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within the quasiparticle-phonon coupling plus rotor model
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The band-head systematic ground-state spins and parities of one-quasineutron states along an odd-A Mo
isotopic chain are studied by using the quasiparticle-phonon coupling plus rotor model. Within this model, the
individual excitation is retained in a deformed Nilsson average field and a monopole pairing interaction from
BCS. The vibrational collective motion is derived from the quadrupole phonon term of the Tamm-Dancoff
approximation. The two effects of recoil and Coriolis forces are included with the assumption of a symmetric
rotational motion. To determine the intrinsic states of an odd nucleus, we have adopted an exact diagonalization
in the basis of one-quasiparticle and quasiparticle-phonon states. The structural evolution via the ground and
low-lying one-quasineutron states is systematically studied for 103,105,107Mo with comparison to the available
experimental data.
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I. INTRODUCTION

The microscopic structure of neutron-rich nuclei near
A ∼ 100 is of particular interest in studying the effect of
nuclear deformation and shape coexistence phenomena of the
transitional region. For the even 38Sr and 40Zr isotopes, a
sudden onset of strong deformation is observed from N = 60,
whereas, the lighter isotopes up to N = 58 are rather spherical
[1]. It has been shown for N = 59 isotones by using the
quasiparticle rotor model (QRM) that some shapes coexist,
particularly, the two unique-parity states πg9/2 and νh11/2

in the structure of 97Sr, 99Zr, and 96Rb isotopes [1,2]. The
clear identification of the band-head spins, their deformations,
and the Nilsson orbitals of N = 59 isotones have provided
new insight for understanding the mechanisms responsible for
this rapid change in shapes, which are highlighted from the
quadrupole moment measurements of the ground state for Rb
isotopes [3].

However, by using the self-consistent total Routhian surface
(TRS) model for N > 59 isotones, it has been shown that
the nuclear structures of N = 63 103Zr and 105Mo isotones
have medium triaxiality parameters of γ = 0◦ and γ =
−19◦ [4], respectively. The triaxial effect, a sign of strong
deformation, is more important for Mo isotopes than for Zr
ones by using the rigid triaxial rotor plus particle model and
the TRS model [4,5]. Experimentally, by producing Zr and Mo
isotopes from fusion-fission reaction mechanisms, the analysis
of experimental data performed in the framework of QRM
showed that the triaxial degree of freedom is more prominent
for Mo than Zr isotopes [6]. In these calculations, the cranked
shell model was used for the study of the crossing frequency of
the aligned bands. It was concluded that the alignment of the
νh11/2 neutron orbital is responsible for the first band crossing
in the even Zr and Mo isotopes [6], which strongly influences
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the behavior of the 5/2−[532] band head in the odd-Zr and
odd-Mo isotopes.

In the transitional region A ∼100, the nuclear shape is
known to be soft spherically deformed, which, theoretically,
is the reason to not use a rigid triaxiality. It is then better to
treat this spherically deformed shape by the coupling between
(axial) rotation and vibration. Therefore, in our paper, we
have used a microscopic description of the spectroscopy of
neutron-rich odd-A = 105 and 133 nuclei [7,8]. We have
used a Soloviev [9] inspired model: the quasiparticle phonon
plus rotor where a Tamm-Dancoff approximation (TDA)
phonon was used instead of a random-phase-approximation
one. For the transitional region, a microscopic structure is
considered for the quadrupole phonon by means of the TDA,
developed in the Ring-Schuck book [10]. This method is
microscopic and provides a two-quasiparticle structure of the
quadrupole vibrational core (γ phonon) [11] in contrast to
the phenomenological model in which the phonon structure is
excluded. Already, such structures of 1γ and 2γ bands have
been observed in 103Nb, 105Mo, 104,106,108Mo, and 108,112Ru
[4,6,12–14] nuclei.

In the present paper, we want to verify the ability of
our quasiparticle-phonon coupling plus rotor model (QPRM)
predictions in the spectroscopy of odd-A nuclear systems of
the transitional region at a very low-energy spectrum within
a window less than 1 MeV from the ground-state level. The
goal is twofold. First, from an isotonic chain N = 61 (99Sr,
101Zr, 103Mo, and 105Ru), we want to study the band head, such
as ground and excited states, of a one-quasineutron structure.
We study the contribution of different (quadrupole and recoil
forces, initial pairing interactions) corrective terms on the
intrinsic states. And, when the final result is compared with
the available data, the ground state is assigned, and the origin
of the excited ones is identified from their corresponding band
heads. With the second goal, we want to verify the performance
of our predictions in an isotopic chain of 103,105,107Mo. From
the evolution of the band-head structure, the spectroscopic
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schemes could be established for this isotopic chain with help
from the available experimental data.

This paper is organized as follows. In Sec. II, we present
the Hamiltonian formalism that treats the one-quasiparticle
system in terms of intrinsic, rotational, and Coriolis motions.
For a deformed nucleus system, we retained the dynamical
deformation (vibrational excitation) and residual rotational
motion in terms of quadrupole and recoil forces. We evaluated
the intrinsic state by using, together, the contributions of the
Nilsson, BCS, and TDA approximations. In Sec. III, we pay
attention to the possible states, which could form the ground
state close to the Fermi level. We systematically discuss
the evolution structure of the 99Sr, 101Zr, 103Mo, and 105Ru
isotonic chains and qualitatively discuss the main features of
the observed trends in the 103,105,107Mo isotopic chain. And,
finally, we devote our conclusions and perspectives to the
ability of our formalism to describe the nuclear structure in
the transitional region.

II. THEORITICAL FORMALISM

In the present paper, our calculations are investigated via
the QPRM model, which is based on the Nilsson, BCS, and
TDA formalisms. The originality of this method could be
demonstrated by the diagonalization of the total Hamiltonian,
which emanates from individual and collective correlations.

A. The total Hamiltonian formalism

Theoretically, the odd-A nucleus is treated as a system of an
extra nucleon coupled to an even-even core with the standard
assumption of the total Hamiltonian [15],

H = Hrot + Hint, (1)

where Hrot is the collective kinetic energy associated with
the rotation of the nucleus and Hint is the intrinsic motion
treated as a one-body deformed potential field Hsp plus a two-
body residual interaction composed of a short-range constant
pairing force Hp and a quadrupole part HQ of the long-range
multipole-multipole force [10].

