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Binding energy of light nuclei using the noncritical holography model
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The potential of light nuclei, such as deuteron, tritium, and helium isotopes, are studied using a noncritical
holographic QCD model constructed in the six-dimensional anti–de Sitter (AdS6) supergravity background.
The nucleus potentials are considered as a sum of the nucleon-nucleon potentials. The nucleon-meson coupling
constants evaluated from the noncritical holography QCD model are used to obtain these potentials. The potential
of both ground state and available excited states of these nuclei are well studied using this model. The binding
energy of nuclei has been estimated. Also, the excited energy for the nuclei are roughly calculated. There is good
agreement between the noncritical holography model results and the experimental data.
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I. INTRODUCTION

Nuclear potential and binding energies are important issues
in nuclear physics which are experimentally known with high
accuracy while they are not predicted with sufficient accuracy
using different theoretical models. So, the prediction of nuclear
binding energy is a useful tool to test the goodness of a
theoretical nucleon-nucleon (NN) interaction model.

There are some familiar high-quality one -boson-exchange
potentials (OBEP) to describe the empirical scattering data
(Nijm I, Nijm II, Reid93, CD-Bonn, AV18), but they contain
a large number of purely phenomenological parameters [1–5].
Also, there are many attempts to impose the symmetries of
QCD using an effective Lagrangian of pions and nucleons
[6,7]. Despite many efforts, no potential model has yet been
constructed which gives a high-quality description of the
empirical data, obeys the symmetries of QCD, and contains
only a small number of free phenomenological parameters.

One of the applications of anti–de Sitter space/conformal
field theory (AdS/CFT) duality [8–10] is holographic QCD
introduced recently to solve the strong-coupling QCD prob-
lems such as the chiral dynamics of hadrons in particular
baryons [11–35]. There are many holographic models based
on the critical string theory which describe some features of
QCD well such as the SS model. Recently, some holographic
models were introduced based on the noncritical string theory
as well. One of the them is composed of D4 and anti-D4
brane in six-dimensional noncritical string theory [36–38].
The low energy effective theory on the intersecting brane
configuration is a four-dimensional QCD-like effective theory
with the global chiral symmetry, U (Nf )L × U (Nf )R . In this
brane configuration, the six-dimensional gravity background
is the near horizon geometry of the color D4 brane. This
model is based on the compactified AdS6 space-time with a
constant dilaton. Some of the QCD features are studied in this
model such as the meson spectrum [38] and the structure of
the thermal phase [39]. We have studied the baryon-baryon
interaction in this model [12] and obtained a realistic NN
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potential in terms of the meson exchange potential. Also, the
nucleon-meson coupling constants are calculated using the
AdS6 background [12].

We believe that the noncritical holography model is more
reliable than the critical model to study the NN interactions for
some reasons. At first, the size of the baryon is of order one so
our model does not suffer from the zero size of the baryon in
the critical holographic model. Also, the critical holographic
models have some extra KK modes which do not belong to the
spectrum of pure YM theory. These undesired KK modes come
from the extra internal space over which ten-dimensional
string theory is compactified. In the noncritical holography
model, which we studied here, there is no additional
compactified sphere so there are no such extra KK modes and
the QCD spectrum is clear from these unwanted KK modes.
Thus we expect that the results of the noncritical holographic
model are more reliable than the critical one.

In this paper we aim to calculate the potential of light nuclei
to study binding energies of the ground state and some excited
states and test our NN potential model presented in Ref. [12].
We construct a nuclear holographic model the same as in our
previous papers [13,14] in the noncritical base and calculate
the nucleus potentials as the sum of their NN interactions. The
minimum of the ground state potential is considered as the
binding energy. Also, the difference between this energy and
the minimum of the excited state potential presents the excited
energy for each state. In order to compute the potentials, we
use the values of a nucleon-meson coupling constant which
we calculate using the noncritical holography model. This
paper is organized as follows. In Sec. II we briefly review
the noncritical holography model and present the effective
NN potential in terms of the meson exchange interactions. In
Sec. III we construct a simple model to study light nuclei such
as 2D, 3T, 3He, and 4He to obtain their potential of ground and
excited states and respective binding energies. Section IV is
devoted to compare the results obtained using this model with
the experimental data and also the SS model results [13,14].

