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Isovector pairing in a formalism of quartets for N = Z nuclei

M. Sambataro1 and N. Sandulescu2

1Istituto Nazionale di Fisica Nucleare–Sezione di Catania, Via Santa Sofia 64, I-95123 Catania, Italy
2National Institute of Physics and Nuclear Engineering, Post Office Box MG-6, Magurele, Bucharest, Romania

(Received 8 October 2013; published 16 December 2013)

We describe the ground state of the isovector pairing Hamiltonian in self-conjugate nuclei by a product of
collective quartets of different structures built from two neutrons and two protons coupled to total isospin T = 0.
The structure of the collective quartets is determined by an iterative variational procedure based on a sequence
of diagonalizations of the pairing Hamiltonian in spaces of reduced size. The accuracy of the quartet model is
tested for N = Z nuclei carrying valence nucleons outside the 16O, 40Ca, and 100Sn cores. The comparison with
the exact solutions of the pairing Hamiltonian, obtained by shell model diagonalization, shows that the quartet
model is able to describe the isovector pairing energy with very high precision. The predictions of the quartet
model are also compared to those of the simpler quartet condensation model in which all the collective quartets
are assumed to be identical.
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In self-conjugate nuclei the isovector proton-neutron pair-
ing is expected to coexist in an equal amount with the
neutron-neutron and proton-proton pairings, as a consequence
of isospin invariance of nuclear forces [1]. The most common
approach employed to treat the isovector pairing in these
nuclei is the generalized BCS model [2–4]. In this approach,
however, the proton-neutron pairs do not coexist with the
like-particle pairs. More precisely, in BCS one usually gets
two degenerate solutions for the ground state of nuclei with
N = Z, namely a solution with only proton-neutron pairs
and a solution with only like-particle pairs [4,5]. As can be
seen from the comparison with exactly solvable SO(5) pairing
models, the two BCS solutions do not mix with each other
because of the isospin symmetry breaking [6,7]. On the other
hand, restoring the isospin symmetry in BCS-like models is
not enough to obtain a proper description of the isovector
pairing correlations even if, in addition, particle number
conservation is also restored [8]. This fact indicates the need
for a more general isospin-conserving formalism which goes
beyond the BCS-based approximations. One such formalism,
explored in Ref. [8], is the generator coordinate method (GCM)
applied on a projected BCS state. An alternative approach,
proposed recently in Refs. [9,10], describes the isovector
pairing correlations in terms of a condensate of identical α-like
quartets built by two neutrons and two protons coupled to a
total isospin T = 0. The aim of this study is to propose a
more general quartet model approach in which the isovector
pairing in the ground state of N = Z nuclei is described
not as a condensate of identical quartets but as a product
of quartets all having different structures. It will be shown
that by this extension the quartet model gives results which
reproduce almost exactly the solutions of realistic isovector
pairing Hamiltonians.

The isovector pairing correlations are described by the
Hamiltonian

Ĥ =
∑

i

εi

(
Nν

i + Nπ
i

) +
∑
i,j

Vij

∑
τ

P +
i,τ Pj,τ . (1)

In the first term the operators Nν
i and Nπ

i are, respectively,
the neutron and proton number operators and εi are the single-
particle energies. Because in this study we treat only systems
with N = Z and since the Coulomb force is not taken into
account, the single-particle energies are considered to be the
same for both protons and neutrons. The pairing interaction is
written in terms of the pair operators

P +
i,τ = [a+

i a+
ī

]T =1
τ (2)

where ī stands for the time conjugate of the state i and τ
denotes the three projections of the isospin T = 1 correspond-
ing to neutron-neutron (τ = 1), proton-proton (τ = −1), and
proton-neutron (τ = 0) pairs. The Hamiltonian (1) with a
state-independent interaction strength, i.e., Vij = g, can be
solved analytically [11–14].

To describe the ground state of the Hamiltonian (1) for
systems with N = Z we use as building blocks not Cooper
pairs, as done in BCS-type models, but collective quartets
formed by two neutrons and two protons. Thus, we first
introduce a set of noncollective quartets composed by two
isovector pairs coupled to T = 0:

A+
ij = [P +

i P +
j ]T =0 = 1√

3
(P +

i,1P
+
j,−1 +P +

i,−1P
+
j,1 − P +

i,0P
+
j,0).

(3)

With these noncollective quartets we then construct the
collective quartets:

Q+
ν =

∑
i,j

q
(ν)
ij A+

ij . (4)

Finally, with these collective quartets, we define the state

|�gs〉 =
N∏

ν=1

Q†
ν |0〉. (5)

This quartet state provides our ansatz for the ground state of
the isovector pairing Hamiltonian (1) in the case of even-even
proton-neutron systems with N = Z. It is worth mentioning
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that the present quartet model is different from the roton
model of Arima and Gillet [15] whose quartets, as well as
the proton and neutron pairs explicitly forming them, are
allowed to couple to any angular momentum. Due to such a
feature, the roton model appears to be more suited to describe
the quarteting in heavy deformed nuclei where protons and
neutrons occupy different valence shells and the proton-
neutron pairing in not expected to play any important role.