The kinetic energy of the rotational motion in the laboratory
system is developed as

Hrot = A1R
2
1 + A2R

2
2 + A3R

2
3, (2)

where Rk is the component of the collective angular momen-
tum along the axis of intrinsic system. Ak is the corresponding
rotational parameter defined as Ak = h̄2/2�k with the moment
of inertia parameter �k around the three principal axes k = 1–3
of the nuclear mass distribution.

In this paper, we limit our analysis to the case of a nucleon
coupled to an axially symmetric rotor [16] instead of the
general triaxial form presented in Eq. (2). The rotational
Hamiltonian can then be reduced to

Hrot = h̄2
(
R2

1 + R2
2

)
/2�, (3)

with the same moment of inertia � along the two axes k = 1,2
perpendicular to the symmetry axis k = 3.

The total angular momentum I is composed of the two
terms: the collective rotation of the core R and the angular
momentum of the extra nucleon J ; I = R + J. Since I is a
conserved quantity, R in Eq. (3) is replaced by I and J . The
total Hamiltonian of Eq. (1) is then expressed as [16]

H = Hint + HI + HC, (4)

where

Hint = Hsp + HP + HQ + HJ , HI = AR

(
I 2 − I 2

3

)
,

(5)
HC = −AR (I+J− + I−J+) , HJ = AR

(
J 2 − J 2

3

)
,

with I± = I1 ± iI2, J± = J1 ± iJ2, and AR = h̄2/2�.
The total Hamiltonian H is, therefore, separated into three

terms, the intrinsic Hint, rotational HI , and Coriolis HC terms
which couple the intrinsic and rotational motions. The intrinsic
Hamiltonian is more interesting from a physical point of
view. It is separated into four parts. The first, Hsp, contains
the deformed potential field which governs the independent
motion of the nucleons. In this sense, we prefer to use the
Nilsson harmonic-oscillator model, which is rather simple and
more used to describe a deformed nucleus. By using a second
quantization, Hsp becomes [17]

Hsp =
∑
ντ

eντ a
†
ντ aντ , (6)

where a†
ντ (aντ ) is the operator that creates (destroys) a particle

of nucleon type τ (neutron or proton) in a Nilsson orbital
and with an energy eντ . The quantum number ν stands for
the asymptotic quantum along numbers [N ,nz,�] with the
projection �ν of the particle angular momentum along the
symmetry axis. The term HP describes the monopole pairing
interaction with the strength parameter Gτ and is written
as [15]

HP = −
∑
νμτ

Gτa
†
ντ a

†
−ντ a−μτ aμτ . (7)

The next term HQ is the quadrupole-quadrupole force and is
expressed by [10]

HQ = −1

2
χ

∑
ττ ′

{Q†
22(τ )Q22(τ ′) + Q

†
2−2(τ )Q2−2(τ ′)}, (8)

where the quadrupole moment of mass with γ = ±2 is given
as a one-body interaction,

Q2γ (τ ) =
∑
ντμ

〈ντ |r2Y2γ |μτ 〉a†
ντ aμτ . (9)

The last term HJ of Eq. (5) is the recoil force. In some earlier
papers, HJ was neglected with the argument that it could be
absorbed in the independent nucleon motion of the potential
average field [15]. Here, we have decided to treat it in the
same way as a residual interaction into the intrinsic motion.
By using the second quantization, HJ can be expressed as

HJ = 1

2
AR

∑
ττ ′

[J+(τ )J−(τ ′) + J−(τ )J+(τ ′)], (10)
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where the one-body interaction of the intrinsic momentum J±
is written as

J±(τ ) =
∑
ντ

〈ντ |J±|μτ 〉a†
ντ aμτ . (11)

The term HI of Eq. (4) represents the kinetic energy of rota-
tional motion and reproduces the energy difference between
intrinsic states in a rotational band. The inclusion of Coriolis
force HC requires the matrix of the Hamiltonian model H to be
constructed and diagonalized within the space of symmetrized
functions [15],

|IMKρ〉 =
√

2I + 1

16π2

{
DI

MK |Kρ〉 + (−)I+KDI
M−K |Kρ〉

}
.

(12)

Here, ρ is the quantum number of a given intrinsic state with
a projection K of the intrinsic angular momentum along the
symmetry axis. |Kρ〉 can be obtained by resolving the secular
problem,

Hint|Kρ〉 = (Hsp + HP + HQ + HJ )|Kρ〉 = Eint
Kp

|Kρ〉. (13)

As is well known, DI
MK is the rotational matrix and is

an eigenfunction of I 2 and I 3 with respective eigenvalues
I (I + 1) and K . To diagonalize H within the basis states,
therefore, Eq. (12) essentially requires determining the matrix
element of the Coriolis term HC [16],

〈IMK ′
ρ ′ |HC |IMKρ〉

= −AR

{
(−)I+1/2

(
I + 1

2

)
〈K ′

ρ ′ |J+|Kρ〉δK ′1/2δK1/2

+
√

(I ∓ K)(I ± K + 1)〈K ′
ρ ′ |J±||Kρ〉〉δK ′,K±1

}
. (14)

To summarize, from the above equations, we note that
such systems should be processed in two steps. First, the
intrinsic eigenvalue of Eq. (13), when solved, gives a set
of intrinsic states

∣∣Kρ

〉
and intrinsic energies Eint

K . From
these states, different rotational wave functions with the form
given in Eq. (12) are constructed. Then in a second step, a
diagonalization of the Coriolis term is performed.

