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Observation of a second πh11/2 ⊗ νh11/2 band in 126La
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High-spin states of 126La have been populated using the 116Sn(14N, 4n)126La reaction at a beam energy of
77 MeV. A side band linking to the known yrast πh11/2 ⊗ νh11/2 band is observed. B(M1)/B(E2) ratios and
alignments of the side band and DCO ratios of linking transitions between the side band and the yrast band
suggest that the side band has the same πh11/2 ⊗ νh11/2 configuration as that of the yrast band, and thus the side
band is a second πh11/2 ⊗ νh11/2 band in 126La. The separation energy, �E(I ) = E(I )side − E(I )yrast, between
the side band and the yrast band at the same spin, and the energy staggering parameter S(I ) of the second
πh11/2 ⊗ νh11/2 band in 126La are compared to those of other odd-odd La isotopes. The variation trends of �E(I )
and S(I ) both suggest that it is reasonable to interpret the second πh11/2 ⊗ νh11/2 band in 126La as an excited
πh11/2 ⊗ νh11/2 band as proposed for 124La rather than to interpret it as a partner band of a near degenerate chiral
doublet band as done for 128−134La.
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A second πh11/2 ⊗ νh11/2 band has been reported in 124La
[1], 128La [2], 130La [3], 132La [4], and 134La [5]. In the cases of
128−134La [2–5], the second πh11/2 ⊗ νh11/2 band and the yrast
πh11/2 ⊗ νh11/2 band were cited as partners of near degenerate
chiral doublet bands resulting from chiral symmetry breaking
that occurred in triaxially deformed odd-odd nuclei [6]. In
the case of 124La [1], the second πh11/2 ⊗ νh11/2 band was
considered to be an excited band of the yrast πh11/2 ⊗ νh11/2

band, where two signature components of the second πh11/2 ⊗
νh11/2 band were interpreted as resulting from the coupling of
an unfavored signature component of the πh11/2 proton orbital
with two signature components of the νh11/2 neutron orbital,
while the two signature components of the yrast πh11/2 ⊗
νh11/2 band were interpreted as resulting from the coupling
of a favored signature component of the πh11/2 proton orbital
with two signature components of the νh11/2 neutron orbital.
Up to now, no experimental data on a second πh11/2 ⊗ νh11/2

band in 126La is available. This report presents the results of
our experimental study on a second πh11/2 ⊗ νh11/2 band in
126La.

High-spin states of 126La were populated through the
116Sn(14N, 4n)126La reaction at a beam energy of 77 MeV.
The 116Sn target, with an enrichment of 92.8% and a thickness
of 3.2 mg/cm2, was rolled onto a 12.75 mg/cm2 lead backing.
The beam was provided by the HI-13 tandem accelerator at
China Institute of Atomic Energy (CIAE) in Beijing. The γ -γ
coincidence data were recorded by the use of the detecting
system consisting of nine Compton-suppressed high-purity
germanium (HPGe) detectors, two HPGe planar detectors,
and one clover-type detector. These Ge detectors in the array
were placed at 90◦, ±37◦,±30◦, and ±60◦ relative to the
beam direction. A total of 4.5 × 108 γ -γ coincidence events
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were recorded. The data were sorted into a symmetrized
γ -γ coincidence matrix and a directional correlation from
oriented states (DCO) matrix, and the DCO matrix was
created by sorting the detectors at ±30◦ and ±37◦ on one
axis and the detectors at ∼90◦ on the other. DCO ratios
were obtained from spectra gated either on quadrupole or
dipole transitions. For our detector array, when gating on a
stretched quadrupole transition, the DCO ratio of the measured
transition is around 1.0 for a stretched quadrupole transition
or a nonstretched dipole transition and around 0.6 for a
stretched dipole transition; and when gating on a stretched
dipole transition, the DCO ratio of the measured transition
becomes around 1.0 for a stretched dipole transition and around
1.7 for a stretched quadrupole transition.

