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Division of Mathematical Physics, LTH, Lund University, P.O. Box 118, S-22100 Lund, Sweden

(Received 15 October 2013; published 13 December 2013)

Background: For nuclei heavier than 208Pb α decay is a dominating decay mode, and in the search of new
superheavy elements one often observes chains of α decays.
Purpose: Explore and test microscopic descriptions of α decay based on theories with effective nuclear
interactions.
Methods: The nuclear ground states are calculated with the Hartree-Fock-Bogoliubov (HFB) method using the
Skyrme interaction. Microscopic α-decay formation amplitudes are calculated from the HFB wave functions,
and the R-matrix formalism is utilized to obtain decay probabilities.
Results: Using a large harmonic-oscillator basis we obtain converged α-decay widths. A comparison with
experiment including all spherical even-even α emitting nuclei shows that the model consistently predicts too
small formation amplitudes while relative values are in good agreement with experiment.
Conclusions: The method was found to be numerically practical even with a large basis size. The comparison of
formation amplitudes suggests that the pairing type correlations included in the HFB approach cannot produce
sufficient α-particle clustering.
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I. INTRODUCTION

Superheavy elements (SHE) can be formed in heavy-ion
fusion reactions, and typically α decay in several steps, see,
e.g., [1]. In a recent experiment [2] it has been possible
to measure the emitted α particles in coincidence with γ
radiation. This opens up possibilities to identify SHE through
x rays, as well as to obtain detailed spectroscopic information.
Such detailed nuclear structure experiments call for an accurate
theoretical description that simultaneously provides a good
prediction of both the structure of superheavy nuclei and the
α-decay lifetimes. A good starting point is then to consider a
microscopic model based on interacting nucleons where both
the structure and the reaction parts can be treated on the same
footing.

Calculations of α decay can be carried out at various levels
of sophistication. Currently, most microscopic approaches are
based on either microscopic-macroscopic models employing
Woods-Saxon potentials combined with BCS pairing, or
for some particular nuclei (e.g., 212Po) using shell-model
approaches where a few valence particles are allowed to
interact via effective model-space interactions, see, e.g.,
Refs. [3,4].

In this work, the structure model is based on modern
and well-tested effective Skyrme interactions which allow
for microscopic descriptions of nuclear properties throughout
the nuclear chart. Wave functions of mother and daughter
nuclei are obtained self-consistently using the Hartree-Fock-
Bogoliubov (HFB) method and correlations are modeled using
a density dependent zero-ranged pairing interaction. Taking
the Skyrme interaction as a starting point allows different levels
of correlations, that are particularly important to describe the
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α-particle formation, to be subsequently included, e.g., using
the approach of [5].

A microscopic description of the α decay is obtained
through the R-matrix approach [3,4,6] where the calculated
wave functions of the mother and daughter nuclei are used to
project out a formation amplitude for the α particle. Beyond
the range of nuclear forces this amplitude is matched to the
asymptotic Coulomb solution from which the flow of emitted
α particles can be determined.

The method is quite general and can be applied to even-even
as well as to odd nuclei [7]. Especially for odd nuclei it is
important to have a reliable microscopic model to be able
to predict the large variations in the half-lives for decays to
different excited states. In this first study, we test the method
for the description of α-decaying heavy, spherical even-even
nuclei.

The paper is organized as follows. In Sec. II the theoretical
formalism is described. We give the details of the nuclear
structure model and review and discuss the treatment of α
decay in the R-matrix approach. In Sec. III we investigate
the convergence of the calculated formation amplitude, and
its dependence on the parameters of the mean field and
pairing force. Calculated α widths are compared to available
experimental data on heavy near-spherical nuclei in Sec. IV,
where the model also is applied to make predictions for α
decay of the SHE near the predicted shell closures at N = 184,
Z = 114 and 126. The results are discussed in Sec. V where
in particular possible shortcomings and improvements of the
model are considered. Finally, in Sec. VI we conclude and
summarize the results.

II. FORMALISM

In this section the formalism for our theoretical description
of α decay is discussed. The ingredients of the nuclear structure
model are provided in Sec. II A. An overview of the theoretical
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treatment of the α decay is given in Sec. II B, and in Sec. II C
we describe how the formation amplitude is obtained.

A. Nuclear structure model

The ground states of the mother and daughter nuclei are
described using the Hartree-Fock-Bogoliubov (HFB) method
with an effective Skyrme interaction in the particle-hole
channel [8]. The HFB equations are solved using an extended
version of the program HOSPHE (v1.02) [9]. This code works
with a spherical harmonic oscillator basis and can handle large
basis sizes where the maximum oscillator shell included can
be as high as Nmax = 70. A large basis size is essential in order
to obtain convergence for the α-particle formation amplitudes.

For the pairing a density-dependent zero-range δ interaction
[10] combined with an energy truncation, ee.s.

cut , in the equivalent
spectra [11] is adopted. The pairing interaction is parametrized
by

V q
pair(r, r′) = Vq

[
1 − β

ρ(r)

ρc

]
δ(r − r′), q = n, p, (1)

where ρc = 0.16 fm−3 is the saturation density of nuclear
matter and β is a parameter determining the density de-
pendence. In the case of so called surface pairing, i.e.,
β = 1, the pairing energy density gets its main contribution
from the surface region. A density independent pairing is
obtained when β = 0 in which case the main contribution
comes from the nuclear interior. Pairing is treated both using
the HFB approach and with an approximate version of the
Lipkin-Nogami (LN) method [11]. The LN method provides
an approximate particle-number restoration that gives more
realistic pairing solutions and avoids the collapse of the pairing
for magic nuclei obtained with the HFB method.

The proton pairing strength, Vp, is tuned so that the
theoretical odd-even mass difference, �th

p (N,Z), agrees with
the experimental three-point gap centered on the odd nucleus,

�exp
p (N,Z) = E(N,Z + 1) − 1

2 [E(N,Z) + E(N,Z + 2)].

(2)

To have a simple recipe we approximate �th
p (N,Z) by the

lowest quasiparticle energy Emin
p calculated for the even-even

nucleus ZXN . The same prescription is used for the neutron
pairing strength, Vn.

