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Magnetic moments of � hypernuclei within the time-odd triaxial relativistic mean-field approach
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�-hypernuclear magnetic moments have been studied self-consistently in time-odd triaxial relativistic mean-
field approach with newly proposed �-meson interactions. The ω�� tensor coupling highly reduces the polarized
Dirac magnetic moment. The deviation of the magnetic moment from the Schmidt value �μ is related to effective
nucleon-meson interaction. A large deviation �μ with l� �= 0 is found to exist only in medium-mass hypernuclei.
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I. INTRODUCTION

The magnetic moment provides a highly sensitive probe
of single-particle structure and serves as a stringent test
of nuclear models. The hypernuclear magnetic moment can
further provide direct information about hyperon-nucleon
interaction and the role of hadrons in nuclear medium [1,2].
Measurement of the hypernuclear magnetic moment may
shed light on the �-meson interaction in hypernuclei and
provides a way to penetrate various theoretical models.
With technique development, measurements of hypernuclear
magnetic moments are in process [3–5].

The � spin-flip M1 transition probability B(M1) in 11
� B

(3/2+ → 1/2+), in 7
�Li (7/2+ → 5/2+, 3/2+ → 1/2+), and

in 9
�Be(3/2+ → 1/2+) has been studied with Hyperball in

the (π+,K+) reaction at KEK [2,6]. The M1 (1−
2 → 1−

1 , 0−)
transition of 16

� O using the (K−, π−) reaction has also been
studied at BNL (E930) [7]. The systematic study of the
magnetic moment for a wide mass range of � hypernuclei
has been carried out at a hypernuclear physics program with
relativistic heavy ion beams, HypHI Phase 3 [8].

Therefore, a reliable theoretical approach for the accurate
description of hypernuclear magnetic moments is urgently
required. An approach based on the relativistic mean-field
(RMF) provides a very interesting theoretical framework for
studies of nuclear structure phenomena at and far from the
valley of β stability [9–12]. So far, RMF theory has been
applied to investigate hypernuclear magnetic moments, such
as the self-consistent spherical RMF approach plus linear core
response approximation [13,14] and perturbation treatment
[15,16], the spherical RMF approach with ω�� tensor
coupling based on a phenomenological Woods-Saxon potential
[17], or the self-consistent time-odd axial RMF approach [18].
However, a self-consistent study of hypernuclear magnetic
moments using a RMF approach with both a nonzero spacelike
(time-odd) component of the vector field and ω�� tensor
coupling is still missing.

To investigate the self-consistent effects of a spacelike
component, ω�� tensor coupling, and core polarization, a
triaxial RMF approach with strangeness, odd-time compo-
nents, and meson-hyperon vertex is presented in contrast
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with the previous perturbation treatment. Newly developed
meson-baryon interaction with proton-neutron mass difference
PK1-Y1, PK1-Y2, PK1-Y3, and PK1-Y0 are used, which
are determined via both the hyperon binding energy and
the hyperon spin-orbit splitting [19]. The interactions are
optimized based on meson-nucleon interaction PK1 [20] by
considering the ω�� tensor, the proton-neutron mass differ-
ence, and microscopic correction for the spurious center-of-
mass motion. The distribution of core-polarized proton current,
the influence on magnetic moments from ω�� coupling, and
the sensitivity of magnetic moments on effective interaction
are studied. Systems of one � hyperon plus even-even core
nuclei, odd-A core nuclei, or odd-odd core nuclei are included.

The paper is arranged as follows: In Sec. II, the theoretical
framework of the time-odd triaxial RMF approach with
strangeness and the ω�� tensor coupling term is introduced
briefly. The effects of ω�� tensor coupling, core polarization,
and effective meson-baryon interaction on hypernuclear cur-
rent and magnetic moment are studied in Sec. III. Finally, a
summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

The starting point of RMF theory is the standard effective
Lagrangian density constructed with degrees of freedom
associated with the baryon field (ψB), two isoscalar meson
fields (σ and ω), the isovector meson field (ρ), and the
photon field (A) [9–12]. For � hypernuclei, it is general-
ized by including a tensor coupling term fωBB

4mB
ψ̄Bσμν�μνψB

as [21]