High-spin states in 126La had previously been studied
[7–9] and the yrast band was assigned to the πh11/2 ⊗ νh11/2

configuration [8,9] and thus it has positive parity. The partial
level scheme of 126La deduced from the present study is shown
in Fig. 1. Properties and placements of related γ rays are listed
in Table I. The level structure of the yrast band (band 1)
is consistent with that of [9] except that the spin values of
all levels in band 1 have been increased by 2 h̄ according to
the systematics study [10] and the “extended” total Routhian
surface (TRS) calculations [11]. Band 2 and linking transitions
between bands 1 and 2 are observed in the present work. DCO
ratios listed in Table I indicate that 918.5 and 946.2 keV linking
transitions are of �I = 1 character and 1149.2 and 1276.3 keV
linking transitions are of �I = 2 character. The observation
of both �I = 1 and �I = 2 linking transitions between bands
1 and 2 implies that band 2 has a positive parity like that of
band 1, and energies and spin values of the levels in band 2
are fixed relative to the levels in band 1 as shown in Fig. 1. It
is found that when the internal conversion is not considered,
65.1%, 63.5%, and 60.8% of the total populating γ intensities
of the 9+ state in 124La [1], 126La (present work), and 128La [2]
are missing, respectively. Possibly, due to the complexity of
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FIG. 1. Partial level scheme of 126La.

the low-lying level structure in odd-odd nuclei, there are some
depopulating low energy and/or highly converted γ rays were
not observed. This is a problem which needs to be investigated
further. A sample γ -γ coincidence spectrum supporting the
level scheme of Fig. 1 is shown in Fig. 2.

As mentioned above, the configuration of the yrast band
(band 1) had previously been assigned as πh11/2 ⊗ νh11/2

[8,9]. In order to discuss the configuration assignment of the
side band (band 2), cranked shell model (CSM) calculations
[12,13] were performed as shown in Fig. 3. The alignment of
band 2 is shown in Fig. 4(a) along with that of band 1. The flat
alignment of band 1 for ω < 0.45 MeV/ h̄ clearly supports the
πh11/2 ⊗ νh11/2 configuration assignment for band 1 through
blocking argument; i.e., neither the theoretical ωEF nor the ωef

alignment of Fig. 3 are evident. The similarity of alignments
between band 2 and band 1, as shown in Fig. 4(a), tentatively
suggests that band 2 has the same configuration as that of
band 1. The experimental B(M1)/B(E2) ratios for bands 1

TABLE I. Energies, intensities, and DCO ratio of γ rays related to
bands 1 and 2 and linking γ rays between them in 126La. The internal
conversion is not taken into account in the present work.

Eγ (keV) Iγ RDCO
a RDCO

b Iπ
i → Iπ

f Multipolarity

Band 1
70.5 8+→7+ (M1/E2)
115.5 32.1(28) 0.87(18) 9+→8+ M1/E2
136.7 76.2(54) 0.92(22) 10+→9+ M1/E2
186.2 2.1(6) 1.68(42) 9+→7+ E2
211.0 78.0(66) 1.07(21) 12+→11+ M1/E2
230.7c 100.0(23) 1.03(21) 11+→10+ M1/E2
252.5 17.0(34) 1.71(46) 10+→8+ E2
285.0 30.5(32) 1.01(20) 14+→13+ M1/E2
330.2 57.1(46) 0.92(18) 13+→12+ M1/E2
358.2 8.5(26) 1.05(21) 16+→15+ M1/E2
367.6 23.1(21) 1.74(41) 11+→9+ E2
411.7 29.5(40) 0.96(19) 15+→14+ M1/E2
411.8 53.1(51) 1.68(34) 12+→10+ E2

TABLE I. (Continued.)

