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Using the relativistic point-coupling model with the density functional PC-PK1, the magnetic moments of the
nuclei 207Pb, 209Pb, 207Tl, and 209Bi with a jj closed-shell core 208Pb are studied on the basis of relativistic mean
field theory. The corresponding time-odd fields, the one-pion exchange currents, and the first- and second-order
corrections are taken into account. The present relativistic calculations are in reasonable agreement with the data.
The relative deviation between theory and experiment for these four nuclei is 6.1% for the relativistic calculations
and somewhat smaller than the value of 13.2% found in earlier nonrelativistic investigations. It turns out that the
pion meson is important for the description of magnetic moments, first by means of one-pion exchange currents
and second by the residual interaction provided by the pion exchange.
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I. INTRODUCTION

The nuclear magnetic moment is an important observable
in nuclear physics. It provides rich information about nuclear
structure, serves as a stringent test of nuclear models, and
has attracted the attention of nuclear physicists since the early
days [1–4]. The theoretical description of nuclear magnetic
moments has been a long-standing problem. In the past few
decades, many successful nuclear structure models have been
developed. However, the application of these models for
nuclear magnetic moments is still not satisfactory.

In the extreme single-particle shell model, the magnetic
moment of an odd-A nucleus is carried only by one valence
nucleon (valence-nucleon approximation), which leads to the
well-known Schmidt values. It was observed in the early
1950s [5], however, that almost all nuclear magnetic moments
are sandwiched between the two Schmidt lines [6]. Therefore,
considerable efforts have been made to explain the deviations
of the nuclear magnetic moments from the Schmidt values,
which can be contributed from meson exchange current (MEC,
i.e., the exchange of a charged meson) and configuration
mixing (CM, or core polarization, i.e., the correlation not
included in the mean-field approximation) [7–9].

In 1954, Arima and Horie [10] pointed out a very distinct
difference between the following two groups of nuclei: The
cores of the nuclei in the first group (16O and 40Ca cores) are
LS closed, i.e., the spin-orbit partners j = l ± 1

2 of the core
are completely occupied. Therefore they are expected not to be
excited strongly by an external field with M1 character. On the
other hand, the cores of the nuclei in the second group (such as
208Pb) are jj closed, i.e., one of the spin-orbit partners is open,
and an M1 external field can strongly excite core nucleons to
the empty spin-orbit partner. This M1 giant resonance state of
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the core can be momentary excited by the interaction with the
valence nucleon. This is the idea of first-order configuration
mixing, which is also called the Arima-Horie effect [11]. It
explains not only the difference between these two groups
of nuclei but also deviations of magnetic moments from the
Schmidt lines for many nuclei [10,12,13].

In the late 1960s, it became clear after many calcula-
tions that the first-order effect is not enough to explain
the large deviations from the Schmidt values in high spin
states, especially 209Pb. Pion exchange is very important to
understand nuclear magnetic moments, as was first pointed
out by Miyazawa in 1951 [14] and by Villars in 1952 [15].
This correction changes the gyromagnetic ration of orbital
angular momentum of a nucleon in the nucleus [16] and
improves the agreement between theoretical and observed
values [17]. Furthermore, second-order configuration mixing
had been taken into account first in Refs. [18–20], and this
was also important for understanding the deviations as well as
meson exchange current [21,22].

In the past decades, relativistic mean field (RMF) theory has
been successfully applied to the analysis of nuclear structure
over the whole periodic table, from light to superheavy
nuclei with a few universal parameters [23–26]. However,
relativistic descriptions of nuclear magnetic moments are
mostly restricted to LS closed-shell nuclei ±1 nucleon. It has
been known for some time that in straightforward applications
of the relativistic single-particle model, where only sigma and
the timelike component of the vector mesons were considered,
the predicted isoscalar magnetic moments were significantly
larger than the observed values [27,28]. This is because the
reduced Dirac effective nucleon mass (M∗ ∼ 0.6M) enhances
the relativistic effect on the electromagnetic current [29]. It was
pointed out that the valence-nucleon approximation is wrong
in the relativistic calculation [30].

In reality, however, the current entering the magnetic
moment operator is not just the single-particle current of the
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single valence nucleon. This nucleon polarizes the surrounding
medium and this leads to a polarization current induced by the
isoscalar current-current interaction. The effective current is
therefore reduced. This so-called back-flow effect has been
treated in the literature in three different ways. First, the
induced current has been calculated in infinite nuclear matter
by a Ward identity [31] or in the framework of Landau-Migdal
theory [29] and the results have been applied in a local density
approximation to finite nuclei. This has been improved by
calculating the polarization current in linear response theory
in finite spherical systems by summing up the loop diagrams
[32–34]. The most direct method, however, is to treat the finite
odd-A system in a fully self-consistent way [35–39]. Here
the valence nucleon sits in a certain subshell with magnetic
quantum number m. This leads to a small axially symmetric
deformation and an azimuthal current jϕ around the symmetry
axis, which induces in the core a nuclear magnetic field
and the corresponding polarization currents. This is all taken
into account in a fully self-consistent way by the solution
of deformed RMF equations with nuclear magnetic fields
breaking time-reversal invariance. For odd-A nuclei in the
direct vicinity of an LS closed core, all three methods lead
to a strong reduction of the effective current such that the
enhancement due to the small effective Dirac mass is nearly
canceled and the resulting isoscalar magnetic moments are
in excellent with the Schmidt values of the conventional
nonrelativistic single-particle model.