II. NN POTENTIAL IN THE NONCRITICAL
HOLOGRAPHIC QCD MODEL

In this section, we briefly describe the noncritical AdS6

model and review the NN interaction potential as presented
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in our recent paper [12]. At the end of this section, we will
review the results of some meson-nucleon coupling constants
which are computed using this model. In the presented
noncritical model, the gravity background is generated by
near-extremal D4 branes wrapped over a circle with the
antiperiodic boundary conditions. Two stacks of flavor branes,
D4 branes and anti-D4 branes, are added to this geometry
as flavor probe branes. The color branes extend along the
directions t, x1, x2, x3, τ while the probe flavor branes fill
the whole Minkowski space and stretch along the radius U
extended to infinity. The strings attached color D4 brane to
a flavor brane transform as quarks, while strings hanging
between a color D4 and a flavor D4 transform as antiquarks.
The chiral symmetry breaking is achieved by a reconnection of
the brane-antibrane pairs. Under the quenched approximation
(Nc � Nf ), the back-reactions of flavor branes with the
color branes can be neglected. Just like the SS model, the
τ coordinate is wrapped on a circle and the antiperiodic
condition is considered for the fermions on the thermal circle.
The final low energy effective theory on the background is a
four-dimensional QCD-like effective theory with the global
chiral symmetry U (Nf )L × U (Nf )R [36–38].

The near horizon gravity background is defined as [38]

ds2 =
(

U

R

)2

(−dt2 + dxidxi + f (U )dτ 2)

+
(

R

U

)2
dU 2

f (U )
, (1)

where f (U ) and RR six-form field strength, F(6) are defined
by the following relations:

F(6) = Qc

(
U

R

)4

dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ du ∧ dτ,

(2)

f (U ) = 1 −
(

UKK

U

)5

.

The values of dilaton and RAdS under the quenched approxi-
mation are as follows:

R2
AdS = 15

2
, eφ = 2

√
2√

3Qc

, (3)

where Qc is proportional to the number of color branes Nc.
To avoid the singularity, the coordinate τ satisfies the

following periodic condition:

τ ∼ τ + δτ, δτ = 4πR2

5UKK
. (4)

Also, the Kaluza-Klein mass scale of this compact dimension
is

MKK = 2π

δτ
= 5

2

UKK

R2
, (5)

and dual gauge field theory for this background is non-
supersymmetric.

Here there is no compact sphere like the critical holographic
models, so we introduce an unwrapped D0 brane as a baryon
vertex. There is a Chern-Simons term on the vertex world-
volume which induced Nc units of electric charge on the

unwrapped D0 brane. In accordance with the Gauss constraint,
the net charge should be zero. So, one needs to attach Nc

fundamental strings to the D0 brane. In turn, the other side of
the strings should end up on the probe D4 branes. The baryon
vertex looks like an object with Nc electric charge respect
to the gauge field on the D4 brane whose charge is the
baryon number. This D0 brane dissolves into the D4 brane
and becomes an instanton soliton.

The DBI action in the Yang-Mills approximation for the
D4 brane is written as

SD4
YM = −1

4
μ4(2πα′)2

∫
d4xdwe−φ

(
U (w)

R

)
trFmnF

mn

= −
∫

dx4dw
1

4e2(w)
trFmnF

mn, (6)

where μ4 = 2π/(2πls)5 and FMN = ∂MAN − ∂NAM −
i[AM,AN ], (M,N = 0, 1, . . . , 5) is the field strength tensor,
and the AM is the U (Nf ) gauge field on the D4 brane. Also,
the new coordinate w is introduced as follows:

dw = R2 U 1/2 dU√
U 5 − U 5

KK

, (7)

to transform the metric to a conformally flat metric [12]. So, the
energy of a point-like instanton localized at w = 0 is obtained
as [12]

m
(0)
B =

√
3/2 4π2μ4 (2 π α′)2R

5
Nc MKK . (8)

The instanton tends to collapse to a point-like object
while the Coulomb repulsions among the strings prefer a
finite size for the instanton. Therefore, there is a competition
between the mass of the instanton and Coulomb energy of
fundamental strings. For a small instanton of size ρ with
the density D(xi, w) ∼ ρ4/(r2 + w2 + ρ2)4, the Yang-Mills
energy is approximated as

∼ 1
6 m

(0)
B M2

KKρ2, (9)

and the five-dimensional Coulomb energy is

∼1

2
× e(0)2N2

c

10π2ρ2
. (10)

The size of an stable instanton comes from minimizing its total
energy as follows:

ρ2
baryon �

√
2/3

2π2μ4 (2 π α′)2

1

M2
KK

. (11)

In the SS model (the critical version of holographic QCD
model) the size of the instanton goes to zero because of the
large ’t Hooft coupling limit. But in noncritical string theory,
the ’t Hooft coupling is of order one implying the size of
instanton also be of order one. However, the baryon is still
smaller than the effective length of the fifth direction ∼1/MKK

of the dual QCD and can be assumed as a point-like object in
five dimensions. Thus the baryon at leading approximation can
be treated as a point-like quantum field in five dimensions. We
considered an effective action for the baryon field consist of
the standard Dirac kinetic, a position-dependent mass term, the
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five-dimensional gauge field and couplings between nucleon
and quantum field. Therefore, a complete action for the baryon
reads as ∫

d4xdw

[
−iN̄γ mDmN − imb(w)N̄N

+ g5(w)
ρ2

baryon

e2(w)
N̄γ mnFmnN

]

−
∫

d4xdw
1

4e2(w)
tr FmnF

mn, (12)

where Dm is a covariant derivative, ρbaryon is the size of the
stable instanton, and g5(w) is an unknown function with a
value at w = 0 of 2π2/3 [23]. γ m are the standard γ matrices
in the flat space and γ mn = 1/2[γ m, γ n].