L = ψ̄B

[
iγ μ∂μ − mB − gσBσ − gωBγ μωμ

+ fωBB

4mB

σμν�μν − gρBγ μ�τ · �ρμ − QBγ μAμ

]
ψB

+ 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4

− 1

4
�μν�

μν + 1

2
m2

ωωμωμ + 1

4
c3(ωμωμ)2

− 1

4
�Rμν

�Rμν + 1

2
m2

ρ �ρμ · �ρμ − 1

4
FμνF

μν, (1)

where σμν = 1
2i

[γ μ, γ ν], and mB (B = n, p,�) and mφ(φ =
σ, ω, ρ) are masses of baryons and mesons, respectively. The
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field tensor for the ω meson is given as �μν = ∂μων − ∂νωμ

and by similar expressions for ρ mesons and photons. QB is
the charge of baryons.

The Dirac equation of baryons and the Klein-Gordon
equation for mesons can be derived from the Lagrangian
density in Eq. (1) with a variational principle as

iγμ∂μψB =
[
γμV

μ
B + (mB + SB) − fωBB

4mB

σμν�
μν

]
ψB,

(2a)(
∂μ∂μ + m2

ω

)
ωμ = ψ̄BgωBγμψB − c3ωνω

νωμ

+ fωBB

2mB

∂μ(ψ̄Bσμνψ), (2b)

where the scalar potential SB and the vector potential V
μ
B are

given by SB = gσBσ and V
μ
B = gωBωμ + gρBτ3ρ

μ
3 + QBAμ.

As the ωBB tensor couplings are negligible for nucleons [21],
here only ω�� tensor coupling is considered. Equations of
motion for meson fields σ and ρ and photon field A can be
derived in similar way.

In the mean-field approximation, meson fields and photon
fields are treated as classical fields. Therefore, equations of
motion for meson fields become the classical time-independent
inhomogeneous Klein-Gordon equations.

Due to odd valence baryons, spacelike components of
the vector field break the time reversal invariance in nuclear
states and result in a nonvanishing proton current in the RMF
approach, further deviating the magnetic moment from the
corresponding Schmidt value. The effective electromagnetic
current operator is given by [22]

Ĵ
μ,em
B (x) = QBψ̄(x)γ μψ(x) + κ

2mB

∂ν[ψ̄(x)σμνψ(x)],

(3)

where field operators are in the Heisenberg representation with
κ , free anomalous gyromagnetic ratio of the baryon (in units
of the nuclear magneton μN ): κp = 1.793, κn = −1.913, and
κ� = −0.613. The current operator in Eq. (3) is explicitly
conserved by antisymmetry of σμν and virtue of the relativistic
Hartree equations for a nucleus. The spacelike components of
Ĵ

μ,em
B (x) in the Schrödinger picture reduce to

Ĵ
em
B (r) = QBψ†(r)αψ(r) + κ

2mB

∇ × [ψ†(r)β�ψ(r)]. (4)

The matrix element in the Hartree approximation becomes [23]

〈
Ĵem

B (r)
〉 =

∑
k>0

QBψ
†
k (r)αψk(r)

+ κ

2mB

∇ ×
∑
k>0

ψ
†
k (r)β�ψk(r), (5)

where ψk(r) is the single baryon wave function. The first
term in Eq. (5) without QB is the Dirac current, JD(r) ≡∑

k>0 ψ
†
k (r)αψk(r), and the second term is the anomalous

one, Ja . With no charge, the Dirac currents of neutrons
and � hyperons have no contribution to the hypernuclear
electromagnetic moment.

The magnetic moment can be calculated from the matrix
element of the current in Eq. (5) as μ = 1

2

∫
d3rr × 〈Ĵem

B (r)〉,
which can be divided into two terms:
the Dirac magnetic moment,

μD =
∑
k>0

mBc2

h̄c

∫
d3rQBψ

†
k (r)r × αψk(r), (6)

and the anomalous magnetic moment,

μa =
∑
k>0

κ

∫
d3rψ

†
k (r)β�ψk(r). (7)

As β� does not mix the upper and lower components of the
Dirac spinor, the elementary anomalous current contribution
is not appreciable [15]. In the following, we mainly discuss
the Dirac magnetic moment.

