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Dipole response of 76Se above 4 MeV
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The dipole response of 76
34Se in the energy range from 4 to 9 MeV has been analyzed using a ( �γ , γ ′) polarized

photon scattering technique, performed at the High Intensity γ -Ray Source facility at Triangle Universities
Nuclear Laboratory, to complement previous work performed using unpolarized photons. The results of this
work offer both an enhanced sensitivity scan of the dipole response and an unambiguous determination of the
parities of the observed J = 1 states. The dipole response is found to be dominated by E1 excitations, and can
reasonably be attributed to a pygmy dipole resonance. Evidence is presented to suggest that a significant amount
of directly unobserved excitation strength is present in the region, due to unobserved branching transitions in the
decays of resonantly excited states. The dipole response of the region is underestimated when considering only
ground state decay branches. We investigate the electric dipole response theoretically, performing calculations in
a three-dimensional (3D) Cartesian-basis time-dependent Skyrme-Hartree-Fock framework.
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I. INTRODUCTION

With the advent of high resolution nuclear resonance
fluorescence (NRF) experiments [1], interest in low-lying
collective dipole resonances of the nucleus has intensified.
The so-called pygmy dipole resonance (PDR) is an electric
resonance situated upon the low-energy tail of the giant dipole
resonance (GDR) [2–4]. It is found typically at energies
between 5 and 8 MeV, and its strength contributes less than
1%–2% of the energy-weighted sum rule of the E1 excitation
strength in the nucleus [5–7]. A common interpretation of the
PDR is a proton-neutron core vibrating against a neutron skin
in nuclei with an excess of neutrons [7–10]. The neutron excess
of the nucleus is thought to be correlated to the magnitude of
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the excitation strength of the PDR, this reasoning stemming
from the assumption that a greater neutron excess will result in
a thicker neutron skin. The relationship between the excitation
strength of the PDR and neutron excess may not be simply
correlated, however, as away from spherical nuclei it has been
suggested that the low-lying E1 strength can be hindered by
deformation effects, even in neutron-rich nuclei [11]. It has
also been suggested that in proton-rich nuclei a PDR-type
resonance can occur, which associates a proton skin oscillating
against a proton-neutron core [12].

The PDR might have significant implications in nuclear
astrophysics regarding the synthesis of certain heavy elements
via rapid neutron capture [13]. Experimentally, it has been
studied extensively in several semi- or doubly-magic nuclei
[4–7,14–22]. The case of 76Se offers an examination of the
PDR in a medium mass, deformed nucleus (β = 0.309(4) [23]),
with a relatively small neutron excess. The GDR in 76Se has
been observed to split into predominant regions due to its axial
deformation [24], intuitively corresponding to vibrations of the
nucleus perpendicular and parallel to the axis of symmetry, K .
More precisely, this is due to the resonance splitting into a K =
0 and a twofold K = ±1 mode [25]. Therefore, it is of interest
to analyze the fine structure of the PDR in deformed nuclei to
determine correlations, if any exist.

The nucleus 76Se also has relevance in the topic of 0ν2β
decay [26–28]: signatures have been observed in 76Ge [29], and
76Se is the daughter nucleus for this decay mode. Data pre-
sented in this paper can offer a challenge for theoretical models
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capable of describing the dipole response of nuclei. Methods
such as time-dependent Hartree-Fock and the (quasiparticle)
random phase approximation are two such techniques suitable
for describing collective excitations of the nucleus. Both (and
variations thereof) have been employed to describe dipole
resonances in finite nuclei [6,30–33]. The matrix elements
which describe 0ν2β decay [27,34] can only be extracted
from theoretical models, therefore tests for whether they can
correctly describe the structure of involved nuclei over broad
energy ranges are crucial.

In this paper, results from a ( �γ , γ ′) photon scattering
experiment performed at the High Intensity γ -Ray Source
(HIγ S) facility at Triangle Universities Nuclear Laboratory are
presented, complementing our previous work [35], to obtain
a more complete picture of the nature of the dipole response
in 76Se. In addition to the parity determination of the dipole
excited states, the high photon fluxes allow observation of
many new states, the majority of them at energies exceeding
7 MeV. The previous bremsstrahlung data yielded absolute
cross sections for many states, which can be used to normalize
data in the present work. The near monoenergetic beams
(with a FWHM of ≈3% of the centroid beam energy) allow
firm assignments of transitions either to the ground state, or
lower-lying excited states.

The use of monoenergetic beams also allows the contri-
bution to the photon scattering cross section from decays to
excited states to be deduced, even if they are not observed
directly [17]. This can be done by considering the decays
of low-lying states which are populated entirely by feeding
transitions from branching decays of excited states. This point
will be discussed further in Sec. VI.

This paper will be structured as follows. Section II will
summarize our previous analysis. Section III discusses relevant
theory of γ -ray angular distributions for parity determination
at the HIγ S facility. In Sec. IV, the experiment at the HIγ S
facility is described, and the results are presented in Sec. V.
Section VI contains a discussion of the results obtained from
this work. The dipole response of 76Se described in the time-
dependent Hartree Fock framework is investigated in Sec. VII,
and we conclude this paper in Sec. VIII.

II. SUMMARY OF PREVIOUS ANALYSIS

In our previous work performed at the Darmstadt High
Intensity Photon Setup (DHIPS) facility [36] at TU Darmstadt,
excitation energies up to 9 MeV were investigated [35]. There
was, however, no means available to distinguish the parities
of the observed states. Ref. [37] discusses evidence of a giant
M1 resonance present in the same energy region as one might
expect a PDR; therefore, before any theoretical models can be
compared to experiment, knowledge of the nature of the dipole
response is of vital importance. Polarized incident photons
used in conjunction with an appropriate polarimetry setup is
an ideal method for distinguishing electric from magnetic spin
J = 1 excited states [38].

The energy and angle integrated differential cross section
I S
i for photon scattering for an angular momentum state Jx at

energy Ex , excited from a ground state of angular momentum

J0, is given by

I S
i =

(
π

h̄c

Ex

)2

× g × �0�i

�
, (1)

where �0 is the partial width of the transition from Jx to
J0, and �i the partial width of the transition from Jx to Ji .
The branching ratios of transitions to states Ji , relative to the
transition to J0, are defined by

�i

�0
= I S

i

I S
0

= AiW0(θ )

A0Wi(θ )
, (2)

where Ai and A0 are the observed counts corresponding
to a deexcitation to state Ji and J0, corrected for the
detector efficiency. Wi(θ ) and W0(θ ) are the effective angular
correlation functions of the transitions to the corresponding
state. These W (θ ) will be defined further below. The statistical
factor g is given by

g = 2Jx + 1

2J0 + 1
. (3)

In the case of a decay to an excited state, J0 may be replaced
with Ji in this expression. Therefore, use of Eq. (1) allows
the width of the transition to be deduced from the observed
scattering cross section. The full width � is defined as the
sum of the partial widths. � is related to the lifetime of the
individual state τ via

� =
N∑

i=0

�i = h̄

τ
. (4)

In our previous work, the experiment allowed cross sections
of resonantly excited states to be extracted directly from photon
scattering data. From �i , the excitation strength B(	λ)↑ (	
defining an electric or magnetic transition, λ the multipole
order) of a state can be obtained. The following are the explicit
forms for the transitions of interest for an excitation from
ground state J0 to Jx in a photon scattering experiment, as
only low multipole transitions are likely to occur through the
absorption of real photons:

B(E1) ↑
e2fm2

= 9.554 × 10−4 × g × �0

meV
×

(
MeV

Ex

)3

, (5)

B(M1) ↑
μ2

N

= 8.641 × 10−2 × g × �0

meV
×

(
MeV

Ex

)3

. (6)

One can simply relate B(	λ)↑ strength to B(	λ)↓ strength
with the relationship

B(	λ) ↑= g × B(	λ) ↓ . (7)

III. ANGULAR DISTRIBUTIONS FOR PARITY
DETERMINATION

In its most general form, the angular distribution of emitted
γ rays from an initial state J0, through intermediate state J1,
to final state J2, is given by [39]

W (θ1, θ2, φ)

=
∑
λ1λλ2

Bλ1 (J0)Aλ2λ1
λ (γ1)Aλ2 (γ2)Hλ1λλ2 (θ1, θ2, φ), (8)
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where Bλ1 (J0) is the orientation parameter of the initial
state, defined with respect to the orientation axis, A

λ2λ1
λ (γ1)

and Aλ2 (γ2) are the radiation distribution coefficients, and
Hλ1λλ2 (θ1, θ2, φ) is the angular function. All are defined in
Ref. [39] using the Krane, Steffen, and Wheeler phase con-
vention. The angles θ1 and θ2 are the polar angles of emission
of γ1 and γ2, respectively, measured in the polarization plane.
φ describes the azimuthal rotation of the emission. The indices
λ1 and λ2 are the ranks of the statistical tensors that describe
the orientation of states J0 and J1. For the multipole expansion,
they take values of even integers. λ is the tensor rank of the
radiation field.

For an excitation from a Jπ = 0+ ground state, which is
the only case when performing NRF on an even even nucleus,
the orientation of the ground state J0 is arbitrary. Therefore λ1

may be set to 0. The H0λλ2 (θ1, θ2, φ) will reduce to the ordinary
Legendre polynomial Pλ(cos θ ). The orientation of the nucleus
in the excited state J1 is therefore defined by Bλ(γ1).