A four-dimensional nucleon is the localized mode at w � 0
which is the lowest eigenmode of a five-dimensional baryon
along the w direction. So, the action of the five-dimensional
baryon must be reduced to the four dimension. In order to do
this, one should perform the KK mode expansion for the baryon
field N (xμ,w) and the gauge field A(xμ,w). The baryon field
can be expanded as

NL,R(xμ,w) = NL,R(xμ)fL,R(w), (13)

where NL,R(xμ) is the chiral component of the four-
dimensional nucleon field. Also the profile functions, fL,R(w)
satisfy the following conditions:

∂wfL(w) + mb(w)fL(w) = mBfR(w),
(14)

−∂wfR(w) + mb(w)fR(w) = mBfL(w),

in the range w ∈ [−wmax, wmax], and the eigenvalue mB is the
mass of the nucleon mode, N (x). Moreover, the eigenfunctions
fL,R(w) obey the following normalization condition:

∫ wmax

−wmax

dw |fL(w)|2 =
∫ wmax

−wmax

dw |fR(w)|2 = 1. (15)

It is shown that the fL(w) tends to shift to the positive side
of w under w → −w and the opposite behavior happens for
fR(w). It is important in the axial coupling of the nucleon to
the pions.

Also, the gauge field has a mode expansion at Az = 0 gauge
as

Aμ(x,w) = iαμ(x)ψ0(w) + iβμ(x) +
∑

n

B(n)
μ (x)ψ(n)(w),

(16)

where αμ and βμ are related to the pion field U (x) = e2iπ(x)/fπ

by the following relations:

αμ(x) ≡ {U−1/2, ∂μU 1/2},
(17)

βμ(x) ≡ 1
2 [U−1/2, ∂μU 1/2].

By inserting the mode expansion of the baryon field and
gauge field into Eq. (12), the baryon action is reduced to
four dimensions. After performing integration over the extra

dimension, we obtained the four-dimensional NN Lagrangian
[12] as

Lnucleon = −iN̄γ μ∂μN − imBN̄N + Lvector + Laxial, (18)

and

Lvector = −iN̄γ μβμN −
∑
k�0

g
(k)
V N̄γ μB(2k+1)

μ N,

(19)

Laxial = − igA

2
N̄γ μγ 5αμN −

∑
k�1

g
(k)
A N̄γ μγ 5B(2k)

μ N.

It should be mentioned that there are two types of coupling
constants, namely the direct magnetic coupling to the 5D gauge
field strength and the minimal coupling in kinetic term. In
fact g = gmin + gmag for all couplings. The various minimal
coupling constants g

(k)
V,min, g

(k)
A,min as well as the pion-nucleon

axial coupling gA,min are calculated by suitable wave-function
overlap integrals as [12]

g
(k)
V,min =

∫ wmax

−wmax

dw |fL(w)|2 ψ(2k+1)(w),

g
(k)
A,min =

∫ wmax

−wmax

dw |fL(w)|2 ψ(2k)(w), (20)

gA,min = 2
∫ wmax

−wmax

dw |fL(w)|2 ψ0(w).

Also, the magnetic coupling constants are calculated using the
following integrals:

g
(k)
V,mag = 2 Cmag

∫ wmax

−wmax

dw

(
g5(w)

g5(0)

)(
U (w)

UKK

)

× |fL(w)|2∂wψ(2k+1)(w),

g
(k)
A,mag = 2 Cmag

∫ wmax

−wmax

dw

(
g5(w)

g5(0)

)(
U (w)

UKK

)

×|fL(w)|2∂wψ(2k)(w), (21)

gA,mag = 4 Cmag

∫ wmax

−wmax

dw

(
g5(w)

g5(0)

)(
U (w)

UKK

)

× |fL(w)|2 ∂wψ0(w).

