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Friedel crystals and the outer crust of magnetars
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The strong magnetic fields found on the surface of magnetars are known to have profound effects on the physics
of atoms in magnetar envelopes. We argue that the Friedel oscillations in the Coulomb force between the ions
due to electron shielding can, for certain values of the parameters, be the dominant effect determining the crystal
structure in the outer crust of magnetars. We estimate the densities and magnetic fields for which this occurs and
compute some of the elastic moduli and lattice phonon dispersion relations in this “Friedel-crystal” phase.
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I. INTRODUCTION

The study of the structure and elastic properties of neutron
star crusts is important in different astrophysical problems, in
particular neutron star seismology. In magnetars, which are
highly magnetized neutron stars with magnetic fields as large
as 1015 G on their surface, these elastic properties determine
the properties of global seismic vibrations of their solid crust
which are believed to be related to the observed quasiperiodic
oscillations (QPOs) in the tails of giant flares [1–3]. The period
of different oscillation modes of neutron stars such as toroidal
t modes, spheroidal s modes and interfacial i modes as well as
the coupling between the oscillations of the core and the crust
of neutron stars are very sensitive to the crustal properties
[4]. For example, the period of the torsional oscillations of
neutron star crust which can explain most QPOs, core-crust
slippage which is important in estimating the Ekman layer
damping rate of core r-mode oscillations [5,6], as well as the
corrections to the frequencies of the core oscillations due to the
presence of a solid crust: all depend on the shear modulus of the
crust.

In the relevant density regime for the outer crust of neutron
stars, matter is composed of ions immersed in a sea of
electrons (in the inner crust a gas of unbound neutrons is
also present). At low enough temperature these ions arrange
themselves into lattices whose structure determines many
of the mechanical properties of the crust. Because of the
importance of the elastic constants of neutron star crusts,
there have been many computations of these quantities in the
past. For example Fuchs [7] calculated the shear modulus of
a static body-centered cubic (bcc) Coulomb lattice, Ogata and
Ichimaru [8] calculated directionally averaged effective shear
modus μeff , which includes all elastic coefficients related to
different shear and bulk moduli, for a bcc crystal at zero
temperature using Monte Carlo simulations, and Strohmayer
et al. [4] studied the temperature dependence of μeff in a
classical one-component plasma. Later, Horowitz and Hughto
[9] calculated the shear modulus of Coulomb crystals using
molecular dynamics simulations and taking into account
electron screening in the Thomas-Fermi model. More recently
Baiko [10] computed μ using thermodynamic perturbation
theory and taking into account ion motion. So far none of
these studies have considered the effect of high magnetic fields
on the lattice structure of ions and elastic properties of the

neutron star crust. Here we concentrate on a particular effect
of high magnetic fields on the elastic properties of magnetars
crust.

In the outer crust of magnetars, the magnetic field strongly
quantizes the motion of electrons perpendicular to the field
into Landau orbitals. At low densities electrons occupy only
the lowest Landau level. Sharma and Reddy [11] studied the
screening of an ion-ion potential in a large magnetic field by
calculating the one-loop electron-hole polarization function.
They found that at low densities and high magnetic fields,
similar to the outer crust of magnetars, the screening length
for Coulomb interactions between ions can be smaller than
the interion spacing. More importantly they found that the
screening is anisotropic and the ion-ion potential along the
magnetic field has a long-range oscillatory behavior (Friedel
oscillations). Even though the Friedel oscillations are weak
they are much longer ranged than the screened Coulomb
potential and, consequently, can have important consequences
for the crystal structure, as conjectured in Ref. [11]. It is the
purpose of this paper to explore this possibility and some of
its consequences.

We will make a simple, heuristic but quantitative argument
arguing that, for a large region of the parameter space, the
Friedel oscillations make the ions organize themselves into
strongly coupled filaments parallel to the magnetic field with
spacing along the magnetic field being a‖ = π/ke (ke is the
electron Fermi momentum) [11]. These filaments interact
with each other more weakly and the crystal structure in the
direction transverse to the magnetic field is more uncertain.
We compute some of the elastic constants in the outer crust
of magnetars that are dominated by the longitudinal structure
of the lattice and can be calculated without knowing the exact
crystal structure.

The paper is organized as follows: In Sec. I we discuss the
ion-ion potential; in particular the electronic screening of ions
in the presence of large magnetic fields and crystal structure
at densities relevant to the outer crust of magnetars. In Sec. II
we discuss elastic properties of magnetar crust and compute
two elastic constants that are dominated by the longitudinal
structure of the lattice. In Sec. III we compute the dispersion
relation of lattice phonons moving in the direction parallel
to the magnetic field. Finally, we provide a summary of our
findings and conclusions in Sec. IV.
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II. FRIEDEL OSCILLATIONS AND CRYSTAL
STRUCTURE AT HIGH MAGNETIC FIELDS

In the density regime of interest (106 g/cm3 � ρ �
108 g/cm3) the distance between ions is much smaller than
atomic orbits, the atoms are fully ionized and the system
is composed of ions surrounded by an electron gas. The
expectation is that at small enough temperatures the repulsion
between the ions, modified by the intervening electrons, will
make the ions settle on a lattice. The properties of the electron
gas, and consequently of the interion potential, are strongly
modified by magnetic fields. So we will start our discussion
considering electrons in a magnetic field.