III. RESULTS AND DISCUSSION

The harmonic oscillator basis expansion method has been
used to solve the Dirac equation, Eq. (2a), for baryons and the
Klein-Gordon equations for meson fields (σ, ω, ρ), which are
expanded on a three-dimensional harmonic oscillator basis
in Cartesian coordinates discretized with Gaussian-Hermite
mesh points. The electromagnetic field is solved using the
standard Green’s function method due to its long-range
characters. For a system with an odd baryon number, time-odd
components of the vector field appear and the Dirac equations
have to be solved separately in two subspaces with different
simplexes. Major shell numbers are chosen as nf = 12 and
nb = 10 for baryons and mesons, respectively. Gaussian mesh
points are chosen as ngh = 12 and the first mesh point in the
calculation is x(y, z) = 0.36 fm. More numerical details can
be found in Ref. [24]. To focus on the effects of the time-odd
component and the tensor coupling term, particle occupation
is taken from the bottom of the well and the pairing effect is
shielded.

The effective meson-baryon interactions PK1-Y0, PK1-Y1,
PK1-Y2, etc. [19], based on the meson-nucleon interaction
PK1 [20], are used. The coupling strength ratios of �-
mesons, Rσ = gσ�/gσN and Rω = gω�/gωN with fω�� = 0
or fω�� = gω�, are searched by fitting � single-particle
energies and p� spin-orbit splittings.

In Table I, the optimal parameter sets; time-reversal single-
particle energies of the 1s� state and their splitting; Dirac,
anomalous and total magnetic moments for 17

� O in the time-odd
triaxial RMF approach; and the general agreement S(�) with
the � single-particle energies are respectively given. In Table I,
the splitting between time-reversal states of 1s� is reduced
from roughly 0.1 to 0.02 MeV by switching on the ω�� tensor
coupling. Tensor coupling affects the spatial distribution of
particles. In Eq. (2), the response to the �-hyperon results from
the spacelike component of the ω meson and from ω�� tensor
coupling. Taking 17

� O as an example, the �-hyperon single-
particle spectrum (l� = 1) is shown in Fig. 1. Obviously, time-
odd contribution splits states in two subspaces (spin doublet)
by the antipair effect while ω�� tensor coupling plays a great
role in the small spin-orbit splitting of the � hyperon. The
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TABLE I. � single-particle energy and Dirac, anomalous, and total magnetic moments in 17
� O. Results are obtained with the time-odd triaxial

RMF approach with several parameters sets [19]. Coupling-strength ratios are defined as Rσ ≡ gσ�/gσN and Rω ≡ gω�/gωN . � single-particle
energies for time-reversed partners (T + and T −) and their splitting are shown by ε� and �ε�, respectively. The Schmidt value of 17

� O is
−0.613 μN .

Sets fω�� Rσ Rω ε� (MeV) �ε� Magnetic moment (μN ) S(�)a

T + T − μD μ�
a μtot.

PK1-Y1 0.580 0.620 −12.700 −12.683 0.017 −0.009 −0.610 −0.619 0.054(0.851)
PK1-Y2 gω� 0.705 0.772 −12.585 −12.564 0.021 −0.012 −0.610 −0.622 0.051(0.815)
PK1-Y3 0.400 0.400 −13.229 −13.218 0.011 −0.004 −0.610 −0.614 0.085(1.225)
PK1-Y0 0 0.840 0.940 −12.838 −12.730 −0.108 −0.054 −0.610 −0.664 0.048(0.749)

aUncertainty deviations: S ≡
√

1
N

∑N
i=1

(εexp.
i −εcal.

i )2

(εexp.
i )2 , � ≡

√
1
N

∑N
i=1(εexp.

i − εcal.
i )2.

energy shift caused by the time-odd component and ω��
tensor coupling will be important in the nuclear transition.

With no ω�� tensor coupling (fω�� = 0), the polarized
Dirac magnetic moment μD is about 7% of the total mag-
netic moment μtot., which leads to a large deviation from
the Schmidt value −0.613 μN (see results obtained with
PK1-Y0 in Table I). Considering ω�� tensor coupling, the
polarized Dirac magnetic moment is reduced and results in
a shrinkage of the total magnetic moment. Obviously, the
presence of ω�� tensor coupling will modify the current
vertex and suppress the effect of core polarization on the
magnetic moments [14,25]. With a ω�� tensor coupling,
the magnetic moment of the � hypernucleus with l� =
0 is restored to the Schmidt value [16,17] (see results
obtained with PK1-Y1, PK1-Y2, and PK1-Y3 in Table I).
This confirms the prediction based on a phenomenological
Woods-Saxon potential and a ω�� tensor coupling [17].

