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Ground-state phase transition in odd-A and odd-odd nuclei near N = 90
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Ground-state phase transitions in odd nuclei are examined. Especially, the phase transitions in odd-odd nuclei
are revealed. It is found that odd-even effects may reach their maximal or minimal values around the critical point
at N = 90; the signals of phase transition in odd nuclei are greatly enhanced relative to those in the adjacent
even-even species. Moreover, a pairing model analysis of the phase transition in Sm isotopes indicates that the
critical behaviors related to pairing may be driven by the decrease in the pair strength G with a sudden flattening
in �G around the critical point.
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I. INTRODUCTION

Quantum phase transitions in nuclei [1–34] have attracted
a lot of attention experimentally and theoretically, as they
provide new insights into and understanding of the evolution
of nuclear structures, particularly in transitional regions. The
interacting boson model [5] may be the most widely used
model to study phase transitions in nuclei. In this model, the
concept of quantum phase transition is seriously defined in
the large-N limit with the help of the coherent-state technique
[2–5]. Then the types and orders of phase transitions involved
in the parameter space of the interacting boson model can be
identified within the catastrophe theory [3,27,33]. Moreover,
investigations of other interesting issues relevant to phase
transitions, such as the finite-N effect [13,15,16], effective
order parameter [11,20–22], triple point [8], quasidynamical
symmetry [12], and partial dynamical symmetry [18], can also
be carried out in the framework of the interacting boson model.
In addition, studies of quantum phase transitions were further
extended to the proton-neutron interacting boson model [5], in
which some new characters of phase transition were identified
[10]. The collective model provides another important frame-
work in which to study quantum phase transitions in nuclei.
Particularly, the critical-point symmetries [24] proposed in the
collective model have attracted considerable attention [34], as
they provide benchmarks of the shape phase transitions in these
nuclei. Recently, the relativistic density-functional theory was
exploited to determine all the parameters of the collective
Hamiltonian [25,26]. It thus provided a microscopic method
to study the low-lying spectrum of nuclei in the transitional
region.

The quantum phase transition in nuclei is typically referred
to as the ground-state phase transition, though the concept
can also be applied to excited states; this is also commonly
called the shape phase transition, as it describes changes in the
equilibrium shape of the nuclear ground state as a function of
the number of nucleons in the nucleus. Evidence of ground-
state phase transitions in nuclei are signaled experimentally
through a sudden change in the properties of the ground state,
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and as suggested above, such phase transitions can also be
reflected in excited states [32]. Traditionally, the concept of
phase transition is associated with an infinite system, in which
a discontinuity in the order parameter or in its derivatives with
respect to the control parameter at the critical point determines
the order of phase transitions [5]. However, the number of
nucleons in nuclei is finite, so the phase transitional behavior
will be muted owing to the finiteness of the system [32]. This
means that rather than a sharp discontinuity, one typically finds
a rapid change in observables signaling the presence of a phase
transition in atomic nuclei [11,32]. It is of practical importance
to investigate the characters of the shape phase transitions
modulated by the finiteness of the system [11]. Currently, most
experimental and theoretical studies on shape phase transitions
in nuclei focus on even-even systems [1–9,11–21,23,26–34],
except for a few theoretical discussions [35–42] about odd-
A nuclei. The purpose of this work is to investigate the
characters of the ground-state phase transition in odd-A and
odd-odd nuclei around N = 90. The critical behaviors of some
experimental observables (the effective order parameters) will
be revealed, along with possible microscopic explanations of
the phenomena.