Eγ (keV) Iγ RDCO
a RDCO

b Iπ
i → Iπ

f Multipolarity

432.5 2.1(11) 1.08(18) 18+→17+ M1/E2
477.5 11.0(31) 0.95(22) 17+→16+ M1/E2
509.0 20+→19+ (M1/E2)
525.5 4.1(12) 0.89(28) 19+→18+ M1/E2
541.0 34.2(72) 1.61(33) 13+→11+ E2
559.0 21+→20+ (M1/E2)
592.5 22+→21+ (M1/E2)
615.2 67.1(82) 1.73(35) 14+→12+ E2
696.8 51.2(61) 1.71(51) 15+→13+ E2
770.0 38.1(45) 1.75(53) 16+→14+ E2
836.0 28.1(36) 1.67(33) 17+→15+ E2
910.0 24.3(32) 1.62(36) 18+→16+ E2
958.2 15.1(42) 1.72(38) 19+→17+ E2
1034.0 14.8(47) 1.77(41) 20+→18+ E2
1068.0 5.8(21) 1.61(43) 21+→19+ E2
1152.0 7.2(25) 1.58(36) 22+→20+ E2

Band 2
153.5 0.7(2) 0.96(38) 12+→11+ M1/E2
229.3 3.1(11) 1.14(46) 14+→13+ M1/E2
237.0 11+→10+ (M1/E2)
308.5 1.5(5) 16+→15+ (M1/E2)
339.4 4.8(13) 1.07(42) 0.55(13) 13+→12+ M1/E2
367.0 3.5(11) 15+→14+ (M1/E2)
390.5 2.1(8) 12+→10+ (E2)
493.0 4.3(14) 1.79(52) 13+→11+ E2
568.5 9.2(31) 1.76(60) 1.03(19) 14+→12+ E2
596.5 5.7(19) 1.81(54) 15+→13+ E2
675.5 4.1(14) 16+→14+ (E2)
712.5 17+→15+ (E2)
782.5 7.8(25) 1.74(58) 18+→16+ E2

Linking
transitions
661.2 1.8(7) 0.89(38) 14+→14+ M1/E2
707.5 1.4(4) 0.98(23) 12+→12+ M1/E2
895.6 10+→9+ (M1/E2)
918.5 4.8(16) 1.04(17) 0.56(9) 12+→11+ M1/E2
925.0 1.6(5) 16+→15+ (M1/E2)
995.6 2.3(8) 1.07(23) 0.63(11) 11+→10+ M1/E2
946.2 4.3(15) 1.02(19) 0.57(8) 14+→13+ M1/E2
1028.0 15+→14+ (M1/E2)
1047.0 3.5(12) 1.12(25) 13+→12+ M1/E2
1149.2 2.2(7) 1.71(45) 0.98(15) 12+→10+ E2
1258.0 2.3(8) 1.76(42) 13+→11+ E2
1276.3 3.1(11) 1.81(39) 1.06(16) 14+→12+ E2

aDCO ratios listed here are obtained by setting the gate on mixed M1/E2
transitions.
bDCO ratios listed here are obtained by setting the gate on quadrupole
transitions.
cIγ are normalized to the 230.7 keV γ ray in band 1 as 100.

and 2 are shown in Fig. 4(b) along with the theoretical esti-
mates of the geometrical model [17] for the πh11/2 ⊗ νh11/2

configuration. The general agreement between experimental
results and theoretical estimates provides further support to
the πh11/2 ⊗ νh11/2 configuration assignment for both bands
1 and 2.

The separation energy between the states in the side band
and the yrast band at the same spin, �E(I ) = E(I )side −
E(I )yrast, in 124−134La are compared in Fig. 5. Within the
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FIG. 2. Sample γ -γ coincidence spectrum supporting the partial
level scheme of 126La as shown in Fig. 1.

observed spin region, the magnitude and variation trend of
�E(I ) of 126La is very similar to those of 124La [1], and quite
different from those of 128−134La [2–5]. This fact suggests that
it is reasonable to interpret the second πh11/2 ⊗ νh11/2 band
in 126La as the excited πh11/2 ⊗ νh11/2 band, as proposed for
124La [1], rather than to interpret it as the partner band of chiral
doublet bands, as for 128−134La [2–5].