To investigate the response of the core to the valence neutron
and the � hyperon, the polarized Dirac currents of proton Jp

D in
17
� O and in 17O around the yz plane at x = 0.36 fm are given in
Fig. 2. They are obtained with meson-baryon interaction PK1-
Y1 for 17

� O (upper panel) and 17O (lower panel), respectively.

FIG. 1. (Color online) Effects on the single-particle spectrum of
� in 17

� O from the spacelike component of the ω meson and from ω��

tensor coupling. Results are obtained using the time-odd triaxial RMF
approach with the parameter set PK1-Y1 [19].

The current Jp
D (y) at x = z = 0.36 fm is presented by the

corresponding spline curves with arbitrary scale. The peak of
Jp

D(y) around y = 0.36 fm in 17
� O is about 1.21 × 10−5 fm−3

while that in 17O is about 0.82 × 10−2 fm−3. As the � hyperon
stays at the 1s state, the � current distributes mainly in the
interior of the 16O core and the valence � hyperon shows a
diffusion effect of Jp

D; see the inner clockwise current radius
∼1 fm in 17

� O and ∼0.3 fm in 17O. Thus, for a � hyperon at

FIG. 2. (Color online) Core polarized proton currents in the yz

plane at x = 0.36 fm obtained by the time-odd triaxial RMF approach
with PK1-Y1 for 17

� O (upper panel) and 17O (lower panel). The
direction and the length of the arrows represent the orientation and the
magnitude of the currents, respectively. Corresponding spline curves
are the currents at x = z = 0.36 fm with arbitrary scale. Data for
17
� O and 17O in the figure are zoomed in 106 times and 103 times,
respectively.
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FIG. 3. (Color online) Relationship between deviation �μ and
coupling constant ratios Rσ and Rω. Results using the axial (taken
from Ref. [18]) and triaxial RMF approaches with the L set are
denoted with open squares and solid circles, respectively. Predictions
using the triaxial RMF approach with ω�� tensor coupling are also
presented by half-filled circles.

the 1s state, the core contribution to the magnetic moment is
small and the resulting hypernuclear magnetic moment comes
very close to the Schmidt value.

Under a perturbation treatment from nuclear matter, the
core-polarized magnetic moment in the � hypernucleus with
ω�� tensor coupling is proportional to the meson-baryon
coupling strength gωNg2

ω� approximately [15,17]. Besides a
modified expression of the polarized Dirac magnetic moment,
we further improved the result by a self-consistent calculation
of the meson potentials and show a semilinear relation between
the polarized magnetic moment and the meson-� coupling
strength gω� [16]. However, self-consistent treatment of the
spacelike component and ω�� tensor coupling is missing in
previous studies. Considering both the spacelike component
and the ω�� tensor coupling, sensitivity of the magnetic
moment to coupling strengths may show a different look.

In Fig. 3, the deviation of a magnetic moment from the
corresponding Schmidt value �μ as a function of Rσ and/or
Rω is shown. The time-odd axial RMF values [Axi.RMF(L)]
denoted with open squares are directly taken from Ref. [18]
and the time-odd triaxial RMF results [Tri.RMF(L)] with the
L set are denoted with solid circles. Obviously, Axi.RMF(L)
and Tri.RMF(L) match each other quite well for the spherical
nucleus 17

� O. Results in the odd-time triaxial RMF approach
with parameter sets PK1-Y1, PK1-Y2, and PK1-Y3 are also
listed. The suppression effect of core polarization on the
magnetic moments from the ω�� tensor is clearly shown.
The anomalous current of the valence baryon is not sensitive
to effective mass m∗ = 〈m − gσBσ 〉 with no mixing between
the upper and lower components of the Dirac spinor [25].
The anomalous magnetic moment is near the Schmidt value
in the spherical case and is insensitive to the �-nucleon
interaction due to the small effect from the lower component
in the Dirac spinor [26]. The Dirac magnetic moment plays
a major role in the meson-baryon interaction dependence.