In NRF, the formalism assumes that the first transition, γ1,
is responsible for the orientation of state J1 as it is excited from
J0. Only the second transition, γ2, is detected as the state J1

deexcites to state J2. It is for γ2 that we calculate the angular
distribution.

Without any knowledge of the polarization of the incident
γ -ray, Eq. (8) reduces to

W (θ ) =
∑

λ=0,2,4

Bλ(γ1)Aλ(γ2)Pλ(cos θ ). (9)

If γ1 is linearly polarized (the case of the current work at the
HIγ S facility), the terms Bλ(γ1)Pλ cos(θ ) must be replaced
with the modified orientation coefficient B̃Pλ(θ, φ, γ1), as
described in Refs. [40–42] by

B̃Pλ(θ, φ, γ1)

= Bλ(γ1)Pλ(cos θ ) + 1

1 + δ2
1

(cos 2φ)P (2)
λ (cos θ )

× [(±L1κλ(L1L1)Fλ(L1L1J0J1)

+ (−1)L1+L′
1 (±)L′

1
κλ(L1L

′
1)2δ1Fλ(L1L

′
1J0J1)

+ (±)L′
1
κλ(L′

1L
′
1)Fλ(L′

1L
′
1J0J1)]. (10)

The P
(μ)
λ (cos θ ) is the unnormalized associated Legendre

polynomial of order μ. The ordinary Fλ(LL′JnJ ) coefficients
can be found in, e.g., Ref. [39]. The term (±)L gives a positive
sign if the multipole radiation L1 is electric, and negative if
it is magnetic. The multipole radiation can be, in principle,
of mixed multipole orders; L′

1 is the competing field to L1,
and the relative contributions are given by the mixing ratio δ1.
However, for an excitation or decay to a Jπ = 0+ state, the
multipole field will be pure L1. The coefficients κ describe
the vector coupling of the multipole fields L1 and L′

1, and are
given explicitly in Ref. [40]. We comment here that Ref. [40]
uses the convention of Biedenharn and Rose [43] to define
the multipole mixing ratios δn, whereas we use the convention
of Krane, Steffen, and Wheeler. The formalism contained in
this paper is fully consistent with that of Ref. [1], other than a
slight difference of notation.

FIG. 1. (Color online) W (θ, φ) for (a) a 0+ → 1− → 0+ se-
quence, (b) a 0+ → 1+ → 0+, and (c) a 0+ → 2+ → 0+. The
directions of the incident beam and polarization is labeled. The
azimuthal asymmetry for a 0+ → 1+ → 0+ and a 0+ → 2+ → 0+

sequence will be the same, therefore an extra detector placed at 135◦

in the x-z plane is necessary to distinguish the two types of transition.

Therefore, when using fully polarized incident photons,
Eq. (9) can be written

W (θ, φ) =
∑

λ=0,2,4

B̃Pλ(θ, φ, γ1)Aλ(γ2). (11)

In Fig. 1, we show the W (θ, φ) for ground state decays from
a resonantly excited Jπ = 1± or Jπ = 2+ state. For our main
case of interest, the W (θ, φ) for a 0+ → 1π → 0+ sequence
is given explicitly by [38,41]

W (θ, φ) = 1 + 1
2

[
P2(cos θ ) + 1

2π1 cos(2φ)P (2)
2 (cos θ )

]
,

(12)

where π1 represents the parity of the resonantly excited state
J1.

The analyzing power � is defined by

� = W (90◦, 0◦) − W (90◦, 90◦)

W (90◦, 0◦) + W (90◦, 90◦)
, (13)

and is equal to +1 for the ground state decay of a Jπ = 1+
excited state, and −1 for a Jπ = 1− state. We therefore define
the observed azimuthal count rate asymmetry of scattered
photons by

ε = Ah − Av

Ah + Av

= Pγ �, (14)

where Ah and Av are the corresponding efficiency corrected
count rates observed for the γ rays by detectors horizontal
and vertical to the scattering target. Pγ is the polarization of
the photon beam, which is assumed to be 1 for all energies
at the HIγ S facility. Therefore, the count rate asymmetry is
equivalent to the analyzing power �. The asymmetry ε will be
equal to +1 for a Jπ

1 = 1+ state decaying by an M1 emission
to the ground state, and −1 for a Jπ

1 = 1− state decaying by an
E1 emission to the ground state. Experimental observations
will deviate slightly from this, as expressions given for ε have
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not accounted for the finite solid angles of the detectors, and
statistical uncertainties in the data.

IV. EXPERIMENT

At the HIγ S facility [44–46], nearly monoenergetic photon
beams were produced by the intracavity Compton backscat-
tering of linearly polarized free-electron laser photons with
a high-energy electron beam. Polarization is conserved in
this Compton scattering process, so intense, fully polarized
photon beams can be produced with this technique. A typical
schematic of the setup for parity measurements is shown in,
e.g., Ref. [47].

The photon beam was collimated by a lead collimator of
length 30.5 cm with a cylindrical hole of diameter 2.54 cm
before passing through to the target. The energy distribution of
the photon flux was measured with a large volume high-purity
germanium (HPGe) detector, of efficiency 123% relative to a
3′′ × 3′′ NaI scintillator, placed in the incident beam. For this
measurement, the beam was attenuated by copper absorbers
mounted upstream. The large distance neglects the probability
of the detector to measure the small-angle Compton-scattered
beam photons from the absorbers.

The scattered γ rays from the target were measured by
four HPGe detectors, each of 60% relative efficiency, posi-
tioned around the Se target at (θ, φ) = (90◦, 0◦), (90◦, 90◦),
(90◦, 180◦), and (90◦, 270◦), where θ is the polar angle with
respect to the horizontally polarized incoming photon beam
(this is defined as the polarization plane), and φ the azimuthal
angle measured from the polarization plane. A fifth detector,
of relative efficiency 25%, was placed at (θ, φ) = (135◦, 0◦)
to distinguish the spins of positive parity states. The distance
between the center of the target to the front surface of the
90◦ detectors was 10 cm. All detectors had passive shielding
consisting of 3 mm copper and 2 cm thick lead cylinders. Lead
and copper absorbers of thickness 5 and 3 mm, respectively,
covered the openings of the detectors to reduce the low-energy
part of the scattered spectrum. The target used consisted of
11.96 g of Se powder with an enrichment of 97% in 76Se.
The powder was held in a cylindrical polypropylene container
of density 2.99 g/cm3, with an inner diameter and height of
1.4 cm and 2.6 cm, respectively.

Due to the target being relatively massive, resonant self-
absorption effects [48] must be considered to ensure they
will not significantly affect the observed count rates for states
of known widths. The DHIPS experiment used a thin target
[35], so resonant self-absorption was a negligible effect. The
Appendix contains considerations of resonant self-absorption
for our experiment, allowing the transition intensities for
ground state decays observed at HIγ S, which were also
observed at the DHIPS facility, to be corrected. The effect
is virtually negligible for most observed states, and for those
states with the largest widths (�0 > 0.3 eV) is of the order of
1%–10%.

The energy range of interest was scanned, with beam
centroid energies incrementing up in steps of approximately
the FWHM of the beam, from 4.2 MeV up to 8.8 MeV. The
target was exposed for two to three hours for each beam

energy. The efficiency response of the detectors was measured
using a 56Co source placed in the target position for energies
below 3.2 MeV, and simulated with a GEANT4 Monte Carlo
simulation [49] for energies exceeding this.

The HPGe detector placed at (θ, φ) = (135◦, 0◦) did not
yield sufficient statistics for spin determination. However,
Ref. [50] suggests that little E2 strength from a 2+

i → 0+
g

transition is likely to be observed outside the 2+
1 → 0+

g

transition at high energies in even-even vibrational nuclei.
Therefore, all resonantly excited positive parity states are
reasonably assumed to be M1 excited states.

The only significant contaminant observed in the energy
range between 4 and 9 MeV was from 12C, due to the
composition of the target container, which has a 2+

1 state at
4.439 MeV [51].

V. RESULTS

The measured azimuthal asymmetries of ground state
decays observed over the energy range are shown in Fig. 2.
The mean value of the asymmetry was fitted separately for
positive and negative parity states. For negative parity states
ε = −0.77(2), and for positive parity states ε = 0.94(6). The
deviations from the expected values of ±1 are due to transitions
bordering the sensitivity limit of our experiment, which may
deviate from the mean observed values of ε as they are not
well resolved above the background. Nonetheless, the parities
of these states may be firmly deduced from the plane in which
the scattered γ rays are observed.

With the high photon flux available at the HIγ S facility
over the entire energy range, many states of interest previously
unresolved from the DHIPS data were observed. As discrete
beam energies were used, techniques to calibrate the photon
flux differ from bremsstrahlung experiments. Methods to
accurately deduce the photon flux at the HIγ S facility are
discussed in, e.g., Refs. [37,47,52–54]. However, as many
cross sections had been deduced from the DHIPS data, only
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FIG. 2. Azimuthal efficiency corrected count rate asymmetries
for all ground state transitions in 76Se observed at the HIγ S facility. A
positive asymmetry corresponds to an M1 transition, and a negative
asymmetry to an E1 transition. The deviations from the expected
values of ±1 are due to the finite opening angles of the detectors and
limited statistics.

064308-4



DIPOLE RESPONSE OF 76Se ABOVE 4 MeV PHYSICAL REVIEW C 88, 064308 (2013)

knowledge of the energy distribution of the beams was required
to infer cross sections for any newly observed state in the HIγ S
data.

