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Formation of hybrid stars from metastable hadronic stars
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We study the consequences of quark matter nucleation in cold hadronic matter employing three relativistic-
mean-field models to describe the hadronic phase and the Nambu-Jona-Lasinio (NJL) model for the quark one.
We explore the effect of a vector interaction in the NJL Lagrangian and of a phenomenological bag constant on
neutron stars metastability. We delineate the region of parameters of the quark phase that allow for the formation
of stable hybrid stars with mass compatible with the almost 2M� pulsars PSR J1614-2230 (1.97 ± 0.04M�) and
PSR J0348 + 0432 (2.01 ± 0.04M�). It is shown, however, that not all hybrid star configurations with ∼2M�
are populated after nucleation.

DOI: 10.1103/PhysRevC.88.055802 PACS number(s): 26.60.Dd, 21.65.Qr, 21.65.Mn

I. INTRODUCTION

During the past decades the study of neutron stars has
offered the possibility to investigate various topics of modern
physics. Owing to their very large central density (several
times larger than normal saturation density) neutron stars
represent a natural observatory to study the behavior of the
matter under extreme conditions. Along this line, the issue of
whether neutron stars may host a deconfined quark phase in
their cores is still an open question.

Quark matter nucleation in neutron stars has been studied
by many authors in both cold [1–14] and finite-temperature
[15–23] hadronic matter, or even in the presence of strong
magnetic fields [24,25]. These studies suggested that the
nucleation process may play an important role in the emission
of γ -ray bursts and supernovae explosions. In most of
these works, the hadronic phase was described using phe-
nomenological relativistic-mean-field (RMF) models based on
effective Lagrangian densities [26]. Among the different RMF
models, one of the most popular parametrizations is that of
Glendenning and Moszkowski [27] of the nonlinear Walecka
model which has been widely used to study the effect of the
hadronic equation of state (EOS) on the nucleation process.
In particular, in Ref. [10] the effect of different hyperon
couplings on the critical mass and stellar conversion energy
was analyzed. It was found that increasing the value of the
hyperon coupling constants, the stellar metastability threshold
mass, and the value of the critical mass increase, thus making
the formation of quark stars less likely. In all these works
the MIT bag model [28] was used to describe the deconfined
phase. In Ref. [29], two models that contain explicitly the
chiral symmetry were applied to describe the quark phase,
namely the Nambu-Jona-Lasinio (NJL) model [30] (see also
[31,32]) and the chromodielectric model (CDM) [33,34]. It
was shown there that it is very difficult to populate the quark
star branch using that version of the NJL model and, therefore,
all compact stars would give pure hadronic stars in that case.
On the contrary, with the CDM, both hadronic and quark
star configurations can be formed. Recently, in Ref. [35], was
discussed the possibility of quark matter nucleation using the
microscopic Brueckner-Hartree-Fock approach to model the
hadronic phase, and the three quark matter models cited above
to describe the deconfined phase. The maximum neutron-star

mass predicted within this study was of 1.62M�, quite far from
the almost 2M� pulsars PSR J1614-2230 (1.97 ± 0.04M�)
[36] and PSR J0348 + 0432 (2.01 ± 0.04M�) [37], recently
measured.

In the present work we investigate the nucleation of quark
matter in cold hadronic matter using a hadronic EOS based on
three different RMF approaches. We consider the TM1 [38],
the TM1-2 [39], and the NL3 [40] models. The TM1 and TM1-
2 models satisfy the heavy-ion flow constraints for symmetric
matter around densities 2ρ0–3ρ0 [41] (ρ0 = 0.16 fm−3 being
the empirical saturation point of symmetric nuclear matter).
NL3, on the contrary, does not satisfy these constraints.
However it has been used in Ref. [42] as the hadronic EOS
in a scenario that allows for hybrid stars with masses above
2M�. A hard hadronic EOS seems to be a necessary condition
for the existence of massive hybrid stars. Although it is well
known that hyperons are expected to appear in the neutron-star
interior at densities ∼2ρ0–3ρ0 and play a decisive role for
several properties of such objects, we ignore them in this
work because, as mentioned in the Abstract, we are mostly
interested in the study of the role of the vector interaction and
the phenomenological bag constant in the NJL model, and
on the determination whether the quark star branch may be
populated.

For the quark phase we employ the version of the NJL model
presented in Ref. [42] but neglecting the superconducting
terms. In this way we get an upper bound in our results,
because it is generally accepted that superconductivity softens
the EOS. In the version of the NJL model of Refs. [42,43], a
phenomenological bag constant B∗ was introduced to define
the location of the deconfinement phase transition. A task of
the present work is to delineate the region of parameters of
our models that allow for the formation of stable high-mass
neutron stars after the nucleation process. For the formation
of a hybrid star it is important that the nucleation time of the
metastable hadronic star, from which it originates, be smaller
than the age of the universe.