TABLE II. Magnetic moments of oxygen hypernuclei in units
of nucleon magneton (μN ), obtained by using the time-odd triaxial
RMF approach with PK1 and PK1-Y1. The hypernuclear magnetic
moment μtot. is the sum of the Dirac magnetic moment μD and the
anomalous magnetic moments μn+p

a and μ�
a . The Schmidt magnetic

moment is denoted by μSch..

System μD μn+p
a μ�

a μtot. μSch.

15O + free � −0.113 [24] 0.677 [24] −0.613 −0.049 0.025
16
� O(PK1-Y1) −0.130 0.681 −0.610 −0.060 0.025
16
� O(PK1-Y0) −0.179 0.690 −0.610 −0.099 0.025
16O + free � 0.0 0.0 −0.613 −0.613 −0.613
17
� O(PK1-Y1) −0.009 0.0 −0.610 −0.619 −0.613
17
� O(PK1-Y0) −0.054 0.0 −0.610 −0.664 −0.613
17O + free � −0.134 [24] −1.863 [24] −0.613 −2.610 −2.526
18
� O(PK1-Y1) −0.144 −1.864 −0.610 −2.618 −2.526
18
� O(PK1-Y0) −0.192 −1.863 −0.610 −2.665 −2.526

The polarized Dirac magnetic moment is found to increase
with the ω-� coupling strength gω� with or without the
ω�� tensor coupling. The present results confirm previous
investigation that the polarized Dirac magnetic moment is
nearly proportional to the ω-� coupling strength gω� [16].
It is emphasized that the σ -� coupling strength gσ� is also
associated with the polarized Dirac magnetic moment, which
is consistent with the hypernuclear magnetic moment being
sensitive to variations of the effective mass m∗ [13]. The large
coupling strength ratio Rσ increases the sensitivity of Rω to the
magnetic moment deviation �μ, due to the central mean-field
potential 〈gσ�σ + gω�ω〉.

To further examine the effects of the core polarization from
valence � and ω�� tensor coupling, magnetic moments of
16
� O, 17

� O, and 18
� O calculated with PK1-Y0 and PK1-Y1 are

given in Table II. For comparison, the magnetic moments of the
corresponding core nuclei (15O, 16O, and 17O) and the magnetic
moment of the free � are presented. The valence hyperon in
nuclear medium will produce a nonvanishing proton current
and deviate the magnetic moment from the Schmidt value.
From Table II, it is shown that the valence � hyperon enlarges
the magnitude of the Dirac magnetic moment μD while ω��
tensor coupling reduces it. The Dirac magnetic moment μD

of 16
� O calculated with PK1-Y0 diverge from that of 15O +

free � by ∼60%. Even including the ω�� tensor coupling
(PK1-Y1), there is still a gap of ∼20% left. Results are similar
for 18

� O. Thus, the core polarization effect of the valence �
hyperon is hard to ignore. Naive treatment of the magnetic
moment in the hypernucleus as a nuclear core plus a valence
hyperon is questionable.

The Schmidt value μSch. and the magnetic moment μtot. of
16
� O in Table II are very different, with opposite signs. The
self-consistent result −0.060 μN calculated with PK1-Y1 is
also a reversed sign from 0.071 μN obtained by a summation
of the measured magnetic moment for 15O and a free hyperon
[15] and from 0.014 μN acquired under improved perturbation
treatment with PK1-Y1 [16]. To avoid model dependence,
magnetic moments with other RMF parameter sets have been
predicted. Using gσ� = 0.621, gω� = 2/3, and fω�� = 1 for
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TABLE III. Magnetic moments of hypernuclei (in units of μN ) calculated with the parameter set PK1-Y1 using a time-odd triaxial RMF
approach and a perturbation treatment (marked by �) [16]. The contribution from the nuclear core is presented by μcore = μn+p

a + μD . The
Schmidt values are also listed for comparison. The shape of the nuclei is shown by quadrupole deformation (β, γ ).