The single-particle states of an electron in a magnetic
field are labeled by two continuous momenta py and pz, a
positive integer n = 1/2, 3/2, . . . (Landau level), and a spin
orientation ms (ms = 1/2 for the lowest Landau level n = 1/2
and ms = ±1/2 for n = 3/2, . . . ), with an energy equal to
ε = (p2

z + m2 + 2eBn)1/2, where m is the electron mass and
B is the external magnetic field (we use units where c = h̄ =
kB = 1). These states are centered in one of the directions
transverse to the magnetic field at y = py/eB. The many-body
ground state is formed by filling the first Landau level with
increasing values of pz until the energies reach the pz = 0
value of the second Landau level. From that point on the lowest
and the second lowest Landau level are filled simultaneously.
The number of single-particle states in a box of size L3 is

ne = 1

L3

LeB

2π/L

L

2π

∫ ke

−ke

dpz = eB

2π2
ke, (2.1)

where ke is the z component of the momentum of the
most energetic electron (the Fermi momentum in the di-
rection of the magnetic field). From Eq. (2.1) we can
find the mass density ρ at which the electrons become
relativistic:

ρ ≈ AMmeB

2π2Z
≈ 0.79 × 108 g/cm3

(
A66

Z28

)
B15, (2.2)

where B15 = B/1015 G, M is the nucleon mass, and we
express the mass (A) and atomic (Z) number of the
ions in terms of A66 = A/66 and Z28 = Z/28 (chosen
because 66Ni28 is one of the favored isotopes at these
densities).

We are interested in the regime where all (or most) electrons
are in the lowest Landau level. This corresponds to mass
densities below

ρ � AM√
2π2Z

(eB)3/2

≈ 5.2 × 108 g/cm3

(
A66

Z28

)
B

3/2
15 . (2.3)

Thus, for almost all the parameter space we are inter-
ested in, most electrons are in the lowest Landau level
and the effect of the magnetic field on electron motion is
appreciable.

The effect of the magnetic field on the electron screening
of Coulomb forces was discussed in Ref. [11]. The potential
between ions was found to be

V (r⊥, z) = Z2α

⎡
⎣e−mD

√
r2
⊥+z2√

r2
⊥ + z2

− m2
De−z/λT

4z

cos(2kez)r⊥√
4k2

e + m2
D

2 ln(4kez)
K1

(
r⊥

√
4k2

e + m2
D

2
ln(4kez)

)⎤⎦ , (2.4)

where m2
D = e3Bm/(2π2ke) and λT = 2πke/(mT ). The direction along the magnetic field is denoted by z and the perpendicular

direction is r⊥. Equation (2.4) is valid for z � 1/ke and r⊥ � 1/
√

eB. We will require an expression valid for the r⊥ � 1/
√

eB
regime as well. The value of V (r⊥ = 0, z) can be found by going back to a form more generally valid [11]. The Yukawa part
remains the same while the Friedel part is given by

VF (0, z) = −Z2αm2
D

2

e−z/λT cos(2kez)

z

∫ ∞

0
dq⊥

J0(q⊥r⊥)e− q2

2eB(
q2

⊥ + 4k2
e + m2

De
− q2

2eB

2 ln(4kez)
)2 + (πm2

D

2 e− q2

2eB

)2

≈ −Z2αm2
D

4

e−z/λT cos(2kez)

z

1

4k2
e + m2

D

2 ln(4kez)
f

(
2k2

e + m2
D

4 ln(4kez)

eB

)
, (2.5)

with

f (x) = 1 + xexEi(−x), (2.6)

with Ei(x) = ∫∞
x

e−t dt/t being the exponential integral func-
tion. The function f (x) approaches 1 as x → 0 and 1/x as
x → ∞.

Two important points are worth noticing about Eq. (2.4).
The first is that the potential can be decomposed into

an isotropic part describing a shielded Coulomb potential
(denoted by the Yukawa part from now on) and an anisotropic
one describing the Friedel oscillations. The second point
is that Eq. (2.4) contains several length scales. The pa-
rameter λT is by far the longest one. Numerically it is
given by

λT = 2πke

mT
≈ (1.6 × 10−7 cm)

(
Z28

A66

)(
ρ8

B15T1

)
, (2.7)
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where T1 = T/(1 keV) and ρ8 = ρ/(108 g/cm3), while the
other scales are

1

mD

≈ (1.3 × 10−10 cm)

√
Z28ρ8

A66

1

B15
, (2.8)

1

ke

≈ (3.0 × 10−11 cm)

(
A66

Z28

)(
B15

ρ8

)
, (2.9)

1√
eB

≈ (8.1 × 10−12 cm)
1√
B15

. (2.10)

This disparity in length scales means that the Friedel term
is very long ranged compared to either the screening length
1/mD or the interion distance n−1/3. As such, it can be added
coherently over a large number of ions and dominate over
the larger but short-ranged Yukawa term in determining the
crystal structure. If that is the case, the ions are spaced by
the distance a‖ = π/ke in the longitudinal direction in order
to be at the bottom of the cos(2kez) oscillations (a scenario
already suggested in Ref. [11]). The lattice structure in the
transverse direction is less clear but also less important for what
follows. This picture of the crystal structure will be the central
assumption of our work. Monte Carlo studies are essential in
verifying that the potential in Eq. (2.4) indeed leads to such a
lattice structure but they are somewhat involved. Here we will
present a plausibility argument supporting our assumption.