II. EFFECTIVE ORDER PARAMETERS

One way of addressing quantum phase transitions is to use
the potential energy approach. To define the phase transition
in theory, it is convenient to consider a schematic “Landau”
potential [11], written as

V (β) = β2 + x[(1 − β2)2 − yβ3], β � 0 , (1)

with two control parameters, 0 � x � 1 and y � 0. This kind
of potential may be formally derived from the interacting boson
model [5], which has been widely used to study quantum
phase transitions in nuclei as mentioned above. It can be
proven that the system has a second-order phase transition
at x = xc = 1/2 when y = 0 because the minimum of V (β),
Vmin, and ∂Vmin

∂x
are continuous, but ∂2Vmin

∂x2 is discontinuous. More
generally, the system will show a first-order phase transition
as a function of x for any fixed value of y > 0. For example,
one can show that Vmin is continuous but ∂Vmin

∂x
is discontinuous
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FIG. 1. Order parameter βe as a function of x for y = 0 and y = 2.

at x = xc = 1/3 when y = 2, which indicates the first-order
phase transition occurring at xc. The potential, (1), can be
considered as a simplified phenomenological nuclear potential
surface varying as a function of the deformation β, one could
take βequilib = βe to be the order parameter. Then, as shown for
the cases considered in Fig. 1, the order parameter βe changes
continuously as a function of x, with the first derivative
being discontinuous at xc = 1/2 if y = 0, corresponding to
the second-order phase transition, while βe abruptly jumps
from 0 to 1 at xc = 1/3 when y = 2, corresponding to the
first-order phase transition. In this case βe and Vmin correspond
to the ground-state deformation and energy, respectively, and
can be used to identify the ground-state phase transition in
nuclei. However, for real nuclei, things are considerably more
complicated because βe is not an observable. In fact, instead
of βe, there are so-called effective order parameters [11]; that
is, observables that are sensitive to shape phase transitions that
occur within nuclei and therefore can be used to find where
they occur and, in some cases, even determine their orders. The
typical effective order parameters include the isomer shifts,
defined as v = c[〈r2〉02 − 〈r2〉01 ] and v′ = c′[〈r2〉21 − 〈r2〉01 ]
[11], with c and c′ being the scale parameters; the B(E2) ra-
tio B(E2; (L + 2)1 → L1)/B(E2; 21 → 01) [13,20]; and the
energy ratio EL1/E02 [21,22]. Most effective order parameters
are related to the quantum numbers of excited states, which
make it particularly difficult to identify the phase transitions
in odd nuclei. In contrast, the two-neutron separation energy
[5,32,34], S2n(Z,N ), may serve as a qualified effective order
parameter to identify the phase transitions in both even-even
and odd nuclei, as its value depends only on the number
of nucleons and experimental data on it are also relatively
abundant.

Based on the theoretical analysis within the interacting
boson model [5], the first-order phase transition is expected
to appear when S2n(Z,N ) is discontinuous as a function of the
neutron number N , while the second-order phase transition
is expected to appear when �S2n(Z,N ) = S2n(Z,N + 2) −
S2n(Z,N ) is discontinuous. The shape phase transitions in the
even Nd and Ba isotopes have been recognized as the first-
and the second-order phase transitions, respectively [21,34].
In Fig. 2, we take these two isotopes as examples to illustrate
how S2n(Z,N ) is applied to identify the phase transitions and
their orders. It is clearly shown in Fig. 2(a) that S2n(Z,N )
in the Nd isotopes shows a sudden flattening around N = 90,
which is considered an experimental signal of the first-order

FIG. 2. (a) S2n(Z,N ) in Nd isotopes changes as a function of
neutron number. (b) The same as (a), but for Ba isotopes. Inset:
�S2n(Z, N ) = S2n(Z, N + 2) − S2n(Z, N ). Experimental data are
taken from [43].

phase transition [5]. In contrast, S2n(Z,N) changes as a linear
function of the number of neutrons in the Ba isotopes but
with a rapid increase in �S2n(Z,N ) around N = 78 as shown
Fig. 2(b), which indicates the emergence of the second-order
phase transition. It is thus verified that S2n(Z,N ) is qualified
to be taken as an effective order parameter to identify shape
phase transitions in nuclei. Obviously, the experimental signal
of the first-order phase transition is much clearer than that of
the second-order one as shown in Fig. 2. Further investigations
indicate that the characters of S2n(Z,N) shown in Fig. 2 also
appear in other nuclei including Sm, Gd, Xe, and Ru isotopes,
in which the shape phase transitions are considered as either
first- or second-order [34].