B. Decay treatment

α decay is treated microscopically using the same R-
matrix-based approach that was used in Refs. [12–14] and
reviewed in Ref. [3]. An important feature of α decay is the
tunneling through the long-range Coulomb potential between
the daughter nucleus and α particle. When the α particle is far
away from the daughter nucleus with ZD protons, their relative
motion is described by an outgoing Coulomb wave function,

OL(E, r)

r
= 1

r
[GL(η, κr) + iFL(η, κr)] , (3)

where E is the resonance energy, L the angular momentum, F
and G the regular and irregular Coulomb wave functions [15],

κ =
√

2μE

h̄
and η = 2ZDμe2

h̄2κ
, where μ is the reduced mass. In

the R-matrix approach the system is divided into inner and
outer regions. The solution for the relative motion in the inner
region is matched to this outgoing Coulomb wave function at a
matching radius, rc. For the spherical case, the absolute width,

, of the α decay with energy Qα , is given by


(rc) = 2γ 2
0 (rc)P0(Qα, rc), (4)

where γL is the reduced width,

γ 2
L(rc) = h̄2

2μrc

r2
c g2

L(rc), (5)

that depends on the formation amplitude, gL(rc). The forma-
tion amplitude describes the relative α-daughter motion, and
is obtained from the overlap of the mother nucleus with an α
particle and daughter nucleus separated by the distance rc. PL

is the Coulomb penetrability factor,

PL(Qα, rc) = kαrc

|OL(Qα, rc)|2 , (6)

where kα =
√

2μQα

h̄
. Both factors entering Eq. (4) depend on

the matching radius, rc. However, in an exact treatment these
dependencies cancel and in the region where nuclear forces
can be neglected 
 becomes constant. This constant value of
the decay width is related to the half-life, T1/2, through the
usual formula 
 = h̄ ln 2/T1/2.

The difference compared to earlier works is that we
here obtain the wave functions for the mother and daughter
nuclei entering in the formation amplitude using the Skyrme-
HFB model employing a large harmonic-oscillator basis. To
emphasize some of the approximations in the treatment, we
will briefly discuss the main features of the so-called BCS
approach to α decay [3]. One can arrive to the formula
(4) using either the Gamow state [16,17], or the R-matrix
formalism [6,18]. A discussion on the difference between the
two approaches, when applied to proton decay, can be found
in [19]. The main steps of the derivation are presented below
from a similar perspective as in [20,21].

We describe the mother nucleus, (M), as an exponentially
decaying Gamow state [16]

�
(M)
IM (ξD, ξα, rαD; t) = �

(M)
IM (ξD, ξα, rαD; 0)e−i(EM−i 


2 )t/h̄,

(7)

where I and M are the spin and spin projection of the
mother nucleus, respectively. The Jacobi coordinate system
ξD, ξα, rαD corresponds to internal coordinates of the daughter
nucleus and the α particle, and a vector between their centers
of mass. EM and −
/2 are the real and imaginary parts of
the complex energy of the Gamow state [22]. The state is
normalized at t = 0 within some finite volume V :∫

V

∣∣�(M)
IM (ξD, ξα, rαD; 0)

∣∣2
dξDdξαdrαD = 1. (8)

To find the rate of emitted α particles, one can start by
approximating the mother nucleus as a combined state of
daughter, (D), and valence particles, (v), from which the α
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particle is formed (see Appendix),

�
(M)
IM (t = 0) � ADv

{[



(D)
J (ξD),
(v)

L′ (ξα, rαD)
]
IM

}
, (9)

where the operator ADv [3] exchanges coordinates between
the two parts in order to make the state fully antisymmetric.

For large distances between the α particle and the daughter
nucleus, rαD , the components of the mother nucleus that
contribute to the α-decay width are assumed to be described
by the daughter nucleus wave function, 


(D)
JMJ

(ξD), the spin

zero intrinsic wave function of the α particle, 

(α)
00 (ξα), and a

wave function of their relative motion, YLML
(r̂αD)uL(rαD),

ADv

[



(D)
J (ξD),
(α)

0 (ξα)YL (r̂αD) uL(rαD)
]
IM

. (10)

The formation amplitude, gL(rαD), is defined as the overlap
between the mother nucleus wave function, �

(M)
IM , and the

intrinsic and angular parts of expression (10). With the
approximation in Eq. (9), the formation amplitude can be
expressed as

gL(rαD) =
∑
L′

∫ [



(D)
J (ξD),
(α)

0 (ξα)YL (r̂αD)
]∗
IM

× [



(D)
J (ξD),
(v)

L′ (ξα, rαD)
]
IM

dξDdξαdr̂αD.

(11)

In this expression we have neglected the exchange between
the α particle and the daughter nucleus. This is a valid
approximation if the orbitals the α particle is expanded in are
orthogonal to the orbitals of the daughter nucleus. Clearly this
is not fulfilled in general but is a good approximation when the
α particle is sufficiently far away from the daughter nucleus.
In this work we furthermore restrict ourselves to decay from
ground states in spherical nuclei where mother and daughter
nuclei both have spin zero, J = 0 and I = 0. This leads to the
simpler form of the formation amplitude,

g0(rαD) = 1√
4π

∫



(α)∗
00 (ξα)
(v)

00 (ξαrαD)dξαdr̂αD. (12)

The method of finding the wave functions entering this
expression, further discussed below, involves an expansion in
terms of harmonic oscillator basis functions. This implicitly
imposes boundary conditions that the wave function goes
to zero for large radii which is in principle incorrect. A
Gamow state should instead have outgoing waves as boundary
conditions. However, since the α particle has to penetrate a
wide and high Coulomb barrier we can assume [3] that the
harmonic oscillator basis can provide a good approximation
inside the barrier, and use a matching condition to impose a
tail with the correct asymptotic behavior.