Nuclei μ� μ
�
� μD μcore μ�

core μtot. μ� μSch. (β, γ )

17
� O −0.6098 −0.6113 −0.0086 −0.0086 0 −0.6184 −0.6113 −0.6130 (0.000, 22.850)
41
� Ca −0.6102 −0.6114 −0.0136 −0.0136 0 −0.6238 −0.6114 −0.6130 (0.000, 27.741)
209
� Pb −0.6116 −0.6121 −0.0156 −0.0156 0 −0.6272 −0.6121 −0.6130 (0.000, 29.849)
16
� O −0.6096 −0.6112 −0.1305 0.5504 0.6249 −0.0592 0.0137 0.0247 (−0.002, 0.396)
28
� Al −0.6093 −0.6108 2.7730 4.4122 5.2627 3.8029 4.6519 4.1800 (0.065, 44.602)
28
� Si −0.6094 −0.6108 −0.0518 −0.8463 −2.0439 −1.4557 −2.6547 −2.5260 (0.185, 46.600)
32
� S −0.6097 −0.6109 −0.0464 0.8130 −1.8814 0.2022 −2.4923 −2.5260 (−0.107, 1.148)
40
� Ca −0.6101 −0.6113 −0.2216 0.8337 1.0395 0.2236 0.4282 0.5348 (−0.034, 55.120)
51
� V −0.6103 −0.6113 0.0081 0.0179 4.3059 −0.5924 3.6947 3.2670 (−0.089, 0.025)
89
� Y −0.6108 −0.6116 −0.1046 −3.1027 −2.1990 −3.7135 −2.8103 −2.7903 (−0.016, 0.174)
139
� La −0.6113 −0.6119 3.9235 0.8379 1.1805 0.2266 0.5686 −0.8094 (−0.015, 0.819)
208
� Pb −0.6116 −0.6121 −0.1325 0.4976 0.6306 −0.1114 0.0185 0.0247 (0.000, 16.672)

meson-hyperon interaction, NLSH [27] and NL3 [28] results
in units of μN are listed as

Sets μD μn+p
a μ�

a μtot. μSch.

NLSH −0.137 0.680 −0.610 −0.067 0.025
NL3 −0.131 0.674 −0.610 −0.067 0.025

The opposite sign between μtot. and μSch. in 16
� O still exists.

This may be a signal for future experiments to study because
hypernuclear magnetic moments can show information about
the medium �-meson interaction.

To find the difference between predictions from time-odd
triaxial RMF and from spherical RMF with a perturbation
treatment [16], systematic evaluations of hypernuclear mag-
netic moments are shown in Table III. The mark � denotes the
backflow electromagnetic current caused by core polarization
from the external particle [13]. The contribution from the
nuclear core is presented by μcore = μ

n+p
a + μD . The Schmidt

values are also listed for reference. The deviation �μ is
small and increases as mass number A gets larger for a
double-closed shell core hypernuclei (the first three rows).
Coupling strengths gσ� and gω� in the central mean-field
potential 〈gσ�σ + gω�ω〉 vary according to the binding energy
in different � hypernuclei. The larger the mass number A is,
the deeper the central potential is and the larger the meson-
hyperon interaction is. This is consistent with the conclusion
from Fig. 3. The anomalous μ�

a is around the Schmidt value
−0.613 μN for various nuclei due to the small effect from
the lower component in the Dirac spinor [26]. Noncharged
particles decrease the hypernuclear magnetic moment while
charged particles increase it [16]. The prediction for μcore

is smaller than that for μ
�
core, except 28

� Si and 32
� S show that

the proton contributes relatively less to the core polarization
in a time-odd triaxial RMF approach than in a perturbation
treatment. The sum of contrary contributions from charged and

noncharged particles can reverse the sign of the hypernuclear
magnetic moment; see results for 16

� O, 32
� S, 51

� V, 139
� La, and

208
� Pb in Table III.

For subshell closed nuclei (28
� Al, 28

� Si, and 32
� S), open-

shell nuclei (51
� V, 89

� Y, and 139
� La), deformation, configuration

mixing, etc., need to be considered. The last column in
Table III is the quadrupole deformation (β, γ ) of hypernuclei.
According to the perturbation treatment, core polarization
introduces a reduction factor in the Dirac magnetic mo-

ment μD as Bf (r) = gω�

gωN

mN

m�
[1 + m2

ωE∗
F

g2
NωρN

]−1 with the density

distribution of the nuclear core ρN and the Fermi energy

E∗
F =

√
[ 3π2

2 ρN (r)]2/3 + (m∗)2 [14,29]. We found the ground

state for 28
� Si located around β = −0.3 and that for 32

� S
located around β = 0.2 with a constrained axial RMF + BCS
approach [30]. The former prediction is consistent with a
deformed Skyrme Hartree-Fock (SHF) prediction [31]. For
excited 28