The parameter Cmag is defined as [12]

Cmag =
√

3/2 μ4 (2 π α′)2

5
R Nc g5(0) MKK ρ2

baryon. (22)

Also the meson field should be written in the nucleon
isospin representation. for the isoscalar mesons, such as
ω(k) meson, only the minimal couplings contribute while the
isovector mesons couple to the nucleon from both minimal
and magnetic channels [12]. We calculate the minimal and
magnetic couplings for the vector mesons using the noncritical
holography model. Then, by using them we obtain the ω(k)

and ρ(k) meson couplings to the nucleon for k = 10. These
couplings along with the mass of these mesons are shown in
Table I. The mass of mesons obtained by solving the eigenvalue
equation of meson fields [12]. Also, we calculate the couplings
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TABLE I. Numerical results for the vector meson-nucleon cou-
plings g

(k)
V , and the couplings to the lowest ten vector mesons, gω(k)

and gρ(k) , using the noncritical holographic QCD model. The vector
meson mass square is in the unit of M2

KK .

k g
(k)
V,mag g

(k)
V,min gω(k) gρ(k) m2

2k+1

0 −1.9889 7.7251 11.5727 2.8630 0.5516
1 −6.8384 7.3315 10.9974 0.24 3.0593
2 −7.4493 7.2420 10.863 0.1036 7.6012
3 −4.6067 7.2211 10.8317 1.3072 14.1905
4 −4.4327 7.2147 10.8222 1.3910 22.8274
5 −6.6083 7.2133 10.8200 0.3024 33.5191
6 −6.1778 7.2137 10.8206 0.5179 46.2717
7 −4.0509 7.1740 10.7611 1.5616 60.3053
8 −4.4701 7.1725 10.7589 1.3512 76.8821
9 −6.5703 7.1714 10.7572 0.3005 95.4673

of the axial mesons and then obtained the couplings of a(k)

and f (k) mesons to the nucleon. The mass of these mesons
and their couplings to the nucleon are shown in Table II. The
square mass of mesons are in the unit of M2

KK .
Various mesons and their resonances play an special role

in producing the NN potential. The long-range part of the
NN potential (r > 3 fm) is mostly due to the one pion
exchange mechanism which is the strongest component among
the isospin dependent components. Isospin independent scalar
mesons are responsible for the attractive interaction in the
intermediate range of the potential (0.7 < r < 2 fm). This
components are mainly responsible for the nuclear binding.
Also in the phenomenological interaction models, the strength
of this interaction is equal to the vector meson exchange with a
minus sign. In fact the radial shapes differ considerably at short
distances, ranging from attractive to repulsive. Some of these
potential models just involve the scalar meson exchange and
another contain the vector meson exchange interaction. We
consider the vector meson exchange in our analysis which
produce the strong short-range repulsion. Exchanging the
vector meson ρ can explain the small attractive behavior of
the odd-triplet state.

TABLE II. Numerical results for the axial vector mesons-nucleon
couplings g

(k)
A , and the couplings to the lowest ten axial vector mesons,

ga(k) and gf (k) , using the noncritical holographic QCD model. The
axial vector meson mass square is in the unit of M2

KK .

k g
(k)
A,mag g

(k)
A,min ga(k) gf (k) m2

2k

1 4.2648 1.1659 2.7154 1.7489 1.5389
2 5.3813 1.0718 3.2301 1.6189 5.0877
3 7.8574 0.9692 4.4133 1.4539 10.6404
4 10.3344 0.6713 5.5028 1.0069 18.2525
5 12.8068 0.4188 6.6128 0.6282 27.9160
6 15.2780 0.3020 7.7900 0.4531 39.6300
7 17.7493 0.2743 9.0118 0.4115 53.4224
8 20.0849 0.2620 10.1734 0.3930 68.3462
9 22.528 0.2359 11.3820 0.3539 85.9293
10 24.9705 0.2061 12.5885 0.3092 105.5220

Finally, we consider the following general form for the NN
potential as:

VNN = Vπ + Vη′ +
∞∑

k=1

Vρ(k) +
∞∑

k=1

Vω(k)

+
∞∑

k=1

Va(k) +
∞∑

k=1

Vf (k) , (23)

which contains the pseudoscalar (π, η′), vector (ρ(k), ω(k)), and
axial vector (a(k), f (k)) meson exchange potentials, respec-
tively. It should be noted that despite of the phenomenological
NN interaction model, here we compute all of the nucleon-
meson couplings contribute in the above potential using the
noncritical holography model. In our calculations, the leading
parts of potential come from the pseudoscalar meson π ,
isoscalar vector meson ω(k), isovector vector meson ρ(k), and
isovector axial vector meson a(k) exchange interactions. So,
the holographic NN potential is written as [13,14]

V
holography
NN = VC(r) + (

V σ
T (r)�σ1 · �σ2 + V S

T (r)S12
) �τ1 · �τ2,

(24)

where VC(r), V σ
T (r), and V S

T (r) are obtained as functions of
holographic meson exchange potentials as [13,14]

VC(r) =
10∑

k=1

1

4π
(gω(k)NN )2 mω(k) y0(mω(k)r), (25)