For large distances, rαD , beyond the range of nuclear
forces, the formation amplitude should behave as an outgoing
Coulomb wave, see Eq. (3),

gext
0 (Qα − i
/2, rαD) = C

O0 (Qα − i
/2, rαD)

rαD

. (13)

This expression is valid both inside and beyond the Coulomb
barrier. The imaginary part of the energy causes the amplitude
of O0 to increase with rαD . Since 
, related to the decay

rate, is very small, this increase of the amplitude may be
neglected inside the barrier. Neglecting the small 
, the
formation amplitude, Eq. (12), is matched to the external
solution, Eq. (13), at the matching radius rαD = rc, giving
the total formation amplitude,

gtot
0 (rαD) = g0(rαD)θ (rc − rαD)

+ gext
0 (Qα, rαD)θ (rαD − rc) , (14)

where θ are Heaviside functions. The constant C in Eq. (13)
is determined by requiring g0(rc) = gext

0 (rc),

C = rc

g0(rc)

O0(Qα, rc)
. (15)

From the continuity equation, one can obtain the so-called
current expression [17,19]. It relates the width 
 to the
probability flow, j0, at t = 0 through a surface at rαD =
r0. Choosing r0 to correspond to the volume used for the
normalization in Eq. (8) gives




h̄
= ih̄

2μ
r2

0

[
gtot

0 (r0)
∂gtot∗

0 (r0)

∂r
− gtot∗

0 (r0)
∂gtot

0 (r0)

∂r

]
≡ j0(r0), (16)

where we have assumed that α decay is the only decay channel
contributing to the probability flow. Since we neglect the
complex part of the energy the flow through two different
spheres that both enclose the origin is equal, and one may for
simplicity evaluate the flow j0(r) in the r → ∞ limit. Inserting
the asymptotic form of O0(Qα, r) for large r [15] in Eq. (16)
gives

j0(r0) = lim
r→∞ j0 (r) = |C|2 h̄kα

μ
. (17)

Combining Eqs. (15), (16), and (17) we recover formula (4),


 = r2
c g2

0(rc)h̄2kα

|O0(Qα, rc)|2μ = 2γ 2
0 (rc)P0(Qα, rc). (18)

C. Formation amplitude

We use the standard coordinate system, (Rα, ξα), with ξα =
(rπ , rν, rα), where [4]

rπ = r1 − r2√
2

, rν = r3 − r4√
2

,

rα = 1
2 (r1 + r2 − r3 − r4) ,

and

Rα = 1
2 (r1 + r2 + r3 + r4) . (19)

Here r1, r2 are the coordinates for the valence protons,
and r3, r4 for the valence neutrons. The Jacobian for the
transformation (r1, r2, r3, r4) → (Rα, rα, rπ , rν) is 1.

To preserve translational invariance, the valence wave
function 


(v)
00 (ξα, rαD) entering in Eq. (12) should describe

the motion of the valence particles relative to the daughter.
From the nuclear structure model we obtain shell model type
wave functions, which are localized in a laboratory coordinate
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system, and we approximate the formation amplitude, Eq. (12),
by

g0(R) = 1√
4π

∫



(α)∗
0 (ξα)

√
8
̃

(v)
00 (ξα, 2R)dξαdR̂, (20)

where R = Rα/2 is the center-of-mass coordinate of the
α particle, and 
̃

(v)
00 (ξα, Rα) is the valence nucleon wave

function of the localized mother nucleus, discussed in the
Appendix. The approximation in Eq. (20) consists of making
the substitution rαD → R and using a localized valence
nucleon wave function. This approximation is justified when
the daughter nucleus is heavy relative to the α particle, and the
center of mass parts of the laboratory system wave functions
for mother and daughter nuclei are well localized [23]. The
factor of

√
8 arises to preserve the normalization of the valence

nucleon wave function, when expressed in the coordinate
R [24], as can be seen from∣∣
̃(v)

00 (ξα, Rα)
∣∣2

d3Rα = ∣∣
̃(v)
00 (ξα, Rα(R))

∣∣2
8d3R. (21)

For the intrinsic α-particle wave function 

(α)
00 (ξα), we use

the standard approximation [4],



(α)
00 (rπ , rν, rα, s1, s2, s3, s4)

=
(

1

b3
απ3/2

)3/2

e
− r2

π +r2
ν +r2

α

2b2
α

×[χ 1
2
(s1), χ 1

2
(s2)]00[χ 1

2
(s3), χ 1

2
(s4)]00, (22)

where χ 1
2
(s) are spin wave functions. In order to agree with

electron scattering experiments the oscillator length bα should
be chosen as bα � √

2 fm [4] and we adopt the value bα =
1.42 fm throughout.

Inserting the approximate valence nucleon wave function,
Eq.(A10), transformed to relative and total coordinates [25],
and the α-particle wave function, Eq.(22) into Eq. (20) gives
the final expression for the formation amplitude

g0(R) = 1√
2

∑
lπ jπ

∑
nπ n′

π

X
lπ jπ

nπ n′
π
ĵ 2
π

l̂π

∑
lν jν

∑
nνn′

ν

X
lνjν

nνn′
ν
ĵ 2
ν

l̂ν

×
∑

N12n12

〈N120, n120; 0|nπ lπ , n′
π lπ ; 0〉

×
∑

N34n34

〈N340, n340; 0|nνlν, n
′
ν lν ; 0〉

×
∑
Nαnα

〈Nα0, nα0; 0|N120, N340; 0〉

× I (b,bα )
nα

I (b,bα )
n12

I (b,bα )
n34

R
(b)
Nα0(2R), (23)

where ĵ = √
2j + 1 and

I (b,bα )
n = ∫

r2drR
(bα )∗
00 (r)R(b)

n0 (r). (24)

R
(b)
nl (r) is here the radial part of a spherical oscillator wave

function with n nodes and angular momentum l, and b denotes
the oscillator length used for the basis.

III. DEPENDENCE ON MEAN FIELD
AND PAIRING FORCE

In this section we investigate the dependence of the
formation amplitude on the mean field and pairing force. In
Sec. III A we check that the dimension of the oscillator basis
is sufficient to obtain correct density at large radii, and that the
α-particle formation amplitude converges. The sensitivity of
the formation amplitude to the type of Skyrme force used is
studied in Sec. III B, the role of approximate particle number
correction in the HFB solution is considered in Sec. III C, and
the role of surface or volume pairing in Sec. III D.