The quartet state (5) depends on the mixing amplitudes
which define the collective quartets (4). In order to search
for the most appropriate q

(ν)
ij ’s we make use of an iterative

variational procedure. This procedure is basically identical to
that we have recently used in the case of like-particle quartets
[16] and draws inspiration from an analogous technique
previously developed for a treatment of pairing correlations
in terms of a set of independent pairs [17]. The procedure
consists of a sequence of diagonalizations of the Hamiltonian
in spaces of a rather limited size. In more detail, let us suppose
that, at a given stage of the iterative process, one knows the
state (5). Let us construct the space

F
(ρ)
N =

{
[P †

i P
†
j ]T =0

N−1∏
ν=1(ν �=ρ)

Q†
ν |0〉

}
1�i�j�	

(6)

(	 being the number of single-particle states). The states of
F

(ρ)
N are generated by acting with the operators [P †

i P
†
j ]T =0

on the product of all the quartets Q†
ν but the ρth one. The

dimension of each space (6) is therefore at most 	(	 + 1)/2
and one can form N such spaces. By diagonalizing the
Hamiltonian in F

(ρ)
N and searching for the lowest eigenstate,

one constructs the state

∣∣�(new)
gs

〉 = Q†(new)
ρ

N−1∏
ν=1(ν �=ρ)

Q†
ν |0〉. (7)

This differs from |�gs〉 only for the new quartet Q†(new)
ρ and

its energy is by construction lower than (or, at worst, equal
to) that of |�gs〉. As a result of this operation, the quartet
Q†(new)

ρ has updated Q†
ρ while all the other quartets have

remained unchanged. At the same time the energy of |�gs〉
has been driven towards its minimum. Performing a series
of diagonalizations of H in F

(ρ)
N for all possible ρ values

(1 � ρ � N ) exhausts what we define as an alternative cycle.
At the end of a cycle all the quartets Q†

ν have been updated
and a new cycle can then start. The sequence of iterative cycles
goes on until the difference between the ground-state energy at
the end of two successive cycles becomes vanishingly small.
In practice, in order to describe a system with N quartets, one
proceeds step-by-step starting from the case of just one quartet.
The diagonalization of H in the space F

(1)
1 , which simply

consists of the states [P †
i P

†
j ]T =0|0〉, generates Q

†
1. For N = 2,

the diagonalization in F
(2)
2 , with Q

†
1 taken from the previous

calculation, generates the first approximation of the quartet Q†
2.

Iterating these diagonalizations in F
(1)
2 and F

(2)
2 gives rise to

the final quartets Q
†
1 and Q

†
2 for N = 2. Similarly, for N = 3,

the diagonalization in F
(3)
3 , with Q

†
1 and Q

†
2 taken from the

previous calculation, generates the first approximation of the
quartet Q

†
3, and so on.

In the quartet state (5) the quartets are different from one
another. A simpler approach, to which the quartet model
will be compared below, simply assumes that all quartets
have the same structure [9]. In this approach, called the
quartet condensation model, the ground state is therefore
approximated by the quartet condensate

|�〉 = (A+)N |0〉, (8)

where A+ is the collective quartet defined by

A+ =
∑
i,j

xijA
+
ij . (9)

To make possible the connection to the Cooper pairs used
in BCS-type models, in Ref. [9] it was supposed that the
mixing amplitudes of the collective quartet (9) are separable,
i.e., xi,j = xixj . With this approximation the collective quartet
can be written as

A+ = 2
+
1 
+

−1 − (
+
0 )2, (10)

where 
+
t = ∑

i xiP
+
i,t , for t = 0,1, − 1, denote the collective

pair operators for the proton-neutron, neutron-neutron, and
proton-proton pairs, respectively. Due to the isospin invari-
ance, all the collective pairs have the same mixing amplitudes
xi . They are determined by minimizing the average of the
Hamiltonian (1) with the normalization constraint. The details
of the calculations can be found in Ref. [9].