A. Two-neutron separation energy

Because an odd nucleus can be considered a boson-fermion
system formed by an even-even core plus one or two unpaired
valence nucleons in the interacting boson-fermion model
framework [44], it is believed that the basic characteristics
of the ground-state phase transition shown by the even-even
nuclei should be present in the adjacent odd nuclei, where the
odd nuclei are odd-even nuclei with an odd proton number,
even-odd nuclei with an odd neutron number, and odd-odd
nuclei with an odd proton number and odd neutron number.
To ensure clarity with respect to phase transition signals,
we focus on the extra single-particle effect on the first-order
ground-state phase transition observed around the A ∼ 150
region [32]. To systematically investigate the ground-state
phase transition in this mass region, the experimental data on
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FIG. 3. Two-neutron separation energy, S2n, for even-even nuclei with Z = 54-74 and that of the adjacent odd nuclei as functions of the
neutron number N , where the shaded rectangular areas show the visible ranges of the sudden flattening around N = 90. Experimental data are
taken from [43].

the effective order parameter, S2n, for even-even nuclei with
Z = 54–74, as well as their adjacent even-odd, odd-even, and
odd-odd nuclei, as functions of the neutron number, are shown
in Fig. 3. It is clearly shown in Fig. 3(a) that a noticeable
feature is the sudden flattening near N = 90, represented by
the shaded (gray) rectangle, after the striking drop around
the magic number N = 82. According to the conclusions
drawn from the discussion of Fig. 2, the sudden flattening
indicates the first-order phase transition emerging near N = 90
in the corresponding isotopes [32]. More interestingly, a
similar or even more noticeable flattening compared to that in
even-even nuclei also appears in S2n for odd nuclei as shown in
Figs. 3(b)–3(d), which indicate that the first-order phase
transition also occurs in these odd nuclei around N = 90. In
contrast to the even-even nuclei, it seems that the visible range
marked by the shaded (gray) rectangle in Fig. 3, representing
the first-order phase transition, is enlarged owing to the extra
single particle(s), which makes the signal of the transition
much clearer.

S2n can further be written as a smooth contribution that
is linear in the number of valence neutron pairs, plus the
contribution of the deformation [5,41,45,46]. Specifically, one
can write

S2n = −A − BNP + S(2n)def , (2)

where A and B are the parameters, and NP is the number of
valence neutron pairs, as the proton number is a constant for
the isotopes. In order to emphasize the single-particle effect
on the phase transition in odd nuclei, we consider the Nd
family, including the even-even Nd, even-odd Nd, odd-even
Pm, and odd-odd Pm isotopes, and the Sm family, including
the even-even Sm, even-odd Sm, odd-even Eu, and odd-odd
Eu isotopes, as examples in the comparison of the deformed
part of S2n in even systems with that in odd systems. Similarly
to the method used in [41,46], the experimental values of
S(2n)def extracted from (2) are shown in Fig. 4. The results
for the Nd family are obtained from the data [43] fitted with
A = −14.61 MeV for even-even Nd, A = −14.248 MeV
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FIG. 4. (Color online) Contribution of deformation to the two-neutron separation energies, S(2n)def , for even Nd and Sm isotopes, as well
as their even-odd, odd-even, and odd-odd partners.

for even-odd Nd, A = −15.159 MeV for odd-even Pm,
and A = −14.852 MeV for odd-odd Pm, respectively, and
B = 0.657 MeV for all isotopes in the family. Similarly, the
results for the Sm family are obtained with A = −15.82 MeV
for even-even Sm, A = −15.433 MeV for even-odd Sm,
A = −16.346 MeV for odd-even Eu, and A = −16.049 MeV
for odd-odd Eu, respectively, and B = 0.659 MeV for all
isotopes in the family. In particular, we use the linear function
f (Np) = −A − BNP to fit the experimental values of S2n

for the spherical-like nuclei 144,146,148Nd and 146,148,150Sm as
well as their odd partners to fix A and B, as S2n in these
spherical-like nuclei behaves as a linear function of the number
of valence neutrons [32,34] as shown in Fig. 3. Then one
can get S(2n)def by subtracting the linear part calculated with
f (Np) from the experimental value of S2n according to Eq. (2).
As shown in Fig. 4, the phase transitions indicated by S(2n)def