A. Convergence of the formation amplitude

To have confidence in the numerical results, one must make
sure that the obtained formation amplitude does not depend
on the size of the oscillator basis. The formation amplitude
must also be converged for large separations of α particle and
daughter nucleus, so that nuclear forces between the clusters
can be neglected.

This implies several criteria that should be fulfilled for
the numerical calculation, the most obvious being a sufficient
accuracy for the tails of the nuclear wave functions. To satisfy
the condition of vanishing nuclear forces between the clusters,
the tails should be accurately calculated to a distance at least
as large as the distance where the nuclear mean field acting on
the valence nucleons becomes negligible.

At the HFB level of approximation the nuclear interactions
give rise to density dependent fields. The local mean fields V (r)
[26] for protons and neutrons of double magic lead are shown
in Fig. 1. They were obtained from a converged solution of
the HFB equations using the code HFBRAD [27] with the SLy4
Skyrme interaction. The densities from this code are obtained
by solving the HFB-equations in r space in a large box, that
give converged results out to very large radii. It is seen that
for r � 10 fm the neutron and proton nuclear fields are close
to zero, and only the Coulomb potential contributes. Thus the
condition of vanishing nuclear forces should be approximately
satisfied at α-daughter separations larger than 10 fm.

0 5 10 15 20 25 30
r [fm]

-60

-40

-20

0

20

V 
[M

eV
]

208Pb

FIG. 1. (Color online) Local mean fields [26] for 208Pb, from the
SLy4 Skyrme force. The solid line shows the field for neutrons, the
dashed line for protons, and the dotted line shows the Coulomb part
of the proton mean field.
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-5

0

5
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r [fm]

-10

-5

0

5

Nmax = 70

Nmax = 70

Nmax = 20

Nmax = 20

lo
g 10

[ρ
(r

) /
fm

-3
 ] 

+ 
(N

m
ax

-2
0)

/1
0

(a) ρn

(b) ρp

FIG. 2. (Color online) The upper (lower) panel shows neutron
(proton) densities for 208Pb obtained by solving the HFB equations
using a spherical oscillator basis (solid lines) and solving on a radial
grid (dashed lines). To separate the different lines, the densities are
multiplied by a factor 10(Nmax/10−2).

To investigate what size of the spherical oscillator basis
is needed for such wave functions, the neutron and proton
densities from using different number of major oscillator shells
are shown in Fig. 2, where also the results from HFBRAD

are shown. Including oscillator shells up to Nmax = 20 gives
converged densities out to around 10 fm. It is seen how each
increase of the oscillator size by ten units (Nmax = 30, 40, . . .)
increases the convergence radius by an additional 1–2 fm.
Similar trends are found for the pairing density. We find that
HFB calculations for 212Po give converged pairing density at
r = 10 fm when Nmax � 20.

The effect of the cutoff in the paring calculation was
tested using cut-off energies ee.s.

cut = 30, 60 and 90 MeV. When
the pairing strength is tuned so that �exp(N = 128, Z = 84),
Eq. (2), is reproduced, the effect on the formation amplitudes
from the different cutoffs was small, and we shall use ee.s.

cut =
60 MeV throughout.

To investigate convergence, the R-matrix decay width

(r) is calculated for 212Po. The mother and daughter wave
functions are obtained from the SLy4 HFB + LN prescription,
and the experimental Qα value [28] is used in the decay width
expression, Eq. (4). As can be seen in Fig. 3 the results converge
to larger distances as the basis size is gradually increased
from Nmax = 10 to Nmax = 35. For Nmax = 15 the results
are converged to around 9 fm, while for the largest basis to
around 13 fm. By using a basis with Nmax � 25 a converged
formation amplitude is obtained for separations beyond the
range of intercluster nuclear forces. To avoid numerical errors
Nmax = 30 will be used throughout.

B. Skyrme force parameters

Several fits of Skyrme force parameters exist that give
reasonable results for ground-state observables such as binding

6 8 10 12 14
r [fm]

10-26
10-25
10-24
10-23
10-22
10-21
10-20
10-19
10-18

Γ(
r)

 [M
eV

]

10
15  
20
25
30
35

Nmax

FIG. 3. (Color online) Decay width 
 for 212Po calculated for
different sizes of the oscillator basis.

energy and rms radii [8]. The impact on the microscopic
decay width from the use of different Skyrme forces was
tested employing volume pairing with the LN method. For
each Skyrme force the pairing strength was refitted. The decay
width for 212Po using SLy4, SKM*, and SKX interactions
are shown in Fig. 4. The results show a negligible difference
between SLy4 and SKM*, while for SKX the decay width is
a factor 3.7 smaller at r = 9 fm. In general, the results are
quite insensitive to the details of the effective particle-hole
interaction, and the SLy4 effective interaction will be used
throughout this paper.

C. Particle number correction

Approximate particle number projection with the LN
procedure allows pairing solutions also when there is a large
gap around the Fermi level in the single-particle spectrum. As
discussed below, pairing correlations have a dramatic effect
on the decay widths [3]. Avoiding a collapse of the pairing for
magic and semimagic nuclei the formation amplitude increases
considerably. This is illustrated in Fig. 5, where decay widths
obtained with and without the approximate particle number
projection are compared. The increase at r = 9.0 fm for the
g.s. to g.s. α decay of 212

84Po128, 210
84Po126, and 210

82Pb128, is a
factor 17, 36, and 24, respectively. Two factors influencing the
microscopic decay width are the amount of overlap of the least
bound, or valence, nucleons of the mother nucleus with an α
particle, and the overlap of the remaining nucleons with the

6 8 10 12 14
r [fm]

10-26
10-25
10-24
10-23
10-22
10-21
10-20
10-19
10-18

Γ(
r)

 [M
eV

]

SLy4
SKM*
SKX

FIG. 4. (Color online) Decay width 
 for 212Po. Calculated using
three different Skyrme forces.
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10-25

10-21

10-17

(a)

10-38

10-34

10-30

Γ(
r)

 [M
eV

]

(b)

6 8 10 12 14
r [fm]

10-48

10-44

10-40

(c)
82Pb128

84Po126

84Po128

FIG. 5. (Color online) Effect on decay rate of approximate
particle number restoration with the Lipkin-Nogami procedure. The
three panels show results for 212Po, 210Po, and 210Pb, respectively. The
decay width using HFB + LN wave functions are shown with full
lines and solid symbols. Dashed lines with outlined symbols show
results when standard HFB calculations were performed.

daughter. A possible explanation why the largest enhancement
factors are obtained for the semimagic 210Po and 210Pb nuclei
is that in these cases the avoided pairing collapse causes an
increase of both types of overlaps compared to just one type
of overlap in the case of 212Po.

