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Background: The (spin and isospin zero) α-particle is an efficient projectile for the excitation of the isoscalar,
natural-parity states of 12C. Among those states that have pronounced α-cluster structure, the Hoyle state (0+

2

state at 7.65 MeV) has been observed in many (α,α′) experiments while the second 2+ state of 12C, predicted at
Ex ≈ 10 MeV as an excitation of the Hoyle state, has not been observed until a recent high-precision experiment
of the α + 12C scattering at Eα = 386 MeV. A plausible reason is a strong population of the narrow 3−

1 state at
9.64 MeV and broad 0+

3 resonance at 10.3 MeV that hinders the weak 2+
2 peak in the (α,α′) spectrum.

Purpose: The accurate determination of the electric Eλ transition strengths of the isoscalar states of 12C,
including an E2 component at Ex ≈ 10 MeV that can be assigned to the 2+

2 state, based on a detailed folding-
model + coupled-channels analysis of the (α,α′) data measured at Eα = 240 and 386 MeV.
Method: The complex optical potential and inelastic form factor given by the folding model for the α + 12C
scattering are used to calculate the (α,α′) cross sections for the known isoscalar states of 12C in an elaborate
coupled-channels approach. The strengths of the form factors for these states are then fine tuned against the
(α,α′) data to deduce the corresponding Eλ transition strengths.
Results: A significant E2 transition strength has been obtained for the 2+

2 state from the present analysis of
the (α,α′) data measured at Eα = 240 and 386 MeV. The Eλ transition strengths of the 0+

2 , 3−
1 , 0+

3 , and 1−
1

states were also carefully deduced, and some difference from the results of earlier analyses has been found and
qualitatively understood.
Conclusion: Despite a strong hindrance by the 3−

1 and 0+
3 excitations, the presence of the 2+

2 state in the
(α,α′) spectra measured at Eα = 240 and 386 MeV has been consistently confirmed by the present folding-
model + coupled-channels analysis.
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I. INTRODUCTION

The excited states of 12C at energies near the α-decay
threshold have attracted broad interest recently [1,2] because
of the dominant α-cluster structure established in several cases,
like that of the isoscalar 0+

2 state at 7.65 MeV in 12C (known as
the Hoyle state that plays a vital role in the carbon synthesis).
Although a three-α-cluster structure of the Hoyle state was
shown more than three decades ago by the resonating group
method (RGM) calculations [3–5], an interesting α-condensate
scenario [2] for this state has been suggested recently [6,7],
where three α clusters were shown to condense into the lowest
S state of their potential. Nevertheless, a more complicated
structure of the Hoyle state is still being discussed [8,9].
Given a strongly nonspherical shape of 12C in the Hoyle
state, an excited rotational band with the angular momentum
Jπ = 2+,4+, . . . built upon the Hoyle state was suggested
more than 50 years ago by Morinaga [10]. In the α-condensate
scenario, where the Hoyle state is the lowest S state, it is also
natural that the next level in the potential containing three
α particles should be a 2+ state formed by promoting an
α-particle from the S to the D level. The second 2+ state of 12C
has been predicted by several structure models [11–14] at the
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excitation energy around 10 MeV, i.e., about 2 MeV above the
α-decay threshold, with a pronounced 8Be + α structure [1].

Because such an interesting structure has been predicted
for the 2+

2 state of 12C, numerous experimental studies over
the years have been aimed to detect it in the measured spectra
of different reactions involving 12C (see, e.g., Refs. [15–20]).
The experimental observation of the 2+

2 state of 12C would be
very important for a deeper understanding of the structure
of the Hoyle state. In particular, the measured excitation
energy would allow us to determine the moment of inertia
and deformation of 12C being in the Hoyle state [10,20,21].
Although some experimental evidence for a broad 2+ reso-
nance was found in the aforementioned experiments that might
be assigned to the 2+

2 state of 12C, a clear identification of
this state could be made in the high-precision experiments
on the inelastic α scattering [22] and photodissociation of
carbon [23,24]. The plausible explanations for the difficulty in
identifying the 2+

2 state are as follows.

(i) Like all states above the α-decay threshold, the 2+
2 state

is unstable against the disintegration of 12C∗ into three
α particles and is, therefore, a short-lived resonance
that is difficult to locate [9,21].

(ii) There is always a strong population of the narrow
3−

1 state at 9.64 MeV and broad 0+
3 resonance at
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10.3 MeV that hinder the 2+
2 peak at about 10 MeV

in the excitation spectrum of 12C [18].

We believe that the latter is the main reason why it was so
difficult to observe the 2+

2 state of 12C in the inelastic (α,α′) or
(p,p′) scattering. Our first attempt to investigate this puzzled
situation based on a detailed folding-model analysis of the
inelastic α + 12C scattering data at 240 MeV [25] was done in
Ref. [26], where a weak 2+

2 peak at Ex ≈ 9–10 MeV has been
shown to be strongly hindered by the 3−

1 peak at 9.64 MeV
and 0+

3 resonance at 10.3 MeV. Given a recent observation of
the 2+

2 state of 12C in the high-precision (α,α′) measurement
at Eα = 386 MeV [22], as well as its location and the E2
strength determined accurately from the photodissociation
experiment [23,24], we found it necessary to carry out again
a consistent folding-model analysis of the inelastic α + 12C
scattering data measured at Eα = 240 and 386 MeV using the
nuclear transition densities predicted by the antisymmetrized
molecular dynamics (AMD) calculation [13]. Our goal is not
only to give a microscopic description of the (α,α′) data at
these two energies and try to deduce the E2 transition strength
of the 2+

2 state of 12C from the experimental cross section at the
excitation energy Ex ≈ 10 MeV, but also to understand why
the 2+

2 state could not be identified at this energy by the original
multipole decomposition analysis of the 240-MeV (α,α′)
data [25].