First, let us observe that the expression in Eq. (2.4) can be
simplified by noting that√

4k2
e + m2

D

2
ln(4kez) ≈ 2ke (2.11)

for all z such that z � λT ; that is, for all z such that the Friedel
term is not negligible. In fact, at z ≈ λT we have

m2
D

2 ln(4keλT )

4k2
e

≈ 0.006

[
A3

66B
4
15

Z3
28ρ

3
8

ln

(
(2.1 × 104)Z2

28ρ
2
8

A2
66B

2
15T1

)]
;

(2.12)

therefore, Eq. (2.4) can be approximated by

V (r⊥, z)

= Z2α

⎡
⎣e−mD

√
r2
⊥+z2√

r2
⊥ + z2

− m2
D

8ke

cos(2kez)e−z/λT

z
r⊥K1(2ker⊥)

⎤
⎦

(2.13)

in the region of the parameter space where B4
15 � 10ρ3

8 (the
region below the dashed line in Fig. 1) and r⊥ � 1/

√
eB. At

r⊥ = 0 this formula is modified to

V (0, z) = Z2α

[
e−mDz

z
− m2

D

16k2
e

cos(2kez)e−z/λT

z
f

(
2k2

e

eB

)]
.

(2.14)

Let us consider a tetragonal ion lattice (a cubic lattice
stretched or contracted in the z direction) with the spacing
longitudinal and perpendicular to the magnetic field equal to
a‖ and a⊥, respectively, and related to each other in such a

FIG. 1. (Color online) The darker region (blue online) is the
approximate regions in ρ8 × B15 space where our simple model
predicts a “Friedel crystal.” Below the dashed line the approximation
m2

D ln(4keλT ) � 8k2
e is valid. We used Z28 = A66 = T1 = 1 (there is

a mild logarithmic dependence on the temperature on this graph). In
the region above the dotted line on the upper-left corner and below the
solid line in the lower-right corner, the function f defined in Eq. (2.6)
cannot be approximated by 1. The white triangular region on the
upper-right corner corresponds to a situation where the minimum of
the free energy of the crystal happens at a‖ 
= π

ke
, and therefore the

Friedel crystal does not exist anymore. This has been illustrated in
Fig. 2.

way to keep the ion density n = 1/(a2
⊥a‖) fixed and equal to

ne/Z. Both terms in Eq. (2.4) decay fast in the r⊥ direction,
but the Friedel part decays very slowly in the longitudinal
direction. Thus the potential energy of one ion in the lattice can
be approximated by the Yukawa contribution from its nearest
neighbors and the sum of the Friedel part along the z axis:

Eion = 4VYukawa(z = 0, r⊥ = a⊥) + 2VYukawa(z = a‖, r⊥ = 0)

+ 2
∞∑

n=1

VFriedel(z = na‖, r⊥ = 0). (2.15)

The Friedel contribution is cut off by the factor e−z/λT , thus
the largest relevant value of z is ∼λT . At those values the
arguments of the function f is

2k2
e + m2

D

4 ln(4keλT )

eB
ln(4keλT )

≈ 0.14

(
Z2

28ρ
2
8

A2
66B

3
15

)
+ 0.001

(
A66B15

Z28ρ8

)

× ln

(
(2.1 × 104)Z2

28ρ
2
8

A2
66B

2
15T1

)
. (2.16)

The argument of f is then small for most of the parameter
space except for the B15 � 1, ρ8 ∼ 1, and a small region where
B15 � 50ρ8. Thus, f � 1 in the regions above the dotted line
or below the solid lines in Fig. 1. As we will see now, these
regions are not important for our purposes because a Friedel
crystal is not likely to be formed there. In those regions the
Friedel force is somewhat diminished as compared with the
approximation leading to Eq. (2.15) but the Friedel crystal may
still exist there.
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FIG. 2. (Color online) Energy per ion as a function of a‖ for (a) B = 3 × 1014 G, ρ8 = 107 g/cm3, and (b) ρ8 = 2 × 107 g/cm3. The
remaining parameters are T = 1 keV, A66 = 1, Z28 = 1. The global minimum of Eion happens at a‖ = π

ke
in the left plot, but it happens at

a‖ 
= π
ke

in the right plot. Therefore there is no Friedel crystal for the parameters used in the right plot.

The sum in Eq. (2.15) is readily evaluated with the result

Eion = Z2α

{
4
√

na‖e
− mD√

na‖ + 2
e−mDa‖

a‖
− m2

D

16k2
e a‖

×
[

a‖
λT

− ln 2 − ln

(
cosh

a‖
λT

− cos(2kea‖)

)]}
,

(2.17)

where in the last line we used the fact that a‖ � λT .
This expression breaks down at a‖ � 1/ke. At those short
distances there is no screening and the interion interaction
is described by a simple repulsive Coulomb potential. The
behavior of this expression as a function of a‖ is shown, for
two representative combinations of the parameters, in Fig. 2.
For low enough temperatures, the logarithmic singularity at
a‖ = π/ke, 2π/ke, . . . (arising from the sum over the long-
range potential proportional to 1/z and cut off by the thermal
screening at the scale λT ) guarantees a minimum of Eion

1 at
these values of a‖, which is more pronounced at a‖ = π/ke. For
temperatures relevant to magnetar crusts this minimum may
not be a global minimum or it may disappear all together. The
issue is the competition between the weaker but longer-ranged
Friedel part of the potential with the Yukawa part. In order to
keep the density fixed and a‖ = π/ke, the transverse lattice
spacing a⊥ = √

2πZ/(eB) is independent of density. As the
density increases (at fixed magnetic field), a‖ decreases and
when it is comparable to the range ∼1/mD of the Yukawa
potential it becomes energetically favorable for a⊥ to increase
and a‖ to decrease. For larger values of the magnetic field,
above B ≈ 5 × 1015 G, there is even a more complicated phase
structure with the Friedel crystal disappearing and appearing
again as the density changes due to competition between
the Friedel potential and the Yukawa interaction both in the
longitudinal and transverse directions.

