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Solution of the Bethe-Goldstone equation without partial-wave decomposition
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We present a method for solving the nucleon-nucleon scattering equation without the use of a partial wave
expansion of the scattering amplitude. After verifying the accuracy of the numerical solutions, we proceed to
apply the method to the in-medium scattering equation (the Bethe-Goldstone equation) in three dimensions. A
focal point is a study of Pauli blocking effects calculated in the (angle-dependent) three-dimensional formalism
as compared to the usual spherical approximation. We discuss our results and their implications.
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I. INTRODUCTION

Infinite nuclear matter, with equal or unequal concentra-
tions of protons and neutrons, is a convenient theoretical
laboratory to explore the nucleon-nucleon (NN) interaction in
the many-body environment. The Bethe-Goldstone equation
[1–4] was developed to describe NN scattering in a dense
hadronic medium through the inclusion of two main effects:
(1) corrections of the single-particle energies to account for
the presence of the medium, and (2) the Pauli blocking
mechanism, which prevents scattering into occupied states.
Within the Dirac-Brueckner-Hartree-Fock (DBHF) approach,
an additional “nonconventional” medium effect comes in
through the use of the (density-dependent) nucleon effective
mass in the nucleon Dirac spinors.

The main purpose of this paper is to present a method for the
solution of the in-medium scattering equation without the use
of partial wave decomposition and to discuss the significance
of our results. Although considerable work can be found in
the literature on solutions of the NN scattering equation in
three-dimensional free-space (see for instance, Refs. [5–8]),
to the best of our knowledge no such calculation has been
reported for in-medium scattering.

There are advantages to the use of a three-dimensional for-
malism. First, the computational effort is the same regardless of
the energy, whereas the number of partial waves to be included
for satisfactory convergence is well known to grow with
energy. Second, and most important for our purposes, the Pauli
operator can be handled exactly, avoiding the usual spherical
or angle-average approximation which becomes necessary in
a partial wave (angle-independent) framework.

Studies on the impact of nonspherical components in the
Pauli operator have been reported earlier (see for instance
Ref. [9] and references therein). Remaining within a partial
wave formalism, nonspherical components can be included by
calculating the matrix elements of the exact Pauli operator. In
turn, those allow transitions between states of different total
angular momentum J , with the resulting partial wave matrix
elements depending on the magnetic quantum number M . The
presence of states with J �= J ′ and the dependence on M
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can be cumbersome and inconvenient, particularly if a large
number of partial waves needs to be included. One possibility
is to limit the inclusion of non-spherical components to a few
partial waves. On the other hand, the issue of the importance of
nonspherical components in the Pauli operator can be settled in
a more definite way by a calculation such as the one reported in
this paper. Given that Pauli blocking is perhaps the single most
important medium effect in nuclear matter, it is a worthwhile
effort.

Our framework is meson theory. Although NN potentials
based on chiral effective theory have recently become popular,
it must be kept in mind that a chiral expansion is valid only
for low momenta (up to approximately 250 MeV in terms of
laboratory kinetic energy), whereas relativistic meson theory
is a more appropriate framework if one wishes to consider a
broad range of momenta and densities.

The organization of this paper is as follows. In Sec. II A, we
discuss the analytical aspects of our approach to the solution
of the three-dimensional equation (i.e., choice of basis and
partial decoupling of the scattering equations). A detailed
description of the NN potential used as our input is found in
Appendix A. There, we provide complete expressions for the
relativistic one-boson-exchange (OBE) helicity amplitudes in
three-dimensional space, with pseudovector coupling for the
exchange of pseudoscalar mesons, and for the general case
of baryons with different masses. This information, which we
could not find in the literature, can be useful to the reader
as it can be applied, for instance, to develop a nucleon-
hyperon (pseudovector) meson-theoretic potential. Further-
more, the presence of two different nucleon masses makes
these potentials suitable for applications in isospin-asymmetric
matter, where neutrons and protons acquire different effective
masses. We conclude the section with a brief description of
the formalism necessary to connect with the partial wave
representation and the construction of physical states in the
three-dimensional approach.

In Sec. II B we incorporate the effects of the Pauli blocking
operator, which is beautifully simple in three-dimensional
space. Then we proceed to the solution of the scattering
equation.

Results are presented in Sec. III, where we first verify the
accuracy of our numerical solution. We accomplish this by
transforming our output into the familiar LSJ formalism and
comparing with existing partial wave solutions obtained with
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the same input. This is done successfully. We then proceed
to explore the impact of using the exact or spherical Pauli
operator. Possible implications of those effects are discussed.
The paper concludes with Sec. IV.