V σ
T (r) =

10∑
k=1

1

4π

(
gρ(k)NNMKK

2mN

)2 m3
ρ(k)

3M2
KK

[2y0(mρ(k)r)]

+
10∑

k=1

1

4π
(ga(k)NN )2 ma(k)

3
[−2y0(ma(k)r)], (26)

and

V S
T (r) = 1

4π

(
gπNNMKK

2mN

)2 1

M2
KKr3

+
10∑

k=1

1

4π

(
gρ(k)NNMKK

2mN

)2 m3
ρ(k)

3M2
KK

[−y2(mρ(k)r)]

+
10∑

k=1

1

4π
(ga(k)NN )2 ma(k)

3
[y2(ma(k)r)], (27)

where

S12 = 3(�σ1 · r̂)(σ2 · r̂) − �σ1 · �σ2, (28)

and

y0(x) = e−x

x
, y2(x) =

(
1 + 3

x
+ 3

x2

)
e−x

x
. (29)

The mass of pion in the holographic model is zero and its
coupling constant to the nucleon in our approach is 15.7.

III. POTENTIAL OF LIGHT NUCLEI

In this section, we aim to employ the model which we
introduced in Refs. [13,14] for the light nuclei and obtain
their potential using the results of noncritical holographic
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NN interaction model. We assume that each nucleus consist
of the point-like nucleons which sit on the some simple
topological structures. Then we consider a sum of the NN
interactions as the total nucleus potential. We use the NN
holography potential discussed in previous section, as the NN
interactions. The values of nucleon-meson coupling constants
which are presented in Tables I and II are used in the numerical
calculations.

The simplest and lightest nucleus is deuteron which
contains one proton and one neutron. We assume that proton
and neutron are located at a distance r from each other and
consider the following potential for the deuteron:

V
holography

deuteron = VC + (
V σ

T �σ1 · �σ2 + V S
T S12

) �τ1 · �τ2, (30)

where VC(r), V σ
T (r), and V S

T (r) are presented in
Eqs. (14)–(16), respectively. As is well known, the spin-parity
of deuteron is 1+, so the values of spin and isospin interactions
can be determined using the superselection rules

S12 = 2, �σ1 · �σ2 = 1, �τ1 · �τ2 = −3. (31)

The deuteron potential has been calculated numerically and
shown in Fig. 1. The minimum of this potential is considered
the deuteron binding energy. We use the values of Nc = 3
and mN = 920 MeV. Also, we choose MKK = 0.372 GeV to
obtain the best value for the deuteron binding energy EB =
−2.22 MeV.

The next nucleus which we considered here is tritium
which is composed of three nucleons, two neutrons and one
proton. We propose a equilateral triangular configuration for
the tritium nucleus in which the distance between each two
nucleons is r . We suppose that the total potential of the nucleus
is the sum of the all nucleon-nucleon interaction potentials
which are parameterized in terms of a single parameter r . In
fact, the radius of the nucleus can be expresses in terms of
parameter r . Finally, we write the following potential for the

FIG. 1. The 2D potential using the noncritical holography in MeV.
The minimum of the potential is considered as the deuteron binding
energy.

FIG. 2. The 3T potential using the noncritical holography in MeV.
The minimum of the potential is considered as the tritium binding
energy.

tritium:

V
holography

tritium = V12 + V13 + V23

= 3 VC(r) + (
V σ

T (r)�σ1 · �σ2 + V S
T (r)S12

) �τ1 · �τ2

+ (
V σ

T (r)�σ1 · �σ3 + V S
T (r)S13

) �τ1 · �τ3

+ (
V σ

T (r)�σ2 · �σ3 + V S
T (r)S23

) �τ2 · �τ3. (32)

The superselection rules for this three-nucleon systems imply
that

S12 = 2, �σ1 · �σ2 = 1, �τ1 · �τ2 = −3,

S13 = 0, �σ1 · �σ3 = −3, �τ1 · �τ3 = −3, (33)

S23 = 0, �σ2 · �σ3 = −3, �τ2 · �τ3 = 1.

By substituting the values of Nc = 3, mN = 920 MeV,
and MKK = 600 MeV in Eq. (32), the potential of tritium is
calculated numerically and plotted in Fig. 2. This potential
has a minimum which shows the tritium binding energy is
EB = −8.4382 MeV in this model.