We estimate the regions of parameter space favorable to
the formation of the Friedel crystal by (globally) minimizing
Eq. (2.15). The result is shown in Fig. 1. We stress that the
arguments above are only heuristic. The spacing by a‖ = π/ke

1At small temperatures one can minimize Eion instead of minimizing
the free energy to get the crystal structure.

along the longitudinal direction is likely to survive a full
analysis as it depends only on the fact that the potential decays
fast on the perpendicular direction while it has long-range
Friedel oscillations in the longitudinal direction. But the
transverse structure of the lattice, taken here to be a square, is
considered purely for illustration purposes and may well turn
out to be more complicated after a further analysis. Also, the
precise locations of the phase boundaries may change upon a
more detailed analysis. In particular, the physics determining
the transverse and longitudinal structures of the lattice are
different and there may be temperature range where the
transverse structure melts while the more rigid longitudinal
structure remains. In this regime the crust would be a nematic
liquid crystal, ordered in the direction of the magnetic field
but disordered in the transverse direction. We are presently
studying these possibilities.2 In the regions of the parameter
space where a‖ � λT does not hold, the effect of the Friedel
oscillations do not add coherently over many ions and we
do not expect the crystal structure to be valid. In that case,
a standard lattice determined by the repulsive (screened)
Coulomb force is more likely. Notice that the regions where
our simple model predicts the existence of a Friedel crystal the
condition that Eq. (2.16) is much smaller than one is satisfied.

At finite temperature the ions fluctuate around their equi-
librium positions. When the fluctuations are of the order of
the lattice spacing the lattice order is broken and the lattice

2In the absence of a magnetic field the Friedel oscillations in
the potential have the form ∼ cos(2ker)/r3, where r is the radial
distance. The higher power of r compared to the denominator of
Eq. (2.4) is compensated by the fact that the oscillations occur
in all directions and a potential infrared divergence in the energy
∼ ∫

drr2 cos(2ker)/r3 could be important in determining the crystal
structure. However, in three dimensions it is impossible to arrange
the ions so that their mutual distance is always an integer multiple of
π/ke, so the contributions from the Friedel part cannot act coherently
and the Friedel part of the potential is of limited importance. Only in
the effectively one-dimensional case discussed in the paper can we
arrange the ions so that their mutual distance is always a multiple of
π/ke and the Friedel part of the potential can add up to a dominate
factor.
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melts. We can estimate the temperature in which this occurs
as follows: When an ion is displaced along the longitudinal
direction by an amount x its potential energy changes to

Eion(x) ≈
∞∑

n=1

VFriedel(z = nπ/ke − x, r⊥ = 0)

+
∞∑

n=1

VFriedel(z = nπ/ke + x, r⊥ = 0)

≈ Eion(x = 0) + Z2αm2
Dke

4π
ln

(
keλT

π

)
x2 + · · · ,

(2.18)

where we kept only the interactions with other ions in the z =
0 line, the dominating force fixing a‖ = π/ke. Equating the
average potential energy Eion(x) to the temperature [Eion(x) ∼
T ] we can find the typical thermal displacement of the ion and
by imposing that this displacement is smaller than a‖ we find

Tmelt ≈ Z2αm2
D

ke

ln(keλT )|T =Tmelt

≈ Z2αm2
D

ke

ln

(
2k2

e

mTmelt

)∣∣∣∣
T =Tmelt

≈ (1 MeV)

(
A2

66B
3
15

ρ2
8

)
, (2.19)

far above the temperatures of interest. Quantum fluctuations
can also destabilize the lattice. To estimate this effect we com-
pare the mean-square-root fluctuations of the ion displacement
in the ground state to a‖ = π/ke. We find√

〈x2〉
a‖

≈
(

k3
e

AMZ2αm2
D ln(keλT )

)1/4

≈ 0.08

(
Z2

28ρ
4
8

A5
66B

5
15

)1/4

,

(2.20)

which is small for all but the smallest magnetic fields and
highest densities of interest.

III. ELASTIC PROPERTIES

Elastic properties of magnetar crusts are important in the
modeling of the oscillations of magnetars. In this section we
compute some of the elastic constants—the ones dominated
by the longitudinal structure of the lattice—in the crust lattice
model discussed in the previous section.

In a tetragonal lattice with lattice spacings a‖ and a⊥ the
equilibrium position of the ions are given by [an] ≡ a⊥nx x̂ +
a⊥ny ŷ + a‖nzẑ, where x̂, ŷ, and ẑ form an orthonormal
basis and nx, ny , and nz are integers. We denote by ξn the
displacement of the ion located at [an] from its equilibrium
position. For small displacements ξn � a⊥, a‖ the potential
energy of the lattice is given by

U = 1

2

∑
n,m

V ([an] − [am] + ξn − ξm)

≈ U0 + 1

4

∑
n,m

(
ξ i

n − ξ i
m

)(
ξ j

n − ξ j
m

) ∂2V

∂ri∂rj

∣∣∣∣
ξ=0︸ ︷︷ ︸

=V
ij

nm

+ · · · ,

(3.1)

where U0 is the equilibrium energy. It is convenient to rewrite
V

ij
nm in terms of the difference n − m:

V ij
nm =

∑
�

V
ij
� δn,m−�, (3.2)

and we obtain


U = U − U0 = 1

4

∑
n,�

V
ij
�

(
ξ i

n − ξ i
n+�

)(
ξ j

n − ξ
j
n+�

)
. (3.3)