To calculate the photon scattering cross section, I S
i X, for a

newly observed state by comparison to the cross section of a
known state, I S

i Y , which was observed at the DHIPS facility,
the relation

I S
i X = nY AX

nXAY

× I S
i Y (15)

was considered. The normalization factor nX(Y ) depends on the
state’s position in the beam energy distribution (corresponding
to the relative flux), and AX(Y ) is the observed counts in a
transition peak, corrected for the detector efficiency and, if
necessary, resonant self-absorption. The energy distribution
of the photon flux nX(Y ) was measured with the large volume
HPGe detector placed in the incident beam, and the full energy
peak can be extracted from the measured spectrum using the
methods outlined in Ref. [52]. The top panel of Fig. 3 shows an
example of the measured energy distribution. Cross sections
of newly observed states were then determined relative to
known ones using Eq. (15). This method was validated as
it provided consistent results for those states observed at the
DHIPS facility.

A parity doublet of a close lying E1 and M1 excited state
was observed at 5297.9(3) and 5298.6(2) keV. Shown in Fig. 4
is a peak from a ground state decay, which appears in both
horizontal and vertical spectrum. From the available data, the

FIG. 3. (Color online) Comparison of the summed spectrum of
vertical and horizontal detectors obtained at the HIγ S facility, to
the spectrum obtained from the 90◦ detector at the DHIPS facility
using the 9 MeV bremsstrahlung beam. The photon beam distribution
from the 4.6 MeV beam at the HIγ S facility is superimposed (blue)
upon the spectrum in the top panel for visualization of the energy
range excited. Only levels decaying to the ground state are visible
in the HIγ S spectrum (highlighted), and the plane in which they
are observed corresponds to the parity. In the DHIPS data, γ rays
corresponding to decays to states other than the ground state are
visible; an example of a decay to an excited state and a decay to
the ground state from the same initially excited state is marked with
arrows. Peaks marked with an ∗ are from the 27Al or the 11B photon
flux calibration sources.

FIG. 4. A doublet of positive and negative parity J = 1 states has
been highlighted. This doublet would have been unresolvable without
the use of polarized γ rays.

energy difference in the fitted peak position is 0.7(3) keV. At
the DHIPS facility, a total cross section of 66.6(42) eV b was
deduced, and by comparing the relative number of counts in
the peak in each plane at the HIγ S facility, two states with
respective cross sections of 53(3) and 13.7(8) eV b were
distinguished.

The experiment at the HIγ S facility also allowed for unam-
biguous determination of ground-state transitions. Referring
to Fig. 3, peaks corresponding to resonantly excited states
decaying to the ground state, and those decaying to lower-lying
excited states, were intermingled in the DHIPS spectrum.
In addition, escape peaks from electron-positron annihilation
further contaminated the spectrum; these can lie underneath or
very close to peaks corresponding to excited states decaying.
At the HIγ S facility, the narrow width of the beam profiles
removed any ambiguity when distinguishing between ground
state decays and either electron-positron annihilation peaks or
branching decays to excited states.

The branching ratios of the decays from excited states were
of interest as they are necessary for obtaining an accurate value
for �0, and therefore the B(	λ)↑ strength. Due to relatively
short exposure times at each energy window to accumulate
statistics, only a few decays branching to the 2+

1 state at
559.1 keV [55] could be resolved in the HIγ S spectrum.
Table I contains a compilation of the results from the
experiments at the DHIPS and HIγ S facilities, using the
DHIPS data where available.

VI. DISCUSSION

The distribution of the electric dipole excited states for
the covered energy range is shown in Fig. 5. A kinematical
correction to account for the high photon energy was applied
to obtain the excited state energies Ex from the γ -ray
energies Eγ . An increased density of 1− states, beginning
at approximately 4.5 MeV, is apparent.

To analyze the gross features of the strength distribution of
the E1 response, we convolute a standard Lorentzian over the
B(E1)↑ strengths of the resonantly excited states, and scale
it for visibility. The width can be chosen to ensure that no
individual state dominates the distribution. It proves useful
for locating regions of concentrated strength, although other
than slight enhancements around 5.2 and 6.5 MeV, no regions
are seen to be prominently enhanced. Further, a pronounced
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TABLE I. Observed transitions of 76Se. Data has been compiled from the DHIPS and HIγ S facilities. The final state J π
f is 0+

g unless
otherwise mentioned. Those γ -ray transitions observed at DHIPS are marked with a †, and the values listed in this table stem from the reported
cross section measurements in Ref. [35] where possible. The uncertainties shown are statistical only.

Ex J π
x J π

f Eγ � τ �i

�
B(E1)↑ B(M1)↑

(keV) (keV) (meV) (fs) (10−3 e2fm2) (10−3μ2
N )

4055.2(3) 1+ 4055.1(3)† 15.6(14) 42.3(38) 60.5(77)
4125.5(10) 1+ 4125.4(10)† 4.6(18) 142(55) 17(7)
4218.9(3) 1+ 4218.8(3)† 154(17) 4.3(5) 0.49(6) 259(30)

2+
1 3659.6(2)† 0.51(6) 83.5 (92)

4535.5(6) 1+ 4535.4(6)† 45(10) 14.6(34) 0.60(11) 75 (8)
2+

1 3977.2(11)† 0.40(9) 14.5 (45)
4601.6(11) 1− 4601.5(11) 57(17) 11.6(34) 1.68(50)
4662.9(4) 1− 4662.7(4)† 85(14) 7.8(13) 0.76(10) 1.82(25)

2+
1 4104.2(5)† 0.24(4) 0.17(3)

4673.7(14) 1+ 4673.5(14) 8.5(29) 78(26) 21.6(73)
4720.7(7) 1+ 4720.5(7)† 71(11) 9.3(15) 0.4(7) 0.77(13)

2+
1 4160.7(4)† 0.6(9) 0.34(5)

4880.0(4) 1− 4879.8(4)† 24(5) 27.3(59) 0.59(13)
4887.1(3) 1− 4886.9(3)† 17(6) 39(13) 0.42(14)
4931.6(17) 1− 4931.4(17)† 5.8(15) 114(30) 0.15(5)
4984.5(5) 1− 4984.3(5)† 76(14) 8.7(16) 0.58(8) 1.02(14)

2+
1 4426.1(5)† 0.42(8) 0.21(4)

5001.5(3) 1− 5001.3(3) 54.5(40) 12.1(9) 1.25(13)
5010.5(3) 1− 5010.3(3)† 121(26) 5.4(10) 0.75(7) 2.06(20)

2+
1 4451.8(3)† 0.25(5) 0.20(4)

5073.9(2) 1− 5073.7(2)† 187(20) 3.5(4) 0.74(7) 3.05(28)
2+

1 4515.8(3)† 0.26(3) 0.30(3)
5194.7(3) 1− 5194.5(3)† 200(22) 3.3(4) 0.60(6) 2.44(25)

2+
1 4635.1(3)† 0.40(4) 0.47(5)

5217.8(11) 1− 5217.6(11) 37.6(81) 17.5(38) 0.76(16)
5297.9(3) 1+ 5298.4(2) 33.4(20) 19.7(12) 58.2(34)
5298.6(2) 1− 5298.4(2)† 128(8) 5.13(33) 2.47(16)
5324.0(4) 1− 5323.8(4)† 147(17) 4.5(5) 0.60(6) 1.66(23)

2+
1 4766.9(10) 0.40(6) 0.31(5)

5346.2(4) 1− 5346.0(4)† 133(30) 5.0(11) 0.55(7) 1.37(17)
2+

1 4788.0(3)† 0.24(4) 0.17(3)
2+

2 4131.5(9)† 0.21(4) 0.23(4)
5375.8(4) 1− 5375.6(4)† 319(35) 2.1(2) 0.45(5) 2.67(29)

2+
1 4816.1(2)† 0.55(6) 0.89(10)

5405.2(18) 1− 5405(18) 17.7(55) 37(12) 0.32(10)
5412.6(14) 1− 5412.4(14)† 14.3(83) 2.2(6) 0.22(8) 1.18(42)

2+
1 4852.0(3)† 0.78(21) 1.16(31)

5425.3(6) 1− 5425.1(6)† 127(18) 5.2(7) 0.5(7) 1.15(16)
2+

1 4865.9(3)† 0.5(7) 0.31(4)
5551.8(15) 1− 5551.6 (15) 48(12) 13.6(34) 0.81(21)
5629.8(15) 1− 5629.6(15) 18.7(58) 35(11) 0.30(9)
5637.7(15) 1− 5637.5(15) 19(6) 35(11) 0.30(10)
5669.2(15) 1− 5669.0(15) 20.9(74) 32(11) 0.33(12)
5685.5(4) 1− 5685.3(4)† 57.4(51) 11.5(10) 0.89(11)
5709.8(5) 1− 5709.6(5)† 61.9(57) 10.6(10) 0.95(12)
5740.7(5) 1− 5740.5(5)† 81.1(66) 8.1(7) 1.23(14)
5762.0(10) 1− 5761.8(10) 29(6) 22.7(49) 0.43(9)
5773.3(20) 1− 5773.1(10)† 26.6(40) 24.7(37) 0.40(8)
5781.2(2) 1− 5781.0(2)† 102(22) 6.4(14) 1.52(33)
5803.6(7) 1− 5803.4(7)† 178(43) 3.7(9) 0.36(9) 0.93(22)

2+
1 5246.1(14)† 0.64(16) 0.46(11)

5813.9(5) 1− 5813.7(5)† 57.2(54) 11.5(11) 0.83(11)
5842.2(3) 1− 5842.0(3)† 221(65) 3.0(9) 0.80(9) 2.54(90)

2+
1 5283.8(10)† 0.20(6) 0.17(5)

5865.3(7) 1− 5865.1(7) 59.8(85) 11.0(16) 0.85(12)
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TABLE I. (Continued.)