� Si (β � 0.2) and 32
� S (β � −0.1) predicted here,

the large Fermi energy causes a decreased reduction factor in
μD and core polarization is suppressed; see data in Table III.
Lu et al. [32] found the addition of a � hyperon in light
nuclei alters slightly the location of the ground-state minimum
towards the direction of smaller β and softer γ in the potential
energy surface E(β, γ ). We assume the deformation of nuclei
presented in Table III has few changes via the potential energy
surface. Thus, the case where the proton contributes more to the
magnetic moment than the noncharged neutron and hyperon
in deformed 28

� Si and 32
� S can still exist.

The isoscalar magnetic moment can provide us evidence
of the second-order configuration mixing (tensor correlation),
which is a factor contributing to the difference
between the Schmidt values and the experimental
data [33]. By averaging the moments of correspond-
ing states in mirror nuclei, the vector contributions
are canceled, revealing the isoscalar component, viz.,
μIS(A) = [μ(Z,N ) + μ(Z + 1, N − 1)]/2. And the isovec-
tor magnetic moment is μIV(A) = [μ(Z,N ) − μ(Z + 1, N −
1)]/2. For mirror nuclei 28

� Al and 28
� Si in Table III,
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TABLE IV. Magnetic moment in excited hypernuclei with a
double-closed core. Results are obtained with the parameter set
PK1-Y1 using the time-odd triaxial RMF approach. The Schmidt
value μSch. is −0.613 μN . The deviation of the hypernuclear magnetic
moment from the Schmidt value is �μ = μtot. − μSch.. � single-
particle energy ε� marked by an asterisk refers to the excited case
when � occupies the lowest l� = 1 orbit.

Nuclei ε� μD μ�
a μtot. �μ

17
� O −2.924∗ −0.030 −0.580 −0.610 0.003
41
� Ca −10.229∗ −0.071 −0.608 −0.688 −0.075
57
� Ni −14.097∗ −0.014 −0.576 −0.590 0.023
133
� Sn −19.514∗ −0.016 −0.521 −0.537 0.076
209
� Pb −21.750∗ −0.051 −0.571 −0.622 −0.009
17
� O −12.700 −0.009 −0.610 −0.619 −0.006
41
� Ca −18.739 −0.014 −0.610 −0.624 −0.011
57
� Ni −22.072 −0.018 −0.610 −0.628 −0.015
133
� Sn −24.556 −0.015 −0.611 −0.626 −0.013
209
� Pb −25.637 −0.016 −0.612 −0.628 −0.015

we have the following:

Obtained via μtot. μ� μSch.

μIS 1.1736 0.9986 0.827
μIV 2.6293 3.6533 3.353

The isoscalar magnetic moment of the mirror pair (28
� Al and

28
� Si) evaluated by the time-odd triaxial RMF approach (μtot.)
is larger than that given by the perturbation treatment (μ�)
and by the extreme single-particle prediction (μSch.). In the
present calculation, there is no tensor coupling of the isovector
meson ρ. A discrepancy exists in the isovector magnetic
moment as there are no vertex corrections for the isovector
current. Within one major shell, the RMF model including
the configuration mixing removes most of the discrepancies
for isovector moments while leaving the isoscalar moments in
agreement with experiment [34]. The prediction of subshell
nuclei needs more investigation.

Apart from the ground-state case, it is interesting to view
the deviation of the magnetic moment from the Schmidt
value �μ in excited nuclei. There may be a large deviation
�μ in the � hypernucleus with l� �= 0, which comes from
the nonvanishing � convection current term ψ

†
�(

←−∇ − −→∇ )ψ�

according to a perturbation treatment for the symmetric

nuclear matter [35]. A self-consistent calculation with ω��
tensor coupling may clear the uncertainty of the perturbation
treatment. By blocking the lowest 1p3/2 orbit, magnetic
moments for 17

� O, 41
� Ca, 57

� Ni, 133
� Sn, and 209

� Pb are obtained
with the parameter set PK1-Y1 in the time-odd triaxial RMF
approach (see Table IV). The maximum magnitude of �μ for
excited hypernuclei is 12% of the Schmidt value; see 41

