resonance (IVMR),
associated with the 2�ω particle-hole excitations of proton-
neutron type with Jπ = 0+. The importance of the IVMR
as a doorway state for the isospin mixing of the IAS was
realized already in the early years of IAS studies [7,8] and was
re-emphasized recently in Ref. [5].

Further, one can introduce an auxiliary energy �M defined
as

�2
M ≡ S

(−)
C[0] − S

(+)
C[0]

S
(−)
C[−2] − S

(+)
C[−2]

. (8)

This energy characterizes the charge-exchange monopole
strength distributions in odd-odd isobaric nuclei. Then the
original expression for δC (7) can be identically rewritten
as δc = 1

2T0

1
�2

M

(〈0|[V̂ (+)
C ,V̂

(−)
C ]|0〉 − ω2

A|MF |2). Here, we again

have used
∑′

i ≡ ∑
i −

∑
i=IAS and 〈IAS|V̂ (−)

C |0〉 ≡ ωAMF .
From this expression one obtains

|MF |2 = 2T0

1 − ω2
A

�2
M

(
1 − 1

2T0�
2
M

〈0|[V̂ (+)
C ,V̂

(−)
C ]|0〉

)
,

and, finally, arrives at the following expression:

δC = 1

�2
M − ω2

A

(
1

2T0
〈0|[V̂ (+)

C ,V̂
(−)
C ]|0〉 − ω2

A

)
. (9)

Thus, one sees that δC (9) is determined by two energies,
�M and ωA, which are the only input into the problem related
to the spectrum of 0+ states in the odd-odd daughter nuclei, and
by the properties of the g.s. of the parent nucleus via the g.s.
expectation value of the commutator 〈0|[V̂ (+)

C ,V̂
(−)
C ]|0〉. Both

ωA and �M can be determined experimentally (with the former
in fact being already very accurately known; the value of the
latter can be determined by charge-exchange reactions on the
parent nucleus; see below). The numerical simulations (see
below) indicate that a strong inequality �M � ωA is fulfilled,
which is to be expected because of the high IVMR energy.

Now we would like to evaluate the expectation value
〈0|[V̂ (+)

C ,V̂
(−)
C ]|0〉 in the dominant mean-field approximation,

V̂C = ∑
a UC(ra)(1 − τaz)/2, with UC(r) being the Coulomb

mean field. The realistic potential UC(r) resembles very much
that of a uniformly charged sphere, which is a quadratic
function: UC(r) = Ze2

2R
[3 − (r/R)2] inside a nucleus r � R,

where R is the nuclear radius. It turns out that if one extends
this quadratic dependence also to the outer region r > R
(instead of proportionality to 1/r), this gives numerically just a
small deviation in the Coulomb sum rules. Thus, the Coulomb
sum rules are determined by single-particle charge-exchange
operators V̂

(∓)
C ≡ Û

(∓)
C = ∑

a UC(ra)τ∓
a , where the term in

UC(r), proportional to r2, gives the dominant contribution to
the sum rules. Further, one has

[V̂ (+)
C ,V̂

(−)
C ] =

∑
a

U 2
C(ra)τaz (10)
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and finally gets
1

2T0
〈0|[V̂ (+)

C ,V̂
(−)
C ]|0〉 = 1

2T0

∫
U 2

C(r)�(−)(r) d3r ≡ U 2
C,

(11)

where the bar means averaging over the neutron excess density
�(−)(r) = �n(r) − �p(r) defined as the difference between the
total neutron and proton number densities �n(r) and �p(r),
respectively.

The nominator in Eq. (9) is subject to a strong cancellation
between the two terms. This can be best seen if one introduces
the value of the Coulomb mean field averaged over the neutron
excess density:

UC ≡ 1

2T0

∫
UC(r)�(−)(r) d3r. (12)

By adding and subtracting UC
2

in the nominator of Eq. (9),
one gets

δC = 1

�2
M − ω2

A

(
(UC − UC)2 + (

UC
2 − ω2

A

))
. (13)

Each of the two terms in the nominator of Eq. (13) is now much

smaller than its counterpart in Eq. (9): (UC − UC)2 	 U 2
C as a

consequence of the smoothness of the Coulomb mean field, and

(UC
2 − ω2

A) 	 ω2
A since UC provides a leading contribution

to the Coulomb displacement energy (see, e.g., [7,8]). The
numerical simulations below show that only for light nuclei is

the term (UC − UC)2 comparable with UC
2 − ω2

A; for heavier

systems the inequality UC
2 − ω2

A � (UC − UC)2 holds.