B. Intrinsic Hamiltonian formalism

To discuss the different terms of Eq. (13) and their
intrinsic eigenvalue, we first have to look to the possible
combinations of the system. By neglecting HJ and HQ, we
have a model which describes the independent nucleon motion
in a Nilsson deformed potential and to which are added the
pairing correlations. The BCS approximation is adopted so
as to transform the system to an independent quasiparticle
motion. The long-range interaction of quadrupole type HQ

is introduced in a sense to take the dynamical mode of
deformation and/or the vibrational excitation into account.
We work in the frame of the Tamm-Dancoff approximation
to build a microscopic structure description for the γ -phonon
state. Furthermore, in this case, the intrinsic Hamiltonian will
contain a residual part of the rotational motion by retaining
the recoil force HJ , which is independent in regard to the total

angular momentum I . The BCS method is an approximate
approach to the treatment of pairing correlation by using
the Bogoliubov-Valatin transformation that makes the change
from particle to quasiparticle operators [18],

a†
σντ = Uντα

†
σντ + σVντα−σντ . (15)

Here, the operator α†
σντ (ασντ ) creates (destroys) a quasiparti-

cle state |σντ 〉 with a σ sign that depends on time-reversal
symmetry and where the occupational (nonoccupational)
probability is expressed by Uντ (Vντ ). The expression deduced
from Hsp + HP is given by

HBCS = T +
∑
σντ

Eντα
†
σντασντ , (16)

where T is the BCS ground-state energy and Eντ is the energy
of a single quasiparticle,

Eντ =
√(

eντ − λ − GτV 2
ντ

)2 + �2
τ , (17)

where λ is the Lagrange multiplier and �τ is the energy gap.
In the same way, the transformation in Eq. (15) allows the

expression of quadrupole [Eq. (9)] and intrinsic [Eq. (11)]
moments to be translated into the form of quasiparticle terms,

Q2γ (τ ) =
∑

σσ ′=±1,νν ′
G

γ,τ
σνσ ′ν ′α

†
σντασ ′ν ′τ

− 1

2

∑
σσ ′=±1,νν ′

(
σ ′Fγ,τ

σν−σ ′ν ′α
†
σντα

†
σ ′ν ′τ

+ σF
γ,τ
−σνσ ′ν ′ασντασ ′ν ′τ

)
, (18)

where

G
γ,τ
σνσ ′ν ′ = (UντUν ′τ − VντVν ′τ )〈σντ |r2Y2γ |σ ′ν ′τ 〉, (19)

F
γ,τ
σνσ ′ν ′ = (UντUν ′τ + VντVν ′τ )〈σντ |r2Y2γ |σ ′ν ′τ 〉, (20)

and

J±(τ ) =
∑

σσ ′=±1,νν ′
M

±,τ
σνσ ′ν ′α

†
σντασ ′ν ′τ

− 1

2

∑
σσ ′=±1,νν ′

(
σ ′N±,τ

σν−σ ′ν ′α
†
σντα

†
σ ′ν ′τ

− σN
±,τ
−σνσ ′ν ′ασντασ ′ν ′τ

)
. (21)

Here,

M
±,τ
σνσ ′ν ′ = (UντUν ′τ + VντVν ′τ )〈σντ |J±|σ ′ν ′τ 〉, (22)

N
±,τ
σνσ ′ν ′ = (UντUν ′τ − VντVν ′τ )〈σντ |J±|σ ′ν ′τ 〉. (23)

By introducing these new expressions in Eqs. (8) and (10),
respectively, the quadrupole and recoil forces can be decom-
posed in the form H00 +H11 +H20 +H22 +H31 +H40 where
the subscripts refer to the number of quasiparticle creation
and annihilation operators. In this form, we notice that both
one-body and two-body interactions should be considered
[10]. In the frame of the Tamm-Dancoff approximation, the
creation operator of the γ phonon is defined as

A†
γ = 1

2

∑
νμτ

(
Xτ

γ

)
νμ

α†
ντ α

†
μτ . (24)
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This expression allows a microscopic structure description
for the quadrupole vibrational core ( γ -phonon state) by show-
ing the X amplitudes related to two-quasiparticle excitations.

C. Intrinsic eigenvalue for odd-A nuclei

The solution of Eq. (13) for an odd-A nucleus is per-
fected by a diagonalization within the basis formed by
one-quasiparticle states (1 − qp) and quasiparticle-phonon
coupling states (qp − phγ ). If we only retain the terms without
a zero matrix element, the intrinsic Hamiltonian then is reduced
to

Hint = HBCS + H
Q
11 + H

Q
20 + H

Q
22 + H

Q
31 + HJ

11

+HJ
20 + HJ

22 + HJ
31 + H

′p
22 . (25)

The Q and J terms are related to quadrupole and recoil
forces, respectively. The last term H

′p
22 is a residual pairing

interaction, which was neglected in the BCS approximation.
The interaction between two 1 − qp and two qp −phγ states
is given by L11 and L22 matrix elements and that between
1 − qp and qp − phγ states by L31, respectively. They are
written as follows [19]:

L11 = 〈BCS|αK ′τ
(
HBCS + H

Q
11 + HJ

11

)
α
†
Kτ |BCS〉, (26)

L22 = 〈BCS|Aγ ′αK ′τ
(
HBCS + H

Q
11 + HJ

11 + H
Q
22 + HJ

22

+H
′p
22

)
α
†
KτA

†
γ

∣∣BCS〉, (27)

and

L31 = 〈BCS|Aγ αK ′τ
(
H

Q
20 + HJ

20 + H
Q
31 + HJ

31

)
α
†
Kτ |BCS〉.

(28)

The eigenvalue problem is expressed in matrix form(
L11 L31

L31 L22

) (
C

ρ
K

D
ρ
Kγ

)
= Eint

Kρ

(
C

ρ
K

D
ρ
Kγ

)
, (29)

where C
ρ
K represents the 1 − qp component; the same as D

ρ
Kγ

for the qp −phγ component. The intrinsic eigenvalue Eint
Kρ

corresponds to the eigenvector,

|K〉 =
(∑

ν

Cρ
ν δK�ν

α†
ντ +

∑
ντ

Dρ
νγ δK=�ν+γ α†

ντA
†
γ

)
|BCS〉.