An energy staggering parameter, defined as S(I ) = E(I ) −
E(I − 1) − 1/2[E(I + 1) − E(I ) + E(I − 1) − E(I − 2)],
is used to display the signature inversion phenomenon of a
rotational band [1]. S(I ) of the yrast πh11/2 ⊗ νh11/2 band
in 124La [1], 126La (present work), and 128La [2] are shown
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FIG. 4. (Color online) (a) Experimental alignment plots for
bands 1 and 2 in 126La. The Harris parameters are J0 = 22.7
MeV−1 h̄2, J1 = 16.6 MeV−3 h̄4 [1]. (b) Comparison of experimental
and predicted B(M1)/B(E2) values for bands 1 and 2. Parameters
used in the calculations of the predicted values: Q0 = 4.63 e b,
gR = 0.452, gπ (h11/2) = 1.17, gν(h11/2) = −0.21, iπ (h11/2) = 5.0,
iν(h11/2) = 3.0.

in Fig. 6(a). S(I ) of the yrast πh11/2 ⊗ νh11/2 band in 124La
clearly indicates that below Ic = 18.5 h̄, the expected favored
signature component (α = 1 or odd spin) lies higher in
energy than the expected unfavored signature component
(α = 0 or even spin); and above Ic = 18.5 h̄, the expected
favored signature component (α = 1 or odd spin) lies lower
in energy than the expected unfavored signature component
(α = 0 or even spin), i.e., signature inversion occurs below
Ic = 18.5 h̄ in the yrast πh11/2 ⊗ νh11/2 band in 124La [1].
The Ic of the yrast band in 126La is about 21.5 h̄. For the
second πh11/2 ⊗ νh11/2 band in 124La, Fig. 6(b) clearly
shows that below Ic = 18.5 h̄, the expected favored signature
(α = 0 or even spin) lies lower in energy than the expected
unfavored signature component (α = 1 or odd spin); and
above Ic = 18.5 h̄, the expected favored signature component
(α = 0 or even spin) lies higher in energy than the expected

FIG. 5. (Color online) �E(I ) = E(I )side − E(I )yrast of the two
bands in 126La compared with those in 124La [1], 128La [2], 130La [3],
132La [4], and 134La [5].
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FIG. 6. (Color online) Energy staggering parameter S(I ) vs spin
I for the πh11/2 ⊗ νh11/2 bands in 124La [1], 126La (present work),
and 128La [2].

unfavored signature component (α = 1 or odd spin), i.e.,
signature inversion of the second πh11/2 ⊗ νh11/2 band in
124La occurs above Ic = 18.5 h̄, in contrast to that of the
yrast πh11/2 ⊗ νh11/2 band where signature inversion occurs
below Ic = 18.5 h̄. S(I ) of the second πh11/2 ⊗ νh11/2 band

in 126La and 128La [2] is also included in Fig. 6(b). Within
the observed spin region, the variation trend of S(I ) of the
second πh11/2 ⊗ νh11/2 band in 126La is very similar to that of
the second πh11/2 ⊗ νh11/2 band in 124La and quite different
from that of 128La. This fact once again suggests that it is
reasonable to interpret the second πh11/2 ⊗ νh11/2 band in
126La as the excited πh11/2 ⊗ νh11/2 band as proposed in
124La [1] rather than to interpret it as the partner band of
a chiral doublet band as done for 128−134La [2–5]. Finally,
this interpretation is also supported by the TRS calculations
which predict that 126La has an axial quadrupole deformation,
as indicated in Fig. 3, while a triaxial shape is needed for the
chiral doublet bands to appear.

In summary, a second πh11/2 ⊗ νh11/2 band has been
identified in 126La through the reaction 116Sn(14N, 4n)126La
at a beam energy of 77 MeV. It is observed that within
the observed spin region, the variation trends of �E(I ) and
S(I ) both suggest that it is reasonable to interpret the second
πh11/2 ⊗ νh11/2 band in 126La as an excited πh11/2 ⊗ νh11/2

band as proposed for 124La rather than to interpret it as a partner
band of near degenerate chiral doublet bands as proposed for
128−134La.
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