Different models must give similar results for U 2
C and

UC provided that the basic nuclear geometry (such as the
mean radii of proton and neutron density distributions) can
reasonably be reproduced. Therefore, different values of δC

obtained by different methods should mainly stem from
differences in corresponding values of �M .

Returning to the question of the possible experimental
determination of �M , we note that the charge-exchange IVMR
was first observed in pion single-charge-exchange reactions
[9,10]. Recently, the IVMR has been studied in various
charge-exchange reactions: (3He,t) [11], (3He,tp) [11–13],
and (t,3He) [13]. The spin-flip IVMR was mainly excited in
the experiments. Though the measurements are rather difficult
to make, one may expect that the excitation of the non-spin-flip
charge-exchange IVMR might be separated from its spin-flip
counterpart (by means of polarized beams or by comparing
measurements at different projectile energies). Also, we note
that the effective one-body transition operator leading to
the IVMR excitation in charge-exchange forward-scattering
reactions is determined by the r2 dependence of the Bessel
function j0(r) [14], in accord with the r2 dependence of
UC(r). In such a case, �M can directly be obtained from the
experimental cross sections by a formula analogous to Eq. (8).

III. CALCULATION RESULTS

We consider here by way of example four decays: 10C →
10B, 38K → 38Ar, 66As → 66Ge, and 70Br → 70Se. (The two
latter cases, both with A ≈ 70, are taken to check the abrupt

TABLE I. Experimental (Expt.) and calculated (Calc.) values.
Columns 2 and 3 list the experimental and calculated excitation
energies ωA, measured from the g.s. energy of the corresponding
even-even nuclei in SA β decays from column 1 (with calculated
RPA values being corrected for the neutron-proton mass difference).
The calculated charge radii rc of the even-even nuclei are given in
column 5, and the only available experimental value for 38Ar is given
in column 4. In columns 6 and 7 the values of U 2

C (11) and UC (12),
respectively, are listed.

ωA (MeV) rc (fm) U 2
C UC

Expt. Calc. Expt. Calc. (MeV2) (MeV)

10C → 10B −1.397 −1.66 – 2.69 −8.96 −2.91
38K → 38Ar 5.533 5.57 3.40 3.30 55.83 7.36
66As → 66Ge 9.609 8.97 – 3.93 142.80 11.91
70Br → 70Se 10.109 9.49 – 3.99 159.18 12.59

drop in δC while going from 70Br to 66As as has appeared in
calculations of Ref. [4].) We use here a semiphenomenological
nuclear mean field and apply the continuum RPA with Landau-
Migdal zero-range forces to calculate the quantities of interest:
ωA, U 2

C (11), UC (12), S(±)
F , S(±)

C[0], S
(±)
C[2], �M (8), and finally δC .

The first calculations of the IVMR within the self-consistent
HF + continuum RPA approach were done in Ref. [15].
Here we use the relevant continuum-RPA equations from
Refs. [16,17]. Note that we do not need any discretization
of the single-particle (s.p.) continuum as done in Ref. [4],
because the equations are written in terms of the s.p. Green’s
functions.

The mean field is chosen as described in Ref. [16], and it
includes the fully phenomenological isoscalar part, with its
parametrization tracing back to Chepurnov’s potential [18],
and both the symmetry potential and the mean Coulomb
field calculated in the Hartree approximation. The chosen
dimensionless intensity f ′ = 1.0 of the isovector part of the
Landau-Migdal forces determines the symmetry potential via
the isospin self-consistency condition [17]. Thus, the mean
Coulomb field is the only source of isospin breaking in the
present model.

Since the nuclei in question are open-shell ones, one would
in principle need to take into account the pairing correlations
and, better, to use the continuum quasiparticle RPA (QRPA)
[19–21] instead of the continuum RPA. However, the con-
tinuum QRPA calculations are much more time consuming,
and, more importantly, one can easily argue that the effect of
nucleon pairing on the quantities in question must be small
(since the pairing gap is much smaller than �M ). Also, a
more modern choice of the isoscalar mean-field parameters of
Ref. [21], which allows for their A dependence, is not expected
to markedly affect the results.

In Table I the calculated excitation energies ωA and charge
radii rc are listed along with the corresponding experimental
data. Table I also contains calculated values of U 2

C (11) and
UC (12) (columns 6 and 7, respectively). The underestimate
of the experimental IAS energy in the calculations for heavier
nuclei reflects the Nolen-Schiffer anomaly [22–24].
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TABLE II. Calculated quantities characterizing the IVMR strength distributions. Calculated S
(∓)
F and S

(∓)
C[−2] are listed in columns 2,

3, 4, and 5, respectively. In columns 6 and 7 values of S∓
C[0] are given, and in column 8 the calculated energy �M (8) is listed. The

isospin-symmetry-breaking correction δC is listed in columns 9 (obtained directly from the RPA solution) and 10 [calculated from Eq. (13)].