(30)

The overlap between the 1 − qp and the qp − phγ states
is always zero. However, the overlap between two different
qp − phγ states can be nonzero such that they can form a
nonorthogonal basis set,

Sij = 〈i|j 〉 = 〈BCS|Aγ ′αiα
†
jA

†
γ |BCS〉

= Sij δγ ′γ −
∑

λ

(Xγ ′)jλ(Xγ )iλ, (31)

where |i〉 is the qp − phγ states. To solve this rather eigenval-
uelike problem, we adopted the method where we first solve

the eigenvalue equation for the Sij overlapping matrix,∑
j

Sijω
h
j = nhω

h
i . (32)

The eigenvectors obtained can be written in the basis {|i〉} as

|ĩ〉 = 1√
nh

∑
i

ωh
i |i〉. (33)

They have the characteristic to be mutually orthogonal in
which they are normalized and form a complete set. The
amplitude Dρ

νγ in Eq. (30) then is calculated from the g
amplitudes in the following way:

Dρ
νγ =

∑
h

1√
nh

g
ρ
hωh

ν . (34)

III. DISCUSSION

The theoretical method developed in this paper is applied
for the transitional region A ∼ 100 with a particular inves-
tigation of the band heads, such as the ground and excited
states of 103,105,107Mo, which are treated as a system of
an even-even core plus an extra nucleon. It is developed
in respect to the following steps: Nilsson, BCS, and TDA
calculations. For the Nilsson calculations, the even-even core
structure is reproduced by using, conjointly, the deformation
parameter ε2 from Möller et al. [20] and Meyer et al. data
[21] and the K = 0.068 and μ = 0.35 parameters of the
deformed average Nilsson field. The BCS pairing is fixed for
protons and neutrons by the well-known phenomenological
relation �p = �n = 12/A1/2 MeV [22]. For the TDA
calculations, the parameter of quadrupole force χ is fitted
from the experimental energy of the quadrupole vibrational
core by using the experimental data from Refs. [6,14], where
102Mo, 104Mo, and 106Mo have E(2+) = 295, E(2+) = 192,
and E(2+) = 171 keV, respectively. The effects of all these
parameters are summarized in a subroutine that diagonalizes
the total Hamiltonian and where the inertia parameters are
determined semiempirically by using the energy of the first
excited state ε2

2 ≈ 1176[A7/3E(2+)]−1 [23,24].

A. Single-particle energies within the Nilsson formalism

According to the deformed shell model, the collective
bands—band heads—of the nuclei of interest should originate
from single-neutron configurations. In the regions of 28 � Z �
50 and 50 � N � 82, we search for the band assignments from
the calculated Nilsson diagram. As shown in Fig. 1, the single-
particle energy is presented as a function of the deformation
parameter (ε2) with pairing correlation parameters Gp =
19.6A−1 and Gn = [19.6 − 15.7(N − Z)A−1]A−1 MeV, ob-
tained phenomenologically [25]. For the neutron-rich nuclei
103,105,107Mo, localized in the region of deformation param-
eters ε2 between 0.3 and 0.4, the collective bands should
originate from the νd5/2, νg7/2, νs1/2, and νh11/2 subshells
[26,27]. Therefore, with our Nilsson calculations, we could
expect near the Fermi level—candidates to be the ground
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FIG. 1. (Color online) Partial Nilsson diagram for the region of neutron-rich nuclei for (a) with 28 � Z � 50 and (b) with 50 � N � 82.

state—a configuration of single-neutron states built on 1/2+,
3/2+, 9/2+, 1/2−, 3/2−, 5/2−, 5/2+, 7/2−, and 9/2−.
Thereby, the assembly of these states will help us in the study
and assignment of collective bands observed at low energy in
103,105,107Mo. In the following, we first demonstrate the ability
of our method in studying the collective bands of 103Mo, which
will be treated as a system of the even-even core of 102Mo plus
an extra nucleon.

B. One-quasiparticle states in 103Mo within the BCS formalism

For 103Mo, where the 102Mo core is localized with a
deformation parameter of ε2 = 0.3, we have to primarily
identify the ground state from the excited ones in a region
where the excitation gap is more important with regard to
the deformation parameter. We introduced the BCS method
in which the correlation probability between quasiparticle
operators (creation and annihilation) is well determined. With

TABLE I. Quasiparticle energy levels calculated for 102Mo (neutron cases) around the Fermi surface.

Band-head number Band-head levels Energy levels (MeV) U V

21 5/2+[422] 5.959 0.100 0.995
22 5/2−[303] 4.772 0.125 0.992
23 1/2−[301] 4.749 0.126 0.992
24 1/2+[431] 4.367 0.137 0.990
25 7/2+[413] 3.814 0.158 0.987
26 1/2+[420] 2.429 0.252 0.967
27 1/2−[550] 2.043 0.305 0.952
28 3/2+[422] 2.013 0.310 0.950
29 9/2+[404] 1.559 0.419 0.907
30 3/2−[541] 1.385 0.493 0.870

Fermi level

31 3/2+[411] 1.342 0.856 0.517
32 5/2−[532] 1.514 0.900 0.436
33 5/2+[413] 1.865 0.941 0.338
34 1/2+[411] 2.579 0.971 0.237
35 7/2−[523] 3.159 0.981 0.191
36 1/2−[541] 3.634 0.986 0.166
37 5/2+[402] 3.855 0.988 0.156
38 7/2+[404] 4.741 0.992 0.126
39 1/2−[530] 5.231 0.993 0.114
40 9/2−[514] 5.382 0.992 0.111
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TABLE II. BCS eigenvalues for Nilsson orbitals of 102Mo.

〈ν| 〈ν ′| E(ν) + E(ν ′)