II. THEORETICAL MODELS

A. The double-folding model

The generalized double-folding model of Ref. [27] was
used to evaluate the complex α + 12C optical potential (OP)
and inelastic scattering form factor (FF) from the Hartree-
Fock-type matrix elements of the (complex) effective nucleon-
nucleon (NN ) interaction between the projectile nucleon i and
target nucleon j ,

UA→A∗ =
∑

i∈α;j∈A,j ′∈A∗
[〈ij ′|vD|ij 〉 + 〈ij ′|vEX|ji〉], (1)

where A and A∗ denote the target in the entrance and exit
channels of the (α,α′) scattering, respectively. Thus, Eq. (1)
gives the (diagonal) OP if A∗ = A and (nondiagonal) inelastic
scattering FF if otherwise. The (local) direct term is evaluated
by the standard double-folding integration,

UD(E,R) =
∫

ρα(rα)ρA(rA)vD(E,ρ,s)d3rαd3rA,

s = rA − rα + R. (2)

The antisymmetrization gives rise to the exchange term in
Eq. (1), which is, in general, nonlocal. An accurate local
equivalent exchange potential can be obtained [27,28] using
the local WKB approximation [29] for the change in relative
motion induced by the exchange of spatial coordinates of each
interacting nucleon pair,

UEX(E,R) =
∫

ρα(rα,rα + s)ρA(rA,rA − s)vEX(E,ρ,s)

× exp

[
i K (R)s

M

]
d3rαd3rA. (3)

Here K (R) is the local momentum of relative motion deter-
mined as

K2(R) = 2μ

�2
[Ec.m. − ReU0(E,R) − VC(R)], (4)

where μ is the reduced mass, M = 4A/(4 + A), Ec.m. is
the scattering energy in the center-of-mass (c.m.) frame, and
U0(E,R) and VC(R) are the nuclear and Coulomb parts of the
real OP, respectively. The calculation of UEX is done iteratively
based on a density-matrix expansion method [27,30]. We have
used here a realistic local approximation for the transition
density matrix suggested by Love [31]. The recoil correction
to the exchange term (3) suggested by Carstoiu and Lassaut
[32] has been taken into account.

Among different choices of the effective NN interaction,
a density-dependent version of the M3Y-Paris interaction
(dubbed as CDM3Y6 interaction [33]) has been used quite
successfully in the folding-model analyses of the elastic and
inelastic α-nucleus scattering [28]. The density-dependent
parameters of the CDM3Y6 interaction were carefully adjusted
in the Hartree-Fock scheme to reproduce the saturation
properties of nuclear matter [33]. To avoid a phenomenological
choice of the imaginary parts of the OP and inelastic FF, we
have supplemented the M3Y-Paris interaction with a realistic
imaginary density dependence [34] for the folding calculation
of the imaginary parts of the OP and inelastic FF. The
parameters of the imaginary density dependence have been
deduced at each energy based on the Brueckner Hartree-Fock
results for the nucleon OP in nuclear matter by Jeukenne,
Lejeune, and Mahaux (the well-known JLM potential [35]).
The explicit density-dependent parameters of the (complex)
CDM3Y6 interaction for the α-nucleus scattering at the
energies Eα = 240 and 386 MeV are given in Ref. [34].

The key quantity in our folding-model analysis of the
inelastic α-nucleus scattering is the inelastic FF that contains
all the structure information of the nuclear state under study.
Given an accurate choice of the effective NN interaction, the
present double-folding approach can be applied successfully
to study the inelastic α + 12C scattering only if the realistic
nuclear densities were used in the folding calculation (2)–(3).
In our earlier studies, the nuclear densities given by the
RGM wave functions [4] have been used in the folding-model
analysis to probe the E0 transition strength of the Hoyle state
[36], and other isoscalar excitations of 12C, like 2+

1 (4.44 MeV),
3−

1 (9.64 MeV), 0+
3 (10.3 MeV), and 1−

1 (10.84 MeV) states
[37]. Like Ref. [26], the nuclear densities given by the AMD
approach [13] have been used in the present folding-model
analysis of the inelastic α + 12C scattering at Eα = 240 and
386 MeV.

B. The AMD nuclear transition densities in the present
folding-model analysis

The AMD approach was proven to give quite realistic
description of the structure of the low-lying states in light
nuclei, where both the cluster and shell-model-like states are
consistently reproduced [13]. In the present work, the isoscalar
states of 12C are generated by the AMD approach using the
method of variation after the spin-parity projection. The main
structure properties of these states are summarized in Table I.
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TABLE I. Excitation energies and Eλ transition strengths of the IS states of 12C under study. The calculated values are the AMD results
[13], and the best-fit transition rates are given by the present folding-model + CC analysis. M(Eλ) is given in e fmλ+2 for the 0+ and 1− states.

J π 〈r2〉1/2
calc Ecalc Eexp Transition Calc. Best-fit Exp. Ref.

(fm) (MeV) (MeV) (e2 fm2λ) (e2 fm2λ) (e2 fm2λ)

2+
1 2.668 4.5 4.44 B(E2; 2+

1 → 0+
1 ) 8.4 8.4 ± 1.5 7.4 ± 0.2 [22]

7.7 ± 1.0 [25]
8.0 ± 0.8 [39]

B(E2; 2+
1 → 4+

1 ) 28.5
0+

2 3.277 8.1 7.65 M(E0; 0+
2 → 0+

1 ) 6.6 4.5 ± 0.5 3.7 ± 0.2 [25]
5.4 ± 0.2 [40]

B(E2; 0+
2 → 2+

1 ) 25.5 13.0 ± 2.0 [41]
B(E3; 0+

2 → 3−
1 ) 3122

M(E0; 0+
2 → 0+

3 ) 16.7
M(E1; 0+

2 → 1−
1 ) 12.5

3−
1 3.139 10.8 9.64 B(E3; 3−

1 → 0+
1 ) 74.4 59.5 ± 3.2 35.9 ± 1.4 [22]

34.3 ± 5.7 [25]
87.1 ± 1.3 [42]