Decay SF (%) SC[−2] (%) SC[0] (MeV2) �M (MeV) δC (%)

– + – + – + RPA (13)

10C → 10B 0.065 0.36 0.074 0.39 1.01 1.47 12.13 0.147 0.142
38K → 38Ar 2.16 1.33 2.18 1.33 26.95 9.35 45.38 0.434 0.436
66As → 66Ge 7.38 5.44 7.43 5.43 96.51 19.77 61.90 0.992 1.007
70Br → 70Se 7.83 5.92 7.89 5.90 109.47 21.17 66.66 0.992 0.993

The fact that in lighter nuclei, in particular in the A = 38
case, the calculated Coulomb displacement energies are larger
than the experimental ones is apparently related to the global
parametrization of the phenomenological mean field chosen
in the paper, which was fixed to fit properties of medium-
heavy and heavy nuclei, and can lead to larger deviations for
light nuclei. It can also be seen in Table I that the calculated
Coulomb radius is smaller then the experimental one. Trying
to fit the latter by an appropriate choice of the nuclear radius
of the mean field, one would get a smaller calculated Coulomb
displacement energy.

The other calculated quantities of interest, which character-
ize the IVMR strength distributions, S

(±)
F , S

(±)
C[0], S

(±)
C[2], and

�M (8), are listed in Table II. One can see a fairly good
agreement between the corresponding entries in columns 2
and 4 and those in 3 and 5, respectively, in agreement with
Eq. (6). This is clear evidence of the isospin self-consistency
of the applied continuum RPA. Finally, the isospin-symmetry-
breaking correction δC is listed in columns 9 (obtained directly
from the RPA solution) and 10 [calculated from Eq. (13)]. Both
ways of calculating δC agree well, again as a consequence of
the isospin self-consistency of the applied continuum RPA.

Apart from the decay 66As → 66Ge, the present results
for δC are close to those of Ref. [4] calculated within the
RH +RPA, and also are systematically smaller than those of
Ref. [3]. The corresponding value of δC for the decay 66As →
66Ge is pretty close to the one for 70Br → 70Se, in contrast to
the conclusion of Ref. [4], but in qualitative accord with the
small relative change in δC between these decays as observed
in Ref. [3].

One can try to explain the difference between the shell
model and the RPA results in terms of the difference in �M .
The former approach uses the differences in radial single-
particle wave functions of the neutron and proton with the
same quantum numbers; i.e., it employs a pure mean-field
picture. In this picture the collectivity of the IVMR is missing,
and the effective �M must be less than �M of the continuum
RPA. In the latter approach a collective IVMR is formed by

the repulsive residual particle-hole interaction and is thereby
shifted to higher excitation energy (see also similar arguments
in Ref. [5]).

Physically, the collectivization of the IVMR results in both
its energy shift to higher energy and a reduction of its Coulomb
strength. However, these effects are not independent and are
related via an energy-weighted sum rule. Namely, the existence
of such a relation allows one to relate δC exclusively to a
single energy parameter �M which characterizes the monopole
strength distribution [see Eqs. (8), (9), and (13)]. Therefore,
both effects of the IVMR collectivization can effectively be
accumulated in a single energy parameter �M .

Note that an estimate of the effect of the isospin splitting
of the IVMR goes beyond the framework of the RPA. The
splitting effectively pushes the monopole strength to higher
excitation energies, and it is expected that �M will further
slightly increase. This would lead to a corresponding decrease
of δC , bringing them closer to the estimates of Ref. [5].

IV. CONCLUSIONS

In the present work a new exact representation for the
correction δC is derived in which the role of the physical
charge-exchange monopole strength distributions is empha-
sized. After application of an exact analytical transformation,
δC is shown to be essentially the reciprocal of the square
of an energy parameter �M which characterizes charge-
exchange monopole strength distributions. The proportionality
coefficient in this relation is determined by basic properties of
the ground state of the even-even parent nucleus, and it should
be reliably calculated in any realistic nuclear model. The
possibility of experimental determination of the parameter �M

in charge-exchange reactions is discussed. Also in this paper
basic quantities of interest are calculated for a few nuclei within
the isospin-consistent continuum RPA, and the obtained values
of δC are compared with the corresponding results obtained by
using other approaches.
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