II. THE HADRONIC EQUATION OF STATE

As said before, in this work we have used three popular
relativistic mean-field models to describe the hadronic phase
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of our system, namely the NL3, the TM1, and the TM1-2
models. These models are based on the following Lagrangian
density:

L =
∑
N

ψ̄N

[
γ μ

(
i∂μ − gωNωμ − 1

2
gρNτ · ρμ

)

− (mN − gσNσ )

]
ψN + 1

2
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2
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σ σ 2
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− 1

3
bmN (gσNσ )3 − 1
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− 1
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	μν	
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4!
ξg4

ω(ωμωμ)2

+�ω

(
g2

ωωμωμ
) (

g2
ρρμ · ρμ

)
+

∑
l=e−,μ

ψ̄l(iγ
μ∂μ − ml)ψl, (1)

where the sum is performed over nucleons, ψN , represents the
corresponding Dirac field, and interactions are mediated by the
σ isoscalar-scalar, ωμ isoscalar-vector, and ρμ isovector-vector
meson fields. The mesonic field tensors are given by their usual
expressions: 	μν = ∂μων − ∂νωμ, ρμν = ∂μρν − ∂νρμ. The
values of nucleon-meson couplings and the other parameters
of the Lagrangian are reported in Table I.

In this work we have included just nucleons in the hadronic
phase.

We note, however, that hyperons are expected to appear in
neutron-star matter at densities of 2ρ0–3ρ0. Their presence in
neutron stars has been studied by many authors using either
phenomenological [27,44] and microscopic [45] approaches
since the pioneer work of Ambartsumyan and Saakyan [46]. It
is well known that their appearance softens the EOS leading
to a substantial reduction of the neutron-star mass. Recently,
it has been shown that the inclusion of mesons with hidden
strangeness and, particularly, a weak scalar coupling and a
strong vector coupling, may give rise to a quite hard EOS
allowing for quite massive stars with hyperonic degrees of
freedom [39,47]. However, our present knowledge of the
hyperon interactions (particularly, the hyperon-hyperon one) is
yet not very well constrained by experimental data. Therefore,
the result of these works should be taken with care. The results
of our calculation without hyperons should be interpreted just
as an upper limit for the maximum star mass. If it is not possible
to get a 2M� neutron star including only nucleonic degrees of
freedom in the hadronic phase, then the presence of hyperons

most probably will only worsen this situation. Some results
including hyperons will be, however, shown for completeness
(see discussion below).

The NL3 model contains neither the quartic term in ω nor
the nonlinear ω-ρ one. Their respective coefficients ξ and �ω

are put to zero in Table I. The NL3 model has the following
saturation properties: saturation density, ρ0 = 0.148 fm−3;
binding energy, E/A = −16.30 MeV; symmetry energy, J =
37.4 MeV; incompressibility, K = 271.76 MeV; and effective
mass, M∗/M = 0.60. For the TM1 and the TM1-2 models
all the terms in the Lagrangian (1) are nonzero. The quartic
term in ω was proposed in Ref. [38] to get a RMF model
able to fit the ground-state properties of several nuclei and
Dirac-Brueckner-Hartree-Fock calculations at large densities.
The nonlinear ω-ρ term is instead needed to get a good value
for the slope of the symmetry energy L at saturation density, as
suggested in Ref. [48]. The original TM1 model, with �ω = 0,
predicts a value of L = 110 MeV that is too high according
to the experimental constraints coming from different nuclear
properties, lying close to the upper limit of isospin diffusion
in heavy-ion collisions [49]. Taking �ω = 0.03 a more
reasonable value of L = 55 MeV is obtained. The TM1 and the
TM1-2 have the same saturation properties: saturation density,
ρ0 = 0.145 fm−3; binding energy, E/A = −16.30 MeV;
symmetry energy, J = 36.93 MeV; incompressibility, K =
281.28 MeV; and effective mass, M∗/M = 0.63.

III. THE QUARK MATTER EQUATION OF STATE

For the description of the high-density quark matter we
have employed the NJL Lagrangian, extended to include the
t’ Hooft interaction term (proportional to K) and the vector
interaction (proportional to GV ):

LNJL = ψ̄(iγ μ∂μ − m̂)ψ

+GS

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2]

−K{detf [ψ̄(1 + γ5)ψ] + detf [ψ̄(1 − γ5)ψ]}

−GV

8∑
a=0

[(ψ̄γμλaψ)2 + (ψ̄γ5γμλaψ)2], (2)

where the quark spinor fields ψα carry a flavor (α = u, d, s)
index, the matrix of quark current masses is given by m̂ =
diagf (mu,md,ms), λa with a = 1, . . . , 8 are the well-known
Gell-Mann matrices in the color space, and λ0 = (2/3)1f . At

TABLE I. Coupling constants for the NL3, TM1, and TM1-2 models. For the TM1 and TM1-2 models the value of �ω = 0.03 (L =
55 MeV) has been considered while for the NL3 model no ω-ρ has been included, being, therefore, �ω = 0 (L = 118 MeV) in this case.