Unfortunately, these effects cannot remove the discrepancy
existing in isovector magnetic moments. To eliminate this
discrepancy, one-pion exchange current corrections have been
included in the relativistic model [40,41], and these were found
to be significant. However, they lead to a larger disagreement
with data. Recently, second-order configuration mixing has
been included in the fully self-consistent relativistic theory, and
this greatly improves the description of the isovector magnetic
moment [42,43].

In Ref. [44] magnetic moments of jj closed-shell ±1
nuclei near 208Pb have been studied in RMF theory including
the contribution from the core. The corresponding results
show an improvement in comparison with the valence-nucleon
approximation. On the other hand, meson exchange currents
and configuration mixing, especially first-order configuration
mixing, are very important for the description of the magnetic
moment of such nuclei.

In view of these facts we present in this manuscript an
investigation of magnetic moments of the jj closed-shell ±1
nuclei 207Pb, 209Pb, 207Tl, and 209Bi in a relativistic framework,
based on the magnetic moments derived from RMF theory
with time-odd fields, including one-pion exchange currents
and first- and second-order configuration mixing corrections.
For these calculations, the relativistic point-coupling (PC)
model will be adopted. In Sec. II we outline briefly the
theoretical framework of this model and we present the
definition of the magnetic moment operator, the one-pion
exchange currents, and configuration mixing diagrams in first
and second order. The numerical details are given in Sec. III.
The calculations are described and the results are discussed
in Sec. IV. Finally, Sec. V contains a brief summary and a
perspective.

II. THE RELATIVISTIC FRAMEWORK

A. Relativistic mean field theory

The basic building blocks of RMF theory with point
couplings are the vertices

(ψ̄O�ψ), O ∈ {1, �τ }, � ∈ {1, γμ, γ5, γ5γμ, σμν}, (1)

where ψ is the Dirac spinor field, �τ is the isospin Pauli matrix,
and � generally denotes the 4 × 4 Dirac matrices. There are
10 such building blocks characterized by their transformation
properties in isospin and in Minkowski space. We adopt arrows
to indicate vectors in isospin space and bold type for the space
vectors. Greek indices μ and ν run over the Minkowski indices
0, 1, 2, and 3.

A general effective Lagrangian can be written as a power
series in ψ̄O�ψ and their derivatives. In the present work, we
start with the following Lagrangian density [45]:

L = ψ̄(iγμ∂μ − M)ψ − 1

4
FμνFμν − e

1 − τ3

2
ψ̄γ μψAμ

−1

2
αS(ψ̄ψ)(ψ̄ψ) − 1

2
αV (ψ̄γμψ)(ψ̄γ μψ)

−1

2
αT V (ψ̄ �τγμψ)(ψ̄ �τγ μψ)

−1

3
βS(ψ̄ψ)3 − 1

4
γS(ψ̄ψ)4 − 1

4
γV [(ψ̄γμψ)(ψ̄γ μψ)]2

−1

2
δS∂ν(ψ̄ψ)∂ν(ψ̄ψ) − 1

2
δV ∂ν(ψ̄γμψ)∂ν(ψ̄γ μψ)

−1

2
δT V ∂ν(ψ̄ �τγμψ)∂ν(ψ̄ �τγμψ). (2)

There are nine coupling constants, αS , αV , αT V , βS , γS , γV , δS ,
δV , and δT V . The subscripts S, V , and T , respectively, indicate
the symmetries of the couplings; i.e., S stands for scalar, V for
vector, and T for isovector.

Using the mean-field approximation and the “no-sea”
approximation, one finds the energy density functional for
a nuclear system,

EDF[ρ̂] =
∫

d3rE(r), (3)

with the energy density

E = Ekin(r) + Eint(r) + Eem(r), (4)

which is composed of a kinetic part,

Ekin(r) =
A∑

k=1

ψ
†
k (r)(α · p + βM − M)ψk(r), (5)

where the sum over k runs over the occupied orbits in the
Fermi see (no-sea approximation); an interaction part,

Eint(r) = αS

2
ρ2

S + βS

3
ρ3

S + γS

4
ρ4

S + δS

2
ρS�ρS

+ αV

2
jμjμ + γV

4
(jμjμ)2 + δV

2
jμ�jμ

+ αT V

2
�jμ
T V · ( �jT V )μ + δT V

2
�jμ
T V · �( �jT V )μ, (6)
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with the local densities and currents

ρS(r) =
A∑

k=1

ψ̄k(r)ψk(r), (7a)

jμ(r) =
A∑

k=1

ψ̄k(r)γ μψk(r), (7b)

�jμ
T V (r) =

A∑
k=1

ψ̄k(r)γ μ�τψk(r); (7c)

and an electromagnetic part,

Eem(r) = 1
4FμνF

μν − F 0μ∂0Aμ + eAμj
μ
p . (8)