Using the Fourier components

ξp = a2
⊥a‖

∑
n

e−ip·[an]ξn and ξn =
∫

d3p

(2π )3
eip·[an]ξp, (3.4)

where p · [an] = (pxnx + pyny)a⊥ + pznza‖, we find


U = 1

a2
⊥a‖

∫ π/a⊥

−π/a⊥

∫ π/a⊥

−π/a⊥

∫ π/a‖

−π/a‖

d3p

(2π )3︸ ︷︷ ︸
=∫

B
d3p

(2π)3

∑
�

V
ij
�

× sin2

(
p · [�a]

2

)
ξ i

pξ
j
−p. (3.5)

As the lattice contracts or expands it carries the electron gas, to
which they are strongly coupled. Thus the elastic deformation
energy will also receive a contribution from the electron gas
compressibility. This contribution can be computed as

ε(ne(1 + ∇ · ξ )) − μene(1 + ∇ · ξ )

≈ ε(ne) − μene︸ ︷︷ ︸
constant

+ ne

(
dε

dne

− μe

)
∇ · ξ︸ ︷︷ ︸

=0

+ 1

2
(∇ · ξ )2 n2

e

d2ε

dn2
e︸ ︷︷ ︸

=κ

+ · · · , (3.6)

where ε(ne) is the energy density of the electron gas and κ its
compressibility. Using the Fourier components in Eq. (3.4) we
find that the energy change due to the electron gas is


Ue = κ

2a2
⊥a‖

∫
B

d3p
∑

i,j=1,2,3

sin(piai) sin(pjaj )

aiaj

ξ i
pξ

j
−p,

(3.7)

with a1,2 = a⊥ and a3 = a‖. For a free-electron gas in a
magnetic field we have

κ = k2
e√

k2
e + eB + m2

≈ (0.42 MeV)

(
Z2

28ρ
2
8

A2
66B

2
15

)
1√

0.26 + 5.8B15 + 0.42
( Z2

28ρ
2
8

A2
66B

2
15

) .
(3.8)
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For deformations varying little on the lattice-spacing scale we can expand the elastic energy in powers of momenta and find the
total energy of the deformed lattice:


U + Ue = 1

a2
⊥a‖

∫
B

d3p

(2π )3

[∑
�

V
ij
� sin2

(
p · [�a]

2

)
+ κ

2

sin(piai) sin(pjaj )

aiaj

]
ξ i

pξ
j
−p

≈ 1

a2
⊥a‖

∫
d3p

(2π )3

[
1

4

∑
�

V
ij
� pkpl
k
lakal + κ

2
pipj

]
ξ i

pξ
j
−p

≈ 1

a2
⊥a‖

∫
d3p

(2π )3

[
1

4

∑
�

V
ij
� 
k
lakal + κ

2
δi
kδ

j
l

]
pkplξ

i
pξ

j
−p

≈ 1

2

∫
d3x λ

ij
kl ∂kξ

i∂lξ
j , (3.9)

where

λ
ij
kl = 1

a2
⊥a‖

(
κ δi

kδ
j
l + 1

2

∑
�

V
ij
� 
k
lakal

)
(3.10)

and the constants λ
ij
kl are the elastic moduli tensor as de-

fined, for instance, in Ref. [12]. The elastic moduli tensor
encapsulates the information about the elastic properties of
the lattice. In the case of an isotropic medium, they are
determined by only two independent constants: bulk and shear
moduli. In general, the lattice breaks rotation symmetry down
to a discrete subgroup and more independent constants are
necessary to specify λ

ij
kl . In the case of a tetragonal lattice,

for instance, there are six independent ones. In our case,
besides the symmetry breaking due to the lattice there is the
breaking of rotation symmetry due to the external magnetic
field. Thus, the same lattice, oriented in space in a different
direction relative to the field, will have a different energy.
As such, the energy depends not only on the symmetric
combinations (∂kξi + ∂iξk)/2 forming the strain tensor but also
on the antisymmetric combinations (∂kξi − ∂iξk)/2 describing
rigid rotations of the lattice.

Since we have not determined the crystal structure that
is energetically most favorable, in this paper we will restrict
ourselves to the computation of λzz

zz and λzz
xx only, since they,

as we will argue, are largely independent of the transverse
structure of the lattice. They will also determine the dispersion
relation of phonons moving in the longitudinal direction
and the heat conductivity along the field. λzz

zz is the elastic
constant related to the energy change of the lattice due
to a small displacement in the z direction (parallel to the
magnetic field) when the wave is also propagating in the z
direction, and λzz

xx is related to the energy change of the lattice
when the displacement is in the x direction (perpendicular
to the magnetic field) but the wave is propagating in the z
direction. We first compute λzz

zz analytically by making some
approximations valid for the B4

15 � 10ρ3
8 case. After that, we

will show more general numerical results in order to verify the
approximations and extend the calculation beyond this region.