Model ( gσ

mσ
)2 (fm)2 ( gω

mω
)2 (fm)2 ( gρ

mρ
)2 (fm)2 b c ξ

NL3 15.737 10.523 1.338 0.002 055 −0.002 651 0.0
TM1 15.0125 10.1187 5.6434 0.001 450 0.000 044 0.016
TM1-2 14.9065 9.9356 5.6434 0.001 690 −0.000 797 0.011
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zero temperature the pressure is given by

p = 1

2π2

∑
i=u,d,s

∫ �

0
dkk2|εi | − 2Gs

∑
i=u,d,s

σ 2
i

+ 4Kσuσdσs − 2GV

∑
i=u,d,s

n2
i − B0 − B∗ +

∑
l=e−,μ−

pl,

(3)

where εi are the quasiparticle spectra of quarks, σi are quark
condensates, ni are quark number densities, pl is the lepton
pressure, B0 is the vacuum pressure, and B∗ is an effective bag
constant. The quark chemical potentials are modified by the
vector fields as follows: μ∗

i = μi − 4GV ni . The numerical
values of the parameters of the Lagrangian are mu,d =
5.5 MeV, ms = 140.7 MeV, � = 602.3 MeV, GS�

2 =
1.835, K�5 = 12.36.

IV. QUARK MATTER NUCLEATION IN HADRONIC STARS

In bulk matter the hadron-quark mixed phase begins at
the “static transition point,” defined according to the Gibbs
criterion for phase equilibrium:

μH = μQ ≡ μ0, PH (μ0) = PQ(μ0) ≡ P0, (4)

where

μH = εH + PH

nH

, μQ = εQ + PQ

nQ

, (5)

are the Gibbs energies per baryon (i.e., average chemical
potentials) for the hadron (H) and quark (Q) phases, respec-
tively, and the quantities εH (εQ), PH (PQ), and nH (nQ) denote,
respectively, the total (i.e., including leptonic contributions),
energy density, total pressure, and baryon number density of
the two phases. The deconfinement transition in the high-
density region relevant for neutron stars is assumed to be of
first order. The pressure P0 defines the transition pressure.
For pressures above P0 the hadronic phase is metastable, and
the stable quark phase will appear as a result of a nucleation
process. The time scale of the deconfinement transition is
determined by the strong interaction and, therefore, quark
flavor must be conserved during the deconfinement transition.
We call Q∗ phase the deconfined quark matter, in which the
flavor content is equal to that of the β-stable hadronic phase
at the same pressure and temperature. Owing to the weak
interaction the flavor content of the deconfined droplet will
soon change after deconfinement, and a droplet of β-stable
quark matter is formed. Once the first seed of quark matter is
formed the pure hadronic star will “decay” into an hybrid or a
quark star [50–52]. It was shown in Refs. [3–6,8–11] that pure
hadronic stars with values of the central pressure, Pc, larger
than P0 are metastable, and that their mean lifetime depend
dramatically on Pc. As in Refs. [3–5], in this work, we define
the critical mass Mcr of cold and deleptonized stars as the value
of the gravitational mass of the metastable hadronic star for
which the nucleation time τ is ∼1 yr.

The nucleation process of quark matter in hadronic stars
can proceed via both quantum tunneling (at zero or finite
temperature) and thermal activation [21]. In the present work

we only consider cold stellar matter, and, therefore, nucleation
only via quantum tunneling. Here we follow closely the
formalism presented in Refs. [1,5].

The process of formation of the drop is regulated by its
quantum fluctuations in the potential well created from the
difference between the energy densities of the hadron and
quark phases. Keeping only the volume and the surface terms,
the potential well takes the simple form

U (R) = 4
3πnQ∗ (μQ∗ − μH )R3 + 4πσR2, (6)

where R is the radius of the droplet and σ is the surface
tension for the surface separating the hadronic phase from the
Q∗ phase. Within the Wentzel-Kramers-Brillouin (WKB) the
quantum nucleation time is equal to

τq = (ν0p0Nc)−1, (7)

where p0 is the probability of tunneling given by

p0 = exp

[
−A(E0)

h̄

]
, (8)

where A(E) is the action under the potential barrier, which in
a relativistic framework reads

A(E) = 2

c

∫ R+

R−

√
[2m(R)c2 + E − U (R)][U (R) − E] dR,

(9)

R± being the classical turning points, m(R) = 4πnH (1 −
nQ∗/nH )2R2 the droplet effective mass, and E0 and ν0 the
ground-state energy and the oscillation frequency of the drop
in the potential well U (R), respectively. In Eq. (7) Nc ∼ 1048

is the number of nucleation centers expected in the innermost
part (r � Rnuc ∼ 100 m) of the hadronic star, where pressure
and temperature can be considered constant and equal to their
central values.