all occur around NP = 4, corresponding to the neutron number
N = 90 or N = 91. Thus, Np = 4 can be considered the
critical point of the ground-state phase transition in these
isotopes. More importantly, the signal of the phase transition is
greatly enhanced in odd nuclei compared to that in even-even
nuclei. Specifically, there is an increase of about a factor of
1/4 in S(2n)def for odd-even and even-odd nuclei and a 1/3
increase for odd-odd nuclei around Np = 4. In addition, there
is a small difference between the effect of an extra proton
and that of an extra neutron on the phase transition, though
both of them show approximately the same contribution to
S(2n)def . As pointed out in [41,44], the former is similar to
that of adding an external field to the isotopes, as the proton
number is a constant for the isotopes, while the latter results
in a neutron Fermi surface change in the isotopes.

B. Odd-even effects

To further investigate the effect of an extra single-particle(s)
on the phase transition, we show in Fig. 5 the odd-even mass
difference, defined as D1 = BA − BA−1+BA+1

2 [47], for Nd-Sm-

Pm-Eu, where BA represents the total binding energy for a
nucleus with mass number A. Results of D1 for nuclei with
neutron number N = odd are shown in Figs. 5(a) and 5(b), and
results for nuclei with N = even are presented in Figs. 5(c)
and 5(d). Figures 5(a) and 5(b) show that the phase transition is
implicitly shown by D1, whose value is negative and reaches
a minimum around N = 90 for all isotopes, but BA itself,
shown in the insets, does not present any visible signal of the
transition. In addition, there is a wider valley in D1 of Nd-
Sm isotopes versus Pm-Eu isotopes, which indicates that the
phase transition may be enhanced by the extra single proton.
In contrast to the results shown in Fig. 5 (a) and 5(b), the value
of D1 with N = even is positive and reaches a maximum
around N = 90 as shown in Figs. 5(c) and 5(d). As we know,
the pairing interactions between nucleons provide a positive
contribution to the binding energy [47], which indicates that
odd-A nuclei are less bound than their even-even neighbors
but more bound than their odd-odd neighbors. Then it is easy
to understand why D1, defined above, shows a positive value
for a nucleus with N = even but a negative value for a nucleus
with N = odd. In addition, as shown in Figs. 5(c) and 5(d), a
thinner peak is shown by D1 for Pm-Eu isotopes compared to
D1 for Nd-Sm isotopes, which further confirms that the effect
of an extra single proton may enhance the phase transition.

From the analysis of D1, it is expected that odd-even effects
on all kinds of separation energies may be widely affected by
the ground-state phase transitions in nuclei. In the following,
we take the Sm and Eu isotopes as examples to show how
the other odd-even effects change along the isotope chains.
Specifically, the experimental data [43] on two observables,
including the α-decay energy Q(α) and double β-decay energy
Q(2β), together with the corresponding odd-even differences,
denoted Ds (s = 2, 3), respectively, are shown in Fig. 6,
in which the difference is defined as Ds = R(Z,N − 1) −
R(Z,N) for the energy R(Z,N). It should be mentioned that
these kinds of quantities also include the β-decay energy, four
β-decay energy, (d, α) reaction energy, and electron capture
decay energy [43], which may be discussed elsewhere.
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FIG. 5. (Color online) Odd-even mass difference defined by D1 = BA − BA−1+BA+1
2 shown as a function of neutron number. (a) D1 for Nd

and Sm nuclei with neutron number N = odd as well as the corresponding total binding energy, BA, for which the values of odd and even
isotopes are joined for the same element shown in the insets. (b) The same as (a), but for Pm and Eu nuclei. (c) The same as (a), but for nuclei
with N = even. (d) The same as (b), but for N = even. All experimental data are taken from [43].