B(E3; 3−
1 → 2+

2 ) 136.7
M(E1; 3−

1 → 2+
2 ) 3.71

0+
3 3.985 10.7 10.3 M(E0; 0+

3 → 0+
1 ) 2.3 2.9 ± 0.3 3.0 ± 0.2 [25]

B(E2; 0+
3 → 2+

2 ) 1553
2+

2 3.993 10.6 9.84 B(E2; 2+
2 → 0+

1 ) 0.4 0.6 ± 0.1 0.37 ± 0.02 [22]
10.13 1.57 ± 0.14 [23,24]

B(E2; 2+
2 → 0+

2 ) 102
B(E2; 2+

2 → 4+
1 ) 13.5

B(E2; 2+
2 → 4+

2 ) 1071

1−
1 3.424 12.6 10.84 M(E1; 1−

1 → 0+
1 ) 1.58 0.34 ± 0.04 0.31 ± 0.04 [25]

M(E1; 1−
1 → 2+

2 ) 3.73
B(E3; 1−

1 → 2+
2 ) 1679

While the AMD prediction for the shell-model-like 2+
1

state is quite satisfactory in both the excitation energy and
E2 transition strength, the predicted excitation energies for
higher-lying states are larger than the experimental values.
However, such a difference in the excitation energies leads
only to a very small change in the kinetic energy of emitted α
particle and does not affect significantly the inelastic α + 12C
scattering cross sections calculated in the distorted wave Born
approximation (DWBA) or coupled-channels (CC) formalism.
However, the strength and shape of the nuclear transition
density used to evaluate the inelastic FF are the most vital
inputs that affect directly the calculated (α,α′) cross section.
The details of the AMD approach to the excited states of
12C are given in Ref. [13]. In the present work, the AMD
nuclear transition densities enter the folding calculation in the
same convention as that used in Refs. [26,27,34] so that the
isoscalar (IS) transition strength for a 2λ-pole nuclear transition
|Ji〉 → |Jf 〉 is described by the reduced nuclear transition rate
B(ISλ; Ji → Jf ) = |M(ISλ; Ji → Jf )|2, where the 2λ-pole
transition moment is determined from the corresponding
nuclear transition density as

M(ISλ; Ji → Jf ) =
∫

dr rλ+2ρ
(λ)
Jf ,Ji

(r) if λ � 2, (5)

M(IS0; Ji → Jf ) =
√

4π

∫
dr r4ρ

(λ=0)
Jf ,Ji

(r), (6)

M(IS1; Ji → Jf ) =
∫

dr

(
r3 − 5

3
〈r2〉r

)
r2ρ

(λ=1)
Jf ,Ji

(r). (7)

Note that the IS dipole transition moment is evaluated based on
higher-order corrections to the dipole operator, with spurious
c.m. oscillation subtracted [38]. The reduced electric transition
rate is evaluated as B(Eλ; Ji → Jf ) = |M(Eλ; Ji → Jf )|2,
where M(Eλ) is determined in the same way as M(ISλ) but
using the proton part of the nuclear transition density only.
We discuss hereafter the transition strength in terms of B(Eλ),
because this is the quantity that can be compared with the
experimental data. The excitation energies and Eλ transition
strengths of the excited states of 12C are given in Table I.
One can see that the AMD results for the excitation energies
and Eλ transition strengths between the ground state 0+

1 and
the excited 2+

1 , 0+
2 , and 3−

1 states agree reasonably with the
experimental values.

Contrary to the shell-model-like 2+
1 state, the 2+

2 state has
a well-defined cluster structure (see Fig. 5 of Ref. [13]), with
a more extended mass distribution that leads to the matter
radius Rm = 〈r2〉1/2 ≈ 3.99 fm, which is even larger than that
predicted for the Hoyle state. More interesting are the predicted
E2 transitions from the Hoyle state to the 2+

2 state and from the
2+

2 state to the 4+
2 state, B(E2; 0+

2 → 2+
2 ) ≈ 511 e2 fm4 and

B(E2; 2+
2 → 4+

2 ) ≈ 1071 e2 fm4, which are much stronger
than the E2 transitions between the members of the ground-
state band, B(E2; 0+

1 → 2+
1 ) ≈ 42.5 e2 fm4 and B(E2; 2+

1 →
4+

1 ) ≈ 28.5 e2 fm4. Thus, the E2 transition rates predicted by
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the AMD strongly suggest that the 2+
2 and 4+

2 states should
be the members of a rotational band built upon the Hoyle
state. We note that the B(E2; 0+

2 → 2+
2 ) value predicted by the

RGM [4] or fermion molecular dynamics calculations [43] is
even larger than that given by the AMD. The direct excitation
of the 2+

2 state from the ground state has been predicted to
be very weak, with B(E2; 0+

1 → 2+
2 ) ≈ 2 e2 fm4 that is sig-

nificantly smaller than the latest experimental value deduced
from the photodissociation experiment 12C(γ,α)8Be [23,24].
We note here that the original analysis of the photodissociation
data [23] resulted in B(E2↑) ≈ 3.65 e2 fm4 and the total width
� ≈ 0.8 MeV for the 2+

2 state. However, with some more data
points taken, the revised analysis of the 12C(γ,α)8Be data has
given B(E2↑) ≈ 7.85 e2 fm4 and � ≈ 2.1 MeV [24].