Minimizing the energy density functional [Eq. (3)] with respect
to ψ̄k , one obtains the Dirac equation for the single nucleons,

[−iα · ∇ + βγμV μ + β(M + S)]ψk(r) = εkψk(r). (9)

The single-particle effective Hamiltonian contains local scalar
S(r) and vector V μ(r) potentials given by

S(r) = �S, V μ(r) = �μ + �τ · ��μ
T V , (10)

where the self-energies are given in terms of various densities,

�S = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (11a)

�μ = αV j
μ
V + γV

(
j

μ
V

)3 + δV �j
μ
V + eAμ, (11b)

��μ
T V = αT V

�jμ
T V + δT V ��jμ

T V . (11c)

For the ground state of an even-even nucleus one has
time-reversal symmetry and the spacelike parts of the currents
j (r) in Eq. (7) as well as the vector potential V (r) in Eq. (10),
i.e., the time-odd fields, vanish. However, in odd-A nuclei, the
odd nucleon breaks the time-reversal invariance, and time-odd
fields give rise to a nuclear magnetic potential, which is very
important for the description of magnetic moments [35,36].
Moreover, because of charge conservation in nuclei, only the
third component of isovector potentials, ��μ

T V , contributes.
The Coulomb field A0(r) is determined by Poisson’s equation,
and in the applications we neglect the magnetic part A(r) of
the electromagnetic potential.

The relativistic residual interaction is given by the second
derivative of the energy density functional E(ρ̂) with respect
to the density matrix

Vαβα′β ′ = δ2E(ρ̂)

δρ̂αβδρ̂α′β ′
. (12)

More details can be found in Refs. [46,47].
Although, because of parity conservation, the pion meson

does not contribute to the ground state in RMF theory, it plays
an important role in spin-isospin excitations and is usually
included in relativistic random phase approximation (RPA) and
quasi-RPA calculations of these modes [48,49]. The widely
used pion-nucleon vertex reads, in its pseudovector coupling
form,

LπN = − fπ

mπ

ψ̄γ μγ5 �τψ · ∂μ �π, (13)

where �π (r) is the pion field, fπ is the pion-nucleon coupling
constant, and mπ is the pion mass.

B. The magnetic moment operator

The effective electromagnetic current operator used to
describe the nuclear magnetic moment is given by [36–38]

Ĵ μ(x) = Qψ̄(x)γ μψ(x) + κ

2M
∂ν[ψ̄(x)σμνψ(x)], (14)

where Q ≡ e
2 (1 − τ3) is the nucleon charge, σμν = i

2 [γ μ, γ ν]
is the antisymmetric tensor operator, and κ is the free
anomalous gyromagnetic ratio of the nucleon: κp = 1.793
and κn = −1.913. In Eq. (14), the first term gives the Dirac
current and second term is the so-called anomalous current.
The nuclear dipole magnetic moment in units of the nuclear
magneton μN = eh̄

2Mc
is determined by

μ = 1

2μN

∫
d3r r × 〈g.s.| ĵ (r)|g.s.〉 (15a)

=
∫

dr
[
Mc2

h̄c
Qψ+(r)r × αψ(r) + κψ+(r)β�ψ(r)

]
,

(15b)

where ĵ (r) is the operator of spacelike components of the
effective electromagnetic current. The first term in above
equation gives the Dirac magnetic moment, and the second
term gives the anomalous magnetic moment.

Therefore, in the relativistic theory, the nuclear magnetic
moment operator, in units of the nuclear magneton, is
given by

μ̂ = Mc2

h̄c
Qr × α + κβ�. (16)

C. The one-pion exchange current

Although there is no explicit pion meson in RMF theory,
it is possible to study the MEC corrections due to the virtual
pion exchange between two nucleons, which, according to
Ref. [40], are given by the two Feynman diagrams in Fig. 1.

The one-pion exchange current contributions to magnetic
moments are given by

μMEC = 1

2

∫
d r r × 〈g.s.| ĵ

seagull
(r) + ĵ

in-flight
(r)|g.s.〉,

(17)

FIG. 1. Diagrams of the one-pion exchange current: seagull (left)
and in-flight (right).
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with the corresponding one-pion exchange currents ĵ
seagull

(r)

and ĵ
in-flight

(r) [41],

ĵ
seagull

(r) = −8ef 2
π M

m2
π

∫
dx ψ̄p(r)γ γ5ψn(r)Dπ (r, x)ψ̄n(x)

× M∗

M
γ5ψp(x), (18a)

ĵ
in-flight

(r) = −16ief 2
π M2

m2
π

∫
dxd yψ̄p(x)

M∗

M
γ5ψn(x)

× Dπ (x, r)∇rDπ (r, y) × ψ̄n( y)
M∗

M
γ5ψp( y).

(18b)

The pion propagator in r space has the form Dπ (x, r) =
1

4π
e−mπ |x−r|

|x−r| .

D. Configuration mixing

The residual interaction, neglected in the mean-field ap-
proximation, leads to configuration mixing, i.e., the coupling
between the valence nucleon and particle-hole states in the
core. This is also called core polarization. The configuration
mixing corrections to the magnetic moment are treated
approximately by Rayleigh-Schrödinger perturbation theory.