As shown in the insets in Figs. 6(a) and 6(b), there is a
sudden decrease or flattening in Q(α) and Q(2β) around N =
90, which can thus be taken as other signals of the ground-state
phase transition in nuclei. Especially, the values of Q(α) in Sm
and Eu isotopes are almost 0 at N = 90, where the α-decay
energy Q(α) may change from a positive value when N < 90
to a negative one when N > 90. The results indicate that the α
cluster in the nuclei around the critical point N = 90 should be
less bound according to the definition [43] Q(α) = M(A,Z) −
M(A − 4, Z − 2) − M(4He). As a result, the α decay in this
case may become a spontaneous process [48]. It is further
shown in Figs. 6(a) and 6(b) that the corresponding odd-even
differences D2 and D3 also present evident signals of the phase
transition, i.e., the peaks at N = 91. Similar features are also
shown by D2 and D3 for nuclei with N = even, but with the
peaks appearing at N = 90, as shown in Figs. 6(c) and 6(d). In
addition, the variational amplitude of Q(α) or Q(2β) is almost
the same order of magnitude as the corresponding odd-even
difference D2 or D3 as shown in Figs. 6(a)–6(d). In contrast,
the variational amplitude of BA is about 102 times higher than

that of the corresponding odd-even difference D1 as shown in
Fig. 5, which explains why the signal of the phase transition
is visible in some quantities but not in others. In short, only
the quantities such as Q(α), for which the maximal amplitude
is less than 10 MeV, and their odd-even differences may be
taken as the qualified effective order parameters to identify the
ground-state phase transition in experiments.

III. PAIRING MODEL ANALYSIS OF
THE PHASE TRANSITION

As shown in the previous section, the odd-even differences
of various separation energies provide signals of the ground-
state phase transition. It is well known that odd-even effects,
such as those shown in the odd-even differences, are the most
important evidence of pairing interactions in nuclei [47,48].
Therefore, a possible microscopic origin of the phase transition
shown by the signals in odd-even effects may be revealed by
a shell model study. In the following, we adopt the extended
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FIG. 6. (Color online) The α-decay energy, Q(α), and double β-decay energy, Q(2β), together with the corresponding odd-even differences,
defined as Ds = R(Z, N − 1) − R(Z, N ), for quantity R are shown as functions of the neutron number. (a) D2, which represents the odd-even
difference in Q(α) shown in the corresponding inset, for Sm and Eu nuclei with N = odd; (b) D3, which represents the odd-even difference in
Q(2β) shown in the corresponding inset, for Sm and Eu nuclei with N = odd; (c) the same as (a), but for nuclei with N = even; (d) the same
as (b), but for nuclei with N = even. All experimental data are taken from [43].

pairing model proposed in [49], which is exactly solvable and,
thus, is applicable to nuclei in the whole phase transitional
region, ranging from weakly deformed to well-deformed cases.
For both proton and neutron sectors, the Hamiltonian of the
extended pairing model [49] can be written as

Ĥ =
p∑

i=1

εi(a
†
i ai + a

†
ī
aī) − G

p∑
i,j=1

b
†
i bj

− G

⎛
⎝

∞∑
u=2

1

(u!)2

∑
i1 �=i2 �=... �=i2u

b
†
i1
b
†
i2

. . . b
†
iu
biu+1biu+2 . . . bi2u

⎞
⎠,

(3)

where εi denotes the corresponding Nilsson single-particle
energy, and b

†
i = a

†
i a

†
ī

(bi = aīai) is the pair creation (an-
nihilation) operator, with ī labeling the time-reversed state
of that labeled withy i. In contrast to the standard pairing

model, for which the Hamiltonian involves only the first two
terms in (3), the Hamiltonian form of the extended pairing
model includes many-pair hopping terms that allow nucleon
pairs to simultaneously scatter (hop) between and among
different Nilsson levels. It has been further shown that the
extended pairing model is similar to the standard pairing model
with the first step approximation [50]. In our calculations,
single-particle energies {εi} are calculated from the Nilsson
model with deformation parameters taken from [51], which
were determined systematically from the corresponding ex-
perimental data [52]. For a chain of isotopes, as the number of
valence protons is a constant, it is thus assumed that the odd-
even difference in the binding energy D1 = BA − BA−1+BA+1