Nevertheless, the newly found B(E2↑) value for the 2+
2

state is still at least 5 times weaker than the B(E2↑) value
established for the 2+

1 state [39]. Therefore, the 2+
2 state must

be a very weak (direct) excitation of 12C and it is, therefore,
difficult to observe this state in the inelastic hadron scattering.
Although a very strong E2 transition has been predicted for
the excitation of the 2+

2 state from the Hoyle state, such a
two-step excitation of 12C via the Hoyle state seems to be
suppressed at the medium- and high-incident α energies as
well as by the disintegration of the excited 12C∗ into three α
particles. This could be also another reason for the scarcity of
the experimental observation of the 2+

2 state. Besides a strong
E2 transition between the Hoyle state and 2+

2 state discussed
above, AMD also predicted very strong Eλ transitions from
the Hoyle state to the 3−

1 , 0+
3 , and 1−

1 states that are about an
order of magnitude larger than Eλ transitions between these
states and the ground state (see Table I). To have an accurate CC
scenario for the (α,α′) scattering under study, all Eλ transitions
shown in Table I have been included into the present CC
calculation, and the coupling scheme in Fig. 1 is, therefore,
more comprehensive than that used earlier in Refs. [26,36].

In the inelastic α + 12C scattering experiments at Eα = 240
[25] and 386 MeV [22], the (α,α′) cross sections have been
measured accurately in small energy bins of 475 and 250 keV
width, respectively, over a wide range of scattering angles
and excitation energies. These data have been subjected to
the multipole decomposition analysis (MDA) to disentangle
contribution of different Eλ multipolarities to the excitation
of 12C in each energy bin. The MDA technique is the same as
that used earlier to deduce the electric transition strengths of
the IS giant resonances from the (α,α′) spectrum. As a result,
the (α,α′) cross sections measured at Eα = 386 MeV for the
energy bins centered around Ex ∼ 10 MeV were shown to
contain the contribution from both the 0+

3 and the 2+
2 states of

12C [22]. Although the 3−
1 state at 9.64 MeV has a very narrow

width of about 34 keV, the observed 3− strength is distributed
over a much wider energy range of the (α,α′) spectrum that
is likely associated with the energy resolution of the mea-
surement (the energy resolution of the 386-MeV measurement
is around 200 keV [22]). Given our best-fit B(E3) transition
strength comparable to that deduced from the (e,e′) experiment
and a good description of the measured 3−

1 angular distribution
by the inelastic FF obtained with the AMD transition density
(see Table I and Fig. 5), we have scaled the 3−

1 transition density
to reproduce the E3 strength found in each energy bin by the

MDA of the (α,α′) data [22,25] and used it to calculate the
3− inelastic FF for that energy bin. The situation with the 0+

3
and 2+

2 states is more uncertain; especially, no E2 strength was
found by the MDA of the 240-MeV data [25] in the energy bins
centered around 10 MeV. Therefore, we chose not to scale the
AMD transition density to the E0 and E2 strengths given by
the MDA of the (α,α′) data and adopted the strength-averaging
procedure [44], used in our earlier folding-model analysis
of the (α,α′) scattering on the lead target [34] at the same
incident α energies, to predict the strength distribution of the
0+

3 and 2+
2 states over the considered energy bins. Namely,

the IS transition strength SAMD ≡ B(ISλ; Ji → Jf ), given
by the AMD transition density scaled to give the best CC
fit of the (α,α′) data for the 0+

3 or 2+
2 states, has been spread

over the excitation energy as

〈S(E)〉 = SAMDf (E − Ex), (8)

where the adopted experimental excitation energies Ex ≈ 10.3
and 10 MeV [22,23,25] have been used for the 0+

3 and 2+
2

states, respectively, and

SAMD =
∫

E

〈S(E′)〉dE′. (9)

The averaging function f (E − Ex) is a Gaussian distribution,

f (E − Ex) = 1

σ
√

2π
exp

[
−1

2

(
E − Ex

σ

)2
]

, (10)

where σ is the standard deviation associated with the full width
� at half maximum as � = 2.355σ . The obtained IS transition
strength distribution of the 0+

3 and 2+
2 states is shown in Fig. 2,

where the adopted experimental width � ≈ 3 MeV [22,25] has
been used for the 0+

3 state. The total width of the 2+
2 state has

01
+  

 42
+  

 21
+  

4.44 MeV  

g.s.  

 ~11 MeV  

 ~13 MeV  

02
+  7.65 MeV  

9.64 MeV  
 22

+  

 41
+  

03
+  10.3 MeV  

 10.84 MeV  

 31
-  

     10 MeV  

 11
-  

FIG. 1. (Color online) Coupling scheme used in the present CC
calculation of the elastic and inelastic α + 12C scattering.
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FIG. 2. (Color online) Distribution of the IS transition strength
(8) of the 0+

3 state (a) and 2+
2 state (b) over the 250-keV-wide energy

bins around Ex ∼ 10 MeV used in the present folding-model + CC
analysis of the (α,α′) data measured at Eα = 386 MeV. The E2
strength distributions of the 2+

2 state based on the total width � = 0.8
and 2.1 MeV are shown as solid and dashed lines, respectively.

been suggested as � ≈ 0.7–0.8 MeV by most of the experi-
mental studies [15–18,22,23]. However, the revised analysis
of the 12C(γ,α)8Be data has “unambiguously” determined
� ≈ 2.1 ± 0.3 MeV for the 2+

2 state [24]. To deal with such a
situation, we have used two different total widths � = 0.8 and
2.1 MeV as the inputs for the averaging procedure (8) of the
E2 strength of the 2+

2 state (see bottom panel of Fig. 2).
To obtain the inelastic scattering FF for the contribution of

the considered state in each energy bin, we have used for
the input of the double-folding calculation (2)–(3) the bin
transition density of this state determined as

ρ
(λ)
bin(r) =

√
Sbin

SAMD
ρ

(λ)
AMD(r), (11)

where ρ
(λ)
AMD(r) is the AMD transition density of the 0+

3 or 2+
2

state, scaled to give the best CC fit of the (α,α′) data, and Sbin

is the IS transition strength in the energy bin,

Sbin =
∫ Ebin+	E

Ebin−	E

〈S(E′)〉dE′. (12)

Here Ebin is the center of the energy bin and 	E is its half
width.