V. RESULTS AND DISCUSSION

In this section we show the results of our calculations in
which we have used the models previously discussed. The
model chosen for the hadronic part of our system, our version
of the NJL model contains the free parameter B∗, which we
have considered as an effective bag pressure, and the coupling
of the vector interaction GV . In addition, the scarce knowledge
of the surface tension between the hadronic and the quark
phase introduces another parameter, the surface tension σ .
Recently, the surface tension of quark matter was calculated
within the two-flavor σ model and the two- and three-flavor
NJL model [53] and a value in the range 7–30 MeV/fm2 was
obtained. We mostly use values of σ within these range.

A study of finite size effects between the hadronic and the
quark phase was also performed in several works [54,55]. The
main conclusion of these works is that for large values of the
surface tension, namely above 40 MeV/fm2, the hadron-quark
phase transition is closer to a Maxwell than to a Gibbs
construction. However, there are still many uncertainties on
the approach used to model the hadron-quark phase transition
and, as mentioned in Ref. [53], a surface tension in the range
7–30 MeV/fm2 was obtained. A small surface tension will
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bring the whole picture closer to the Gibbs construction. A
wide discussion on the advantages and drawbacks in using
a Gibbs or a Maxwell construction can be found in Refs.
[56–58]. We perform the present discussion within the Gibbs
construction. This means that we will be able to obtain hybrid
star configurations with both a pure quark phase or a mixed
hadronic-quark phase in the star center. Within the Maxwell
construction hybrid stars exist only if a pure quark phase
exists in the interior. We may expect that the realistic situation
lies between both descriptions, and, therefore, we analyze the
implications of applying a Maxwell construction in the next
section.

In Fig. 1 we show the gravitational mass versus central
pressure for various combinations of the three quantities
GV , B∗, σ . For a given EOS, these curves are obtained
solving the well-known Tolman-Oppenheimer-Volkov (TOV)
[59] equations describing the hydrostatic equilibrium general
relativity. Hadronic star sequences are calculated using the
NL3 parametrization considering pure nucleonic matter (solid
black curve). The hybrid star (YS) sequence is represented
by the dashed red curve. The configuration marked with an
asterisk represents, in all cases, the hadronic star for which
the central pressure is equal to P0 and thus the quark matter
nucleation time is τ = ∞. The critical mass configuration is
denoted by a full circle. The final conversion [3–5] of the
critical mass configuration into a final quark star with the same
stellar baryonic mass is denoted by a solid square. Notice
that in most of the cases reported in the figures the quark
matter nucleation process will lead to the formation of a black
hole (BH).

In all panels of Fig. 1 the blue and black colors refer
to the calculation in which the surface tension has been
assumed equal to σ = 10 MeV/fm2 and σ = 30 MeV/fm2,
respectively. In this calculation the strength of the vector
interaction has been taken as GV /GS = 0.4, while for the
effective bag pressure B∗ we have set B∗ = −49.29 MeV/fm3

[panels (b) and (d)] and B∗ = −29.5 MeV/fm3 [panels (a)
and (c)]. For σ = 10 MeV/fm2 and B∗ = −49.29 MeV/fm3

a stable neutron star can be formed after the nucleation
process while, in all the other cases, the final configura-
tion collapses into a BH. The stable final star, obtained
using the parameters discussed above, is a neutron star
with a pure quark content and not a simple hybrid star
with a mixed phase in its core. Similar results are shown
in panels (c) and (d) for a calculation in which we put
GV /GS = 0 and we consider B∗ = 0 MeV/fm3 [panel (c)]
and B∗ = −29.5 MeV/fm3 [panel (d)]. In this case all the
final configurations are BHs. An equivalent way of presenting
these results is shown in Fig. 2, where we plot the evolution of
a hadronic star in the gravitational mass (MG) versus baryonic
mass (MG). In our calculation we assume MB constant during
the nucleation process; therefore, the evolution of neutron stars
proceeds on a straight vertical line in this plane.