2
is only induced by the neutron pairing interactions in the
present pairing model, in which no proton-neutron interactions
are involved. Accordingly, one can determine the neutron
pairing strength G in the pairing model by fitting the odd-even
difference D1 of the corresponding isotopes. Similarly, the
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FIG. 7. (Color online) (a) Odd-even difference D1 (in MeV) for Sm isotopes fitted by the pairing model; (b) neutron pairing strength G (in
MeV) together with its difference (in MeV) �G = G(Z, N + 2) − G(Z, N ) for even Sm nuclei; (c) the same as (b), but for odd Sm nuclei;
(d) pairing excitation energy (PEE; in MeV) calculated in the pairing model (stars) and corresponding experimental data on E0+

2
for even Sm

nuclei (squares). Experimental data are taken from [43].

proton pairing strength can be obtained by fitting the odd-even
differences of the corresponding isotones.

In the following, we take the Sm isotopes as an example
to present a pairing model analysis of the phase transition
occurring in an isotope chain discussed in Sec. II. Specifically,
the odd-even difference D1 of the isotopes is fitted by the
extended pairing model to determine the neutron pairing
strength G, for which the results are shown in Fig. 7. As shown
in Fig. 7(a), the odd-even difference of the Sm isotopes can be
well described by the extended pairing model. Particularly, the
phase transitional character around N = 90 may be explicitly
reproduced by the theoretical results. In contrast, the resulting
neutron paring strength G for even Sm nuclei monotonically
decreases as a function of the neutron number N as shown in
Fig. 7(b). In addition, the sudden flattening around N = 90
is clearly demonstrated by the pairing strength difference,
defined as �G = G(Z,N + 2) − G(Z,N ), as shown in the
inset in Fig. 7(b). A similar situation also appears in �G
for odd Sm nuclei, but with the sudden flattening occurring
around N = 91 as shown in Fig. 7(c). The global change in
�G as function of the neutron number N is similar to that
in S2n shown in Fig. 2. As we know, the phase transition
occurring around N = 90 in Sm isotopes corresponds to the
vibrational-to-rotational transition [5]. Meanwhile, the sudden
flattening in the pairing strength difference �G just occurs
around the vibrational-rotational transitional point (the critical
point) as shown in Figs. 7(b) and 7(c). Further investigations

indicate that the similar evolutional character of the pairing
strength G also emerges in Nd and Gd isotopes. One can thus
deduce from the above pairing model analysis that the phase
transitional phenomena relevant to pairing in these isotopes
may be driven by the decrease in the pairing strength with a
sudden flattening in �G around the critical point. However,
more detailed analysis of this point is still needed.

To further reveal that the phase transitional behavior is
closely related to the pairing interaction, we also calculated
the pairing excitation energy (PEE), which is also a quantity
that is sensitive to the pairing strength G. Because the angular
momentum projection along the third axis in the intrinsic frame
is considered to be a conserved quantity in the model, the
pairing excitation states determined by the model are thus
regarded approximately as the excited states with the same
spin and parity as those of the ground state of a nucleus.
In particular, the results for the first PEE calculated in the
theory are compared with the experimental data on E0+

2
of

the even Sm nuclei in Fig. 7(d). It should be noted that the
calculated first PEE here corresponds to the first neutron pair
excitation because the energy of the first excited proton pair
in an Sm nucleus is always higher than that of the first excited
neutron pair in the present model under the procedure of
determining the pairing strength mentioned above. As clearly
shown in Fig. 7(d), an evident phase transitional signal has
been demonstrated by the calculated PEE around N = 90,
where the PEE reaches its minimum. Such a transitional
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character is accompanied by the sudden flattening of �G
around N = 90. More importantly, the phase transitional
signal shown by the PEE calculated in the theory is indeed
confirmed by the corresponding experimental data, which are
systematically reproduced by the pairing model. But some
quantitative deviations of the results calculated by the theory
from the corresponding experimental values are also obvious.
Further improvements in the theoretical results may require
consideration of angular momentum projection as well as other
interactions among nucleons besides the pairing interaction. At
any rate, the results shown in Fig. 7 indicate that the transitional
characters in connection with the pairing interactions in Sm
isotopes can be qualitatively described by the extended pairing
model. It should be mentioned that the PEE in odd Sm
nuclei are not considered here because some single-particle
excitations with the same spin and parity as those of the ground
state are often involved in the low-lying spectrum, which
makes it difficult to pick out the PEE from the spectrum of the
odd nuclei. On the other hand, it was recognized [32,34] that
collective phenomena in nuclei may be caused by competition
between the spherical-driving pairing interaction and the
deformation-driving valence proton-neutron interaction. More
rigorous microscopic calculations of the structural characters
of the shape phase transition in odd nuclei should involve
valence proton-neutron interactions in the model; this is,
however, beyond the present simple analysis.