� Ca
and 133

� Sn. The hypernuclear magnetic moment is close to
the Schmidt value by a 2% difference when the � hyperon
occupies the lowest l� = 0 orbit; see the second data block
in Table IV. The shift of the � hyperon from l� = 0 to
l� = 1 increases the hypernuclear magnetic moment except
for 41

� Ca. If deviation �μ changes from negative to positive,
the magnitude of it may decrease. Nuclei 17

� O and 209
� Pb are

exact examples. The magnitude of �μ for their excited state is
smaller than that of the corresponding ground state. Thus,
the prediction of a large deviation in the � hypernucleus
with l� �= 0 according to a perturbation treatment [35] suits
medium-mass nuclei better than the other parts along the
nuclear chart.

IV. SUMMARY

Hypernuclear magnetic moments have been studied in the
self-consistent time-odd triaxial RMF approach, including the
strangeness, the spacelike component, and tensor coupling.
The previous prediction that the core-polarized Dirac magnetic
moment is restored to the Schmidt value as the hyperon stays at
the l� = 0 state with ω�� tensor coupling is confirmed. The
valence � hyperon results in a core-polarized proton current
and deviates the magnetic moment from the Schmidt value
as �μ. The deviation �μ is related to effective interaction,
in particular to �-meson coupling strengths gσ� and gω�.
Contrary contributions from charged and noncharged particles
cause a reversed sign of the prediction and the Schmidt value.
This may be a signal for future experiments to study. The
deviation �μ of single � hypernuclei with p� orbits occupied
is large for the medium-mass region, but not for the others.
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[30] H. F. Lü, L. S. Geng, and J. Meng, Eur. Phys. J. A. 31, 273

(2007).
[31] X. R. Zhou, H. J. Schulze, H. Sagawa, C. X. Wu, and E. G. Zhao,

Phys. Rev. C 76, 034312 (2007).
[32] B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 84, 014328

(2011).
[33] E. G. Zhao, Chin. Sci. Bull. 57, 4394 (2012).
[34] U. Hofmann and P. Ring, Phys. Lett. B 214, 307 (1988).
[35] J. Cohen and J. V. Noble, Phys. Rev. C 46, 801 (1992).

064304-7

http://dx.doi.org/10.1088/0256-307X/25/5/029
http://dx.doi.org/10.1088/0256-307X/25/5/029
http://dx.doi.org/10.1103/PhysRevC.48.1346
http://dx.doi.org/10.1140/epja/i2013-13101-1
http://dx.doi.org/10.1103/PhysRevC.44.548
http://dx.doi.org/10.1103/PhysRevC.44.548
http://dx.doi.org/10.1016/0370-2693(90)91239-8
http://dx.doi.org/10.1088/0253-6102/60/4/16
http://dx.doi.org/10.1088/0253-6102/60/4/16
http://dx.doi.org/10.1103/PhysRevC.69.034319
http://dx.doi.org/10.1103/PhysRevC.69.034319
http://dx.doi.org/10.1103/PhysRevC.44.1181
http://dx.doi.org/10.1016/0370-2693(81)90826-1
http://dx.doi.org/10.1016/0375-9474(87)90182-5
http://dx.doi.org/10.1103/PhysRevC.74.024307
http://dx.doi.org/10.1103/PhysRevC.74.024307
http://dx.doi.org/10.1103/PhysRevC.38.370
http://dx.doi.org/10.1088/0256-307X/24/9/023
http://dx.doi.org/10.1103/PhysRevC.49.2472
http://dx.doi.org/10.1103/PhysRevC.49.2472
http://dx.doi.org/10.1103/PhysRevC.57.R1060
http://dx.doi.org/10.1103/PhysRevC.57.R1060
http://dx.doi.org/10.1016/j.physletb.2006.07.064
http://dx.doi.org/10.1016/j.physletb.2006.07.064
http://dx.doi.org/10.1140/epja/i2006-10224-4
http://dx.doi.org/10.1140/epja/i2006-10224-4
http://dx.doi.org/10.1103/PhysRevC.76.034312
http://dx.doi.org/10.1103/PhysRevC.84.014328
http://dx.doi.org/10.1103/PhysRevC.84.014328
http://dx.doi.org/10.1007/s11434-012-5491-6
http://dx.doi.org/10.1016/0370-2693(88)91367-6
http://dx.doi.org/10.1103/PhysRevC.46.801