II. FORMALISM

A. Free-space nucleon-nucleon scattering in
three-dimensional space

Before confronting the in-medium scattering equation, we
consider the equation in free space. Once the necessary tools
have been worked out for free space, natural modifications can
be made to account for the presence of the medium.

1. The Thomson equation in a helicity basis

Two-nucleon scattering is described covariantly by the
Bethe-Salpeter equation [10]. Being a four-dimensional in-
tegral equation, it is difficult to solve [11], so it is cus-
tomary to resort to relativistic three-dimensional-reductions.
One such three-dimensional reduction yields the Thompson
equation, which is the one we adopt here. In operator
form the Thompson equation reads T = V + V GoT , where
T , V , and Go are the T matrix, the NN potential, and
the two-nucleon propagator, respectively. After casting the
operator equation into a momentum and total isospin basis we
obtain [12]

T I (q ′, q) = V I (q ′, q) + lim
ε→0

∫
R3

V I (q ′, q ′′)
m2

E2
q ′′

1

2(Eq − Eq ′′ + iε)
T I (q ′′, q)

d3q ′′

(2π )3
, (1)

with Ep =
√

p2 + m2 and m the nucleon mass, which we take to be the average of the proton and neutron mass. The T matrix,
T I (q ′, q) ≡ 〈q ′I |T |qI 〉, as well as the NN potential, V I (q ′, q) ≡ 〈q ′I |V |qI 〉, are written in terms of the momentum and the
(conserved) total isospin. q, q ′, and q ′′ are the initial, final, and intermediate relative momenta.

Multiplying the equation from the left by m
Eq′ and from the right by m

Eq
and defining

V̂ = m

Eq ′
V

m

Eq

, T̂ = m

Eq ′
T

m

Eq

, (2)

we can write the Thompson equation in a more convenient form,

T̂ I (q ′, q) = V̂ I (q ′, q) + lim
ε→0

∫
R3

V̂ I (q ′, q ′′)
1

2(Eq − Eq ′′ + iε)
T̂ I (q ′′, q) d3q ′′, (3)

where we have absorbed the 1/(2π )3 factor into the NN potential, which is described in Appendix A. Next we introduce a helicity
basis. A helicity ket is defined as an eigenstate of (σ · p̂) |λ〉 = 2λ |λ〉, where p̂ is a unit momentum vector and σ = (σx, σy, σz)
the spin operator. Physically, the helicity is the spin projection along the direction of the momentum. Utilizing a helicity basis
along with its completeness relation we obtain

〈λ′
1λ

′
2|T̂ I (q ′, q)|λ1λ2〉 = 〈λ′

1λ
′
2|V̂ I (q ′, q)|λ1λ2〉 +

∑
λ′′

1 ,λ
′′
2=±

∫
R3

〈λ′
1λ

′
2|V̂ I (q ′, q ′′)|λ′′

1λ
′′
2〉 〈λ′′

1λ
′′
2|T̂ I (q ′′, q)|λ1λ2〉

2(Eq − Eq ′′ + iε)
d3q ′′, (4)

where for brevity we suppressed limε→0 and denoted ± 1
2 by ±.

Note that our choice of basis is different from both Refs. [5] and [6], where states of total helicity are employed. We find
that uncoupled-helicity states, |λ1λ2〉, are a more convenient and transparent basis because they connect to the NN potential
straightforwardly, since the NN potential is constructed in terms of solutions of the single-nucleon Dirac equation [see Eq. (A2)].

As it stands, a three-dimensional integral needs to be performed. Fortunately, the azimuthal degree of freedom can be removed.
This is accomplished by applying to both sides of Eq. (4) the operator 1

2π

∫ 2π

0 dφ′ [5],

1

2π

∫ 2π

0
〈λ′

1λ
′
2|T̂ I (q ′, q)|λ1λ2〉 dφ′ = 1

2π

∫ 2π

0
〈λ′

1λ
′
2|V̂ I (q ′, q)|λ1λ2〉 dφ′

+
∑

λ′′
1 ,λ

′′
2=±

∫
R3

(
1

2π

∫ 2π

0
〈λ′

1λ
′
2|V̂ I (q ′, q ′′)|λ′′

1λ
′′
2〉 dφ′

) 〈λ′′
1λ

′′
2|T̂ I (q ′′, q)|λ1λ2〉

2(Eq − Eq ′′ + iε)
d3q ′′, (5)

and observing that the azimuthal dependence of V̂ occurs in factors of cos(φ′ − φ) and sin(φ′ − φ). This symmetry carries over
to T̂ and is due to rotational invariance. We will revisit this point more rigorously in Sec. II A3. Exploiting this observation, we
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obtain