In Table II we have reported the results of the calculation
of the nucleation process using the NL3 EOS; in particular,
the following quantities are listed: surface tension (first
column), B∗ (second column), P0 (third column), mass of the
neutron star with central pressure equal to P0, M(P0) (fourth
column), critical mass Mcr (fifth column), critical baryonic
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FIG. 1. (Color online) Gravitational mass versus central pressure
for compact stars. Hadronic star sequences are calculated using
the NL3 parametrization for pure nucleonic matter (black curve). The
hybrid star (YS) sequence is represented by the red dashed curve. The
quark phase is described by the NJL model with different values of
GV /GS and B∗. Results are shown for two different surface tensions.
The configuration marked with an asterisk represents in all cases
the hadronic star for which the central pressure is equal to P0 and
thus the quark matter nucleation time is τ = ∞. The critical mass
configuration (τ = 1 yr) is denoted by a solid circle. In panel (a)
for σ = 10 MeV/fm2, the final quark star mass is denoted by a
black square on the YS sequence. In the other cases reported in the
figure, the quark matter nucleation process will lead to the formation
of a BH.

mass Mb
cr (sixth column), final mass Mfin (seventh column),

and maximum hybrid star mass MYS
max.

Combining the NJL model without vector interaction
(GV = 0) with the NL3 EOS, we note that for B∗ = 0 and
B∗ = −29.59 MeV/fm3 the nucleation process leads to the
formation of BHs. When we include the vector interaction
and we take the largest value of the effective bag constant
considered B∗ = −49.23 MeV/fm3, we get stable final stars
with mass compatible with the 2M� pulsar for value of the
surface tension between 5 and 15 MeV/fm2. As we have stated
before, a negative B∗ enlarges the quark content of the system
while the vector interaction goes in the opposite direction.
A balance between these two effects is needed to get stable
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FIG. 2. (Color online) Evolution of a hadronic star in the
gravitational-baryonic mass plane using the NJL model with
GV /GS = 0.4 and B∗ = −49.2 MeV/fm3 to describe the quark
phase, and the NL3 model for the hadronic phase. The (black) line
represents the cold hadronic stars (HS) sequence. We consider two
different values of the surface tension σ = 10, 30 MeV/fm2 at the
interface between the hadronic and the quark phases. The asterisk
and the solid circle on these lines represent the stellar configuration
with nucleation time τ = ∞ and the critical mass configuration τ =
1 yr, respectively. The lower red dashed line represents the cold YS
sequence. Assuming MB constant, the evolution of a neutron star
in this plane occurs along a vertical line. For σ = 30 MeV/fm2 the
nucleation process leads to the formation of a BH.

final stars. The stable final stars obtained using the NL3 EOS
are neutron stars with a pure quark content. This calculation
improves our previous results of Refs. [29] and [35], where

we had found just low-mass hybrid stars as final results of the
nucleation process.

However, it is worthwhile to note that although with this
model the maximum hybrid star mass can be large (2M�) or
very large (2.50M�) with GV = 0 or GV /GS = 0.4 and B∗ �
−29.59 MeV/fm3, the formation of such massive objects is not
possible because the nucleation process leads always, in these
cases, to a BH. The radius obtained for the 2.19M� neutron
star is of 13.2 km. This value is just slightly out of the M(R)
constraints found in Refs. [60,61]. Moreover, in Ref. [61]
constraints on the slope L have also been imposed and for most
of the models considered L should not exceed 65 MeV. Both
NL3 and TM1 have a quite high slope L (respectively, 118 and
110 MeV). Including a nonlinear ωρ term in the Lagrangian
density it is possible to reduce L. A smaller L will give rise
to smaller stars still keeping almost unchanged the mass of
the maximum mass configuration [39]. All results shown in
Table III were obtained with TM1 and its modified TM1-2
including the ωρ term for a symmetry energy slope L = 55
MeV. All radii are below 12.64 km (B∗ = 0) and above 11.46
km (B∗ = −39.46), in good agreement with the constraints of
Steiner et al. [60,61].

Let us now discuss the results obtained with TM1 and its
modified TM1-2 which, as said before, satisfy the constraints
obtained in Ref. [41], contrary to NL3. The parametrization
TM1-2 has been chosen to be the hardest possible in the range
2ρ0–3ρ0 and still satisfy these constraints. The results for
these two models combined with the NJL model with GV = 0
and GV /GS = 0.2 are summarized in Table III. For GV = 0
there are several combinations of parameters that allow the
formation of stable hybrid stars, but none of them is able to
predict a star with a mass larger than 1.85M�. The radius of this

TABLE II. The surface tension (σ ), the parameter B∗, the transition pressure (P0), the star mass with a central pressure equal to P0 [M(P0)],
the critical gravitational mass (Mcr) and baryonic mass (Mb

cr), the final mass (Mfin) and the maximum hybrid star mass (MYS) obtained for the
NL3 hadronic EOS including only nucleons in the hadronic phase, except for the last two lines identified with “NY”, which contain hyperons
(see discussion in the text). The quark phase is described using the NJL model with and without vector interaction. The maximum quark star
mass is the largest mass produced by integrating of the TOV equations and employing the EOS generated by the standard Gibbs construction.
In this case the role of the surface tension between the hadronic and the quark phase is neglected.