Ex J π
x J π

f Eγ � τ �i

�
B(E1)↑ B(M1)↑

(keV) (keV) (meV) (fs) (10−3 e2fm2) (10−3μ2
N )

5879.6(7) 1− 5879.4(7)† 31(4) 21.3(28) 0.44(8)
5892.1(6) 1− 5891.9(6)† 136(24) 4.9(9) 0.56(9) 0.93(22)

2+
1 5333.1(5)† 0.44(8) 0.46(11)

5998.7(14) 1− 5998.4(14)† 85(19) 7.7(18) 0.41(11) 0.47(13)
2+

1 5435.2(11)† 0.59(13) 0.18(4)
6035.7(5) 1− 6035.4(5)† 174(26) 3.8(6) 0.66(8) 1.48(27)

2+
1 5474.6(13) 0.34(7) 0.21(4)

6099.2(6) 1− 6098.9(6)† 164(27) 4.00(7) 0.65(10) 1.35(20)
2+

1 5540.2(7)† 0.35(6) 0.19(3)
6131.5(6) 1− 6131.2(6)† 39.6(61) 16.6(26) 0.49(11)
6156.6(14) 1− 6156.3(14) 84(15) 79(14) 1.03(18)
6165.1(11) 1− 6164.8(11) 22.3(66) 29.6(87) 0.27(8)
6196.2(11) 1− 6195.9(11) 45.7(61) 14.4(19) 0.55(10)
6208.7(15) 1− 6208.4(15) 91(18) 7.2(14) 1.09(21)
6242.7(6) 1− 6242.4(6)† 175(76) 3.8(16) 2.1(9)
6250.7(5) 1− 6250.4(5)† 79(20) 8.4(22) 0.92(24)
6297.9(14) 1− 6297.6(14)† 45.8(66) 14.4(21) 0.53(11)
6315.9(4) 1− 6315.6(4)† 91(23) 7.3(18) 1.03(26)
6336.8(20) 1− 6336.5(20)† 69(35) 3.0(15) 0.78(15)
6342.6(11) 1− 6342.3(11)† 1440 (350) 0.4(1) 0.28(5) 4.53(96)

2+
1 5783.3(3) 0.72(10) 3.33(66)

6387.5(14) 1− 6387.2(14)† 68(11) 9.6(15) 0.75(16)
6449.0(20) 1− 6448.7(20)† 75(12) 8.8(15) 0.8(2)
6497.7(6) 1− 6497.4(6)† 210(65) 3.13(97) 2.19(68)
6532.7(4) 1− 6532.4(4)† 150(14) 4.4(4) 1.54(21)
6551.0(3) 1+ 6550.7(3)† 41.6(74) 15.8(28) 38.4(96)
6562.9(9) 1− 6562.6(9)† 59(3) 11.1(4) 0.60(7)
6570.4(9) 1− 6570.1(9)† 95(13) 7.0(9) 0.96(18)
6596.2(7) 1− 6595.9(7)† 83(10) 7.9(10) 0.83(15)
6608.5(9) 1− 6608.2(9)† 76(10) 8.7(12) 0.75(14)
6633.2(12) 1− 6632.9(12)† 327(50) 2.0(4) 0.71(22) 2.3(4)

2+
1 6071.8(8)† 0.28(14) 0.24(11)

6641.3(17) 1− 6641.0(17) 84(18) 7.9(17) 0.82(18)
6653.7(14) 1− 6653.4(14) 136(27) 4.8(10) 1.33(26)
6680.0(18) 1− 6679.7(18) 75(17) 8.8(10) 0.72(16)
6691.5(8) 1− 6691.2(8)† 44.7(74) 14.7(24) 0.43(7)
6700.3(20) 1− 6700.0(20) 56(14) 11.8(30) 0.53(13)
6709.0(21) 1− 6708.7(21) 51(14) 13.1(36) 0.48(13)
6736.2(15) 1− 6735.9(15) 50(14) 13.1(36) 0.47(13)
6743.5(3) 1− 6743.2(3)† 401(39) 1.6(2) 0.77(10) 2.89(27)

2+
1 6182.8(7)† 0.23(4) 0.22(5)

6751.2(9) 1− 6748.7(5)† 532(51) 1.9(3) 0.66(13) 2.17(28)
2+

1 6190.0(6)† 0.34(9) 0.29(9)
6813.9(20) 1− 6813.6(20) 24.1(71) 23.7(81) 0.22(6)
6830.2(15) 1− 6829.9(15) 55(12) 12.0(26) 0.49(11)
6882.2(14) 1− 6881.9(14)† 296(59) 2.2(4) 0.54(14) 1.40(24)

2+
1 6323.4(6)† 0.46(16) 0.31(12)

6908.3(20) 1− 6908.0(20) 29.9(78) 22.0(58) 0.26(7)
6913.3(17) 1+ 6913(17) 33(11) 19.7(63) 26.2(84)
6922.2(18) 1− 6921.9(18) 36.1(94) 18.2(47) 0.31(8)
6970.3(5) 1− 6970.0(5)† 115(26) 5.7(13) 0.97(22)
6992.8(5) 1− 6992.5(5)† 130(18) 4.7(7) 1.10(15)
7018.0(18) 1− 7017.7(18) 41(17) 16.1(66) 0.34(14)
7025.0(20) 1+ 7024.7(20) 37(13) 17.7(60) 27.8(95)
7047.4(15) 1+ 7047(15) 33(11) 19.9(68) 24.5(84)
7053.1(19) 1− 7052.7(19) 36(11) 18.1(54) 0.30(9)
7093.1(20) 1− 7092.7(20) 41(11) 16.2(44) 0.33(9)
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TABLE I. (Continued.)

Ex J π
x J π

f Eγ � τ �i

�
B(E1)↑ B(M1)↑

(keV) (keV) (meV) (fs) (10−3 e2fm2) (10−3μ2
N )

7101.1(19) 1− 7100.7(19) 40(12) 16.5(51) 0.32(10)
7110.1(19) 1+ 7109.7(19) 46(13) 14.4(42) 32.9(97)
7114.0(19) 1− 7113.6(19) 115(51) 4.2(14) 0.49(18) 0.60(24)

2+
1 6557.2(16) 0.51(19) 0.13(6)

7127.7(13) 1− 7127.3(13) 570(150) 2.9(2) 0.77(23) 3.5(14)
2+

1 6570.6(19) 0.23(17) 0.26(20)
7156.0(17) 1− 7155.6(17) 61(17) 11(3) 0.47(13)
7168.1(18) 1− 7167.7(18) 39(11) 17(5) 0.30(9)
7195.6(14) 1− 7195.2(14) 72(21) 9.1(26) 0.56(16)
7225.6(20) 1− 7225.2(20) 77(19) 8.6(21) 0.58(14)
7241.6(7) 1− 7241.2(7)† 94(19) 7.0(14) 0.71(14)
7292.8(15) 1− 7292.4(15) 115(31) 5.7(15) 0.85(23)
7324.6(18) 1− 7324.2(18) 56(16) 12.0(34) 0.41(12)
7335.0(20) 1− 7334.6(20) 44(14) 14.9(47) 0.32(10)
7342.2(14) 1− 7341.8(14) 99(26) 6.6(18) 0.72(19)
7362.2(21) 1− 7361.8(21) 37(12) 17.8(57) 0.27(9)
7392.6(8) 1− 7392.2(8) 35(11) 19(6) 0.25(8)
7406.4(15) 1− 7406.0(15) 188(99) 3.5(18) 0.69(26) 0.92(61)

2+
1 6846.0(17) 0.31(20) 0.08(7)

7427.1(14) 1− 7426.7(14) 108(28) 6.1(16) 0.75(20)
7455.5(13) 1− 7455.1(13)† 178(46) 3.7(9) 1.23(32)
7464.7(18) 1− 7464.3(18) 252(88) 2.6(9) 0.55(20) 0.96(41)

2+
1 6905.8(21) 0.45(19) 0.20(9)

7508.4(8) 1− 7508.0(8)† 114(24) 5.8(7) 0.77(9)
7522.1(7) 1− 7521.7(7)† 396(71) 1.7(3) 0.64(16) 1.70(29)

2+
1 6963.9(7)† 0.36(11) 0.24(8)

7546.9(6) 1− 7546.5(6)† 280(29) 2.4(2) 1.87(19)
7580.5(16) 1− 7580.1(16) 55(16) 11.9(33) 0.36(10)
7617.2(17) 1− 7616.8(17) 83(17) 7.9(16) 0.54(11)
7627.8(15) 1− 7627.4(15) 111(20) 5.9(11) 0.72(13)
7643.3(17) 1− 7642.9(17) 61(15) 10.8(27) 0.39(10)
7652.9(17) 1− 7652.5(17) 110(22) 5.9(12) 0.71(14)
7658.7(2) 1− 7658.3(2)† 71(12) 9.3(15) 0.45(7)
7698.6(9) 1− 7698.2(9)† 460(140) 1.4(4) 0.65(16) 1.87(70)

2+
1 7137.0(20) 0.35(14) 0.26(10)