On account of the fast decay of V (r⊥, z) with the transverse
distance r⊥ compared to the much slower decay in the z
direction, we include in the sum in Eq. (3.10) only the ions

along the r⊥ = 0 line (and neglect the fast-decaying Yukawa
part). That gives

λzz
zz = 1

2a2
⊥a‖

∑
�

V zz
� 
2

za
2
‖

≈ −Z2αm2
D

2a2
⊥

∞∑

z=1


2
z

d2

dz2

[
e−z/λT

4k2
e + m2

D

2 ln(4kez)

cos(2kez)

z

× f

(
2k2

e + m2
D ln(4kez)/4

eB

)]∣∣∣∣
z= π

ke

x

≈
⎧⎨
⎩

Z2αm2
D

4a2
⊥a2

‖
λ2

T ,
m2

D

8k2
e

ln(4πλT /a‖) � 1

2Z2αk2
e

a2
⊥a2

‖ ln(4πλT /a‖)
λ2

T ,
m2

D

8k2
e

ln(4πλT /a‖) � 1
(3.11)

≈

⎧⎪⎨
⎪⎩

(2.8 × 103 MeV4)
( Z4

28ρ
3
8

A3
66B15

1
T 2

1

)
(4.5 × 105 MeV4)

(
Z7

28ρ
6
8

A6
66B

5
15

1

T 2
1 ln

(
(2.1×104)Z2

28ρ2
8

A2
66B2

15T1

)).
(3.12)

Since the sum is nearly divergent (cutoff at z ∼ λT by the
exponential), we kept in Eq. (3.12) only the most divergent
term in the derivative of the potential. The approximation
leading to the upper part of Eq. (3.12) is valid in the region
below the dashed line in Fig. 1 while the lower part is valid
above the same line. The quadratic near divergence explains
the appearance of the λ2

T factor in the result. Except for
the highest temperatures and smallest magnetic fields the
contribution in Eq. (3.12) is much larger than the electron
contribution, so

λzz
zz ≈ (5.9 × 1029)

ergs

cm3

(
Z4

28ρ
3
8

A3
66B15

1

T 2
1

)
(3.13)

is a convenient analytic expression valid in most of the
parameter space. This is in sharp contrast to not-strongly-
magnetized crust matter that, like white dwarfs, is held up
by the electron pressure. The enhancement comes about due
to the fact that each ion interacts with thousands of other ions
in the same line along the magnetic field.

The calculation leading to Eq. (3.12) involves a number
of approximations, the most drastic being the neglect of
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the interactions with ions at r⊥ 
= 0. In order to verify
the validity of these approximations as well as produc-
ing results outside their range of validity we numerically
computed the sums in Eq. (3.10). Some care is needed in
this evaluation. Since the main contribution comes from
a sum over thousands of ions along the line r⊥ = 0, we
should include a large number of terms in our sum. This
can be accomplished by summing a small number and
estimating the remaining terms as an integral. The result is
shown in Fig. 3 together with the approximate results from
Eq. (3.12).

Next, we calculate the λxx
zz component of the elastic moduli

tensor. We cannot use Eq. (2.4) for this purpose because the
second derivative of the modified Bessel function of the first
kind diverges at r⊥ = 0. This is because our expression of
VFriedel in Eq. (2.4) breaks down for r⊥ � (eB)−1/2. To obtain
an expression of VFriedel that is valid for r⊥ � (eB)−1/2, we
begin with an expression in Ref. [11] that is valid for all r⊥
and is given by

ρ

λ

FIG. 3. (Color online) Elastic modulus λzz
zz as a function of the

density for three different values of the magnetic field and T = 1 keV
(A66 = Z28 = 1). The lines are the approximate results in Eq. (3.12).
We do not show points outside the Friedel-crystal zone depicted in
Fig. 1.

VFriedel = −2 cos(2kez)

πz

∫ ∞

0
dq⊥q⊥J0(q⊥r⊥)

exp
( − q2

⊥
2eB

)
e
− z

λT m2
D(π/4)[

q2
⊥ + (2ke)2 + exp

( − q2
⊥

2eB

)m2
D

2 ln(4kez)
]2 + [

exp
( − q2

⊥
2eB

)(
π
4

)
m2

D

]2
. (3.14)

For r⊥ � (eB)−1/2, the integral is dominated by q⊥ �
√

eB and the exponentials are approximately 1. In this limit, along with
the approximation kf � mD , we are led to our expression for VFriedel in Eq. (2.4). However, for r⊥ � (eB)−1/2, i.e, q⊥ �

√
eB,

the exponential in the numerator is crucial for the convergence of the second derivative of VFriedel. The exponentials in the
denominator are negligible in this limit, giving

VFriedel = −2 cos(2kez)

πz

∫ ∞

0
dq⊥q⊥J0(q⊥r⊥) exp

(
− q2

⊥
2eB

)
e
− z

λT

m2
D(π/4)

[q2
⊥ + (2ke)2]2

= −2 cos(2kez)

πz

∫ ∞

0
dq⊥q⊥

(
1 − q2

⊥r2
⊥

4
+ · · ·

)
exp

(
− q2

⊥
2eB

)
e
− z

λT

m2
D(π/4)

[q2
⊥ + (2ke)2]2

. (3.15)

Following Eq. (3.10), in the regime where the sum is dominated by the ions at r⊥ = 0, we have

λxx
zz = a‖

2a2
⊥

∞∑

z=−∞

V xx

z


2
z =

(
a‖
a2

⊥

∞∑

z=1

∂2VFriedel

∂r2
⊥


2
z

)∣∣∣∣
z= 
zπ

ke
,r⊥=0

= a‖
a2

⊥
Z2α

∞∑

z=1

(
2ke


z

∫ ∞

0
dq⊥

q3
⊥
2

e
−q2⊥
2eB

m2
D/4

[q2
⊥ + (2ke)2]2

e
− 
zπ

λT ke 
2
z

)

= a‖
a2

⊥
Z2α

∞∑

z=1

ke

π

m2
D

2

ze

− 
zπ

λT ke
1

8

[
− 2 − e

(2ke )2

2eB
2eB + (2ke)2

eB
Ei

(
0,

−(2ke)2

2eB

)]