σ (MeV/fm2) B∗ (MeV/fm3) P0 (MeV/fm3) M(P0) (M�) Mcr (M�) Mb
cr (M�) Mfin (M�) MYS

max (M�)

GV = 0 5 0 91.23 2.19 2.25 2.61 BH 2.07
10 0 91.23 2.19 2.28 2.66 BH 2.07
30 0 91.23 2.19 2.43 2.84 BH 2.07
10 −29.59 38.98 1.59 1.79 2.00 BH 1.75
30 −29.59 38.98 1.59 2.17 2.51 BH 1.75

GV /GS = 0.4 5 0 212.75 2.65 2.66 3.21 BH 2.50
30 0 212.75 2.65 2.71 3.28 BH 2.50
5 −29.59 135.98 2.46 2.49 2.95 BH 2.35

30 −29.59 135.98 2.46 2.63 3.10 BH 2.35
5 −39.46 97.87 2.27 2.33 2.73 BH 2.27

30 −39.46 97.87 2.27 2.57 3.07 BH 2.27
5 −49.23 60.35 1.92 2.00 2.27 1.99 2.19

10 −49.23 60.35 1.92 2.09 2.40 2.08 2.19
15 −49.23 60.35 1.92 2.20 2.54 2.18 2.19
30 −49.23 60.35 1.92 2.45 2.89 BH 2.19

GV /GS = 0.4 NY 5 −39.46 189.93 2.30 2.31 2.70 BH 2.23
GV /GS = 0.2 NY 9 −49.23 6.81 0.6 2.15 2.48 2.11 2.13
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TABLE III. The surface tension (σ ), the parameter B∗, the transition pressure (P0), the star mass with a central pressure equal to P0 [M(P0)],
the critical gravitational mass (Mcr) and baryonic mass (Mb

cr), the final mass (Mfin), and the maximum quark star mass (MYS) obtained for the
TM1 and TM1-2 hadronic EOS including only nucleons and including a ωρ term so that the slope of the symmetry energy is L = 55 MeV. The
maximum hybrid star mass is the largest mass produced by integrating the TOV equations and employing the EOS generated by the standard
Gibbs construction. In this case the role of the surface tension between the hadronic and the quark phase is neglected.

Model σ (MeV/fm2) B∗ (MeV/fm3) P0 (MeV/fm3) M(P0) (M�) Mcr (M�) Mb
cr (M�) Mfin (M�) MYS

max (M�)

TM1 (GV = 0) 5 15.78 257.16 2.11 2.12 2.48 BH 2.00
5 0 206.72 2.08 2.09 2.44 BH 1.97
5 −15.78 147.46 1.99 2.02 2.34 BH 1.92
6 −29.59 82.89 1.75 1.83 2.10 1.83 1.84

10 −29.59 82.89 1.75 1.88 2.16 BH 1.84
15 −39.46 26.48 1.10 1.79 2.03 1.78 1.80
20 −39.46 26.48 1.10 1.93 2.23 BH 1.80
16 −45.00 6.90 0.48 1.86 2.13 1.83 1.88
20 −45.00 6.90 0.48 2.02 2.35 BH 1.88

TM1-2 (GV = 0) 5 15.78 206.24 2.18 2.19 2.58 BH 2.07
5 0 166.69 2.12 2.14 2.50 BH 2.03
5 −15.78 120.17 2.00 2.03 2.36 BH 1.96
5 −29.59 69.02 1.72 1.80 2.05 1.80 1.83
7 −29.59 69.02 1.72 1.83 2.08 1.82 1.83

10 −29.59 69.02 1.72 1.87 2.14 BH 1.83
10 −39.46 24.99 1.09 1.56 1.73 1.55 1.80
17 −39.46 24.99 1.09 1.81 2.06 1.80 1.80
20 −39.46 24.99 1.09 1.90 2.18 BH 1.80
18 −45.00 6.89 0.48 1.88 2.15 1.85 1.88
20 −45.00 6.89 0.48 1.97 2.27 BH 1.88

TM1-2 (GV /GS = 0.2) 5 −39.46 155.88 2.10 2.14 2.51 BH 2.06
5 −45.00 82.51 1.82 1.99 2.29 1.98 2.04
8 −45.00 82.51 1.82 2.04 2.37 2.03 2.04

10 −45.00 82.51 1.82 2.07 2.42 BH 2.04

last configuration is 11.21 km. Including the vector interaction
in the NJL Lagrangian, taking B∗ = −39.46 MeV/fm3 and a
value of the surface tension around 8 MeV/fm2, a hybrid star
with mass of 2.03M� and a radius of 12.41 km is obtained.
Just as for the NL3 + NJL model, also with the TM1-2 + NJL
model, the quark vector interaction is essential to form a stable
high-mass neutron star. For values of GV /GS > 0.2 we cannot
obtain any stable final star configuration using the TM1 and the
TM1-2 models. In this case the NJL model vector interaction
is so large that it pushes the quark onset to very large densities,
inhibiting the nucleation process.