D. Density dependence of pairing force—212Po example

Since 212Po has a simple structure with two protons and
two neutrons outside a core of doubly magic lead it is often
used to test microscopic α-decay theories. The experimental
decay width for the g.s. to g.s. α decay of this nucleus
is 
exp = 1.53 × 10−15 MeV [28]. The converged R-matrix
decay width shown in Fig. 3 is a factor 2.4 × 10−4 smaller than
the experimental value at the stationary point around r = 8 fm.
The down-sloping function 
(r) for larger r also shows that
inside the Coulomb barrier the calculated formation amplitude
has a slope corresponding to an α particle that is considerably
more bound to the daughter than observed experimentally.

Including a density dependence in the effective pairing
interaction allows for a description where the pairing cor-
relations in the surface of the nucleus is increased, and the
correlations in the nuclear interior is decreased. To see to
what extent an increased pairing in the surface region might
favor the formation of α particles, the decay width of 212Po
was calculated assuming different density dependencies of
the pairing. To get consistent results the pairing strengths are
refitted in each case.

The density dependence is determined by the parameter β in
Eq. (1), where β = 0 gives volume pairing and β = 1 amounts
to surface pairing. The decay widths obtained from these
two choices are shown in Fig. 6. One notices that the width
increases by almost one order of magnitude when surface
pairing is used instead of volume pairing. The negative slope
of the decay width is also reduced, indicating that the slope

8 9 10 11 12
rc [fm]

10-22
10-21
10-20
10-19
10-18
10-17
10-16
10-15
10-14

Γ(
r c

) [
M

eV
]

β = 0
β = 1

β = 1.3

Experiment

FIG. 6. (Color online) Decay width for 212Po. The effective
interaction SLY4 was used together with zero range pairing with
different density dependence: volume β = 0, surface β = 1.0, anti-
volume β = 1.3. The dashed lines show results for large pairing fit
to twice the experimental odd-even gaps. The straight line shows the
experimental value.

of the formation amplitude follows the slope of the outgoing
Coulomb wave function slightly better. This corresponds to a
formed α particle that is slightly less bound to the daughter
nucleus, as compared to when volume pairing is used. The
effect is however not sufficient to give an α-particle amplitude
reproducing experimental data.

Additional clustering in the surface can be introduced by
formally setting β > 1. This corresponds to a force which is
repulsive in the nuclear interior, and strongly attractive in the
surface. It is included as an extreme case; in fact, fits of ground-
state properties suggest that the density dependence of the
effective pairing force should be 0 � β � 0.5 [29]. Figure 6
shows that setting β = 1.3 gives an additional increase of the
decay width, as compared to the case of β = 1, although it is
still well below the experimental value.

To test the limits of the pairing force in providing α
clustering, we also show in Fig. 6 (dashed lines) results of
a calculation where the pairing strengths are increased to
produce a gap twice as large as the experimental pairing gap,
�th = 2�exp. It is seen that even in this extreme case the pairing
force is unable to provide a sufficiently large decay width.

Figure 7 shows the formation amplitudes, Rg0(R), Eq. (20),
for β = 0, 1, and 1.3. Also shown are results from calculations
with negligible pairing, equivalent to solving the Hartree-Fock
equations, denoted by HF. As can be seen in the figure,
the correlations induced by the pairing greatly increase the
formation amplitude compared to the HF results. At r = 9.0 fm
for the case β = 0 the increase is a factor 16.8, corresponding
to a factor 281 larger decay width.

The modulus of the outgoing Coulomb wave function for
the external region, Rgext

0 (Qexp
α , R) = CO0(R), Eq. (13), fitted

to the β = 0 formation amplitude at the matching radius rc = 9
fm is shown by the dashed line. This outgoing Coulomb wave
function is not a valid solution in the interior of the nucleus, and
increases rapidly with decreasing radius. Examining the tails
of the formation amplitude and the Coulomb wave function,
which are too small to be visible in Fig. 7, we note that the
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FIG. 7. (Color online) Formation amplitude Rg0(R) for 212Po
obtained using different pairing prescriptions. Solid lines show results
from microscopic calculations. Outgoing Coulomb wave functions
are shown by dashed and dot-dashed lines, see text for details.

formation amplitude decreases more rapidly as a function of
R, which is the reason why we do not obtain a flat plateau for

(rc) in Fig. 6.

Using Eq. (18) we can find the external wave function
which would perfectly reproduce experiment. This gives

Rgext
exp(Qexp

α , R) = CexpO0(R), with |Cexp| =
√


exp

h̄

√
μ

2Q
exp
α

,

and is shown by the dot-dashed line in Fig. 7. Comparing
the two external wave functions, one notes that to obtain
a plateau for 
(rt ) with value 
exp the microscopic forma-
tion amplitudes should be pushed out further beyond the
nuclear surface, and the slope of the tails should be slightly
reduced.