In order to study the 3He nucleus, it is necessary to add the
repulsive Coulomb energy to the potential. So, we consider
the following potential for the 3He nucleus:

V
holography

3He = V12 + V13 + V23

= 3VC(r) + Ec(r)

+ (
V σ

T (r)�σ1 · �σ2 + V S
T (r)S12

) �τ1 · �τ2

+ (
V σ

T (r)�σ1 · �σ3 + V S
T (r)S13

) �τ1 · �τ3

+ (
V σ

T (r)�σ2 · �σ3 + V S
T (r)S23

) �τ2 · �τ3, (34)

where Ec(r) is the Coulomb repulsion between two instantons
carrying Nc unit of electric charge [14]. The protons of 3He
in the ground state have the opposite spin directions, so the
spin-parity of the 3He nucleus in the ground state is 1

2
+

. On
the other hand, we should have L + S + T = 1 for a system
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FIG. 3. The 3He potential using the noncritical holography in
MeV. The minimum of the potential is considered as the 3He binding
energy.

of two nucleons. It is well known that the nucleons in the
ground state of the 3He are in L = 0 state. So, by using the
superselection rules we obtain

S12 = 0, �σ1 · �σ2 = −3, �τ1 · �τ2 = 1,

S13 = 2, �σ1 · �σ3 = 1, �τ1 · �τ3 = −3, (35)

S23 = 0, �σ2 · �σ3 = −3, �τ2 · �τ3 = 1.

We choose again MKK = 372 MeV and plot the total
potential of this nucleus in Fig. 3. The binding energy of the
3He nucleus is the minimum of this potential which is about
EB = −7.8686 MeV. If we consider another sets of nucleons
in 3He such that the spin of protons be in a parallel direction,
the spin- parity of the 3He nucleus should be equal to ( 3

2 )+. By
superselection rules, we have

S12 = 2, �σ1 · �σ2 = 1, �τ1 · �τ2 = 1,

S13 = 2, �σ1 · �σ3 = 1, �τ1 · �τ3 = −3, (36)

S23 = 2, �σ2 · �σ3 = 1, �τ2 · �τ3 = −3.

We plot the nucleus potential for this state in Fig. 4. As it
is indicated from Fig. 4, there is no bound state in this case.
Thus we conclude that there is no excited state for the 3He
nucleus, as we obtained before in the critical holography QCD
model [14].

There are more than one possible configurations for a
system with four nucleons. The most symmetric configurations
are tetrahedron, diamond, and square configurations. If we
suppose that the nucleons are located in the corners of a
tetrahedron configuration which is made of four equilateral
triangles, the distance between any two nucleons is similar.
So, the total potential is sum of the six nucleon-nucleon
interactions with a same relative distance. But, we know
that the Coulomb interaction between protons prefers a larger
proton-proton distance than neutron-neutron or neutron-proton
distances. If two protons sit on the contrary corners of a square,
then the proton-proton distance is larger than the neutron-
proton distance. So, we consider the square configuration for

FIG. 4. The holographic potential for the excited state of the 3He
nucleus in MeV using the noncritical holography. As is indicated
from the plot, there is no bound state in this case.

the 4He nucleus and write the potential of the 4He nucleus as

V
holography

4He = V12 + V13 + V14 + V23 + V24 + V34

= 4VC(r) + 2VC(
√

3r) + Ec(
√

2r)

+ (
V σ

T (r)�σ1 · �σ2 + V S
T (r)S12

) �τ1 · �τ2

+ (
V σ

T (r)�σ1 · �σ3 + V S
T (r)S13

) �τ1 · �τ3

+ (
V σ

T (
√

2r)�σ1 · �σ4 + V S
T (

√
2r)S14

) �τ1 · �τ4

+ (
V σ

T (
√

2r)�σ2 · �σ3 + V S
T (

√
2r)S23

) �τ2 · �τ3

+ (
V σ

T (r)�σ2 · �σ4 + V S
T (r)S24

) �τ2 · �τ4

+ (
V σ

T (r)�σ3 · �σ4 + V S
T (r)S34

) �τ3 · �τ4. (37)

It is well known from the Pauli exclusion rule that the spins
of two protons (neutrons) have opposite directions and the
4He nucleus in the ground state has the spin-parity 0+. The
superselection rules for this structure imply that

S12 = 0, �σ1 · �σ2 = −3, �τ1 · �τ2 = 1,

S13 = 2, �σ1 · �σ3 = 1, �τ1 · �τ3 = −3,

S14 = 0, �σ1 · �σ4 = −3, �τ1 · �τ4 = 1,
(38)

S23 = 0, �σ2 · �σ3 = −3, �τ2 · �τ3 = 1,

S24 = 2, �σ2 · �σ4 = 1, �τ2 · �τ4 = −3,

S34 = 0, �σ3 · �σ4 = −3, �τ3 · �τ4 = 1.

The total potential for the ground state of the 4He nucleus
is plotted in Fig. 5. We choose MKK = 533 MeV to obtain the
4He binding energy about EB = −28.3527 MeV.