7729.7(16) 1− 7729.3(16) 122(25) 5.4(11) 0.76(16)
7781.6(18) 1− 7781.2(18) 67(22) 9.9(32) 0.41(13)
7817.4(10) 1− 7817.1 (10) 47(17) 14(5) 0.28(10)
7830.0(9) 1− 7829.6(9) 50(20) 13(5) 0.30(10)
7866.1(17) 1− 7865.7(17) 55(18) 12.0(39) 0.32(10)
7890.9(18) 1− 7890.5(18) 59(19) 11.2(36) 0.34(11)
7920.1(17) 1− 7919.7(17) 90(28) 7.3(23) 0.52(16)
7927.6(17) 1− 7927.2(17) 87(27) 7.6(24) 0.50(16)
7952.0(21) 1− 7951.6(21) 64(21) 10.3(34) 0.37(12)
7960.3(18) 1− 7959.9(18) 77(24) 8.5(27) 0.44(14)
7978.9(8) 1− 7978.5(8)† 139(34) 4.7(11) 0.79(19)
8017.9(23) 1− 8017.4(23) 69(23) 9.5(31) 0.39(13)
8062.5(22) 1− 8062.0(22) 85(27) 7.8(25) 0.46(15)
8084.7(26) 1− 8084.2(26) 220(100) 3.3(12) 0.46(25) 0.56(31)

2+
1 7521.3(25) 0.54(26) 0.16(9)

8107.3(22) 1− 8106.8(22) 80(25) 8.2(25) 0.43(13)
8132.1(22) 1− 8131.6(22) 79(24) 8.4(25) 0.43(13)
8154.9(21) 1− 8154.4(21) 70(21) 9.4(28) 0.37(11)
8170.1(22) 1− 8169.6(22) 76(22) 8.7(25) 0.40(11)
8197.5(13) 1− 8196.5(13)† 580(120) 1.1(2) 0.52(14) 1.55(27)

2+
2 6982.8(15)† 0.48(16) 0.47(18)

8210.5(20) 1− 8210.0(20) 114(29) 5.8(14) 0.77(19)
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TABLE I. (Continued.)

Ex J π
x J π

f Eγ � τ �i

�
B(E1)↑ B(M1)↑

(keV) (keV) (meV) (fs) (10−3 e2fm2) (10−3μ2
N )

8222.5(20) 1− 8222.0(20) 183(45) 3.6(9) 0.89(22)
8251.9(23) 1− 8251.4(23) 37(15) 17.9(74) 0.19(8)
8288.5(23) 1− 8288.0(23) 127(32) 5.2(13) 0.64(16)
8316.7(22) 1− 8316.2(22) 75(25) 8.8(30) 0.37(13)
8340.7(10) 1− 8340.2(10) 104(31) 6.3(19) 0.52(15)
8394.9(19) 1− 8394.4(19)† 180(26) 3.6(5) 0.88(12)
8453.5(21) 1− 8453.0(21) 162(60) 4(1) 0.27(10)
8486.5(18) 1− 8486.0(18) 500(120) 1.32(33) 0.83(21)
8526.5(5) 1− 8526.0(5)† 950(210) 0.69(14) 0.50(12) 2.20(36)

2+
1 7970.8(6)† 0.50(15) 0.54(20)

8540.9(20) 1− 8540.4(20) 488(91) 1.35(25) 0.38(15) 0.85(48)
2+

1 7979.7(13) 0.62(18) 0.32(16)
8571.7(19) 1− 8571.2(19) 270(79) 2.43(71) 0.45(13)
8590.1(20) 1− 8589.6(20) 199(64) 3.3(11) 0.34(11)
8654.9(19) 1− 8654.4(19) 228(68) 2.88(87) 0.52(11)
8709.9(13) 1− 8709.4(13)† 274(42) 2.4(4) 1.19(18)
8719.5(21) 1− 8719.0(21) 154(54) 4.3(15) 0.66(23)
8770.9(23) 1− 8770.4(23) 236(67) 2.8(8) 1.00(29)
8843.8(18) 1− 8843.2(18) 560(290) 1.2(6) 0.68(26) 1.60(10)

2+
1 8283.3(20) 0.32(20) 0.18(10)

8864.8(20) 1− 8864.2(20) 158(50) 4.2(13) 0.65(20)
8890.8(19) 1− 8890.2(19) 209(60) 3.1(9) 0.85(24)
8918.8(19) 1− 8918.2(19) 221(64) 3.0(9) 0.89(26)
8935.6(20) 1− 8935.0(20) 178(56) 3.7(12) 0.71(23)

splitting in the distribution, as seen for the GDR [24], is not
obvious.

Several M1 excited states were also observed, as shown in
Fig. 6. However, it is clear that the dipole response in the energy
region is predominantly electric. The dominant M1 strength
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FIG. 5. B(E1) ↑ strength distribution for resonantly excited states
between 4 and 9 MeV, with a Lorentzian convoluted over the
distribution for visualisation purposes. Where branching transitions
have been observed, the B(E1)↑ strength has been correspondingly
enhanced. The convoluted Lorentzian does not correspond to the
vertical scale of the figure, and the width was chosen so that no
individual state dominated the shape. Individual contributions and
uncertainties are tabulated in Table I.

around 4 MeV could reasonably be attributed to the Scissors
Mode, which the semiempirical formula derived by Pietralla
et al. [56] predicts it to be at an energy of approximately
3.9 MeV. An additional concentration of M1 excited states is
seen around 7 MeV, which may be attributed to an M1 spin-flip
resonance [57].

Further ( �γ , γ ′) data has been acquired at the HIγ S facility,
and an analysis of the nature of the dipole response of 76Se
below 5 MeV will be published in a forthcoming paper.
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FIG. 6. Distribution of observed B(M1)↑ strength in the energy
range covered. Individual contributions and uncertainties are tabu-
lated in Table I.
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Unobserved branching decays due to poor statistics and
high background were a potential issue when summing the
B(	λ)↑ strengths up to 9 MeV. The vast majority of transitions
directly observed in this work and in Ref. [35] are decays to the
ground state. If a branching in the decay of a resonantly excited
Jπ = 1− state is unobserved, the corresponding calculated
B(E1)↑ strength will be underestimated.

Resonantly excited J = 1 states, which branch to states
other than the ground state in their decay, are likely to cascade
through excited states, eventually collecting in low-lying states
before the nucleus deexcites to the ground state. In 76Se, only
the first two low-lying 2+ states have significant ground-state
decay branches. Therefore, it is likely that any excited state
decays will cascade through one or both of these states before
decaying to the ground state by E2 γ -ray emission. Due to this,
consideration of the intensity of the decays from the low-lying
2+ states can provide a quantitative measure of the ‘missing’
cross section due to unobserved branching decays [17].

For beam energy settings higher than 6 MeV, we begin to
observe transitions corresponding to low-lying 2+ states with
significant statistics. As the beams were nearly monoenergetic,
and tuned to energies of several MeV above the 2+ states, this
implies that they were not excited directly from the ground
state. Indeed, Ref. [58] demonstrates that the effect of Compton
scattered γ rays exciting states below the incident beam energy
is negligible. Therefore, it is safe to assume that the low-lying
2+ states were populated entirely by feeding from the decays
of higher-lying resonantly excited states.

The angular distribution of the E2 γ -ray transitions to the
ground state from the low-lying 2+ states will differ from that
of a 0+ → 2+ → 0+ sequence, as shown in Fig. 1, if they are
populated by feeding from higher lying excited states. For each
consecutive intermediate transition between the resonantly
excited state and the ground state the nucleus realigns, resulting
in an increasingly isotropic angular distribution of the emitted
γ rays. The formalism contained in Ref. [39] was used to
calculate the expected angular distributions of the E2 γ -ray
transitions from the low-lying quadrupole states to the ground
state, assuming they were populated by feeding.

The expression for the angular distribution of the observed
multipole emission γn is the following:

W (θ ) =
∑

λ1=0,2,4

Bλ1 (γ1)

(
n−1∏
k=1

Uλ1λ1 (γk)

)
Aλ1 (γn)Pλ1 (cos θ ),

(16)

where we have set λ = 0 to account for unobserved transitions.
We assume in our case that the initial state has been excited
and oriented by linearly polarized γ rays. The Uλλ are
the deorientation coefficients defining the n − 1 intermediate
unobserved transitions between the initially excited state and
the penultimate state; for every intermediate state in the
cascade an additional Uλλ must be included in the expansion.
It is only the γ -ray emission from the penultimate to ultimate
state which is observed. Reference [39] allows us to define
the Uλ1λ1 coefficient by considering the generalised A

λ2λ1
λ

coefficient:

A
λ2λ1
λ=0 (γ1) =

√
(2λ1 + 1)Uλ1λ1 (γ1)δλ1λ2 . (17)

The A
λ2λ1
λ , with λ = 0 reduces to

A
λ2λ1
0 =

(
1

1 + δ2

) [
F

λ2λ1
0 (LLJf Ji)

+ 2δF
λ2λ1
0 (LL′Jf Ji) + δ2F

λ2λ1
0 (L′L′Jf Ji)

]
, (18)

where the intermediate state Ji transitions to state Jf . The
F

λ2λ1
0 coefficients are given in Ref. [39].