III. RESULTS AND DISCUSSION

Given the AMD transition densities calculated for different
transitions between the IS states of 12C shown in Table I,
the corresponding inelastic folded FF can be used in both
the DWBA and the CC analysis of the (α,α′) data. For this

0 10 20 30 40 50 60
10-5

10-4

10-3

10-2

10-1

100

101

102

Elastic scattering

dσ
/d

σ R

x0.01

386 MeV

240 MeV

Θc.m.(deg)

 OM
 CC

FIG. 3. (Color online) OM and CC descriptions of the elastic
α + 12C scattering data measured at Eα = 240 MeV [25] and
386 MeV [22].

kind of analysis, an accurate determination of the distorted
waves in the entrance and exit channels by the appropriately
chosen OP is very crucial. In the present work, the complex
OP for the entrance channel is given by the double-folding
calculation (2)–(3) using the ground-state (g.s.) density of
12C and complex CDM3Y6 density-dependent interaction.
Because the exit channel of the inelastic α + 12C scattering
contains 12C∗ being in an excited (cluster) state that is generally
more dilute, with the predicted 〈r2〉1/2 radius significantly
larger than 〈r2〉1/2

g.s. ≈ 2.33 fm (see Table I), the OP of each exit
channel has been computed separately at the energy Eα − Q,
using the diagonal density of 12C∗ given by the AMD. It can be
seen from the discussion below that such an elaborate treatment
of the exit OP led to a better agreement of the calculated (α,α′)
cross sections with the data at large angles and helped to deduce
accurately the Eλ transition rates for the considered excited
states (the best-fit values given in Table I).

All the optical model (OM), DWBA, and CC calculations
have been performed using the code ECIS97 written by Raynal
[45]. To account for the higher-order (dynamic polarization)
contributions to the folded OP [27] and to fine tune the complex
strength of the CDM3Y6 interaction for each energy, the real
and imaginary folded OPs were scaled by the coefficients NR

and NI, respectively, which were adjusted to the best OM fit
of the elastic scattering data (see Fig. 3). As a result, the best-
fit NR ≈ 1.05, NI ≈ 1.27 and NR ≈ 1.24, NI ≈ 1.38 were
obtained for Eα = 240 and 386 MeV, respectively. We note
that the imaginary strength of the CDM3Y6 interaction was
tuned to the JLM results for nuclear matter and gives, therefore,
only the “volume” absorption. To effectively account for
the surface absorption caused by inelastic scattering and
transfer reactions, etc., an enhanced NI coefficient is naturally
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expected. The OM calculation using the complex folded OP
gives the total reaction cross section σR ≈ 626 and 624 mb
for Eα = 240 and 386 MeV, respectively, which are close to
the σR value around 640 mb given by the empirical global
OP for the elastic α-nucleus scattering [46]. These same NR(I)

factors were used to scale the real and imaginary inelastic
folded FF for the DWBA calculation, a standard method widely
adopted in the folding-model + DWBA analysis of inelastic
α-nucleus scattering [25,27,47]. In the CC calculation, NR and
NI must be readjusted again to account only for higher-order
effects caused by the nonelastic channels not included into
the CC scheme shown in Fig. 1. We have then obtained
NR ≈ 1.08, NI ≈ 1.18 and NR ≈ 1.26, NI ≈ 1.35 from the
CC analysis of the 240- and 386-MeV data, respectively.
These NR(I) factors were used to scale the OP and all the
(complex) inelastic folded FF’s used in the present CC analysis
of the (α,α′) data. From the OM and CC results shown in
Fig. 3 one can see that the renormalized (complex) folded OP
describes the elastic data accurately up to the large angles, thus
providing the realistic distorted waves for the DWBA and CC
calculations of inelastic scattering.

The DWBA and CC results for the inelastic (α,α′) scattering
to the 2+

1 and 3−
1 states are compared with the experimental

data in Figs. 4 and 5, respectively. One can see that all the
calculated (α,α′) cross sections for the shell-model-like 2+

1
state agree reasonably with the data, with the CC calculation
giving a slightly better fit to the 240-MeV data at large angles.
The B(E2) transition strength predicted by the AMD agrees
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FIG. 4. (Color online) DWBA and CC descriptions of the in-
elastic α + 12C scattering data for the 2+

1 state, measured at Eα =
240 MeV [25] and 386 MeV [22]. The DWBA1 results were obtained
using the same OP for both the entrance and the exit channels, and
the DWBA2 and CC results were obtained with the OP of the exit
channel computed separately at the energy Eα − Q, using the AMD
diagonal density of 12C∗.
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FIG. 5. (Color online) The same as Fig. 4 but for the 3−
1 state.

well with the experimental values deduced from the (α,α′) and
(e,e′) data [22,25,39], and the AMD nuclear transition density
of the 2+

1 state is well suitable for the folding-model analysis.
The situation with the 3−

1 state is quite different. The folded
inelastic FF given by the original AMD transition density
for the 3−

1 state overestimates the data in both the DWBA
and the CC calculations, especially, in the standard DWBA1
calculation that uses the same OP for both the entrance and
the exit channels. Using the folded FF rescaled to give a good
description of the data in the CC calculation, the DWBA1
results still overestimate the data at both energies (see Fig. 5).
This is obviously the reason why the best-fit B(E3) values
given by the (DWBA-based) MDA of the (α,α′) data [22,25]
are much lower than that deduced from the (e,e′) data (see
Table I). The more accurate DWBA2 and CC calculations,
using the complex folded OP of the exit channel determined
explicitly at the energy Eα − Q with the AMD diagonal
density of 12C∗, describe the (α,α′) data for the 3−

1 state much
better. In this case, the rescaled AMD transition density gives
the best-fit B(E3; 3−

1 → 0+
1 ) ≈ 60 e2 fm6, which is closer to

that deduced from the (e,e′) data [42]. Note that if the inelastic
3−

1 FF is rescaled to fit the data by the DWBA1 calculation,
then the rescaled AMD transition density gives the best-fit
B(E3; 3−

1 → 0+
1 ) ≈ 45 e2 fm6. A straightforward explanation

is that the 3−
1 state is more dilute, with the radius given by the

diagonal density 〈r2〉1/2 ≈ 3.14 fm compared to that of about
2.33 fm for the ground state. As a result, the complex folded
OP for the exit channel is more absorptive at the surface and the
strength of the elastic distorted waves is significantly reduced.
This leads to a reduction of the calculated (α,α′) cross section
as shown in Fig. 5. If one rescales, in a similar manner, the
AMD transition density to give the B(E3; 3−

1 → 0+
1 ) value

of about 87 e2 fm6 deduced from the (e,e′) data, then the
absorption of the exit channel needs to be further increased to
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FIG. 6. (Color online) The same as Fig. 4 but for the 1−
1 state.

describe the (α,α′) data for the 3−
1 state by either the DWBA2 or

the CC calculation. Such an important effect by the absorption
in the exit channel has been discussed earlier in more
details [37].