1. First-order corrections

According to Rayleigh-Schrödinger perturbation theory,
the first-order correction to the magnetic moments is deter-
mined as

δμ1st = 〈n|μ̂ Q̂

En − Ĥ0
V̂ |n〉 + 〈n|V̂ Q̂

En − Ĥ0
μ̂|n〉, (19)

where |n〉 and En denote the unperturbed ground-state wave
functions and corresponding energies, Ĥ0 and V̂ are the
operators of the mean-field Hamiltonian and the residual inter-
action, respectively, μ̂ is the magnetic moment operator, and
Q̂ projects onto multiparticle and multihole configurations.
The corresponding Feynman diagram is shown in Fig. 2,
where the wiggly lines represent the external field (here the
magnetic moment operator), and the dashed lines denote the
residual interaction. Solid lines with upward arrows denote

j j
V

p h

µ̂

µ̂

V

p h

(a) (b)

FIG. 2. Diagrams of first-order configuration mixing corrections
to the magnetic moment. The external line represents the valence
nucleon, and the intermediate particle-hole pair represents an excited
state of the core.

particle states (i.e., single-particle orbits above the Fermi
surface) and those with downward arrows are hole states (i.e.,
single-particle orbits in the Fermi sea).

For the magnetic moments of nuclei with a doubly closed
shell core ±1 nucleon, the formula for the first-order correction
can be simplified as

δμ1st =
∑
jpjhJ

2〈jh‖μ‖jp〉
�Ej

(−1)jh+j+J ĵ
−1

√
j

j + 1
(2J + 1)

×
{

jh jp 1

j j J

}
〈jjp; JM|V |jjh; JM〉, (20)

where j denotes the valence nucleon state, jp and jh represent
particle and hole states, and �E = εjp

− εjh
is the excitation

energy of the one-particle–one-hole (1p-1h) excitation. The
selection rule �� = 0 of the nonrelativistic magnetic moment
operator allows only particles and holes as spin-orbit partners,
i.e., jp = � − 1

2 and jh = � + 1
2 . All other diagrams vanish.

It should be noted that first-order configuration mixing does
not provide any contribution in nuclei with an LS closed core
±1 nucleon, because there are no spin-orbit partners on both
sides of the Fermi surface and therefore the magnetic-moment
operator cannot couple to magnetic resonances [8].

2. Second-order corrections

As shown in Refs. [8,21] the second-order correction to the
magnetic moments is given by

δμ2nd
cm = 〈n|V̂ Q̂

En − Ĥ0
μ̂

Q̂

En − Ĥ0
V̂ |n〉

− 〈n|μ̂|n〉〈n|V̂ Q̂

(En − Ĥ0)2
V̂ |n〉, (21)

where the second term comes from the renormalization of the
nuclear wave function. In the second-order corrections we have
to include one-particle–one-hole and two-particle–two-hole
(2p-2h) contributions. As shown in Fig. 3, for a system with
a doubly closed shell core, the second-order correction to
the magnetic moment can be divided into three terms [8],
the contributions of two-particle–one-hole (2p-1h) and of
three-particle–two-hole (3p-2h) configurations and of the wave
function renormalization, respectively.

(a) (b) (c)

+ +− ×

FIG. 3. Diagrams of second-order configuration mixing correc-
tions to the magnetic moment: (a) 1p-1h mode, (b) 2p-2h mode, and
(c) wave function renormalization. Diagrams with more than one
external wiggly line are an abbreviation for several separate diagrams
where each of them has only one wiggly line at the indicated places.
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FIG. 4. Diagrams representing second-order configuration mix-
ing corrections: (a) 2p-1h and (b) 3p-2h intermediate states. For the
notations N, S, and C, see the text for details.

As shown in Fig. 4, we find for a system with a doubly
closed core plus one particle the following second-order
corrections to the magnetic moment:

N(2p-1h) and N(3p-2h): from the wave function renor-
malization,
S(2p-1h) and C(3p-2h): the external field operator
acting on the hole line, and
C(2p-1h) and S(3p-2h): the external field operator
acting on the particle line,

and we obtain in this case

δμ2nd
cm = N(2p-1h) + S(2p-1h) + C(2p-1h)

+ N(3p-2h) + S(3p-2h) + C(3p-2h). (22)

For a system of a doubly closed core minus one nucleon we
have

δμ2nd
cm = N(2h-1p) + S(2h-1p) + C(2h-1p)

+ N(3h-2p) + S(3h-2p) + C(3h-2p), (23)

The detailed formulas for each term can be found in the
Appendix.

III. NUMERICAL DETAILS

In this paper we study the magnetic moments of the nuclei
207Pb, 209Pb, 207Tl, and 209Bi. We start on the mean-field

level with the magnetic moments derived from RMF theory
including time-odd fields and add one-pion exchange currents
and first- and second-order configuration mixing contributions.
In the calculations, the relativistic point-coupling model with
the density functional PC-PK1 [50] is applied.