The calculated azimuthal asymmetries confirm that the
angular distribution does become more isotropic as extra
intermediate states are involved in the cascade. For a 0+ →
1− → 2+ → 0+ sequence the final E2 transition has ε =
0.33 (assuming a pure dipole transition feeding the 2+ state).
A 0+ → 1− → 2+ → 2+ → 0+ sequence yields ε = −0.08
(assuming the 2+ states decay to one another with a pure E2
emission). A 0+ → 1− → 2+ → 2+ → 2+ → 0+ sequence
has ε = 0.02. Additional intermediate 2+ (or other Jπ )
states further increase the isotropy. The observed azimuthal
asymmetry of the 2+

1,2 → 0+
g transitions are shown in Fig 7.

The experimentally observed angular distribution can be a
superposition of the results of a collection of excited states,
deexciting through different levels, with different multipole
mixing ratios, so the values calculated using Eq. (16) rather
serve as guidance.

As the beam energy increased, transitions from an increased
number of low-lying states became visible. We show in Fig. 8
several of the observed transitions to and from low-lying
2+ states for the 8.8 MeV photon beam. Observations of
deexcitations from the 2+

3 state, or higher spin states such
as the 3+

1 , are additional confirmation that the 2+
1,2 states were

populated by feeding and not directly excited from scattered
γ rays, as they have an almost negligible width to the ground
state [55]. Observation of higher spin states also confirm that
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FIG. 7. Observed count rate asymmetry of the 2+
1,2 to ground

state transitions. Dashed lines show the expected asymmetries of
the final E2 transition of (a) 0+ → 1− → 2+ → 0+, (b) 0+ →
1− → 2+ → 2+ → 0+, and (c) 0+ → 1− → 2+ → 2+ → 2+ → 0+

cascades, with respective values of 0.33, −0.08, and 0.02.
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FIG. 8. Some visible transitions from low lying states for the
8.8 MeV beam (horizontal and vertical detectors have been summed).
The low-lying 2+ states are significantly populated by feeding as the
incident photon beam energy increases. The visible γ -ray transitions
correspond to [55] 2+

3 → 2+
1 (1.228 MeV), 2+

2 → 0+
g (1.216 MeV),

and 3+
1 → 2+

1 (1.129 MeV). The electron-positron annihilation peak
at 1.022 MeV is also visible.

the cascades become longer and more complex for resonantly
excited states at higher energies. This is also indicated by the
rather large asymmetry of the 2+

1 to ground state transition
at the 6 MeV beam energy, suggesting only one interme-
diate transition, whereas the negative value at 7.35 MeV
suggests two intermediate transitions. At higher energies, more
complicated decay patterns may lead to near isotropy.

By considering the ground state decays of the indirectly
excited 2+ states, the total scattering cross section for all
decays from the initially excited Jπ = 1− states to excited
states at each beam energy can be deduced [17]. The total
integrated differential scattering cross section at each beam
energy I S

tot can be estimated from the relationship

I S
tot = I S

�0

(
1 +

N∑
i=1

AiW0(θ )

A�0Wi(θ )
× η0(E)

ηi(E)

)
, (19)

where I S
�0 is the sum of the integrated differential cross

sections for the ground state decay transitions in the beam
energy window, and A�0 corresponds to the sum of the
observed counts for these transitions. The angular distribution
function for these ground state transitions W0(θ ) is known
[Eq. (12)]. The η(E) correspond to the the detector efficiency,
which includes nonresonant absorption within the target
material, as estimated from our GEANT simulations. In the
summation, a term for each of the N indirectly populated 2+
states observed to decay to the ground state must be included.
The Ai correspond to the count rate observed for the ground
state transitions from the 2+ states. The Wi(θ ) for the 2+
to ground state transitions are chosen to correspond to the
cascade that described best the observed asymmetry (Fig. 7).
As the angular distributions become more isotropic as more
intermittent decays are introduced, it can be assumed that the
systematic error introduced by the feeding assumptions above

are insignificant compared to the uncertainties in the observed
peak areas A.

With the estimate for the total cross section excited for
each beam energy interval, the branching ratio for the total
ground and excited state decay contribution can be determined.
The averaged differential cross section σ (E) may then be
estimated for each beam energy. In this case, the averaging
energy interval was chosen to correspond to the FWHM of each
incident photon beam distribution. By summing up the cross
sections of the individual ground state decays in the FWHM of
the beam, the previously determined branching ratio may be
applied to obtain an estimate of the total integrated differential
cross section for the interval. The differential cross section
may then be determined by averaging over the chosen energy
range.

We comment that, for higher beam energies, ground
state transition peaks were not all well resolved against the
background. With better statistics, it is likely that more ground
state transitions would be observed, which would influence the
deduced average branching ratio for the beam energy intervals.

In Fig. 9, we show the resulting differential cross section
σ (E) obtained from this work. There is an enhancement in
observed strength between 6 and 8 MeV, which is the energy
region typically attributed to a PDR. The solid and dashed lines
correspond to a generalized Lorentzian (GLO) and standard
Lorentzian (SLO) fitted to data over 10 MeV as taken by
the Saclay group [24], and extrapolated to low energies. The
merging of the results from this work into the high-energy data
suggests that we are correct to take into account the deduced
contribution to the cross section from the branching decays.
Without this, the total averaged cross sections would be grossly
underestimated in the energy region above 6 MeV.

Shown in Fig. 10 is all available cross section data, with the
same fits to the Saclay data as shown in Fig. 9. When assuming
these fits, upon comparing to data from this work, when using
the GLO form an enhancement upon the extrapolated low-
energy tail of the GDR can be seen. However, when fitting the
Saclay data to the SLO form, the data from this work yields no
enhancement upon the extrapolated GDR tail. As a final point,
we mention that in the mass region of 76Se, for some (γ, n)
data sets from the Saclay group Ref. [59] suggests that those
data need to be rescaled by a factor of about 0.85. Should this
be the case for 76Se, agreement with a SLO parametrization
would be enhanced.

VII. ELECTRIC DIPOLE RESPONSE IN THE
TIME-DEPENDENT HARTREE-FOCK FRAMEWORK

The random phase approximation (RPA) is a model often
used for describing collective particle-hole excitations of the
nucleus [60]. It is in fact the small-amplitude harmonic limit of
the time-dependent Hartree-Fock (TDHF) method [31,61,62].
An advantage of TDHF lies in the fact that direct access to the
time evolution of the nuclear density is available, which allows
for an insightful analysis of the dynamics of the system.

TDHF and RPA are suitable for describing 1p-1h ex-
citations and, consequently, they are often employed to
analyze giant resonances. TDHF describes correlations beyond
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FIG. 9. (Color online) Averaged cross section for E1 excited
states. The bottom panel shows the contribution from considering
ground state decays only, the middle the deduced contribution from
excited state decays, and the top panel the total. Data above 10 MeV
is σ [(γ, n) + (γ, np) + (γ, 2n)], taken from Ref. [24]. Results from
this work are shown by triangles, and results from Ref. [24] by circles.
The data over 10 MeV has been fitted to both a standard Lorentzian
(dashed line) and generalized Lorentzian (solid line), and extrapolated
to low energies.

Hartree-Fock; however, it is limited as it cannot describe p-h
correlations beyond the lowest order. Therefore, the widths of
giant resonances are often underestimated for nuclei where a
significant contribution comes from higher order correlations.
Several models go beyond the mean-field approximation to
include these correlations, such as the quasiparticle phonon
model [63], extended RPA [64], and extended TDHF [65].
These approaches include coherent (coupling to p-h and
phonon) and incoherent (coupling to 2p-2h) dissipation mech-
anisms. Other methods such as stochastic TDHF [66,67] go
beyond the mean-field approximation by considering the time
evolution of an ensemble of Slater determinants.

The treatment of pairing is handled in our framework via the
BCS approximation [61]. We employ it to calculate the ground
state occupation probabilities, and then freeze these occu-
pations for time-dependent calculations. The time-dependent
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FIG. 10. (Color online) Deduced total cross sections from this
work, and GDR cross section data from above the particle separation
threshold [24], shown with triangles and circles respectively. The
GDR data have been fitted to both a standard and generalized
Lorentzian form. For the case of the GLO form, an enhancement
is observable upon the extrapolated tail of the GDR.

Hartree-Fock-Bogoliubov method [68,69] fully treats pairing
in the TDHF framework, but requires severe truncations of the
quasiparticle basis to make calculations feasible in nuclei away
from shell closures. Other implementations of time-dependent
pairing simplify the problem by considering TDHF with
time-dependent BCS pairing [70].

To perform TDHF simulations, the starting point is finding
the ground state Slater determinant whose single-particle (s.p.)
wave functions ϕα are given by the solution of the static
Hartree-Fock equation [71]:

ĥHFϕα = εαϕα, (20)

where ĥHF is the sum of the kinetic and potential energy
operators t̂ + v̂, and α represents the quantum numbers of the
s.p. wavefunctions. The Hartree-Fock formalism is equivalent
to the Kohn-Sham equations in density functional theory [72].
The Skyrme-Hartree-Fock (SHF) [73] approximation is
often employed in nuclear structure calculations as it allows
the interparticle potential v̂ to be expressed in terms of a
zero-ranged, two-body, density-dependent interaction [74].
In this framework, the total energy functional of the system
can be expressed solely in terms of the particle, kinetic and
spin-orbit densities.