1

2π

∫ 2π

0
〈λ′

1λ
′
2|T̂ I (q ′, q)|λ1λ2〉|φ=0 dφ′ = 1

2π

∫ 2π

0
〈λ′

1λ
′
2|V̂ I (q ′, q)|λ1λ2〉 |φ=0 dφ′

+
∑

λ′′
1 ,λ

′′
2=±

∫ ∞

0

∫ π

0

(
1

2π

∫ 2π

0
〈λ′

1λ
′
2|V̂ I (q ′, q ′′)|λ′′

1λ
′′
2〉|φ′′=0 dφ′

)
q ′′2 sin θ ′′

2(Eq − Eq ′′ + iε)

× 2π

(
1

2π

∫ 2π

0
〈λ′′

1λ
′′
2|T̂ I (q ′′, q)|λ1λ2〉|φ=0 dφ′′

)
dθ ′′ dq ′′. (6)

To complete the removal of the azimuthal degree of freedom, we introduce the following definitions [5]:

〈λ′
1λ

′
2|t I (q̃ ′, q̃)|λ1λ2〉 ≡ 1

2π

∫ 2π

0
〈λ′

1λ
′
2|T̂ I (q ′, q)|λ1λ2〉|φ=0 dφ′, (7a)

〈λ′
1λ

′
2|vI (q̃ ′, q̃)|λ1λ2〉 ≡ 1

2π

∫ 2π

0
〈λ′

1λ
′
2|V̂ I (q ′, q)|λ1λ2〉|φ=0 dφ′, (7b)

with q̃ ≡ (q, θ ) and similarly for primed coordinates. It should be pointed out that even though the three-dimensional potential
〈λ′

1λ
′
2|V̂ I (q ′, q)|λ1λ2〉 is complex, the φ-integrated NN potential 〈λ′

1λ
′
2|vI (q̃ ′, q̃)|λ1λ2〉, is real, as the φ-integrated imaginary part

vanishes due to the cos(φ′ − φ) and sin(φ′ − φ) factors. Using Eqs. (6) and (7) we obtain the φ-integrated Thompson equation

〈λ′
1λ

′
2|t I (q̃ ′, q̃)|λ1λ2〉

= 〈λ′
1λ

′
2|vI (q̃ ′, q̃)|λ1λ2〉 +

∑
λ′′

1 ,λ
′′
2=±

π

∫ ∞

0

∫ π

0

〈λ′
1λ

′
2|vI (q̃ ′, q̃ ′′)|λ′′

1λ
′′
2〉 〈λ′′

1λ
′′
2|t I (q̃ ′′, q̃)|λ1λ2〉

Eq − Eq ′′ + iε
q ′′2 sin θ ′′ dθ ′′ dq ′′. (8)

Equation (7) is consistent with the φ-average procedure
in Ref. [5]. In the past, slightly different definitions have
been used to integrate out the azimuthal dependence; see for
instance the method of Ref. [6]. There, the initial momentum
is taken along the z axis (that is, θ = 0). While convenient
in some ways, this choice is not compatible with Eq. (7),
because some of the helicity matrix elements vanish (if θ = 0)
when integrated over the azimuthal angle. Therefore, in our
calculations we do not take θ equal to a fixed value. Instead,
we compute the solution over the q ′ × θ ′ × θ grid.

2. Partially decoupling the system of integral equations

The φ-integrated Thompson equations are a set of sixteen
coupled Fredholm integral equations of the second kind for
each isospin. Due to parity and isospin conservation, only six
amplitudes are independent:

〈+ + |t I | + +〉 = 〈− − |t I | − −〉,
〈+ + |t I | − −〉 = 〈− − |t I | + +〉,
〈+ − |t I | + −〉 = 〈− + |t I | − +〉,
〈+ − |t I | − +〉 = 〈− + |t I | + −〉,
〈+ + |t I | + −〉 = − 〈+ + |t I | − +〉

(9)
= 〈− − |t I | + −〉
= − 〈− − |t I | − +〉,

〈+ − |t I | + +〉 = − 〈− + |t I | + +〉
= 〈+ − |t I | − −〉
= − 〈− + |t I | − −〉.