IV. REDUCED WIDTHS COMPARED WITH EXPERIMENT

Even though the model does not produce the right slope
and magnitude of the tail, the formation amplitude depends
on the amount of structural overlap of the mother nucleus
with the α-daughter configuration. To be able to reasonably
calculate the decay width, some approximate prescription
must be adopted. From the discussion above we see that the
formation amplitude in the nuclear surface must be increased.
Assuming that for all nuclei the correct formation amplitude
in the surface is proportional to the calculated microscopic
formation amplitude, a constant renormalization factor is
obtained. Calculated structural variations in the formation
amplitude will then be preserved and the calculated α-decay
widths may be compared to experimental data. Below we
perform such an effective description of α-decay widths of all
heavy, even-even near-spherical nuclei with measured decay
widths. We also apply the method to predict decay widths for
some α-decaying superheavy elements.

The decay widths are calculated using experimental Qα

values from [28]. The formation amplitudes are matched to
outgoing Coulomb wave functions in the nuclear surface at
the touching radius rt defined by [12]

rt = r0[(A − 4)1/3 + 41/3], (25)

TABLE I. Pairing strengths used in this work.

β Vn [MeVfm3 ] Vp [MeVfm3 ]

SLy4 0 −190.5 −180.5
SLy4 + LN 0 −182 −175
SLy4 + LN 1.0 −443 −530
SLy4 + LN 1.3 −555 −770

with r0 = 1.2 fm. The touching radius gives an approximate
radius beyond which the α particle and daughter nucleus matter
densities would be separated, which for 212Po is rt = 9.01 fm.
At this radius the attractive forces between α and daughter
are not completely negligible (cf. Fig. 1), but we find that the
normalized decay widths depend weakly on r0.

For the nuclear structure calculation the SLy4 [30] Skyrme
effective nucleon-nucleon potential is used in the particle-hole
channel. The pairing is treated using the Lipkin-Nogami
prescription. Both volume, β = 0, and surface, β = 1, pairing
types are used [Eq. (1)]. The pairing strengths used are shown
in Table I. Calculated odd-even gaps for several semimagic
nuclei are compared to experiment in Fig. 8. The experimental
variation of the pair gap with particle number is found to
be fairly well reproduced by both pairing recipes β = 0 and
β = 1.

Using this prescription the ground state to ground state
α-decay widths are determined for all even-even α emitters
included in the compilation of experimental data in [28],
and where the theoretical mass table of Möller and Nix [31]
predicts a near-spherical ground state with quadrupole defor-
mation parameter |β2| � 0.1 for both mother and daughter
nuclei. This amounts in total to 48 different α emitters.

96 104 112 120 128
N

0

0.5

1

1.5

2

Δ n
 [M

eV
]

0
(a)

60 64 68 72 76 80 84 88
Z

0

0.5

1

1.5

2

Δ p
 [M

eV
]

(b)

SLy4+LN Vol.
SLy4+LN Surf.
SLy4+LN β=1.3
Exp.

FIG. 8. (Color online) Upper (lower) panel: neutron (proton)
pairing gaps for proton (neutron)-magic nuclei with neutron (proton)
number, N (Z). The theoretical and experimental pairing gaps, �n(p),
are obtained as described in Sec. II A.
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FIG. 9. (Color online) Theoretical decay widths obtained from
the UDL (squares), SLy4 with volume pairing (circles), and surface
pairing (triangles) divided by the experimental value are shown
versus the neutron number of the decaying nucleus. For each model
calculation horizontal lines and vertical bars denote mean and
standard deviation, respectively.

The theoretical decay widths, 
th = 
(rt ), divided by the
experimental widths, 
exp, are shown in Fig. 9. For the
surface pairing type calculations all 48 near-spherical even-
even α emitters are included, while 218U is missing from the
volume pairing type calculation due to numerical convergence
problems. For comparison predictions from a semi-empirical
model are also shown. This model, Universal Decay Law
(UDL) [32], is based on the R-matrix expression (4) but the
formation amplitude is parametrized with three free parameters
fitted to data. Here we consider parameter set I, which is fitted
to even-even α-decay data. As seen in Fig. 9, for the UDL the
results for the ratio 
th/
exp vary around a mean value close to
1. The microscopic models systematically produce too small
decay widths, with slightly better agreement for the surface
pairing. The variation around the mean trend is smaller for the
microscopic models than the results from the UDL, especially
around the N = 126 shell closure.

The logarithmic mean deviation, M, from experimental
data,

M = 1

n

n∑
i=1

log10
[



(i)
th /
(i)

exp

]
, (26)

and corresponding standard deviation σ , are given in Table
II for each of the calculations. The theoretical results using
volume or surface pairing underestimates the decay width by

TABLE II. Mean, M, and standard deviation, σ , of
log10[
th/
exp] for all included nuclei for the three different models
in Fig. 9.

M σ

SLy4, Volume pairing −3.82 0.29
SLy4, Surface pairing −3.17 0.23
UDL 0.10 0.38

110 115 120 125 130 135
N

10-3

10-2

84Po

(c)

10-3

10-2

γ2 (r
t) 

[M
eV

]

86Rn

(b)

10-3

10-2

88Ra

(a)

FIG. 10. (Color online) Reduced width at the touching radius for
three isotope chains as a function of neutron number. The error-bars
show extracted experimental reduced widths. Circles and triangles
show the renormalized γ̃ 2, Eq. (28), obtained from volume and
surface pairing, respectively. The dashed line shows results from
the UDL.

3 to 4 orders of magnitude, but follow structural changes in the
experimental data quite well. This can be seen by fairly small
σ values, that are indeed smaller than those obtained with the
UDL.

The renormalized decay width is now introduced as


̃
(i)
th = 10−M


(i)
th , (27)

and correspondingly for the reduced width

γ̃ 2(rt ) = 10−Mγ 2(rt ). (28)

In Fig. 10 calculated renormalized reduced widths are com-
pared to experimental data for isotope chains of Po (Z = 84),
Rn (Z = 86), and Ra (Z = 88) nuclei.

The experimental reduced widths show a smoothly decreas-
ing trend as a function of neutron number towards the shell
closure at 126. When crossing the shell gap, the experimental
value increases by about an order of magnitude, after which
there is a smoothly increasing trend. Comparing volume and
surface pairing the smooth behavior in the open-shell regions is
captured fairly well by both pairing models. However, surface
pairing consistently captures the magnitude of the jump when
crossing N = 126, as well as the trends in the data, better
than the volume type pairing. While the UDL reproduces the
correct mean value, it does not follow the fluctuations around
the shell closure.