Once the ground state wave functions have been deter-
mined, they are evolved via the TDHF equation [61,75,76]

ih̄
∂ρ

∂t
= [ĥHF[ρ] , ρ], (21)

where ρ is the density matrix, defined by

ρ =
N∑

i,j=1

|ϕi〉〈ϕj |. (22)

When studying the total electric dipole response of a nucleus,
the E1 dipole operator [77]

D̂ = N

A

Z∑
p=1

rp − Z

A

N∑
n=1

rn, (23)
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is applied instantaneously to the s.p. wave functions to excite
E1 modes via the boost eik·D̂, where k (in units of fm−1) is
a vector quantity which scales the initial spatial separation
of the protons and neutrons [78]. All of our time-dependent
calculations used |k| = 0.01 fm−1 in the in the x, y, and z
directions. After the boost is applied at t = 0, time evolution
then begins and the expectation value of D̂ is tracked.

The strength function associated with D̂(t) for the case of
an instantaneous boost is given by [78–80]

SD(ω) = − 1

πh̄k
Im D̃(ω) (24)

where D̃(ω) is the Fourier transform of the expectation value
of D̂(t). From SD(ω) the photon scattering cross section σ (E)
can be calculated [81]:

σ (E) = 4π2e2E

h̄c

∑
x,y,z

SD(ω). (25)

To perform the static SHF calculations, a cubic cartesian
box with side length spanning from −11.5 to 11.5 fm was
defined, with a grid spacing of 1 fm. 65 neutron and 65 proton
wave functions were considered to allow spreading of the
BCS occupations across the valence s.p. levels. Three Skyrme
parametrization were used: NRAPR, fitted to an equation
of state of nuclear matter [82], SkI4, fitted to experimental
ground state binding energy data [83], and SLy4, fitted to data
for supernovae and neutron-rich nuclei [84]. These various
parametrizations were chosen to demonstrate the dependence
of the calculated structure of the dipole response upon the
chosen Skyrme parametrization.

The Skyrme parametrization NRAPR was chosen, in addi-
tion to the well known forces SkI4 and SLy4, as it has passed a
stringent set of tests for nuclear matter calculations [85]. There
are well known correlations between nuclear matter properties
and giant resonances [86]. However, the spin-orbit parameter
b4 has been doubled and the t1 − t2 dependence of the spin-
orbit term eliminated to ensure it reproduces shell closures in
doubly magic finite nuclei [87]. These modifications should
not affect the nuclear matter properties of the force.

SHF calculations yielded binding energies per nucleon
deviating no more than 3% from the experimental value [88].
The calculated r.m.s. radius

√
〈r2

tot〉 was 4.080 fm for NRAPR,
4.075 fm for SLy4, and 4.043 fm for SkI4. The quadrupole
deformation β2 is defined in our framework as [78]

β2 = 4π

5A〈r2
tot〉

√
(Q20)2 + 2(Q22)2 (26)

where Qlm is the spherical quadrupole moment of the nucleus.
The deformation parameter γ , which is a measure of triaxiality,
is given by

γ = arctan

(√
2Q22

Q20

)
. (27)

The deformation parameter β2 differs from the definition of
the deformation parameter β, often assumed as the quadrupole
deformation parameter. Reference [23] quotes a value of β =
0.309(4) for 76Se, defined in a model-dependent way from
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FIG. 11. Time evolution of the expectation value of D̂ in the
symmetry and minor axis. The Skyrme interaction used was NRAPR.

experimentally observed B(E2)↑ values. NRAPR yielded a
(β2, γ ) deformation of (0.089,60), SLy4 (0.032,0), and SkI4
(0.061,0). NRAPR reveals an oblate shape for the ground state
of the nucleus, whereas SkI4 and SLy4 calculate a prolate
shape.

Shown in Fig. 11 is the time evolution of the expectation
value of D̂ after the initial boost at t = 0 was applied, using
the Skyrme interaction NRAPR. The Fourier transform into
the frequency domain is shown in Fig. 12 for each of the
considered Skyrme parametrizations. Due to the finite time T
available to run the calculations, the resolution is limited to
δE = 2πh̄/T in the energy domain. Additionally, the use of
reflecting boundary conditions leads to artificial discretization
of the strength function [80]. Therefore, the strength function
has been smoothed by folding it with a Gaussian of width
500 keV. The effect upon the response function when using
absorbing boundaries is discussed in Ref. [89].

All of the calculated response functions in Fig. 12 un-
derestimate the total cross section inferred from Ref. [24].
SkI4 reproduces the width, but has a lot of missing strength,
whereas SLy4 and NRAPR reproduce the central strength
around 15 to 20 MeV with a degree of success, but the
calculated widths are far too narrow. We comment that the use
of time-dependent pairing may widen the response function
and shift the peak positions [69,90]. Additionally, inclusion
of beyond mean-field effects may also significantly alter the
calculated response [91]. Ref. [37] demonstrates that these
effects are required to accurately reproduce experimentally
observed dipole responses.

Our calculations yield, for all Skyrme interactions consid-
ered, a resonance-like bump between 10 and 13 MeV. The
calculated enhancements lie several MeV above the typical
energy range of 6 to 8 MeV of the PDR. This suggests that
the PDR may have significant contributions from higher order
correlations in addition to its 1p-1h part, which our calculations
cannot consider.
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FIG. 12. (Color online) Photon scattering cross section derived
from the E1 strength function for various Skyrme forces. The solid
line shows the total, dot-dashes the contribution from minor axis,
and dashes the contribution from the symmetry axis. Circles show
GDR data [24], and triangles the low-lying response from this work.
In all cases, the TDHF calculations show low-lying enhancement to
be in the region of 10 to 13 MeV, in contrast to the region of 6 to
8 MeV inferred by experiment. Low-lying enhancements are obvious
for SkI4 and SLy4, and although much less apparent for NRAPR,
still present.

To investigate the energy dependence of the dipole response
within the TDHF framework, we apply an external driving field
to the system. With this mechanism, we can force the nucleus
to vibrate at fixed frequencies. The TDHF equation is written
in this case as

ih̄
∂ρ

∂t
= [(ĥHF[ρ] + f (t)) , ρ], (28)

where f (t) is the external driving field. The external field
applied is of the form

f (t) = cos[ω(t − τ0)] × cos2

(
π

2

(t − τ0)

τt

)
, (29)

where ω is the driving frequency of the system, τ0 the time at
which the external pulse is a maximum, and τt the width of
the pulse. This allows us to study the behavior of the densities
and currents of protons and neutrons at different excitation
frequencies. For each time step in the TDHF framework,
we firstly consider the time derivative of the proton and
neutron densities. This quantity can be approximated by
ρq(tn) − ρq(tn−1), where q denotes proton or neutron, and
tn the discrete time step. This gives us direct access to the
dynamics of the proton and neutron densities, in contrast
to RPA based approaches which have to consider transition
densities in order to analyze the dynamics of the nucleus [7].

Shown in Fig. 13 is a snapshot of the time derivative of
the proton and neutron densities in the x-z plane for driven
frequencies chosen to correspond to the GDR and PDR. For the
relative magnitude of the contours shown, we refer to Fig. 14,
which shows the density time derivative for a selection of slices
in the x-z plane. The differences in the vibrational mode are
apparent.

When driving at GDR frequencies, the classical hydrody-
namic picture described by Goldhaber and Teller is obvious,
with the proton and neutron densities oscillating as collective
bodies out of phase with one another [92]. When the system
is driven at frequencies corresponding to the low-lying
enhancement on the GDR tail, a different vibrational mode
is apparent. The slice along the line x = z again agrees with
the interpretation of the PDR in a neutron rich, spherical
nucleus as a proton-neutron core vibrating against a neutron
skin. Taking slices over different lines, however, shows more
complex behavior.

These observations are in line with those of Ref. [7], which
investigates (quasiparticle) RPA derived transition densities
across the Sn isotopic chain. The reference demonstrates that
the classical picture of the PDR is only observed in neutron
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scale of the contours. Positive density is denoted with solid lines,
negative with dashed lines.
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abundant isotopes, and the behavior as the neutron excess
diminishes deviates from the intuitive picture of a proton-
neutron core vibrating out of phase with a neutron skin.

The particle current vectors are also instructive in describ-
ing the dynamics of collective resonances of the nucleus. j(r)q
is defined by

jq(r) = − i

2
(∇ − ∇′)ρq(r, r′) |r′=r, (30)

where q denotes protons or neutrons. The current vectors are
shown in Figs. 15 and 16 for driven frequencies chosen to
excite the GDR and PDR, respectively.

For the GDR, the Goldhaber-Teller model is demonstrated
once again, showing the flow of protons to be opposite in
direction to that of the neutrons. For the PDR, a significantly
different behavior can be seen. A core-skin type behavior
is apparent from the vectors, with the neutron currents
contributing significantly to a skin and core region. However,
the currents do not display a strongly collective core oscillating
out of phase with the skin; the currents in the core and
skin regions seem largely in phase with one another. The
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FIG. 15. Snapshot in time of normalized proton and neutron
current vectors for a frequency corresponding to the GDR. The vectors
have been normalized to a length of 2 fm.
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FIG. 16. Snapshot in time of normalized current vectors for
the nucleus driven at a frequency corresponding to the pygmy
enhancement upon the low-energy tail of the GDR.

significantly contributing proton currents seem centralized
in the core of the nucleus, in phase with the neutron core
currents. However, the surrounding current vectors point in
different directions to those in the core. These observations
imply that the simple picture of the PDR as a proton-neutron
core vibrating out of phase with a neutron skin may not be
fully valid in the case of a nucleus without an extreme excess
of neutrons.