Also, the potential of 4He is obtained for its excited states
with (2−, T = 1), (2−, T = 0), and (1−, T = 1) by consid-
ering various structures for the spin-parity of nucleons. The
holographic potential for each excited state has a minimum.
The excited energies of these states can be regarded as the
difference between the minimum point of a potential in each
state and the binding energy of the nucleus.
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FIG. 5. The 4He potential using the noncritical holography in
MeV. The minimum of the potential is considered as the 4He binding
energy.

If two nucleons (two protons or neutron) have the same
spin directions and occupy the level L = 1, we find the excited
level with 2−, T = 1 and excited energy Eex = 23.330 MeV.
Superselection rules for this state lead to

S12 = 2, �σ1 · �σ2 = 1, �τ1 · �τ2 = 1,

S13 = 0, �σ1 · �σ3 = −3, �τ1 · �τ3 = −3,

S14 = 2, �σ1 · �σ4 = 1, �τ1 · �τ4 = 1,
(39)

S23 = 0, �σ2 · �σ3 = −3, �τ2 · �τ3 = 1,

S24 = 2, �σ2 · �σ4 = 1, �τ2 · �τ4 = 1,

S34 = 0, �σ3 · �σ4 = −3, �τ3 · �τ4 = −3.

Numerical values for the potential of this excited state are
shown in Fig. 6. For this state we obtain Eex = 25.1005 MeV

FIG. 6. The holographic potential for excited state of the 4He
nucleus with spin-parity 2− and T = 1 in MeV using the noncritical
holography.

FIG. 7. The holographic potential for an excited state of the 4He
nucleus with spin-parity 2− and T = 0 in MeV using the noncritical
holography.

using the value MKK = 395 MeV, while such excited state is
not predicted by the SS model [14].

In another structure, we suppose that the spins of two
protons (or neutrons) have the same directions and one of
them occupies the L = 1 level. In this case, the spin-parity
of the state is 2−. It may be treated as an excited state of
the 4He nucleus with spin-parity and isospin 2−, T = 0 and
the excited energy Eex = 21.840 MeV. In order to calculate its
holographic potential, the following values which are obtained
from the superselection rules have been used:

S12 = 2, �σ1 · �σ2 = 1, �τ1 · �τ2 = −3,

S13 = 0, �σ1 · �σ3 = −3, �τ1 · �τ3 = 1,

S14 = 2, �σ1 · �σ4 = 1, �τ1 · �τ4 = 1,
(40)

S23 = 0, �σ2 · �σ3 = −3, �τ2 · �τ3 = 1,

S24 = 2, �σ2 · �σ4 = 1, �τ2 · �τ4 = 1,

S34 = 0, �σ3 · �σ4 = −3, �τ3 · �τ4 = −3.

This potential has been plotted in Fig. 7. The exited energy
for this state is obtained about Eex = 21.8237 MeV using the
value MKK = 395 MeV.

If the spin of proton (neutron) in the L = 1 level couples
with the spin of the proton (neutron) in the L = 0 state, we
find another excited state with the 1−, T = 1 and the measured
excited energy Eex = 23.640 MeV. In this case we have

S12 = 2, �σ1 · �σ2 = 1, �τ1 · �τ2 = 1,

S13 = 0, �σ1 · �σ3 = −3, �τ1 · �τ3 = −3,

S14 = 0, �σ1 · �σ4 = −3, �τ1 · �τ4 = −3,
(41)

S23 = 0, �σ2 · �σ3 = −3, �τ2 · �τ3 = 1,

S24 = 0, �σ2 · �σ4 = −3, �τ2 · �τ4 = 1,

S34 = 2, �σ3 · �σ4 = 1, �τ3 · �τ4 = −3.

We substitute these values with the potential of 4He nuclei
and plot the potential in Fig. 8. In this case, we obtain Eex =
23.658 MeV by choosing the value MKK = 305 MeV.
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FIG. 8. The holographic potential for an excited state of the 4He
nucleus with spin-parity 1− and T = 1 in MeV using the noncritical
holography.

IV. CONCLUSION

In this paper we used the noncritical holographic version
of the NN potential to calculate the potential of some light
nuclei. The noncritical holographic NN potential involves only
the exchanges of pions, isospin singlet mesons, isospin triplet
mesons, and triplet axial-vector mesons. All nucleon-meson
coupling constants employed to calculate the potentials are cal-
culated using the noncritical AdS6 background. We employed
a toy model to calculate the nucleus potential in which the
nucleons sit down in the corners of some simple geometrical
structures and interact with each other by exchanging the
mesons. The sum of the NN interactions is considered as the
total nucleus potential. The number of possible configurations
for a system composed of four nucleons is more than one, such
as tetrahedron, square, and diamond configurations. Our po-
tential depends on the relative distance between the nucleons of
the nucleus, but we can fit the minimum of the nucleus potential
by choosing the appropriate value of MKK . So, we considered
the diamond configuration for the 4He nucleus which is more
sensible because the proton-proton distance is larger than the
proton-neutron and neutron-neutron distances. It is necessary
to mention that our model considers a simple configuration for
the nucleus in which nucleons are located at average distances.
Also, by assuming the different structures for the spin and

TABLE III. The obtained binding energy of 2D, 3T, 3He, and 4He
nuclei with Nc = 3 and mN = 0.92 GeV. The results have a good
consistency with the experimental nuclear data [40,41]. All energies
are in MeV.