Figure 11 shows the same quantities but for α emitters
with neutron numbers 84 and 86. The main deviation from
the experimental trend is that, for the N = 84 isotones, the
microscopic results fail to capture the increased formation
amplitude with decreasing Z. Here the best agreement with
data is obtained from the UDL, suggesting small structural
changes for the N = 84 isotones.
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FIG. 11. (Color online) Similar to Fig. 10 but for the isobar chains
N = 84 and N = 86 as a function of proton number.

We apply the same prescription to make predictions
for the α decay of the predicted near-spherical superheavy
elements with Z = 114, 126 and N = 180, 182, 184, 186. The
microscopic results are obtained using surface pairing, β = 1,
and renormalized using Eqs. (27) and (28). The theoretical
Qα values of Refs. [33,34] are used. The predicted half-lives
are shown in Table III. The corresponding reduced width
amplitudes are shown in Fig. 12. For the Z = 114 isotopes,
the difference between the microscopic and semi-empirical
reduced width is less than a factor 3, i.e., the microscopic
model does not predict any dramatic structural effect that
might lead to especially long lifetimes for these superheavy
isotopes. The microscopic reduced widths increase by roughly
a factor 2 when crossing the N = 184 gap, similar to the
situation for N = 126, shown in Fig. 10. The much shorter
predicted half-life for 300114186 compared to 294–298114180–184

is due to the ∼1 MeV larger predicted Qα value for this
nucleus, see Table III. Thus, for predictions of life-times,
uncertainty in the predicted Qα values has a much larger effect
than the difference in the reduced widths obtained from the
semi-empirical and microscopic models.

Extrapolating further to the region around 310126184, the
results from the two models start to differ more. The N =
184 shell gap implies a cusp in the microscopically calculated
reduced widths, while a smooth behavior is seen for the semi-
empirical UDL. On the average, the reduced widths from the

TABLE III. T denotes half-lives from renormalized microscopic
calculations with β = 1. Predictions from the semi-empirical formula
are given by TUDL.

Nucleus Qth
α [MeV] T [s] TUDL [s]

294114180 9.11 593 264
296114182 9.13 523 210
298114184 9.09 571 264
300114186 10.07 0.376 0.248
306126180 16.23 2.20×10−9 1.20×10−10

308126182 16.25 2.25×10−9 1.03×10−10

310126184 16.25 2.61×10−9 9.52×10−11

312126186 16.64 4.77×10−10 2.29×10−11

180 182 184 186
N

10-4

10-3

10-2

γ2 (r
t) 
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]

Z = 114

Z = 126

Z = 126

FIG. 12. (Color online) Reduced widths at the touching radius
for the SHE of Table III. The triangles show the renormalized
microscopic results, from β = 1. The dashed lines show results
obtained using the UDL.

microscopic model are roughly a factor 20 smaller than the
corresponding values from the UDL. This gives the order of
magnitude longer half-lives obtained from the microscopic
calculation.

V. DISCUSSION

The calculated decay widths show that the decay rates
are systematically under estimated when the HFB formation
amplitudes are used. As with any process depending on
tunneling through a Coulomb barrier, the asymptotics and thus
the flow of particles are extremely sensitive to the decay energy.
For heavy nuclei it is a difficult task to predict observables
such as one-particle separation energies and resonances with
sufficient accuracy for spectroscopy. One can then assume that
for a more complicated process such as α-particle formation,
the energy dependent tail of the formation amplitude will never
be described with accuracy comparable to the uncertainties
in the experimental measurement of decay energies, and that
this problem will exist to some degree for even the most
sophisticated model. To obtain quantitative agreement with
data, some type of renormalization must be employed.

Here we have adopted the simple procedure consisting of
using the experimental Qα value for the outgoing Coulomb
wave function, combined with renormalizing the decay width
by multiplying with one free parameter. The procedure in-
cludes a choice of matching radius, here chosen as the touching
radius, as any mismatch in the slope of the microscopic
formation amplitude compared to the Coulomb wave function
produces an rc dependence of the R-matrix decay width.

Examples of other approaches to renormalize the formation
amplitude can be found in the literature: In Ref. [35],
the properties of the single-particle basis were tuned as an
effective prescription to reproduce the correct absolute value
and slope of the formation amplitude. In Ref. [36], in addition
to the R-matrix expression for 
(rc), Eq. (4), a reaction
theoretical prescription was used. In this prescription the
formation amplitude, corrected for antisymmetrization in the
nuclear interior, was integrated giving a spectroscopic factor.
The decay was then treated on the one-body level using a local
optical model α-daughter potential which can be adjusted to
produce the correct resonance energy.
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In order to get an idea what could be improved in the present
α-decay approach we list five additional effects that could be
taken into account and try to estimate their influence:

(i) Antisymmetrization. The exchange between the α par-
ticle and the daughter nucleus can only be neglected
for large separations r . It is possible to modify the
formation amplitude to take exchange effects into
account [37,38]. For small r this results in a large
increase of the formation amplitude, while for large
r the modified formation amplitude reduces to the g(r)
used here. The value of r where g(r) starts to be a good
approximation depends on the daughter and α-particle
wave functions and thus varies from case to case. Both
types of formation amplitudes where calculated for
212Po in [23,36]. In [23] the correction amounted to
an increase by a factor ≈2, and in [36] a factor ≈3 for
the formation amplitude at r = 9 fm. Such a correction
amounts to an increase by a factor of 4 or 9, respectively,
in the decay width.

(ii) Center-of-mass (c.m.) corrections. In this article and
in most previous studies the formation amplitudes are
evaluated with shell-model wave functions instead of
intrinsic states where the c.m. motion is separated out.
The effect of correcting for the c.m. motion was studied
in Ref. [23]. It is clear from the formulas presented
in this reference that the correction is most important
for light nuclei and will increase the absolute values
of the formation amplitudes as well as stretching the
formation amplitudes, it will thus move their maxima
to larger radii in better agreement with experiment.