The IS dipole 1−
1 state at Ex ≈ 10.84 MeV has been ob-

served in both (α,α′) experiments at Eα = 240 and 386 MeV.
The total (α,α′) angular distribution for the 1−

1 state has been
deduced by the MDA of the 240-MeV data [25], covering the
first diffraction maximum as shown in Fig. 6. The calculated
1− cross sections have a slightly broader bell shape of the
first diffraction maximum, and one cannot adjust the FF
strength to fit all the data points. Like the DWBA analysis
of Ref. [25], we have tried to obtain the best CC fit of the
calculated 1− cross section to the data points at the peak of
the diffraction maximum that have smaller uncertainties. This
procedure implied a renormalization of the AMD transition
density that gives M(E1; 1−

1 → 0+
1 ) ≈ 0.34 e fm3, quite close

to the DWBA results of Ref. [25] given by a collective model
transition density of the 1−

1 state. From the DWBA and CC
results shown in Fig. 6 one can see quite a strong coupling
effect caused by the indirect excitation of the 1−

1 state via the
Hoyle and 2+

2 states, as predicted by the AMD (see Table I and
Fig. 1). Note that the direct excitation of the 1−

1 state has been
predicted to be much stronger, with M(E1↓) ≈ 1.58 e fm3,
and the absorption of the exit channel needs to be strongly
increased [37] to describe the (α,α′) data for the 1−

1 state using
the original AMD transition density.

The present folding-model + CC analysis of the (α,α′)
scattering to the Hoyle state (see results shown in Fig. 7)
has revealed interesting higher-order coupling effects that are
best seen in the results obtained for the α energy of 240 MeV.
As discussed earlier in Ref. [36], the MDA of the (α,α′) data
measured at different energies has consistently found a much
weaker E0 transition strength of the Hoyle state, with the
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FIG. 7. (Color online) The same as Fig. 4 but for the Hoyle (0+
2 )

state.

deduced M(E0; 0+
2 → 0+

1 ) ≈ 3.6–3.8 e fm2 that is about 30%
weaker than the experimental value M(E0↓)exp ≈ 5.4 e fm2

deduced from the (e,e′) data [40]. The DWBA1 calculation
using the (rescaled) AMD transition density would give the
best-fit M(E0↓) ≈ 3.65 e fm2, about the same as that given
by the RGM transition density rescaled to fit the (α,α′) data
in the DWBA [36]. The present CC calculation included all
possible second-order transitions from the Hoyle state to the
neighboring cluster states (see Fig. 1). In particular, very strong
Eλ transitions between the Hoyle state and the 3−

1 , 0+
3 , and 1−

1
states have been taken into account (see Table I). As a result, the
best-fit E0 strength given by the folding-model + CC analysis
of the 240-MeV data is M(E0↓) ≈ 4.5 e fm2, which is about
20% stronger than that given by the standard DWBA analysis.
It is likely that a full coupled reaction channel analysis of
the (α,α′) data including different breakup channels would
yield the best-fit M(E0↓) value closer to the (e,e′) data, and
that would physically explain the missing monopole strength
of the Hoyle state in (α,α′) scattering that can be accounted
for in the DWBA only by an enhanced absorption in the exit
channel [36,37].

The E0 transition strength of the 0+
3 resonance has not been

unambiguously determined by previous studies. For example,
the RGM calculation predicted about the same M(E0↓) value
for both the Hoyle and 0+

3 states [4,22], while the AMD
gives a much weaker monopole strength of the 0+

3 state, with
the ratio M(E0; 0+

3 → 0+
1 )/M(E0; 0+

2 → 0+
1 ) ≈ 0.34. The

MDA of the 386-MeV data [22], using the nuclear transition
densities from the collective model, gives M(E0; 0+

3 →
0+

1 )/M(E0; 0+
2 → 0+

1 ) ≈ 1. Given the CC scheme of Fig. 1,
a more precise determination of the E0 strength of the 0+

3
state should be important for a realistic determination of the
E2 strength of the 2+

2 state because these two cluster states
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FIG. 8. (Color online) DWBA and CC descriptions of the in-
elastic α + 12C scattering data for the 0+

3 state, measured at Eα =
240 MeV [25]. The curves DWBA1 and DWBA2 were obtained in
the same way as described in the caption of Fig. 4.

are connected by a very strong “interband” E2 transition
with B(E2; 0+

3 → 2+
2 ) predicted by the AMD to be around

1500 e2 fm4 (see Table I). Our folding-model + DWBA (CC)
analysis of the 240-MeV data for the 0+

3 state has been done
in the same manner as discussed above for the 3−

1 and Hoyle
states, and the results are plotted in Fig. 8. The best-fit E0
transition strength M(E0; 0+

3 → 0+
1 ) ≈ 2.9 e fm2 is close to

that given by the MDA of the 240-MeV data [25]. The (α,α′)
cross section calculated in the CC formalism agrees perfectly
with the measured data over the whole angular range (see
solid curve in Fig. 8). The DWBA1 calculation using the
same inelastic FF as that used in the CC calculation gives
a poorer description of the data points at large angles, like
the DWBA results of Ref. [25]. The DWBA2 calculation
improves the agreement of the calculated 0+

3 cross section
with the data, but the fit is still worse than that given by the
CC calculation. Thus, the best description of the (α,α′) data
measured at Eα = 240 MeV for both the Hoyle and 0+

3 states
has been consistently given by the present folding-model + CC
analysis, using the AMD transition densities rescaled to give
M(E0↓) ≈ 4.5 and 2.9 e fm2, respectively. This result gives
the ratio M(E0; 0+

3 → 0+
1 )/M(E0; 0+

2 → 0+
1 ) ≈ 0.64.