To test the accuracy of the quartet model we have performed
calculations for three sets of N = Z nuclei with valence
nucleons outside the cores 16O, 40Ca, and 100Sn. Following
Ref. [9], we have performed calculations with two different
inputs for the isovector pairing Hamiltonian (1) and chosen
only the N = Z systems for which the Hamiltonian can
be diagonalized exactly. We have first considered the case
of spherically symmetric single-particle states and isovector
pairing forces extracted from the (T = 1,J = 0) part of
standard shell model interactions. Namely, for the three sets of
nuclei mentioned above we have extracted the isovector pairing
force from the universal sd-shell interaction (USDB) [18],
the monopole-modified Kuo-Brown interaction (KB3G) [19],
and the effective G-matrix interaction of Ref. [20]. Details
about the single-particle energies employed in the calculations
are given in Ref. [9]. The results for the pairing correlations
energies, defined as the difference between the ground-state
energies obtained without and with the pairing force, are given
in Table I. The correlation energies predicted by the quartet
model (QM) are compared to the exact results and the results
of quartet condensation model (QCM). The QCM results and
the exact results [21] are extracted from Ref. [9]. We notice
that for the systems with one quartet outside the closed core the
quartet state (5) is by construction exact. This is not the case
for the quartet condensate state (8) because of the factorization
approximation xij = xixj . For systems with more than one
quartet outside the core, the quartet state (5) is not exact
anymore. However, as seen in Table I, the errors relative to
the exact solution are very small. We can also observe that
QM gives smaller errors than QCM, reflecting the gain in
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TABLE I. Correlation energies for spherical single-particle states
and pairing forces extracted from standard shell-model interactions.
The results are shown for the exact diagonalizations, the quartet model
(QM), and the quartet condensation model (QCM) of Ref. [9]. In
parentheses we give the errors relative to the exact results.

Exact QM QCM

20Ne 9.174 9.174 (—) 9.170 (0.04%)
24Mg 14.461 14.458 (0.02%) 14.436 (0.17%)
28Si 15.787 15.780 (0.04%) 15.728 (0.37%)
32S 15.844 15.844 (—) 15.795 (0.31%)
44Ti 5.965 5.965 (—) 5.964 (0.02%)
48Cr 9.579 9.573 (0.06%) 9.569 (0.10%)
52Fe 10.750 10.725 (0.23%) 10.710 (0.37%)
104Te 3.832 3.832 (—) 3.829 (0.08%)
108Xe 6.752 6.752 (—) 6.696 (0.83%)
112Ba 8.680 8.678 (0.02%) 8.593 (1.00%)

correlation energy obtained in QM by allowing the quartets to
be different.

We have also tested the accuracy of the quartet model for an
isovector pairing interaction acting on the single-particle spec-
trum corresponding to an axially deformed mean field. As in
Ref. [9], the single-particle energies have been extracted from
axially deformed Skyrme-HF calculations performed with the
force SLy4 [22] and neglecting the Coulomb interaction. For
the isovector pairing force we have taken a state-independent
interaction with strength g = 24/A (A being the mass number
of the nucleus). As in the case of spherical symmetry, the
pairing has been applied to the nucleons outside the cores
16O, 40Ca, and 100Sn. In the calculations, we have considered
the lowest seven, nine, and ten HF single-particle states,
respectively, above the cores just mentioned. The numbers
of these states have been chosen to keep the total degeneracy
of the model space approximately the same as in the case of
spherical calculations. The results are presented in Table II.
In this case the correlation energies predicted by the quartet
model are basically exact. The same high precision has been
observed for the occupation probabilities.

In order to test its accuracy, the quartet model has been
applied here only to N = Z systems for which the Hamiltonian
(1) can be diagonalized exactly by shell model techniques.
However, we remark that, being based on diagonalizations of
matrices of reduced size and also involving a model space
much smaller than the full shell model space, the quartet
model lends itself to the treatment of N = Z nuclei with more

TABLE II. Correlation energies calculated for axially deformed
single-particle states and a state-independent isovector pairing force.
The results are shown for the exact diagonalizations, the quartet model
(QM), and the quartet condensation model (QCM) of Ref. [9]. In
parentheses we give the errors relative to the exact results.

Exact QM QCM

20Ne 6.5505 6.5505 6.539 (0.18%)
24Mg 8.4227 8.4227 8.388 (0.41%)
28Si 9.6610 9.6610 9.634 (0.28%)
32S 10.2629 10.2629 10.251 (0.12%)
44Ti 3.1466 3.1466 3.142 (0.15%)
48Cr 4.2484 4.2484 4.227 (0.50%)
52Fe 5.4532 5.4531 5.426 (0.50%)
104Te 1.0837 1.0837 1.082 (0.16%)
108Xe 1.8696 1.8696 1.863 (0.35%)
112Ba 2.7035 2.7034 2.688 (0.57%)

valence nucleons and/or larger shells than in standard shell
model calculations. In addition, the quartet model provides
a deeper insight into the structure of the ground-state wave
function.

In conclusion, in this study we have proposed a quartet
model for the ground state of the isovector pairing Hamiltonian
in self-conjugate nuclei. This model assumes that the ground
state of even-even systems with N = Z is a product of
collective, distinct T = 0 quartets built by two neutrons
and two protons. The collective quartets are determined by
an iterative variational procedure. The calculations carried
out for various isovector pairing Hamiltonians have shown
that the quartet model reproduces with very high precision
the ground-state correlation energies of these systems. This
model therefore is an appropriate tool for the treatment of
the isovector pairing in mean-field-type models. We also
emphasize that the quartet formalism discussed in this work
can be extended in a straightforward way to the treatment of
more complex Hamiltonians such as, for instance, the isovector
plus isoscalar pairing Hamiltonian. Work is in progress in this
direction.
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