As an alternate approach to isolate the pygmy mode from
the GDR, we consider modifying the dipole operator to give the
SHF ground state an instantaneous boost exciting only valence
skin orbitals against the bulk of the orbitals making up the core.
This will allow us to test whether this is a good description of
the PDR, and to which extent it coincides with the usual core-
skin picture. This method of splitting the dipole operator into
a sum of a core and skin part has been used previously within
a harmonic oscillator shell model to analyze the collective
nature of the PDR [93]. The approach of using exotic dipole
operators can also be employed to examine different aspects of
the dipole response, for example toroidal dipole modes [94].

We define an exotic dipole boost operator by

D̂
′ = A − ∑

v2

A

η∑
i=1

rskin −
∑

v2

A

ζ∑
j=1

rcore, (31)

where η is the number of skin orbitals, ζ the number of
core orbitals, and

∑
v2 corresponds to the summed BCS

occupations of the skin orbitals in the calculated ground state.
The expectation value of D̂

′
can be tracked as before, and

it could be expected that even with the instantaneous boost,
only the core-skin vibrational mode will be excited. We test
the classical picture of the PDR as a neutron skin vibrating
against a core by exciting the valence 1g9/2 neutron orbital
against all other protons and neutrons.

Shown in Fig. 17 is the strength function for the operator
D̂

′
. In comparison to Fig. 12, the peak corresponds to the

region that was attributed to the PDR upon the tail of the
GDR. No significant strength at energies higher than this have
been excited, despite the fact that the boost is applied over all
frequencies. Due to the fact that the cross section formula in
Eq. (25) is derived from linear response theory using the E1
operator D̂ [61], the response function for this exotic boost
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FIG. 17. Strength function from exotic dipole boost. The Skyrme
interaction was NRAPR. The peak at 12 MeV corresponds to the low
lying enhancement upon the tail of the GDR in Fig. 12.

operator does not necessarily correspond directly to σ (E).
Here, the interest lies mostly in the fact that the only observed
response is in the region attributed to the PDR.

We can be confident that the response function corresponds
to the PDR by analyzing the corresponding current vectors.
Figure 18 shows the vectors for a time snapshot when the initial
excitation is provided by D̂

′
. The figure displays the same

behavior as seen in Fig. 16, where the nucleus was driven at a
fixed excitation frequency corresponding to the PDR. Since the
initial boost only consisted of separating the valence neutron
orbitals from all others, the fact that the proton vectors also
exhibit the same behavior as seen in Fig. 18 shows that after
the initial perturbation the nucleus couples to the same pygmy
dipole vibrational mode which we observe when exciting the
nucleus at a fixed frequency.

This clearly demonstrates the potential of using exotic
dipole operators to effectively isolate different parts of the
collective isovector dipole response of nuclei. Further theo-
retical research along this direction is being developed at the
moment.
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FIG. 18. Snapshot in time of the current vectors when using the
instantaneous boost using D̂

′
. The 1g9/2 neutron orbitals were excited

as the skin against the core composed of all the other single-particle
wave functions.

VIII. CONCLUSION

Using the high resolution NRF technique, the dipole
response of 76Se in the energy range 4 to 9 MeV has been
analyzed through a series of experiments at the HIγ S and
DHIPS facilities.

The directly observed summed dipole excitation strengths
attributed to individual states in the region are 0.132(29)
e2fm2, and 0.641(109) μ2

N , for electric and magnetic spin
J = 1 states, respectively. The measured excitation strengths
above 6 MeV underestimate the actual E1 strength due to
fragmentation effects which cannot be individually accounted
for. Considering the transitions from lowlying 2+ states to
the ground state, we have presented evidence that, due to
branching decays from resonantly excited states, the total
scattering cross section deduced from ground state decays only
is a significant underestimation of the total.

Once branching decays are accounted for, the deduced total
photon scattering cross section seems to connect to previous
data at higher energies. Factoring in these branching decays
allows an enhancement, which may be attributed to a pygmy
resonance, to be seen when fitting previous cross section data to
a generalized Lorentzian form. However, no such enhancement
is observed when the GDR tail is extrapolated using a standard
Lorentzian form.

A 3D TDHF framework has been employed to describe the
collective E1 vibrational modes of 76Se. A consistent under-
estimation of the GDR width and strength, and the location
of the PDR enhancement, suggest that further considerations,
such as accounting for beyond mean-field and time-dependent
pairing effects, are required to fully describe experimental
results. We demonstrate a novel technique to isolate the PDR
from the GDR within our calculations without having to force
the excitation energy of the nucleus.
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APPENDIX: RESONANT SELF-ABSORPTION

Resonant self-absorption must be accounted for in photon-
scattering experiments. This effect is negligible when using
thin targets and, even for thicker targets, effects are generally
only significant for states with large ground-state decay widths.
In the following, we give a short account for the specific case
of our experiment.
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h

y

z

r

dz

dy

FIG. 19. Side-on view of cylindrical target of radius r and height
h. The beam is incident perpendicular to the y-z plane.

The 76Se target had a cylindrical shape, positioned with the
symmetry axis perpendicular to the beam as shown in Figs. 19
and 20. At a depth x in the target, we consider a scatterer of
volume dV = dx dy dz. As incident photons travel through
the target, effectively an absorber of thickness x, they have
a certain probability of being absorbed by a state of energy
Ex . Due to recoil effects, the reemitted photons will have an
energy loss EL,

EL = E2
x

2AMc2
, (A1)

where Mc2 ≈ 931 MeV to effectively take into account the
nuclear binding. This energy loss is larger than the typical
width of the levels, removing the possibility of further resonant
absorption of the same photon.

An absorber therefore creates an absorption line in the
spectrum of incident photons at energy Ex . A scatterer at
depth x will not see photons of this energy if they have been
absorbed. Consequently, levels which are affected significantly

y

dy

dx

x y

C

2rBeam

x

FIG. 20. (Color online) Top view of a cylindrical target of radius
r . Each scatterer (light blue) of surface area dy dz normal to the
incident beam has an absorber of length x (red) preceding it. To
calculate R̃ of the target, one must integrate over the surface from
0 → C in the x direction and from −r → r in the y direction. The
chord length C is given by 2

√
r2 − y2.

by resonant self absorption will have their observed peak
intensities substantially reduced. In contrast, intensities for
levels with small widths and respectively negligible self-
absorption probability will not be affected. Chapter 8 of
Ref. [48] discusses the effect in detail in the context of the
self-absorption experiment. We adapt this result to the specific
geometry of our target.

The general expression for the relative absorption, R, in a
self-absorption experiment [48] is

R = A(0) − A(d)

A(0)
=

√
π3

2
λ2g

�0

�
nAdA, (A2)

where A(0) and A(d) are the transition intensities for 0 and d
thicknesses of the absorber, and λ is the reduced wavelength of
the photon. The number of resonant nuclei per unit area nAdA is
equivalent to NA

A
ρx, where x is the thickness of the absorber, ρ

the density, A the atomic mass, and NA is Avagadro’s number.
The Doppler width � is given by

� = Ex

√
2kBTeff

AMc2
, (A3)

where kB is the Boltzmann constant, and Teff the effective
temperature of the absorber.

If we consider the target, which is comprised of scatterers
of volume dV embedded at a depth x in an absorber of the
same material, the relative absorption R̃, averaged over the
volume of the target is

R̃ =
√

π3

2 λ2g �0
�

NA

A
ρx dV

dV
. (A4)

For a cylindrical target of radius r and height h, for a given
�0, λ and A, the expression reduces to

R̃ =
√

π3

2 λ2g �0
�

NA

A
ρ

πr2h

∫ h

0

∫ r

−r

∫ C

0
x dx dy dz, (A5)

where C = 2
√

r2 − y2. The final result for the net relative
absorption is

R̃ =
8r

√
π3

2 λ2g �0
�

NA

A
ρ

3π
. (A6)

Therefore, for our target of radius r = 0.7 cm, for a hy-
pothetical state of 76Se with an excitation energy Ex = 7
MeV and �0 = 50 meV, assuming Teff = 298.15 K, we get

TABLE II. Example relative absorption factors R̃. Results are
calculated using data from Table I for states seen both at the DHIPS
and HIγ S facilities with �0 exceeding 300 eV.

Ex �0 � R̃

(keV) (meV) (eV) (%)

6342.6(11) 390(170) 5.39(5) 12(5)
6743.5(3) 310(70) 5.74(5) 8(2)
6751.2(9) 350(100) 5.75(5) 9(3)
7698.6(9) 300(160) 6.61(5) 7(4)
8197.5(13) 300(140) 6.98(6) 4(2)
8526.5(5) 480(220) 7.26(6) 6(3)
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λ2 = 7.94 b, � = 6.01 eV, and R̃ = 1.1%. With deduced
values of R̃, and our measurements of A(d), we can deduce
the transition intensity A(0), which would be the measured
intensity if using a thin target, i.e., a negligible self-absorption
effect.

The relative absorption for states with large ground-state
decay widths (�0 > 300 eV), seen at both the DHIPS and

HIγ S facilities, is given in Table II. For states with small
ground-state widths, the correction to the observed transition
intensity due to self-absorption is smaller than the uncertainty
in the observed count rate of the transition. For our procedure
to deduce the cross sections of states observed only at the HIγ S
facility [Eq. (15)], it is advisable to use states with negligible
self absorption corrections as reference.
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and P. D. Stevenson, Phys. Rev. C 85, 035201 (2012).
[86] X. Roca-Maza, M. Brenna, B. K. Agrawal, P. F. Bortignon, G.
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