The MDA of the (α,α′) data measured at Eα = 386 MeV
has shown a broad 0+

3 resonance and a narrower 2+
2 state

centered at the excitation energies Ex ≈ 9.93 and 9.84 MeV,
respectively. After the subtraction of the known 0+

2 , 3−
1 , and

1−
1 peaks, the total (α,α′) angular distribution deduced for the

wide bump centered at Ex ≈ 10 MeV has been shown [22]
to contain only the coherent contributions from the 2+

2 and
0+

3 states (see Fig. 9). Given the E0 strength of the 0+
3 state

accurately determined above in the analysis of the 240-MeV
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FIG. 9. (Color online) DWBA (a) and CC (b) descriptions of the
inelastic α + 12C scattering data measured at Eα = 386 MeV for the
0+

3 and 2+
2 states [22]. The DWBA2 and CC results were obtained in

the same way as described in the caption of Fig. 4. The E2 strength
of the 2+

2 state has been adjusted to the best CC fit to the data, giving
B(E2↓) ≈ 0.6 e2 fm4.

data, the E2 strength of the 2+
2 state remains the only parameter

in the present analysis of the 386-MeV (α,α′) data. Thus,
the strength of the 2+

2 folded FF was adjusted to the best
CC description of the (α,α′) angular distribution, as shown in
Fig. 9. Although the α energy of 386 MeV can be considered
as high enough for the validity of the DWBA, very strong Eλ
transitions between the 2+

2 state and other cluster states of 12C
(see Table I and Fig. 1) have led to quite a significant CC
effect. From the DWBA2 and CC results shown in Fig. 9 one
can see that the calculated (α,α′) cross section for the 2+

2 state
is indeed enhanced by the indirect excitation of the 2+

2 state
via other cluster states. As a result, the best description of the
(α,α′) data measured at Eα = 386 MeV for the 2+

2 and 0+
3

states is given by the folding-model + CC calculation using
the 2+

2 transition density rescaled to give B(E2; 2+
2 → 0+

1 ) ≈
0.6 e2 fm4, which is about 50% larger than that predicted by the
AMD calculation (see Table I). Although in a fine agreement
with B(E2↓)exp ≈ 0.73 e2 fm4 given by the original analysis
of the photodissociation data [23], the best-fit B(E2↓) value
of about 0.6 e2 fm4 turns out to be significantly lower than
B(E2↓)exp ≈ 1.57 e2 fm4, a value deduced from the revised
analysis of the 12C(γ,α)8Be data [24]. However, if one sticks
to a simple DWBA scenario like that in Ref. [22] and adjust
the E0 strength of the 0+

3 state to fit the data shown in Fig. 9,
keeping the B(E2↓) transition rate of the 2+

2 state fixed at a
value around 0.4 e2 fm4, then the best-fit E0 strength of the 0+

3
state would increase and the agreement between the calculation
and experiment shown in Fig. 8 would deteriorate. Thus, a
consistent folding-model + CC description of the (α,α′) data
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FIG. 10. (Color online) Differential (α,α′) cross sections mea-
sured at Eα = 240 MeV [25,48] for the 475-keV-wide energy bins
centered at Ex = 9.69 MeV (a), 10.17 MeV (b), and 10.65 MeV
(c), and the CC results given by the contributions of different 2λ-pole
transition strengths. The total cross sections obtained with and without
the contribution from the 2+

2 state are shown as the thick (blue) and
thin (red) solid lines, respectively.

measured at both energies Eα = 240 and 386 MeV shown in
Figs. 8 and 9, respectively, has been achieved with the AMD
transition densities rescaled to give the best-fit E2 and E0
strengths tabulated in Table I for the 2+

2 and 0+
3 states.

A natural question now is why the 2+
2 state has not been

observed at Ex ≈ 10 MeV in the (α,α′) experiment at Eα =
240 MeV. In fact, the MDA of the 240-MeV (α,α′) data has
established a 2+ peak at Ex ≈ 11.46 MeV, with the width
of about 430 keV and B(E2↓) ≈ 0.5 e2 fm4, that could be
assigned to the 2+

2 state [25]. Given the realistic Eλ strengths of
the IS states found above in our folding-model + CC analysis
of both data sets, we decided to look again at the 240-MeV
(α,α′) data measured for several energy bins around 10 MeV
[25,48]. As discussed in Sec. II B, the 3− transition strength
found in each energy bin by the MDA of the 240-MeV (α,α′)
data [25] was used to scale the AMD transition density to
obtain the 3− inelastic FF of the bin. The best-fit Eλ transition
strengths found above for the 2+

2 , 0+
3 , and 1−

1 states were
distributed over the energy bins by the averaging procedure
(8)–(10) for the determination of the corresponding inelastic
FF of the bin. We note that a width � = 315 keV [17] has been
assumed in the averaging of the E1 strength of the 1−

1 state.
The CC description of the 240-MeV (α,α′) data measured
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FIG. 11. (Color online) The same as Fig. 10 but with the E2
strength of the 2+

2 state distributed over a wider energy range spanned
by the total width � = 2.1 MeV.

for three energy bins closest to Ex = 10 MeV is shown in
Fig. 10. From the calculated total cross section with (thick
solid lines) and without the contribution from the 2+

2 state
(thin solid lines) one can see clearly that the E2 strength of
the 2+

2 state is indeed present in these energy bins. Because the
CC description of the (α,α′) data shown in Fig. 10 has been
obtained without any further readjusting of the Eλ strengths
of the involved cluster states, we conclude that the presence
of the 2+

2 state at the energy near 10 MeV has been found by
the present folding-model + CC analysis of the (α,α′) data at
Eα = 240 MeV. Such a subtle effect could not be resolved in
the original MDA of the 240-MeV (α,α′) data.