(iii) Exact Coulomb exchange. In this work we take the
direct part of the Coulomb interaction into account and
treat the exchange part in a Slater approximation [39].
The asymptotic dependence of the Coulomb potential
for a proton should be v (r) = e2(Z−1)

r
but becomes

v (r) = e2Z
r

with the Slater approximation. Using exact
Coulomb exchange will thus change the slope of the
potential felt by the α particle and make it less bound
in the calculations as well as increasing its magnitude
somewhat. However, for a heavy system such as 212Po
the error in the asymptotic Coulomb potential is a factor
of ∼1.01, and we estimate that this will have a tiny
effect on the results.

(iv) α-particle wave function. The simple form of the α-
particle wave function used here is clearly a convenient
approximation. One could consider more complicated
forms obtained, e.g., from the same nuclear structure
model as used for the decaying nuclei. Although the
present results are not very sensitive to the oscillator
width taken for the α particle, the effect of having a
more realistic wave function is difficult to estimate.

(v) Correlations. As discussed in Sec. III D a substantial
increase in the formation amplitude can result from
configuration mixing. For the case of 212Po, shell-model
calculations, e.g., [13,23,36] show better agreement
for the absolute decay width than the present work.
However as far as we know all these pioneering
results have been based on schematic interactions often

directly fitted to the nucleus being studied. A more
systematic investigation of these effects using a globally
valid interaction would thus be very interesting.

VI. CONCLUSIONS

We have performed a detailed microscopic calculation
of α-decay widths. The mother and daughter nuclei where
self-consistently described applying Skyrme’s effective inter-
action, and the decay widths were calculated in the R-matrix
formulation. Our results demonstrate that it is possible to
obtain converged formation amplitudes employing a large
harmonic oscillator basis. In contrast to standard observables
such as masses, radii and excitation energies, these formation
amplitudes probe the amount of cluster components present
in the nuclear wave functions in the surface region. The
results give a deeper understanding of the properties of the
wave functions and suggest that a Skyrme-HFB treatment
in combination with the R-matrix method is insufficient in
order to predict absolute values of the α-decay lifetimes.
Although one should note that there are several extensions
to the formalism which can be envisioned and which seem to
go in the right direction of shortening the too long lifetimes
predicted. An improved description was also obtained by
modifying the pairing interaction to increase the correlations
in the nuclear surface. It is however difficult to determine the
physical contents of such a prescription. In general we found
that the pairing force is unable to give sufficient correlations
to provide α particle formation amplitudes agreeing with data.

It is interesting to see that using a constant factor to
renormalize the results leads to a close agreement with
experimental data which is on par with the results from
purely semi-empirical formulas. This suggests that the missing
effects, such as additional correlations needed to increase
the probability of the α particle forming are in a first
approximation proportional to the increase of the formation
amplitudes obtained by including the pairing correlations.
More work is needed in order to improve the model, for
example by introducing more correlations, improvements in
the decay formalism and/or treatments of continuum effects.
The results presented here may then serve as a benchmark to
evaluate the impact of such extended theories.
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APPENDIX: VALENCE PARTICLE WAVE FUNCTION

In this Appendix we discuss the approximation used for
the valence particles in Sec. II. The wave functions presented
below are of shell model type, i.e., localized in the laboratory
system, and thus contain contributions from the total center-
of-mass motion of the nucleons. Such wave functions are
written using a tilde, e.g., �̃(X). As there is no proton-neutron
mixing, the HFB wave functions are products of proton and
neutron HFB vacua. For each of the particle species we use
the expansion given in Ref. [3] to express the mother nucleus
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as a function of the daughter. For the HFB case it becomes

|M; IM〉 ≈
∑
k<k′

Xk,k′c
†
kc

†
k′ |D; jm〉 , (A1)

where proton and neutron indices have been omitted for
clarity. The expansion coefficients are given by the two-particle
transfer amplitudes,

Xk,k′ = 〈M|c†kc†k′ |D〉∗, (A2)

where the c
†
k operator creates a particle in state k, and k is a

short-hand notation for the relevant spherical single-particle
quantum numbers nljm. The two-particle transfer amplitudes
are evaluated with the Onishi formula [40],

Xkk′ = 〈M|c†kc†k′ |D〉∗ = 〈M|D〉∗κDM
k,k′ , (A3)

where the overlap 〈M|D〉 has an undetermined global phase,
which we set to 1. This phase does not affect the calculated
physical observables. The absolute value of the overlap is given
by

|〈M|D〉| = |
√

detU|. (A4)

The pairing density, κDM , is given by

κDM∗ = −U ∗
D(UT )−1V T

M, (A5)

where U is defined in terms of the U and V HFB matrices [40]
of the mother and daughter states,

U = U
†
DUM + V

†
DVM. (A6)

Due to the spherical symmetry imposed on the HFB solutions
the amplitudes simplify to

Xnljm,n′l′j ′m′ = δj,j ′δl,l′δm,−m′ (−1)j−mX
lj
nn′ , (A7)

and the approximate neutron or proton part of the mother
nucleus wave function can be written

|M; 00〉 ≈ 1

2

∑
lj

∑
nn′

ĵX
lj
nn′ [c†nlj , c

†
n′lj ]00|D; 00〉, (A8)

where I = M = 0, and ĵ = √
2j + 1. The corresponding

representation in coordinate space becomes

�̃M
00 (XZ+2) ≈ 1

2

∑
lj

∑
nn′

ĵX
lj
nn′

×A{
[φ̃nlj (r1) , φ̃n′lj (r2)]00�̃

D
00(XZ)

}
, (A9)

where XZ and XZ+2 are coordinates for the daughter and
mother nucleus, respectively. The approximate valence particle
wave function is thus taken as


̃(v)(r1, r2, r3, r4) = 
̃(vπ ) (r1, r2) 
̃(vν ) (r3, r4) , (A10)

where


̃(vq) (ra, rb) = 1

2

∑
lj

∑
nn′

ĵX
q,lj
nn′ A{[φ̃nlj (ra), φ̃n′lj (rb)]00}.

(A11)
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