This is indicative of how hard the hadronic EOS needs to
be to allow the formation of stars with a mass ∼2M� with a
quark core.

In the last colum of Table III we have reported both for
TM1 and TM1-2 models, the maximum neutron-star mass
obtained neglecting the finite surface effect at the interface
between the hadronic and the quark matter. For the TM1 and
the TM1-2 models the largest masses were MG = 2.00M�
(R = 12.37 km) and 2.07M� (R = 12.65 km), respectively.
These configurations can be populated if, after nucleation, the
star goes through a process of mass accretion.

The above masses have been produced setting B∗ =
15.78 MeV/fm3 in both the cases. Larger neutron-star masses
can be obtained increasing the value of B∗. However, in all
those cases the nucleation process leads to the formation of a
BH.

Finally, in Fig. 3 we have delineated the region of the
parameters B∗ and σ that allow for the formation of stable
final stars after quark matter nucleation. Results are shown
for the TM1 (red line) and the TM1-2 (blue line) models.
Qualitatively similar results have been obtained for the NL3
model, but we do not show them for simplicity. The circles
and the squares in the figure have been obtained fixing for each
value of B∗, the maximum σ that allows for stable neutron stars
after the nucleation process. This means that the combination
of parameters that lie in the region under the curves leads to
stable final stars while those in the complementary region lead
to the formation of BHs. The effect of an effective bag pressure
B∗ < 0 is to lower the onset of the quark phase. This produces
an enlargement of the window of metastable stars. To get stable
final neutron stars, it is necessary to balance the effect of the
surface tension, which delays nucleation and allows for the
creation of large massive quark stars, and B∗, which tends to
favor a nucleation at low pressures and densities, reducing,
therefore, the final maximum mass.

VI. COMMENTS ON THE MAXWELL CONSTRUCTION
AND THE INCLUSION OF HYPERONS

In this section we briefly discuss the dependence of the
previous results on the approach used to construct the final
neutron-star configurations which result from a nucleation
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FIG. 3. (Color online) The two curves represent the boundary of
the region of parameters that allow for the formation of stable hybrid
stars after the nucleation process. The value of the surface tension σ

(in MeV/fm2) is reported on the x axis, while the y axis the value of
B∗ (in MeV/fm3) is shown. Results are shown for the TM1 (red line)
and the TM1-2 (blue line) models. In the region below the curves
stable hybrid stars can be formed as a consequence of the nucleation
process, while, in the complementary region, nucleation leads to the
creation of BHs.

process. All the calculations shown were performed according
to the Gibbs criterion. In the following, we consider another
possible approach based on the Maxwell construction. In this
case the hadronic and the quark phases are connected by a
region with constant pressure, leading, therefore, to a sharp
phase transition. Within this phase transition construction
possible existing hybrid stars will always have a pure quark
core, and, contrary to the Gibbs construction, central cores
with mixed hadron-quark matter are excluded.

In Table IV we compare the maximum neutron-star masses
and radii obtained using the Maxwell and the Gibbs con-
structions. For the hadronic phase we have used the TM1-2
model while for the quark phase we have employed the NJL
model without vector interaction (GV = 0). We note that the
maximum masses produced considering both possibilities are

very similar, although the corresponding radii can be quite
different in some cases. However, we want to stress that the
results of the nucleation process discussed in the previous
section for the TM1-2 and the TM1 models are affected only
slightly by the choice of adopting the Gibbs instead of the
Maxwell construction. In fact, the nucleation process described
above takes into account the surface energy and, therefore, the
lowest mass configurations of hybrid stars obtained within
the Gibbs construction will not be populated because their
central pressures lie below the pressure of the critical mass
configuration.

The results obtained using the TM1 model are similar to
those reported in Table IV and are not shown for brevity.

Using the NL3 model for the hadronic phase, the hy-
brid stars produced within the Maxwell construction get
unstable for B∗ = 0. A similar result was obtained also in
Ref. [56] performing a Maxwell construction with the NJL
model but using a different hadronic EOS. Putting B∗ =
−29.59 MeV/fm3 and GV = 0 a stable hybrid star branch can
be obtained. The maximum mass of this sequence is 1.75M�
with a radius of 12 km. In this case both the Maxwell and the
Gibbs construction give rise to the same hybrid star maximum
mass configuration.