IV. SUMMARY

In summary, we have made a systematic investigation of
the ground-state phase transition in even-even, odd-A, and odd-
odd nuclei in the A ∼ 150 mass region by the analysis of some

experimental observables (the effective order parameters). We
have shown that the effective order parameter S2n is qualified
to identity the phase transition and distinguish its order.
Based on S2n, we found that the signal of the ground-state
phase transition in odd nuclei is greatly enhanced by an extra
single particle(s) in comparison to that in adjacent even-even
nuclei. Specifically, there is an ∼1/4 increase in S(2n)def for
odd-even and even-odd nuclei and a 1/3 increase for odd-odd
nuclei around the critical point. Through the analysis of other
separation energies and their odd-even differences, a wealth of
information on the ground-phase transition has been revealed.
In particular, we found that nearly all the odd-even differences
reach their extreme values (maximum or minimum) around
the critical point. The analysis of Sm isotopes based on the
extended pairing model shows that the critical phenomena
relevant to the pairing interaction may be microscopically
driven by the continuous decrease in the pairing strength G
with a sudden flattening in the pairing strength difference
�G around the critical point. However, more sophisticated
microscopic analysis of excited-state properties are still needed
to eventually confirm or disprove the theoretical predictions.
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P. Ring, Phys. Rev. C 79, 034303 (2009).
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(1998).
[29] F. Pan, J. P. Draayer, and Y. Luo, Phys. Lett. B 576, 297 (2003).

064305-8

http://dx.doi.org/10.1103/PhysRevLett.44.1744
http://dx.doi.org/10.1103/PhysRevLett.44.1744
http://dx.doi.org/10.1103/PhysRevLett.44.1747
http://dx.doi.org/10.1103/PhysRevLett.44.1747
http://dx.doi.org/10.1103/PhysRevC.23.1254
http://dx.doi.org/10.1103/PhysRevC.23.1254
http://dx.doi.org/10.1103/PhysRevC.24.684
http://dx.doi.org/10.1103/PhysRevLett.87.162501
http://dx.doi.org/10.1103/PhysRevLett.87.162501
http://dx.doi.org/10.1103/PhysRevC.68.031301
http://dx.doi.org/10.1103/PhysRevLett.89.182502
http://dx.doi.org/10.1103/PhysRevLett.91.162502
http://dx.doi.org/10.1103/PhysRevLett.91.162502
http://dx.doi.org/10.1103/PhysRevLett.93.212501
http://dx.doi.org/10.1103/PhysRevLett.93.212501
http://dx.doi.org/10.1103/PhysRevLett.92.212501
http://dx.doi.org/10.1103/PhysRevLett.93.122502
http://dx.doi.org/10.1103/PhysRevLett.93.232502
http://dx.doi.org/10.1103/PhysRevLett.93.232502
http://dx.doi.org/10.1103/PhysRevC.71.011304
http://dx.doi.org/10.1103/PhysRevC.71.011304
http://dx.doi.org/10.1103/PhysRevC.72.064332
http://dx.doi.org/10.1103/PhysRevC.75.014301
http://dx.doi.org/10.1103/PhysRevC.75.014301
http://dx.doi.org/10.1103/PhysRevC.28.1798
http://dx.doi.org/10.1103/PhysRevLett.77.818
http://dx.doi.org/10.1103/PhysRevLett.98.242502
http://dx.doi.org/10.1103/PhysRevLett.89.222501
http://dx.doi.org/10.1103/PhysRevC.78.024314
http://dx.doi.org/10.1103/PhysRevC.78.024314
http://dx.doi.org/10.1103/PhysRevC.76.011305
http://dx.doi.org/10.1103/PhysRevC.76.011305
http://dx.doi.org/10.1103/PhysRevLett.100.142501
http://dx.doi.org/10.1007/s11433-011-4426-6
http://dx.doi.org/10.1007/s11433-011-4426-6
http://dx.doi.org/10.1103/PhysRevC.85.064312
http://dx.doi.org/10.1103/PhysRevC.85.064312
http://dx.doi.org/10.1103/PhysRevLett.85.3580
http://dx.doi.org/10.1103/PhysRevLett.87.052502
http://dx.doi.org/10.1103/PhysRevLett.87.052502
http://dx.doi.org/10.1103/PhysRevC.79.034303
http://dx.doi.org/10.1103/PhysRevC.80.061301
http://dx.doi.org/10.1103/PhysRevC.80.061301
http://dx.doi.org/10.1103/PhysRevC.54.2374
http://dx.doi.org/10.1103/PhysRevC.54.2374
http://dx.doi.org/10.1016/j.physletb.2003.09.098