= Z2αm2
Dλ2

T

4a2
⊥a2

‖

[
− 1

2
− 4k2

e + 2eB

4eB
e

2k2
e

eB Ei

(
− 2k2

e

eB

)]

= −2778.78Z4
28ρ

3
8

A3
66B15T

2
1

[
1

2
+ 1

B15
0.043e

0.15Z2
28ρ2

8
A2

66B3
15

(
11.63B15 + 1.7Z2

28ρ
2
8

A2
66B

2
15

)
Ei

(−0.15Z2
28ρ

2
8

A2
66B

3
15

)]
MeV4

= − (5.89 × 1029)Z4
28ρ

3
8

A3
66B15T

2
1

[
1

2
+ 1

B15
0.043e

0.15Z2
28ρ2

8
A2

66B3
15

(
11.63B15 + 1.7Z2

28ρ
2
8

A2
66B

2
15

)
Ei

(−0.15Z2
28ρ

2
8

A2
66B

3
15

)]
ergs/cm3, (3.16)

where Ei stands for the exponential integral function. We were unable to obtain a useful analytical expression in the opposite

regime (above the dashed one in Fig. 1) where m2
D

8k2
e

ln(4πλT /a‖) � 1. These results are plotted in Fig. 4. This figure shows the

regions where the approximation used to derive Eq. (3.16) breaks down. The scaling λxx
zz ∼ 1/T 2, predicted by Eq. (3.16), was

also verified numerically.
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ρ

λ

FIG. 4. (Color online) Elastic modulus λxx
zz as a function of the

density for four different values of the magnetic field and T = 1 keV
(A66 = Z28 = 1). The lines are the approximate results in Eq. (3.16).
Only points where we believe λxx

zz is dominated by the sum over the
r⊥ = 0 line are shown; for other values the interaction between ions
at different r⊥ dominates which can be significantly affected by a
different transversal crystal structure. The discrepancy between the

points shown and the lines are in the region
m2

D

8k2
e

ln(4πλT /a‖) � 1
where a useful analytic expression was not found but where we still
trust the dominance of the r⊥ = 0 line.

The origin of the large value of λxx
zz may seem puzzling since

the main force acts along the z direction. Even though the force
keeping the Friedel-crystal structure is along the longitudinal
direction, it acts on a narrow angle around the z axis. A
small deformation of the lattice in the transverse direction
misaligns the ion relative to the z direction and the lattice
energy looses the large attractive contribution coming from
the r⊥ line. Consequently the energy of the lattice increases
quickly and λxx

zz can be as large as λzz
zz. It should be noted

that our definition of λzz
zz and λxx

zz is similar to the definition
of b11 and c44 used in some of the previous references on
elastic properties of neutron stars crust, such as Refs. [4,9].
Due to the long-range Friedel potential in the presence of a
strong magnetic field our results for these elastic constants in

the outer crust of magnetars are more than 104 times larger
than the results found in those references for a nonmagnetized
neutron star crust, and therefore the speed of sound in our case
is much larger. In fact in some regions of our parameter space it
can get close to the speed of light. We note that having a speed
of sound larger than the speed of light is not physical and can
indicate the breakdown of some of our approximations. For
example, when the speed of sound gets large, at some point
the static approximation for the ion-ion potential breaks down.
This will be discussed in more detail at the end of next section.

IV. PHONONS

The vibrations of the ion lattice are responsible for many of
the properties of the crust, such as the specific heat, heat con-
duction, and shear viscosity. In the quantum theory, these vi-
brations are described by phonons whose dispersion relations
are determined by the elastic moduli. The constants λzz

zz and
λzz

xx computed above are sufficient to determine the dispersion
relation of phonons moving along the direction of the magnetic
field. In this section, we compute these dispersion relations.

We start by considering the action of the ion lattice:

S =
∫

B

dtd3p

[
AMn

2
|ξ̇p|2 + Zenξ̇ i

pξ
j
−pεijkB

k

− neκ

2
pipj ξ

i
pξ

j
−p − 2n

∑
�

V
ij
� sin2

(
p · [a�]

2

)
ξ i

pξ
j
−p

]
,

(4.1)

where n = (a2
⊥a‖)−1 is the number density of ions and ne = Zn

is the number density of electrons.
The first term in Eq. (4.1) is the kinetic term, the second

term describes the interaction between the moving ions and the
magnetic field, and the remaining terms describe the elastic
terms discussed in the previous section. Terms with higher
powers of ξ should be added when phonon-phonon interactions
are discussed, and they can be computed in a manner similar
to the computation of the quadratic terms

Let us consider now a phonon moving in the z direction
with momentum p‖ � π/a‖ and frequency ω. In this case the
action reduces to

S =
∫

B

dtd3p
(
ξ 1

p ξ 2
p ξ 3

p

)⎛⎜⎝
AMn

2 ω2 − p2
‖λ

xx
zz iZenωB 0

−iZenωB AMn
2 ω2 − p2

‖λ
yy
zz 0

0 0 AMn
2 ω2 − neκ

2 p2
‖ − p2

‖λ
zz
zz

⎞
⎟⎠
⎛
⎜⎝ ξ 1

−p

ξ 2
−p

ξ 3
−p

⎞
⎟⎠. (4.2)

The phonons dispersion relation is given by the condition that the determinant of the matrix above vanishes. We obtain one mode,
polarized in the longitudinal direction (ξ ∼ ẑ) with dispersion relation given by (using the fact that neκ

2 � λzz
zz)

ω =
√

2λzz
zz

AMn
p‖ (4.3)

and two transverse modes (ξ ∼ x̂ ± iŷ), with a polarization rotating about the magnetic field, with dispersion relations given by