We have also studied the effect of including hyperons in the
hadronic EOS. As referred above, the hyperon interactions, in
particular, the hyperon-hyperon one, are not well constrained.
In the following we consider a set of parameters which allows
for quite high star masses [39]. We include the meson with
hidden strangeness φ as in Refs. [39,47], we fix the ω-vector
meson couplings according the SU(6) symmetry and the ρ-
vector meson couplings according to the hyperon isospin and
we fit the couplings of the σ -scalar meson to the hypernuclear
potentials in nuclear matter, with U� = −28 MeV, U� =
30 MeV, U� = 18 MeV. Taking B∗ = −49.23 MeV/fm3

and σ = 9.0 MeV/fm2 we obtain the results shown in the
last line of Table II with entry NY. In this particular case,
it is possible to get a 2.11M� stable hybrid star after
nucleation, which includes hyperons. However, as expected,
the largest hybrid star configuration is smaller when hyperons
are included but not necessarily much smaller if enough
repulsion between hyperons exists: Compare the maximum
hybrid star mass obtained with B∗ = −39.46, MeV/fm3,

TABLE IV. The parameter B∗ (second column), the maximum hybrid star masses predicted by the Maxwell (third column), and the
Gibbs (fifth column) construction. The corresponding radii are reported in columns four and six, respectively. Results are shown for the TM1-2
hadronic EOS including only nucleons in the hadronic phase with (�ω = 0.03) and without (�ω = 0) the ωρ term. The quark phase is described
using the NJL model without vector interaction (GV = 0). The maximum quark star mass is the largest mass produced by integrating the TOV
equations and employing the EOS. In this case the role of the surface tension between the hadronic and the quark phase is neglected.

B∗ (MeV/fm3) MYS, Maxwell
max (M�) RYS, Maxwell

max (km) MYS, Gibbs
max (M�) RYS, Gibbs

max (km)

�ω = 0.03 15.78 2.15 12.60 2.07 12.65
0 2.10 12.72 2.03 12.64

−15.78 1.99 12.83 1.96 12.58
−29.56 1.83 11.98 1.83 12.00

�ω = 0 15.78 2.15 13.27 2.01 13.19
0 2.06 13.45 1.95 13.07

−15.78 1.88 13.53 1.86 12.68
−29.56 1.75 11.91 1.76 11.89
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GV /GS = 0.4, σ = 5 MeV/fm2 with and without hyperons,
respectively, 2.23M� and 2.27M�.

VII. SUMMARY AND CONCLUSIONS

In this work we have analyzed the possibility of getting
stable high-mass neutron stars, compatible with the recent
observation of massive neutron stars, as a consequence of a
quark matter nucleation process. We have considered three
hadronic matter EOS based on the RMF approach together
with a three-flavor NJL model to describe quark matter. The
effect on the metastability of hadronic stars of including a
vector interaction and a phenomenological bag constant in the
NJL model was discussed.

Using the TM1, TM1-2, and NL3 models to describe the
hadronic phase, we have shown that it is possible to obtain
stable final stars after quark matter nucleation. In particular, to
get stable neutron stars, using the NL3 model, it is essential to
include the vector term in the NJL Lagrangian density while,
for the TM1 and TM1-2 models, the stability of the final star
configuration can only be obtained with a weak or zero vector
interaction. For the TM1 model, we have obtained slightly less
massive stars than the ones predicted by TM1-2 one.

We want to stress that the largest stable final mass obtained
with the NL3 model, namely 2.18M�, is a neutron star
containing a quark core while the largest mass predicted by
the TM1-2 model, which reads 2.03M�, is a hybrid star with
a central core made of a mixed phase. These values are both
compatible with the mass of the pulsars PSR J1614-2230 [36],
1.97 ± 0.04M�, and PSR J0348 + 0432 [37], 2.01 ± 0.04M�.
Note that if after nucleation the star suffers a long-term mass
accretion from a companion star in a binary system a star
as massive as 2.04M� could be achieved within the TM1
parametrization.

According to the calculations performed in this work, the
location of the deconfinement phase transition in the phase
diagram of QCD, which in our work depends on the hadronic
EOS used and the phenomenological bag pressure B∗, plays
a very important role on the existence of quark matter in
neutron stars. In addition the hadronic part of the system should
be sufficiently hard to preserve star stability. It was shown
that not all massive quark star configurations are populated
after nucleation. In particular, a too large surface tension may
originate a BH after nucleation. To have conclusive results,
a study of the possibility that nucleation occurs at finite
temperature should still be carried out.

The vector interaction in the quark model allows the
formation of hybrid stars with a pure quark core; however,
this is only possible if the hadronic EOS is very hard. In
particular, using an EOS that at intermediate densities was
designed to satisfy the upper limit of the constraints obtained
in Ref. [41], it is possible to obtain hybrid stars only if
no vector interaction or just a weak one is included in the
NJL model.

We conclude that more conclusive results depend on a better
knowledge of (a) the hadronic EOS at intermediate densities,
(b) the surface energy of a quark cluster in a hadronic matter
background, and (c) the hyperon interaction.
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