Spherical RMF theory is solved in coordinate space, with
a box size of 15 fm and a step size of 0.1 fm. To calculate the
corrections resulting from time-odd fields, triaxially deformed
RMF calculations with time-odd fields are performed and
each Dirac spinor is expanded in terms of a set of a
three-dimensional harmonic oscillator (HO) basis in Cartesian
coordinates with 10 major shells [51]. Pairing correlations in
the vicinity of the doubly magic nucleus 208Pb are neglected.
The one-pion exchange current and configuration mixing
corrections to the magnetic moments are calculated using
spherical Dirac spinors of the nearby doubly closed shell
nucleus 208Pb. The pion-nucleon coupling constant is fπ = 1
and the pion mass is mπ = 138 MeV. The configuration mixing
corrections depend on the configuration space and this will be
discussed in the following applications.

IV. RESULTS AND DISCUSSION

A. First-order corrections

In Table. I we give the first-order configuration mixing
corrections to the magnetic moment of 209Bi. They are obtained
from relativistic calculations using the density functional
PC-PK1 [50] and they are compared with the nonrelativistic
results using different interactions: the Kallio-Kolltveit (KK)
[52], Gillet [53], Kim-Rasmussen (KR) [54], Brueckner [55],
Hamada-Johnston (HJ) [56] and M3Y [57]. The corresponding
first-order corrections are taken from Refs. [19,20,58], respec-
tively. For the relativistic calculations, we present results both
with and without considering the residual interaction provided
by pion exchange.

In nonrelativistic calculations, only the excitations of
spin-orbit partners can contribute to the first-order magnetic
moment correction, because of selection rules imposed by
the magnetic moment single-particle operator. In relativistic
calculations this selection rule is only approximately valid.
However, in the present relativistic calculations, only two
particle-hole excitations can contribute to the first-order
magnetic moment correction of 209Bi, i.e., the (1h9/21h−1

11/2)π
and (1i11/21i−1

13/2)ν excitations, and all other particle-hole

TABLE I. First-order configuration mixing corrections to the magnetic moment of 209Bi obtained from relativistic calculations using the
PC-PK1 effective interaction, in comparison with nonrelativistic results using different interactions. In the relativistic calculations, results both
with and without considering the residual interaction provided by the pion are given.

Nonrelativistic Relativistic

Interactions KK Gillet KR I KR II Brueckner HJ Kuo M3Y PC-PK1 PC-PK1

Ref. [19] [20,59] [58] [57] without π with π

(1h9/21h−1
11/2)π 0.37 0.46 0.53 0.70 0.71 0.55 0.43 −0.11 0.19

(1i11/21i−1
13/2)ν 0.15 −0.02 0.00 −0.06 0.04 0.25 0.24 0.07 0.33

Total 0.52 0.43 0.53 0.64 0.75 0.80 0.79 0.68 −0.04 0.52
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FIG. 5. (Color online) First-order configuration mixing correc-
tions to magnetic moments of 209Bi, 207Tl, 209Pb, and 207Pb obtained
from relativistic calculations using the PC-PK1 interaction, in
comparison with the nonrelativistic results obtained from Ref. [58]. In
the relativistic calculations, the results with and without π are given.

excitations give a small and negligible contribution to its
expectation value in first-order perturbation theory.

As shown in Table I the nonrelativistic calculations give
remarkable first-order corrections (0.43 μN –0.80 μN ), while
the corresponding corrections given by relativistic calcula-
tions using the PC-PK1 effective interaction are very small
(−0.03 μN ) and can be neglected. Only after the residual
interaction provided by the pion is included does PC-PK1
give significant corrections (0.59 μN ) that are consistent with
nonrelativistic results.

In order to further confirm the effects of the residual
interaction provided by the pion, we show in Fig. 5 the
first-order configuration mixing corrections to the magnetic
moments of 207Pb, 209Pb, 207Tl, and 209Bi obtained from
relativistic calculations using the PC-PK1 interaction. They are
compared with nonrelativistic results obtained from Ref. [58].
In Fig. 5 we also see that without the residual interaction
provided by the pion, the relativistic calculations give negli-
gible first-order corrections to the magnetic moments of all
four nuclei. If the residual interaction provided by the pion is
included, relativistic calculations are in reasonable agreement
with nonrelativistic results for all present nuclei.

Considering Eq. (20), we find that the magnetic moment
operator, the excitation energy, and the interactions can all lead
to differences between relativistic and nonrelativistic results.
It is well known that the effective mass is relatively small in
self-consistent calculations based on density functional theory.
This leads to an increased gap at the Fermi surface in the
single-particle spectrum and to larger p-h energies. This is
a deficiency of conventional density functional theory based
on the mean-field approximation with energy-independent
self-energies. By taking into account the energy dependence
of the self-energy in the framework of couplings to low-
lying collective surface modes, considerably larger effective
masses and smaller energy gaps have been found in the
literature [60–63], and these are closer to the experimental
values. Such calculations go, obviously, beyond the scope of
the present investigations and therefore we use the experi-