5/2+[422] 7/2+[413] 9.774
5/2+[422] 3/2+[422] 7.972
5/2+[422] 3/2+[411] 7.301
5/2+[422] 7/2+[404] 10.701
5/2−[303] 3/2−[541] 6.157
−1/2−[301] 1/2−[301] 9.498
−1/2−[301] 1/2−[550] 6.792
1/2−[301] 3/2−[541] 6.134
−1/2−[301] 1/2−[541] 8.383
−1/2−[301] 1/2−[530] 9.980
−1/2+[431] 1/2+[431] 8.734
−1/2+[431] 1/2+[420] 6.797
1/2+[431] 3/2+[422] 6.379
1/2+[431] 3/2+[411] 5.709
−1/2+[431] 1/2+[411] 6.947
7/2+[413] 9/2+[404] 5.373
7/2+[413] 5/2+[413] 5.679
7/2+[413] 5/2+[402] 7.669
−1/2+[420] 1/2+[420] 4.859
1/2+[420] 3/2+[422] 4.442
1/2+[420] 3/2+[411] 3.771
−1/2+[420] 1/2+[411] 5.009
−1/2−[550] 1/2−[550] 4.086
1/2−[550] 3/2−[541] 3.428
−1/2−[550] 1/2−[541] 5.677
−1/2−[550] 1/2−[530] 7.274
3/2+[422] 5/2+[413] 3.878
3/2+[422] 1/2+[411] 4.592
3/2+[422] 5/2+[402] 5.868
9/2+[404] 7/2+[404] 6.300
3/2−[541] 5/2−[532] 2.899
3/2−[541] 1/2−[541] 5.019
3/2−[541] 1/2−[530] 6.616
3/2+[411] 5/2+[413] 3.207
3/2+[411] 1/2+[411] 3.922
3/2+[411] 5/2+[402] 5.197
5/2−[532] 7/2−[523] 4.674
5/2+[413] 7/2+[404] 6.607
7/2−[523] 9/2−[514] 8.541

this method, we numerically treat an energy of 10 up and
down band-head levels for 103Mo—candidates to be the ground
state—around the Fermi level. In Table I, with a precision
of 10−7 after seven iterations, for each subsequent level, we
present the calculated eigenenergies and their occupancy (U )
and vacancy (V ) probabilities. So, when looking for the
closest energy level to the Fermi one, we could have a
confusing decision if one treats and finds the ground state
only according to its energy level. In Table II, we carried out
the whole possible ground and excited states correlated from
the particular states presented in Table I. The combinations
between states (columns 1 and 2) are treated in the approx-
imation of the quasiparticle-independent model where the
Hamiltonian is as follows:H = U0 + ∑

μν (Eμ + Eν)α†
μαν ,

and the correspondent energy is presented in column 3. We find
three possible combinations of states. With the lowest energy

(Eμ + Eν) according to the Fermi level, the ground state could
be formed from the couple (3/2−[541],5/2−[532]) with an
energy level of 2.899 MeV, the couple (1/2−[550],3/2−[541])
with 3.428 MeV, or the couple (1/2+[420],3/2+[411]) with
3.771 MeV. Therefore, when comparing these eigenvalues
with the ones from Table I, we could expect one of the
5/2−[532], 3/2−[541], and 3/2+[411] orbitals to be the
ground state of 103Mo.

C. One-quasiparticle states in 103Mo within the TDA formalism

In the TDA, 103Mo could be treated in a simple way as a two-
body interaction where the shape softness of 102Mo could be
introduced in a dynamic manner by γ vibration [see Eq. (24)].
In Table III, we carried out the amplitude values (Xγ )μν of the
TDA phonon for the different combinations of states around
the Fermi level. From this table and with respect to the possible
combinations found with the TDA formalism, we find that state
3/2+[411] presents the largest vibration −0.296 compared to
the nearest ones of −0.213 and −0.189 for 5/2−[532] and
3/2−[541], respectively. Consequently, in the approximation
of the quasiparticle-phonon coupling model, we adopted the
3/2+[411] orbital, which originated from the νg7/2 subshell,
to be the ground state of 103Mo, which is in good agreement
with the experimental assignment from Refs. [6,28].

D. One-quasiparticle states in 103Mo within the
QPRM formalism

In Fig. 2, we show the contribution of each term of
the intrinsic Hamiltonian [Eq. (25)] to the energy of the
intrinsic states, assigned by the dominant one-quasiparticle
configuration, and which are positioned close to the Fermi
level. The dashed lines connect the states characterized by the
same asymptotic quantum numbers �π [N ,nz,�], where � is
the quantum number that corresponds to the third component
of the angular momentum in the intrinsic frame, π and N
are its parity and the principal quantum number of the major
oscillator shell, nz is the number of quanta associated with
the wave function moving along the z direction, and � is the
projection of the orbital angular momentum onto the z axis
(symmetry axis).

Here, as we can see by adding the quadrupole and recoil
forces to the pairing interaction, the spectroscopy scheme
at low energy could be adjusted and could be compared to
the available experimental data from Refs. [6,28]. We note
that, with the quadrupole force, both one-body and two-body
terms exhibit an important interaction for positive-parity states
by looking at their energy levels that decrease rapidly. The
same behavior is observed when the recoil force effect is
added to the previous one. Both forces show an important
influence on the neutron states that belong to the N = 4
oscillator shell, strongly mixed by deformation [30]. We see
that the 1/2+[411], 3/2+[422], and 5/2+[413] intrinsic states,
which originate from the νs1/2 and νd5/2 subshells, interchange
their energy-level positions. According to the discussion in
Ref. [30], the neutrons in the region of interest occupy the
states that belong to the N = 4 shell and begin to fill the νh11/2

intruder orbitals from N = 5. These intruder orbitals polarize
the core towards large deformations (oblate or prolate), and
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TABLE III. TDA calculations for neutron structures in102Mo. X is the amplitude of each couple of orbitals. Each couple is identified by the
excitation energy Eν + Eν′ and the quadrupole moment of mass. Fνν′ and Gνν′ are the quadrupole coefficients.