GROUND-STATE PHASE TRANSITION IN ODD-A AND . . . PHYSICAL REVIEW C 88, 064305 (2013)

[30] F. Pan, T. Wang, Y. S. Huo, and J. P. Draayer, J. Phys. G 35,
125105 (2008).

[31] P. Cejnar, S. Heinze, and J. Jolie, Phys. Rev. C 68, 034326
(2003).

[32] R. F. Casten and E. A. McCutchan, J. Phys. G 34, R285
(2007).

[33] P. Cejnar and J. Jolie, Prog. Part. Nucl. Phys. 62, 210 (2009).
[34] P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155

(2010).
[35] J. Jolie, S. Heinze, P. Van Isacker, and R. F. Casten, Phys. Rev.

C 70, 011305(R) (2004).
[36] C. E. Alonso, J. M. Arias, L. Fortunato, and A. Vitturi, Phys.

Rev. C 72, 061302(R) (2005).
[37] C. E. Alonso, J. M. Arias, and A. Vitturi, Phys. Rev. C 75,

064316 (2007).
[38] C. E. Alonso, J. M. Arias, L. Fortunato, and A. Vitturi, Phys.

Rev. C 79, 014306 (2009).
[39] J. Barea, C. E. Alonso, and J. M. Arias, Phys. Rev. C 83, 024307

(2011).
[40] M. Böyükata, C. E. Alonso, J. M. Arias, L. Fortunato, and

A. Vitturi, Phys. Rev. C 82, 014317 (2010).
[41] F. Iachello, A. Leviatan, and D. Petrellis, Phys. Lett. B 705, 379

(2011).

[42] D. Petrellis, A. Leviatan, and F. Iachello, Ann. Phys. 326, 926
(2011).

[43] LBNL Isotopes Project Nuclear Data Dissemination; available
at: http://ie.lbl.gov/toi2003/MassSearch.asp; accessed 14 June
2012.

[44] F. Iachello and P. Van Isacker, The Interacting Boson-Fermion
Model (Cambridge University Press, Cambridge, UK, 1991).

[45] R. B. Cakirli, R. F. Casten, R. Winkler, K. Blaum, and M.
Kowalska, Phys. Rev. Lett. 102, 082501 (2009).

[46] Y. Zhang, F. Pan, Y. X. Liu, and Y. A. Luo, and J. P. Draayer,
Phys. Rev. C 88, 014304 (2013).

[47] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, Berlin, 1980).

[48] K. Heyde, Basic Ideas and Concepts in Nuclear Physics, 2nd
ed. (Institute of Physics, London, 1999).

[49] F. Pan, V. G. Gueorguiev, and J. P. Draayer, Phys. Rev. Lett. 92,
112503 (2004).

[50] F. Pan, M. X. Xie, X. Guan, L. R. Dai, and J. P. Draayer, Phys.
Rev. C 80, 044306 (2009).
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