ω =
√

Z2e2B

A2M2
+ 2λxx

zz

AMn
p2

‖ ± ZeB

AM
,

−→
p‖ → 0

{
2ZeB
AM

+ · · · ≈ (5 keV)
(

B15Z28
A66

)
λxx

zz

nZeB
p2

‖ + · · · ,
(4.4)
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where in the second line we displayed the small-p‖ behavior.
Phonons are Goldstone bosons arising due to the breaking
of translation invariance by the lattice and, as such, are
expected to be massless. In Lorentz-invariant theories this
implies a linear dispersion relation for the phonons [13], but
in the absence of Lorentz invariance, as in the present case,
more general dispersion relations are possible. As shown in
Ref. [14], gapless modes with quadratic dispersion relation can
appear and count as two linear modes. That is exactly what we
find: one quadratic mode and one linear mode corresponding
to the three symmetries spontaneously broken (the translations
along the three axis). The spectrum composed of a gapped,
one quadratic, and one linear massless mode was already
found in Ref. [15]. The speed of sound in the longitudinal
direction is given by cs =

√
2λzz

zz/ρ. Using Eq. (3.13) we can
write

cs

c
� 0.36

(
Z2

28ρ8

A
3/2
66 B

1/2
15

1

T10

)
, (4.5)

where c is the speed of light and T10 = T/(10 keV). Note that
this equation is only valid for the range of temperatures and
densities given by our parameter space. In the limit of T → 0
it gives unphysical values for the speed of sound (cs > c),
since the cut off e−z/λT in Eq. (2.4) goes to one as T → 0.
This can be due to the breakdown of the static approximation
for the ion-ion potential when the velocity of phonons gets
larger than the Fermi velocity of the electrons. This may
also arise due to the approximate treatment of electronic
states near the Fermi surface. The periodic potential in the
solid gives rise to electronic band gaps which have finite
values at zero temperature and therefore can smear out the
momentum distribution even at T = 0.3 The splitting between
the bands due to the periodic potential in a bcc crystal is
of the order of 
 � 0.018( Z

60 )2/3μe [16], which is equal to
0.011μe for Z = 28 relevant to the outer crust of neutron
stars. We note that the band gap can smear out the momentum
distribution if it coincides with the Fermi surface, but if

 � μe, which is the case here, the probability of having
a gap right at the Fermi surface will be small. Thus further
studies on the low temperature behavior of the potential are
warranted.

V. CONCLUSION

In this paper we studied the effect of strong magnetic
fields on the structure and elastic properties of neutron star
crusts. At low densities and high magnetic fields, similar to
the situation that can be found in the outer crust of magnetars,
the screening of ion-ion Coulomb potential by electrons
is anisotropic and the potential shows a very-long-range
oscillatory behavior (Friedel oscillations) in the direction along
the magnetic field. This long-range potential forces the ions
to organize themselves into strongly coupled filaments along
the magnetic field, which makes their mechanical properties
very different from those of not-strongly-magnetized crusts.

3We thank the referee for pointing this out.

Since we have not computed the exact crystal structure under
these conditions, here for simplicity we considered tetragonal
lattice and computed the elastic constants that are dominated
by the longitudinal structure of the lattice. We found these
elastic constants to be significantly larger than that of a
bcc Coulomb crystal of comparable densities. In fact, the
Friedel crystals discussed in this paper are so hard as to
make the speed of sound approach (but not exceed) the
speed of light. In this respect, we note that the harmonic
approximation will have a limited range of validity in Friedel
crystals. This is clear from Fig. 2. The bottom of the potential,
near the logarithmic singularity, is very steep but for very
modest deformations the energy reaches a much flatter and,
consequently, much softer region. For the same reason, even a
perfect Friedel crystal with no defects will be very brittle.
We leave the quantification of these remarks for a future
presentation.

The transitions separating Friedel crystal from other crystal
(or liquid) states, shown in Fig. 1 as the lines separating
the dark blue areas from the white ones, are all first order.
This implies that the Friedel-crystal state can also exist as a
metastable state outside the regions shown in Fig. 1. This is
also evident by the shape of the lattice energy as a function of
a‖ shown in Fig. 2.

We would like to stress again that a final word about
the true structure of the lattice can only be determined
by a more careful Monte Carlo evaluation. Our arguments
in this paper aim at providing a quantitative guide for
numerical explorations as well as to bring attention to the high
values of elastic moduli that can be achieved if the Friedel
structure of the lattice is confirmed. A full calculation of all
elastic moduli would allow us to determine the dispersion
relation of phonons moving in all directions. A number of
useful properties of the crust would follow from them; for
instance, the specific heat, heat conductivity (due to Umklapp
processes), and shear viscosity. However, these elastic moduli
can be reliably computed only after the lattice structure,
including the transverse direction, is determined. Assuming
a Friedel lattice actually forms (in a range of parameters)
with ions separated by a‖ = π/ke along the longitudinal
direction, two possible lattice structures suggest themselves.
One possibility is that the filaments in the z direction avoid
each other (due to the Yukawa part of the potential) and form
a triangular lattice in the transverse direction, resulting in
a hexagonal lattice. The other is that the nearest-neighbor
filaments shift in the z direction by a‖/2 resulting in a
body-centered tetragonal lattice. Finally, due to the difference
between transverse and longitudinal forces in the system, a
state that keeps order in the longitudinal direction but melts in
the transverse direction, resulting in a nematic liquid crystal,
is a definite possibility. We plan to clarify this issue in a future
presentation.
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