〈ν| |ν ′〉 Eν + Eν′ 〈ν|r2Y22|ν ′〉 Fνν′ Gνν′ X

3/2+[422] 1/2+[431] 6.379 −0.122 0.438 −0.899 0.010
3/2+[422] 1/2+[420] 4.442 0.952 0.540 −0.841 −0.142
3/2+[422] 1/2+[411] 4.592 −0.141 0.997 0.076 0.037
3/2−[541] 1/2−[301] 6.134 −0.003 0.598 −0.801 −0.001
3/2−[541] 1/2−[550] 3.428 −0.703 0.735 −0.678 −0.189
3/2−[541] 1/2−[541] 5.019 0.589 0.939 0.342 0.134
3/2−[541] 1/2−[530] 6.616 −0.149 0.921 0.390 −0.025
3/2+[411] 1/2+[431] 5.709 0.249 0.919 −0.395 −0.049
3/2+[411] 1/2+[420] 3.771 −0.039 0.959 −0.284 0.012
3/2+[411] 1/2+[411] 3.922 1.328 0.705 0.709 −0.296
5/2+[422] 1/2+[431] 10.327 0.387 0.236 −0.972 0.010
5/2+[422] 1/2+[420] 8.389 −0.855 0.348 −0.937 −0.042
5/2+[422] 1/2+[411] 8.539 0.069 0.990 −0.138 0.009
5/2−[303] 1/2−[301] 9.521 −1.195 0.249 −0.968 −0.037
5/2−[303] 1/2−[550] 6.815 0.001 0.422 −0.906 0.000
5/2−[303] 1/2−[541] 8.406 0.013 0.999 −0.041 0.002
5/2−[303] 1/2−[530] 10.003 0.012 0.999 0.011 0.001
7/2+[413] 3/2+[422] 5.827 0.366 0.456 −0.889 0.035
7/2+[413] 3/2+[411] 5.156 −1.115 0.927 −0.376 −0.244
9/2+[404] 5/2+[422] 7.518 −0.225 0.509 −0.861 −0.018
9/2+[404] 5/2+[413] 3.424 0.269 0.996 0.088 0.098
9/2+[404] 5/2+[402] 5.414 −1.359 0.962 0.273 −0.293
5/2−[532] 1/2−[301] 6.263 −0.003 0.948 −0.319 −0.001
5/2−[532] 1/2−[550] 3.557 −0.612 0.990 −0.140 −0.213
5/2−[532] 1/2−[541] 5.148 0.388 0.579 0.815 0.053
5/2−[532] 1/2−[530] 6.745 −0.825 0.536 0.844 −0.079
5/2+[413] 1/2+[431] 6.232 −0.261 0.978 −0.206 −0.049
5/2+[413] 1/2+[420] 4.2945 −0.003 0.996 −0.089 −0.009
5/2+[413] 1/2+[411] 4.445 −1.177 0.552 0.834 −0.179
7/2−[523] 3/2−[541] 4.545 −0.518 0.948 0.317 −0.132
5/2+[402] 1/2+[431] 8.222 0.023 0.999 −0.019 0.003
5/2+[402] 1/2+[420] 6.285 −0.183 0.995 0.099 −0.035
5/2+[402] 1/2+[411] 6.435 0.073 0.386 0.923 0.005
7/2+[404] 3/2+[422] 6.754 −0.187 0.982 0.188 −0.033
7/2+[404] 3/2+[411] 6.083 −0.012 0.621 0.784 −0.002
9/2−[514] 5/2−[303] 10.154 −0.008 0.999 0.014 −0.001
9/2−[514] 5/2−[532] 6.896 −0.396 0.533 0.846 −0.037

as a consequence, the underlying nuclear structure is very
sensitive to the occupancy of these single-particle orbitals. We
then have a configuration of N = 5 for states 3/2−[541] and
5/2−[532] that originate from the νh11/2 subshell, N = 4
for states 1/2+[411] and 3/2+[411] that originate from
νg7/2, 3/2+[422] and 5/2+[413] that originate from νd5/2,
1/2+[411] that originates from νs1/2, and finally, 9/2+[404]
that originates from the πg9/2 subshell. Consequently, the
energy-level configuration is more improved when the pairing
effect is added, and then the ground state has an energy
level close to the Fermi level, which corresponds to the
experimentally observed ground state [6,28]. Our theoretical
results (the excited states referred to as the corresponding
ground states) are plotted in comparison to the experimental
ones below the 1-MeV energy window of the plot. The ground
state found in our calculations is assigned to be 3/2+[411],
which rises from νg7/2, which is in good agreement with the

experimental assignment. As discussed in Refs. [6,28], 103Mo
has an excited state at 346.6 keV, assigned to be 5/2−[532]. By
looking at the result of our calculations, this state, localized
at 349.0 keV, is well predicted to originate from the νh11/2

orbital. According to Refs. [6,28], the first excited state 5/2+
is positioned at 102.6 keV, which, in our calculations, may
correspond to the excited state 5/2+[413] that comes from
the νd5/2 orbital. To fix such observations, it is interesting
to study the isotonic behavior of the considered odd-A
nucleus 103Mo where we expect to observe a very similar
spectroscopic scheme in the neighboring nuclei (isotones with
N = 61).

E. One-quasiparticle isotonic systematic trend N = 61

In Fig. 3, we investigate the isotonic chain of N = 61
(99Sr, 101Zr, 103Mo, and 105Ru) by our QPRM model by using
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FIG. 2. Intrinsic states of 103Mo that show the contribution of different terms of quadrupole, recoil forces, and the initial pairing interaction.

the deformation parameters given by Möller et al. [20]. For
each given isotope, the excited states are referred to as the
corresponding ground state. Along this isotonic chain, they
are connected (characterized) by their asymptotic quantum
numbers [N ,nz,�]�π . We compare our predicted results with
the experimental ones of the low-lying one quasineutron from
Refs. [28,30–33]. As we can see, the ground state is well
reproduced at 3/2+[411]. In Refs. [31–33], the level scheme
has been adopted for 99Sr, 101Zr, and 105Ru. An assignment
of 5/2−[532] was suggested from the systematic of the
neighboring nuclei. It appears at E = 423.3 keV for 99Sr,
E = 216.67 and 673.52 keV for 101Zr, and at E = 246.37,
587.0 and 644.03 keV for 105Ru. Within the framework of
our calculations, we localize this state at E = 626, 558, 349,
and 661 keV for 99Sr, 101Zr, 103Mo, and 105Ru, respectively.
In the same way, the first 5/2+ excited state is observed at
E = 102.56 and 107.94 keV in 103Mo and 105Ru, respectively.
By our calculations, it is plotted at E = 161 and 99 keV
as originating from νd5/2 for both isotopes. We also plot the
evolution of the 1/2+ excited state observed at E = 159.52 keV
for 105Ru and localized by our calculations at E = 181 keV
to be raised from νs1/2. Meanwhile, at this stage of the paper,
it appears premature to compare our predictions in terms of
excited energy. The idea, however, is to track the structural
evolution of the ground and excited one-quasiparticle states
along the considered isotonic chain.