mental single-particle energies rather than the self-consistent
RMF single-particle energies in the intermediate states for a
relativistic estimation. The experimental excitation energies
used in these calculations are �Ep = ε(1h9/2) − ε(1h11/2) =
5.6 MeV and �En = ε(1i11/2) − ε(1i13/2) = 5.86 MeV. Since
the nonrelativistic results are obtained with experimental
energy splittings, it is found that, by adopting experimental
excitation energy, the relativistic calculations give almost
the same first-order corrections as the results by adopting
the self-consistent RMF single-particle energies shown in
Fig. 5. Although there is some difference between the
matrix elements of the relativistic and the nonrelativistic
magnetic moment operator, this causes little difference in
the first-order corrections in Fig. 5. Therefore, the difference
between relativistic and nonrelativistic results are mainly due
to interactions, and the residual interaction provided by the
pion plays an important role in the relativistic descriptions of
nuclear magnetic moments. Therefore it will be included in
the following calculations of second-order corrections.

B. Second-order corrections

The theoretical analysis for the Feynman diagrams of
second-order configuration mixing shows that the corrections
to the magnetic moments are diverging as the configuration
space is increased. This is a renormalization problem and it
has been shown in detail in the Appendix that the interaction
in the point-coupling model is a constant in momentum space
and therefore the integrals for the corresponding second-order
corrections are diverging. In order to investigate the rela-
tionship between second-order corrections and corresponding
configuration space, and also to choose the appropriate
truncation, the second-order configuration mixing corrections
to the magnetic moments of 207Pb, 209Pb, 207Tl, and 209Bi
are given in Fig. 6 for major shell truncations [21]; i.e., the
configuration space for the calculations of the single-particle

FIG. 6. (Color online) The second-order configuration mixing
corrections to the magnetic moments for major shell truncations;
i.e., the sum in the intermediate states is restricted to single-particle
energies in major shells with the quantum numbers (Nn,Np).
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FIG. 7. (Color online) Magnetic moments of the nuclei 207Pb, 209Pb, 207Tl, and 209Bi obtained from relativistic calculations using the
PC-PK1 interaction with time-odd contribution, meson exchange currents, and first- and second-order corrections, in comparison with data
(solid circles) and the corresponding nonrelativistic results from Ref. [8].

levels in the intermediate states is restricted by the major shells
with the quantum numbers 2(n − 1) + � � Nn for neutrons
and 2(n − 1) + � � Np for protons, correspondingly.

The second-order corrections of the four nuclei become
numerically larger with increasing configuration space. Only
the corrections of 207Pb change slightly and vary by 39% from
Nn = 6, Np = 5 to Nn = 7, Np = 7, while the corrections of
209Bi change the most and vary by 287%. This further confirms
the divergence for second-order corrections numerically. The
present second-order corrections of the four nuclei strongly
depend on the orbit of corresponding valence nucleon. In
addition, the truncations which give the best descriptions
of the present four nuclei are labeled with vertical lines in
Fig. 6 (Nn = 6, Np = 5, i.e., one major shell above the closed
shells with the neutron number N = 126 and proton number
Z = 82). This truncation gives the smallest relative deviations
(6.1%) between the relativistic calculations and experimental
data, where the relativistic calculations include the magnetic
moments from RMF theory, contributions from the corre-
sponding time-odd fields, the one-pion exchange currents, and
the first-order as well as second-order corrections. In order
to avoid divergent results in perturbation theory a truncation
is necessary. The present truncation of one major shell above
the closed core is certainly only a first attempt. It is however
reasonable, because the important physics takes place in this
space. It is also clear that all the nonrelativistic investigations
of higher order configuration mixing in the literature are
based on finite configuration space. Investigations to treat such
diverging diagrams in theories based on density functional

theory and going beyond the mean-field concept are in their
infancy [64–67].

C. The magnetic moments of nuclei near 208Pb

Figure 7 shows the final results for the magnetic moments
of 207Pb, 209Pb, 207Tl, and 209Bi. They are obtained from RMF
theory using the density functional PC-PK1 and corresponding
corrections are added: time-odd fields (labeled as odd), meson
exchange currents (labeled as MEC), and first- (labeled as
1st) and second-order (labeled as 2nd) configuration mixing.
The truncation is 2(n − 1) + � � 6 for the neutron level
and 2(n − 1) + � � 5 for the proton level. These relativistic
results are compared with data (labeled as solid circles) and
nonrelativistic results from Ref. [8]. The magnetic moments
obtained from spherical RMF theory are labeled as RMF. The
differences between magnetic moments of triaxial deformed
theory with time-odd fields and magnetic moments of spherical
theory represent the corrections due to time-odd fields. In the
relativistic calculations, the MEC only contains the one-pion
exchange current correction, while the MEC in nonrelativistic
calculations includes the one-pion exchange current, the � iso-
bar current, and the crossing term between MEC and first-order
configuration mixing. For first- and second-order corrections
in the relativistic calculation, the residual interaction provided
by the poin is included.