Owing to the uncertainty in the measured total width of
the 2+

2 state discussed above in Sec. II B, the E2 strength
distribution of this state was built up in two distinct scenarios
by the averaging procedure (8) using the total width � = 0.8
and 2.1 MeV for this state. To assess the effect by the width
of the E2 strength distribution, we have calculated again the
240-MeV (α,α′) cross sections for the same three energy bins
as in Fig. 10 but using the E2 strength of the 2+

2 state distributed
over a wider energy range spanned by the total width � =
2.1 MeV. From the results shown in Fig. 11, one can see a better
agreement of the CC results with the data in the energy bins
centered at Ex = 9.69 and 10.17 MeV, while the agreement
with the data in the bin centered at 10.65 MeV slightly worsens.
A clear presence of the 2+

2 state at the energy near 10 MeV
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FIG. 12. (Color online) Double-differential (α,α′) cross sections
measured at Eα = 386 MeV [22] for the 250-keV-wide energy bins
centered at Ex = 9.625 MeV (a), 10.125 MeV (b), and 10.625 MeV
(c), in comparison with the CC results in the same way as in Fig. 10.

can also be seen in Fig. 11, which consistently confirms our
conclusion on the 2+

2 peak in the 240-MeV (α,α′) spectrum.
The inelastic α + 12C scattering at Eα = 386 MeV was

measured using the high-precision Grand Raiden spectrome-
ter, and the (α,α′) spectrum over the whole energy and angular
range has been obtained free of background [22]. In difference
from the MDA of the 240-MeV data, the MDA of the 386-MeV
data has revealed a clear presence of the 2+

2 state at the energy
near 10 MeV, and the total (α,α′) cross section measured at this
energy was used above in our analysis to determine the realistic
E2 strength of the 2+

2 state (see Fig. 9 and the discussion
thereafter). With the 386-MeV data available also for many
energy bins around Ex = 10 MeV, it is of interest to probe the
consistency of the present folding-model + CC approach in
the calculation of (α,α′) scattering at Eα = 386 MeV, similar
to that shown in Figs. 10 and 11. We note that the 3− transition
strength found in the energy bins around 10 MeV by the MDA
of the 386-MeV data [22] is better resolved in energy than
that found by the MDA of the 240-MeV data [25], and it was
used to scale the AMD transition density to obtain the folded
3− inelastic FF of the bin. All the remaining inputs of the
folding-model + CC calculation were determined in the same
manner as that done above for the 240-MeV data. The CC
description of the 386-MeV (α,α′) data measured for three
similar energy bins around Ex = 10 MeV is shown in Fig. 12.
One can see that a good overall agreement of our results
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FIG. 13. (Color online) The same as Fig. 12 but with the E2
strength of the 2+

2 state distributed over a wider energy range spanned
by the total width � = 2.1 MeV.

with the (α,α′) data measured at Eα = 386 MeV for these
energy bins has been achieved using the same structure inputs
for the most important cluster states of 12C as those used to
obtain the CC results shown in Fig. 10. The CC results for
the same three energy bins obtained with the E2 strength of
the 2+

2 state distributed over a wider energy range spanned
by the total width � = 2.1 MeV are shown in Fig. 13, and one
can also see a good agreement of the CC results with the data,
especially a better CC description of the data taken for the
energy bin centered at Ex = 10.125 MeV. This result might
well indicate that the 2+

2 state has indeed a wide total width
� ≈ 2 MeV.

IV. SUMMARY

The complex OP and inelastic scattering FF given by the
double-folding model using the nuclear densities predicted by
the AMD approach and the CDM3Y6 interaction have been
used in the comprehensive CC calculation of the elastic and
inelastic α + 12C scattering at Eα = 240 and 386 MeV. The
(α,α′) cross sections calculated in the CC approach for the (IS)
cluster states of 12C are compared with the (α,α′) data under
study, and the strength of the inelastic FF has been fine tuned
in each case to the best CC description of the measured angular
distribution to determine the corresponding Eλ transition
strength. A detailed folding-model + CC analysis of the (α,α′)
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data measured in the energy bins around Ex ≈ 10 MeV has
been carried out to reveal the E2 transition strength that can
be assigned to the 2+

2 state of 12C.
A clear presence of the 2+

2 state of 12C at the excitation
energy Ex ≈ 10 MeV has been confirmed consistently by
the present analysis of the (α,α′) data measured at Eα = 240
and 386 MeV. Given quite strong Eλ strengths predicted for
the Eλ transitions between the 2+

2 state and other cluster
states of 12C, a high-precision (α,α′) measurement at the
lower beam energy might be an interesting alternative to
observe the 2+

2 excitation and to probe the indirect (two-
step) excitation of this state via the CC scheme shown in
Fig. 1.

The obtained best-fit Eλ strengths of the considered states
agree reasonably with the existing database, with the exception
of the B(E2)exp transition rate of the 2+

2 state given by the
revised analysis of the 12C(γ,α)8Be data [24] that is more than

double the best-fit B(E2) value found in our analysis. This
result stresses the need for new precise measurements of the
excitation of 12C using the α beam as well as other probes.
Some difference between the Eλ transition strengths of the
0+

2 , 0+
3 , 3−

1 , and 2+
2 states given by the present analysis and

those given by the earlier multipole decomposition analyses of
the same (α,α′) data [22,25] has been shown to be attributable,
in part, to the strong CC effect and enhanced absorption in the
exit channel of the (α,α′) scattering.
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