The originality of these results for the isotonic chain
(99Sr, 101Zr, 103Mo, and 105Ru) helps us to further study the
systematic of the Mo isotopes (103,105,107Mo), which are the

most difficult to analyze [6,30] and where the blocking effects
of the νh11/2 bands are dominant.

F. One-quasiparticle isotopic systematic trend in 103,105,107Mo

According to the discussions in Refs. [4,6,30,33,34], the
rotational bands of the lowest quasiparticle states in 105Mo
and 107Mo are measured. For 105Mo, a yrast band, built on the
5/2−[532] Nilsson orbital plus five collective bands, is shown.
Among them, three positive-parity bands were proposed to
be built on the 3/2+[411], 5/2+[413], and 1/2+[411] Nilsson
orbitals based on the 246.3-, 310.0-, and 332.0-keV levels,
respectively. This level scheme is redistributed for 107Mo
where the ground state is proposed to be built on the 5/2+[413]
Nilsson orbital. The other excited states 1/2+, 3/2+, and 5/2−
are tentatively assigned and are proposed at 65.4, 66.0, and
66.3 keV, respectively. However, such observations of the
γ -vibrational collective band structure, the high-spin state of
5/2−[532], in odd-A Mo isotopes are treated by using the TRS
model and a medium triaxiality shape [29,30] for 105Mo with
γ ∼ −19◦ [4,26] are shown. Within the cranked shell model,
the blocking effects of the νh11/2 bands in the odd-Mo isotopes
indicate that the h11/2 neutron alignment is responsible for the
first band crossings in the even-Mo isotopes. However, as a
first step, to show this dominance in 105Mo, we performed
Nilsson calculations for 104Mo with ε2 = 0.317. As presented
in Table IV and around the Fermi level, there are many
positive-parity and negative-parity states that originate from
1f5/2, 2p1/2, 1g9/2, 2d5/2, 1g7/2, 3s1/2, and 1h11/2 Nilsson
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FIG. 3. Experimental excitation energies and spin-parity assignments of the noncollective states compared with the QPRM results for the
isotonic chain N = 61. The dashed lines follow the states characterized by the same asymptotic quantum numbers �π [N ,nz,�].

orbits with equal occupancy probability, candidates for the
ground state of 105Mo. Among them, we have a mixture of four
band heads 5/2−[532], 3/2+[411], 5/2+[413], and 1/2+[411]
very close to the Fermi level according to the eigenvalues of
the Nilsson Hamiltonian. In fact, the low-lying states of 105Mo
are built on the correlation of the core particle 104Mo plus the
neutron of valence. If one takes the strong Coriolis effect for
high-spin state 5/2−[532] into account when approaching the
deformation parameter ε2 ∼ 0.3, we could expect a dominance
of the νh11/2 bands in the structure of odd 105Mo.

In Fig. 4, the structural evolution of the ground and one-
quasiparticle excited states along the considered Mo isotopic
chain (103,105,107Mo) can be followed in comparison to the
experimental data from Refs. [4,6,30,33,34] by looking at
the dashed lines that connect the states characterized by
the same asymptotic quantum numbers �π [N ,nz,�]. Our
QPRM calculations provide us with the observed 1/2+, 3/2+,
5/2+, and 5/2− one-quasiparticle configurations in odd Mo.
They nicely reproduce the ground 5/2+[413] and excited
5/2−[532] states in 107Mo. On the other hand, the experimental
configuration is completely interchanged for 105Mo. We obtain
the ground 5/2+[413] state and the sequence of excited
ones 5/2−[532], 1/2+[411], and 3/2+ [411] localized at 63-,
145-, and 169-keV energy levels. This discrepancy with the
experimental observations could be explained by our limited
study on the low-lying states in terms of a soft spherically
deformed shape. As we can see from Fig. 5, for an odd nucleus,

the specific features of the low-energy states are determined
by the orbital of the odd nucleon [35]. The total spin I is built
as the sum of the spin of the odd particle J and the collective
spin of the core R, which is built from all the paired nucleons.

According to the strength of I , we could have two
extreme excitation (coupling) forms of the nucleus: deformed
[Fig. 5(a)] or rotational [Fig. 5(b)] alignments. In our calcula-
tions, we adopted the first case to describe the collective bands
in odd-A Mo isotopes. Then, it was found that, for such an
orbital in a deformed axially symmetric potential, in addition
to parity, only the projection of the angular momentum J on
the symmetry axis � is a preserved quantum number. The
rotational collective energy of an axially symmetric nucleus,
around a symmetry axis, is calculated from Eq. (5) as

Hrot = R2/2� = 1/2�[(I1 − J1)2 + (I2 − J2)2]

= 1/2� [
I 2 − I 2

3 + (
J 2

1 + J 2
2

) − (I+J− + I−J+)
]
. (35)

The term (I+J− + I−J+) corresponds classically to the
Coriolis (centrifugal) force, which describes the coupling
between the motion of the particle in the deformed potential
and the collective rotation. For a small I , this term is treated
in first-order perturbation theory where the influence of the
rotational motion of the intrinsic structure of the nucleus can be
neglected and can be referred to as an adiabatic approximation
or a strong-coupling limit.

The selection rules for J+ and J− are �� = ±1, and
each orbital of the deformed potential is twice degenerated
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TABLE IV. Nilsson energy levels and Coriolis-mixing amplitude for neutron intrinsic states in 105Mo near the Fermi level.