It is seen from Fig. 7 that in the relativistic calculations
the magnetic moments of all four nuclei are considerably
improved by including first-order corrections, MECs, and
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second-order corrections, and they are now in agreement
with nonrelativistic results. The magnetic moment of 207Pb
is excellently reproduced by relativistic calculations, while
the corresponding deviation from data is 0.01 μN , which is
much better than the nonrelativistic deviation of 0.05 μN .
For 209Pb, the deviations from data are about 0.15 μN and
0.2 μN , respectively, for relativistic and nonrelativistic results.
For the magnetic moment of 207Tl, both the nonrelativistic
description and the relativistic description are very good, as the
corresponding two deviations from data are less than 0.1 μN .
The magnetic moment of 209Bi is also well reproduced by
relativistic and nonrelativistic calculations, and the relative
deviations from data for both calculations are less than 5%.
On the whole, the relative deviation σr of the present four
nuclei in the relativistic calculation is 6.1%, which is better
than the corresponding nonrelativistic results of 13.2% [8].

It is obvious that the first-order, MEC, and second-order
corrections given by relativistic calculations have the same
sign and order of magnitude as the corresponding corrections
given by nonrelativistic calculations. This further shows that
the present relativistic calculations, including the appropri-
ate treatment of truncation in second-order corrections, are
reasonable.

V. SUMMARY

In summary, by using the relativistic point-coupling model
based on the density functional PC-PK1 the magnetic moments
of the nuclei 209Pb, 207Pb, 209Bi, and 207Tl with a jj closed-
shell core 208Pb are studied, based on the magnetic moments
from RMF theory and the corresponding time-odd fields, one-
pion exchange current, and first- and second-order corrections.
It is found that the second-order diagrams diverge, if the sum
over the intermediate single-particle states is carried out to
infinity. Therefore a reasonable cutoff is introduced in this
sum and only states in the first major shell above the Fermi
surface (Nn = 6 for neutrons and Np = 5 for protons) are
taken into account. The present relativistic calculations are
in reasonable agreement with the data. They are compared
with corresponding nonrelativistic results from the literature.
In general, the relative deviation of 6.1% from experiment for
the four nuclei obtained in relativistic calculations is better than
the corresponding nonrelativistic results of 13.2%. It is found
that the pion is important for describing magnetic moments by
means of the one-pion exchange current and by the residual
interaction provided by pion exchange.

Of course, there are still many important open questions.
So far, we have not included in the configuration mixing
calculations the contributions of the Dirac sea, because they
are far from the configurations space under consideration. It
remains to consider them in more detail in future investi-
gations. We also have neglected, so far, the crossing terms
between the MEC and configuration mixing as well as the
influence of higher order diagrams in RPA-type configuration
mixing calculations [68]. An additional point not included
so far is the coupling to the � isobar current [69–71]. Of
course, it will be also interesting to study the influence of
other successful covariant density functionals on the market, in
particular those based on relativistic Hartree-Fock theory [72],

where the pion and the resulting tensor forces can be included
in a self-consistent way. Work in this direction is in progress.

One of the major results of this investigation is the fact
that there are essential limitations for extensions of density
functional theory going beyond the mean-field concept. Nearly
all extensions based on perturbation theory show divergences
for zero-range forces in specific diagrams [61]. It is evident
that this cannot be treated by just replacing the zero-range
force by finite-range forces, as for instance by replacing
the point-coupling models with finite-range meson exchange
models, because it all depends on the range. For heavy
mesons this range is very short and this leads to very large
and unphysical corrections [73]. In the past one has avoided
this problem by restriction to relatively small valence spaces
often dictated by computational limitations (in shell-model
configuration mixing calculations) and additional parameters
in the form of effective charges often chosen in a very arbitrary
way. The investigation presented here uses a similar concept,
allowing only one major shell above the Fermi surface for the
configuration mixing.

A renormalization seems to be necessary. In the past,
specific renormalization recipes have been employed suc-
cessfully for specific cases, as in the calculation of the
fragmentation of single-particle levels by particle vibrational
couplings [60], in the problem of pairing with zero-range
forces [74], or in extended linear response calculations with
energy-dependent effective interactions [75]. Of course, in
future, a more systematic renormalization procedure seems
to be desirable. First investigations in this direction are in their
infancy [65–67].
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APPENDIX A: SECOND-ORDER CORRECTIONS

In the second-order correction, both 1p-1h and 2p-2h
excitation modes can be divided into three parts, N, S, and
C, respectively [8,21],

N = ∓〈j |μ̂|j 〉〈j |V Q̂(
E

(0)
j − Ĥ0

)2 V |j 〉, (A1a)

S = 〈j |V Q̂

E
(0)
j − Ĥ0

μ̂
Q

E
(0)
j − Ĥ0

V |j 〉, (A1b)

C = 〈j |V Q̂

E
(0)
j − Ĥ0

μ̂
Q

E
(0)
j − Ĥ0

V |j 〉. (A1c)

In Eq. (A1a), the minus sign (−) is for the 1p-1h mode and the
plus sign ( + ) is for the 2p-2h mode. For the nuclei of doubly
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closed shells plus one nucleon, the corresponding second-order
correction can be written as

N(2p-1h) = −〈j‖μ‖j 〉
∑

j1j2jh,J

Ĵ 2ĵ−2

�E2
j

〈jjh, J |V |j1j2, J 〉2,

(A2a)