Nuclei MKK Enc
B Ec

B [13,14] Eexp [40–43]

2D 372 2.22 2.20 2.17 ± 0.0
3T 600 8.432 1.03 8.48
3He 372 7.8680 7.41 7.71
4He 533 28.3527 28.58 28.30

TABLE IV. The obtained excited energy of 3He and 4He nuclei
with Nc = 3 and mN = 0.92 GeV. The results have a good agreement
with the experimental nuclear data [40,41]. All energies are in MeV.

Nuclei J P MKK Enc
Ex Ec

Ex [13,14] E
exp
ex [40,41]

3He 3
2

+
– – – no state

4He 2−, T = 0 395 21.8237 22.00 21.840
4He 2−, T = 1 395 25.1001 – 23.330
4He 1−, T = 1 305 23.658 23.17 23.640

isospin of nucleons, we have calculated the potential of excited
states and estimated the excited energy of nuclei.

Also, we can expand our model to study nuclei heavier than
the helium nucleus. But we have to be concerned that the large
number of instantonic baryons in the geometry back-reacts
and deforms the geometry. In this case, we have to solve the
equations of motion for the gravitating dyonic multi-instantons
and find a supergravity solution. So, the toy model which we
introduced can be used just for the study of light nuclei.

In general, the considered potential in this model tends to
zero at r → ∞ and becomes infinity at small distances which
is well established for nuclear knowledge. The minimum of
the potential in the ground state is considered as the binding
energy of the nucleus. Moreover, the difference between the
minimum of the excited state potential and the nucleus binding
energy have been considered as the excited energy of the
corresponding state. We applied our method for the deuteron
2D, tritium 3T, and two isotopes of helium, namely 3He and
4He nuclei.

To obtain the numerical results, Nc = 3 has been chosen
for the realistic QCD. Also, we obtained the value of the
nucleon mass at about mN = 0.92 GeV which is very close to
the experimental nucleon mass. In our numerical calculations
there is only one free parameter MKK . The results of the binding
energy and excited energies are compared with results of the
SS model and experiments in Tables III and IV. As is indicated
from the tables, our results are in a good agreement with the
experimental nuclear data. Moreover, our potential has only
one free parameter which allows us to fit our results with the
experimental data.

In Table V, we compare our numerical results for the light
nuclei binding energies with the predictions of the modern

TABLE V. 3N and 4N binding energies for various NN potentials
[44] compared with the our holographic model results and experi-
mental values. C-H and NC-H refer to the critical holographic [20]
and noncritical holographic potential [12] models, respectively. All
energies are in MeV.

Potential EB (T ) EB (3He) EB (4He)

CD Bonn −8.012 −7.272 −26.26
AV18 −7.623 −6.924 −24.28
Nijm I −7.736 −7.085 −24.98
Nijm II −7.654 −7.012 −24.56
C-H −1.03 −7.41 −28.58
NC-H −8.4320 −7.8680 −28.3527
Exp −8.48 −7.72 −28.30
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TABLE VI. Comparison of the 4He binding energy obtained from
our model with the results of some other theoretical models based on
chiral low-momentum interactions [45,46].

Method EB (4He) [MeV]

Faddeev-Yakubovsky −28.65(5)
Hyperspherical harmonics −28.65(2)
CCSD (CC with singles and doubles) −28.44
�-CCSD(T) (CC with triples corrections) −28.63
Critical holography model (SS model) −28.58
Noncritical holography model(AdS6 model) −28.3527

phenomenological NN potential models [44]. It is obvious
that our results obtained using the noncritical holographic NN

potential have a significant agreement with the experimental
data. It should be noted that we calculated all of the
parameters of the noncritical holographic NN potential [12]
and also, our toy model for calculating the binding energy
has just one free parameter which is the mass scale of the
model, MKK .

Also, we compare our results for the 4He binding energy
with the results obtained from other methods [45,46], such as
Faddeev-Yakubovsky, hyperspherical harmonics, CCSD (CC
with singles and doubles), and �-CCSD(T) (CC with triples
corrections) in Table VI. It is necessary to mention that our
model depends on just one parameter which is MKK , whereas
the other theoretical models in nuclear literature have more
than one parameter.
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