Nilsson orbitals Energy particle (h̄ω) Asymptotic Nilsson components (with corresponding spherical orbitals)

[402](2d3/2) [411](1g7/2) [422](2d5/2) [431](1g9/2)
3/2+[411] 5.710 −0.176 0.918 0.299 −0.189
3/2+[422] 5.416 0.182 −0.136 0.838 0.497

[400](2d3/2) [411](3s1/2) [420](1g7/2) [431](2d5/2) [440](1g9/2)
1/2+[411] 5.902 −0.141 0.893 0.345 −0.217 −0.125
1/2+[420] 5.381 0.177 −0.205 0.797 0.531 −0.093
1/2+[431] 5.139 −0.057 0.296 −0.130 0.661 0.674

[402](1g7/2) [413](2d5/2) [422](1g9/2)
5/2+[413] 5.742 −0.108 0.928 0.356
5/2+[422] 4.969 0.155 −0.334 0.930
5/2+[402] 6.046 0.971 0.225 −0.081

[404](1g7/2) [413](1g9/2)
7/2+[404] 6.150 0.974 0.225
7/2+[413] 5.193 −0.225 0.974

[404](1g9/2)
9/2+[404] 5.504 1.000

[503](2f5/2) [512](1h9/2) [523](2f7/2) [532](1h11/2)
5/2−[532] 5.694 −0.064 0.279 −0.380 0.879

[301](2p1/2) [310](1f5/2) [321](2p3/2) [330](1f7/2)
1/2−[301] 5.135 0.953 0.297 −0.050 −0.039

[503](1h9/2) [514](2f7/2) [523](1h11/2)
7/2−[523] 5.936 0.151 −0.306 0.940

[303](1f5/2) [312](1f7/2)
5/2−[303] 5.118 0.966 0.258

[505](1h9/2) [514](1h11/2)
9/2−[514] 6.204 −0.201 0.980

[501](3p1/2) [510](2f5/2) [521](3p1/2) [530](1h9/2) [541](2f7/2) [550](1h11/2)
1/2−[541] 5.953 0.057 −0.120 0.375 −0.157 0.522 0.737
1/2−[550] 5.411 −0.034 0.129 −0.267 0.495 −0.537 0.613
1/2−[530] 6.156 −0.060 0.326 −0.183 0.725 0.479 −0.318

[501](3p1/2) [512](1h9/2) [521](3p1/2) [532](1h11/2) [541](1h11/2)
3/2−[541] 5.518 0.046 −0.137 0.374 −0.466 0.789

(� = ±1/2). Thus, for the odd particles, the diagonal matrix
elements of the (I+J− + I−J+) term are different from zero.
The K projection of the total angular momentum on the nuclear
symmetry axis is a preserved quantum number, and for no
collective component, it is � = K . On the other hand, the
matrix elements (J 2

1 + J 2
2 ), the recoil term, depend only on

the particle wave functions. This means that they are constant
for one rotational band. We first consider situations where
they are rather small as a first approximation, and we neglect
them [35,36] for leading to a configuration with “two odd
particles.” According to the extreme coupling scheme in Fig. 5,
for high spin νh11/2 bands, the Coriolis term decouples the

nucleons of valence from the rotational collective motion of
the core [Fig. 5(b)]. This blocking effect favors the break of
pairing effect of even-Mo isotopes and then delays the band
crossing of the νh11/2 bands. It is the reason why the 5/2−[532]
band head that originates from νh11/2 does not represent the
fall to be the ground state of 105Mo.

Finally, as we can see from Fig. 4, the systematic trend of
the ground and low-lying states for 103,105,107Mo is calculated
within the framework of the QPRM model, and the intrinsic
states 3/2+[411] and 5/2+[413], except for the case of 105Mo
where the ground state is 5/2−[532], are well reproduced
for 103Mo and 107Mo, respectively. They emanate from the
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FIG. 4. Systematic of one-quasiparticle states in 103,105,107Mo isotopes, compared to the existing data from Refs. [4,6,30,33,34].

spherical shell νg7/2 for 3/2+[411] as well as from νd5/2

for 5/2+[413]. Otherwise, for the case of negative parity,
our calculations predict the existence of two intrinsic states
3/2−[541] and 5/2−[532], which originate from the νh11/2

spherical orbital. Their trend indicates an abrupt change in
position at N = 63. For the nucleus 103Mo, state 3/2−[541] has
a lower energy than 5/2−[532]. This situation is reversed for
the isotopes 105Mo and 107Mo where the energy gap between
these two states grew. This effect is explained in terms of
the deformation parameter, which varies from ε2 = 0.3 for
103Mo to ε2 = 0.317 for 105Mo and 0.325 for 107Mo. Moreover,
our results are completely interchanged in 105Mo. This could
be explained by our manner of only diagonalizing the total

FIG. 5. Schematic of the two extreme coupling schemes:
(a) deformed alignment and (b) rotational alignment.

Hamiltonian for low-spin orbitals. Furthermore, our study of
the low-lying states of 103,105,107Mo should mutually take into
account the two cases shown in Fig. 5. Our work along this
line is still in progress and will be reported elsewhere.

IV. CONCLUSIONS

To summarize, the trend of collective bands, band heads
in neutron-rich Mo-odd isotopes, has been studied at low
energy within the QPRM, inspired from the microscopic
quasiparticle-phonon model of the Soloviev model. We have
first used this approach to study the isotonic trends, the
ground and low-lying one-quasiparticle configurations of 99Sr,
101Zr, 103Mo, and 105Ru. We have shown that the observed
spectroscopic properties have been adjusted from a
competition between a quadrupole and the pairing forces. The
quadrupole force tends to deform the nucleus (γ softness)
in such a situation where the spherical shape is stabilized
by the pairing force. When more nucleons are added to
the spherical shape (closed shell), the relative strength of
the quadrupole force increases, and at a certain point, the
transition to the deformed shape takes place. To understand
such effects, we have then qualitatively studied the isotopic
trends for 103,105,107Mo. We easily reproduced the ground and
some low-lying states of 103Mo and 107Mo. On the other hand,
it was too complicated to reproduce the ground state of 105Mo,
which is owed to the blocking effects of the νh11/2 bands.
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The underlying configuration is interchanged and could be
explained in our manner of diagonalizing the total Hamiltonian
that favors the deformation alignment. We conclude from these
calculations that the study of the high-spin state behavior
of the 5/2−[532] bands in the odd-Mo isotopes requires a
diagonalization of the total Hamiltonian for both rotational
and deformed alignments. There, the rotational alignment
favors states with negative parity, and the deformed one
favors states with positive parity. Then, we are aware of the
challenge to reproduce, in detail, the observed spectroscopic
properties of the particular mass region considered in the
present study. Nevertheless, our spectroscopic levels scheme

at low excitation energy for 103,105,107Mo can be considered as
a plausible step forward to a much more detailed paper, which
is in progress.
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