S(2p-1h) = −
∑
jhjh′

∑
j1j2,J

(−1)jh′ +J+j Ĵ 2

{
jh jh′ 1

j j J

}

× 1

�E�E′ 〈jh′ ‖μ‖jh〉〈jjh, J |V |j1j2, J 〉
× 〈j1j2, J |V |jjh′ , J 〉, (A2b)

C(2p-1h) =
∑

j1j2,j
′
1jh

∑
JJ ′

(−1)j1+j2+jh+j 2Ĵ 2Ĵ ′2〈j1‖μ‖j ′
1〉

×
{

J 1 J ′

j ′
1 j2 j1

} {
J ′ 1 J

j jh j

}
1

�E�E′

× 〈jjh, J |V |j1j2, J 〉〈j ′
1j2, J

′|V |jjh, J
′〉,

(A2c)

N(3p-2h) = −〈j‖μ‖j 〉
j1,J∑

jh1 jh2

Ĵ 2ĵ−2

�E2
j

〈jj1, J |V |jh1jh2 , J 〉2,

(A2d)

S(3p-2h) = −
∑
jh1 jh2

∑
j1j2,J

(−1)j1+J+j Ĵ 2

�E�E′

{
j1 j2 1

j j J

}

×〈j1‖μ‖j2〉〈jj1, J |V |jh1jh2 , J 〉
× 〈jh1jh2 , J |V |jj2, J 〉, (A2e)

C(3p-2h) =
∑

jh1 jh2 jh′
1

∑
j1JJ ′

(−1)jh1 +jh2 +j1+j 〈jh1‖μ‖jh′
1
〉

× 2Ĵ 2Ĵ ′2

�E�E′

{
J 1 J ′

jh′
1
jh2 jh1

}{
J ′ 1 J

j j1 j

}
×〈jj1, J |V |jh1jh2 , J 〉〈jh′

1
jh2 , J

′|V |jj1, J
′〉.
(A2f)

All formulas should be accompanied by a factor 〈jj10|jj 〉/√
2j + 1. �E is the excitation energy of the 2p-1h (3p-2h)

immediate states. For nuclei with one hole, the formulas for
N (2h − 1p) etc. are simply given by interchanging the indices
p and h.

Some Feynman diagrams [76] for second-order corrections
are not convergent. This can easily be seen in momentum
space. If we take the term N(2p-1h) as an example, the
Feynman diagram (shown in Fig. 4) corresponds to the
following integration:

N(2p − 1h) = −〈j ||μ̂||j 〉
∫

�

d3K

(2π )3

d3P

(2π )3
|VK |2 1

�E2
, (A3)

where the integration space � includes |P |<kF , |P +K|> kF ,
and |q + K| > kF , and q, K , and P denote the momentum of
the valence nucleon, the exchange momentum between the
valence nucleon and the 1p-1h bubble, and the momentum
of hole state, respectively. In the small or large momentum
transform limit (K → 0 or K → ∞), the excited energy of the
intermediate state is �E = εq−K + εP+K − εP − εq ∼ K . In
the point-coupling model, VK is a constant and therefore

N(2p − 1h) ∼
∫

d3K
1

K2
· · · . (A4)

Since |q + K| > kF , K can be infinite. Therefore, the
N(2p-1h) term diverges.

After a similar analysis of the other terms, we found that for
a nucleus with a core plus one nucleon (hole), the terms with
2p-1h (3h-2p) intermediate states are not convergent either.
The easiest way to deal with this divergence is to introduce an
appropriate truncation in the integration space.

APPENDIX B: THE RESIDUAL INTERACTION IN
THE RELATIVISTIC POINT-COUPLING MODEL

As noted in Eq. (12), the relativistic residual interaction is
determined by the second derivative of the energy density
functional with respect to the density matrix. It can be
expressed as V i

αβα′β ′ = 〈αβ|V i |α′β ′〉, with

V S = γ0(1)(αS + 2βSρS + 3γSρ
2
S + δS�)1 γ0(2)

× δ(r1 − r2), (B1)

V V = {[
αV + 3γV ρ2

V + δV �
]

1 − α(1)[αV + γV ρ2
V

+ δV �]1α(2)
} × δ(r1 − r2), (B2)

V T V = [γ0γμ(αT V + δT V �)�τ ]1 [γ0γ
μ�τ ]2 δ(r1 − r2), (B3)

V C = e2

4
[γ0γμ(1 − τ3)]1[γ0γ

μ(1 − τ3)]2, (B4)

which are for isoscalar, vector, isovector-vector, and Coulomb
interactions, respectively.

With the pion-nucleon Lagrangian density in Eq. (13), the
corresponding interaction reads

V π = −
[

fπ

mπ

�τγ0γ5γ
k∂k

]
1

·
[

fπ

mπ

�τγ0γ5γ
l∂l

]
2

Dπ (1, 2).

(B5)

In order to cancel the contact interaction coming from the
pion pseudovector coupling, one includes a zero-range pionic
counterterm, which reads

V πδ = 1

3

[
fπ

mπ

�τγ0γ5γ

]
1

·
[

fπ

mπ

�τγ0γ5γ

]
2

δ(r1 − r2).

(B6)
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