For the six independent amplitudes we choose

t I1 ≡ 〈+ + |t I | + +〉, t I2 ≡ 〈+ + |t I | − −〉,
t I3 ≡ 〈+ − |t I | + −〉, t I4 ≡ 〈+ − |t I | − +〉, (10)

t I5 ≡ 〈+ + |t I | + −〉, t I6 ≡ 〈+ − |t I | + +〉 .

Due to the symmetries of the three-dimensional NN potential,
we find that the following linear combinations,

0t I ≡ t I1 − t I2 , 1t I ≡ t I3 + t I4 , 12t I ≡ t I1 + t I2 ,
(11)

34t I ≡ t I3 − t I4 , 55t I ≡ 2t I5 , 66t I ≡ 2t I6 ,

partially decouple the system. As it turns out, the spin triplet
amplitudes 12t I , 34t I , 55t I , and 66t I remain coupled, whereas
the spin singlet amplitude 0t I and the spin triplet amplitude 1t I

are uncoupled. Note that all the formulas above are applicable
to the NN potential.

To get a feel for the behavior of the φ-integrated NN
potentials which enter the kernel of the equation, we plot in
Fig. 1 the φ-integrated Bonn B potentials: nvI for n = 0, 1, 12
in the notation of Eq. (11). The plots reveal potentials that
need a momentum of at least 4000 MeV to approach zero.
These observations are insightful with respect to the expected
convergence properties of the integral equation. The formal
numerical solution of the φ-integrated Thompson equation is
rather tedious and is developed in Appendix B. The general
idea is to use the linear combinations given in Eq. (11), to
obtain six (for each isospin) Fredholm integral equations of
the second kind. Then, using Nystrom’s method [13] or matrix
inversion [14] we convert the system of integral equations into
a system of matrix equations and invert.
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FIG. 1. (Color online) φ-integrated Bonn B potentials as a function of q̃ ′ = (q ′, θ ′). The potentials are evaluated at θ = arccos(0.5) and
q = 306.42 MeV.

3. Connection with partial wave decomposition
and construction of physical states

A common method for solving Eq. (4) involves partial wave
decomposition [15]. Although in this paper we avoid that
method, we utilize the partial-wave solution for comparison
purposes. The expansion of T̂ I (q ′, q) in a partial wave helicity
basis [16,17] is given by

〈λ′
1λ

′
2|T̂ I (q ′, q)|λ1λ2〉

=
∑
JM

2J + 1

4π
DJ

M�′(φ′, θ ′,−φ′)∗ 〈λ′
1λ

′
2|T̂ IJ (q ′, q)|λ1λ2〉

×DJ
M�(φ, θ,−φ), (12)

where the Wigner D matrix DJ
M�(α, β, γ ) =

e−iMαdJ
M�(β)e−i�γ includes the reduced rotation matrix

dJ
M�(β) with � ≡ λ1 − λ2 and an analogous definition for

the primed coordinate. The partial wave amplitudes, denoted
by T̂ IJ (q ′, q) (with a similar decomposition done for the NN
potential), are the solutions of the partial wave decomposed
Eq. (4). We choose the partial wave helicity amplitudes
consistently with those defined in Eq. (10) and denote them as

T̂ IJ
n (q ′, q) with n = 1, 2, 3, . . . , 6. (13)

It can then be shown that the linear combinations
spin singlet S = 0,

0T IJ ≡ T̂ IJ
1 − T̂ IJ

2 , (14)

spin triplet S = 1,
1T IJ ≡ T̂ IJ

3 − T̂ IJ
4 ,

12T IJ ≡ T̂ IJ
1 + T̂ IJ

2 ,

34T IJ ≡ T̂ IJ
3 + T̂ IJ

4 , (15)
55T IJ ≡ 2T̂ IJ

5 ,

66T IJ ≡ 2T̂ IJ
6 ,

partially decouple the (partial wave decomposed) scattering
equation [18]. The last four amplitudes in Eq. (15) represent
coupled triplet states. Again, all of the formulas above have

similar expressions for the NN potential. We now apply
1

2π

∫ 2π

0 dφ′ on both sides of Eq. (12) to obtain

〈λ′
1λ

′
2|t I (q̃ ′, q̃)|λ1λ2〉

=
∑

J

2J + 1

4π
dJ

0�′ (θ ′)〈λ′
1λ

′
2|T̂ IJ (q ′, q)|λ1λ2〉dJ

0�(θ ), (16)

where we made use of Eq. (A3). Then, recalling the definitions
given in Eq. (13), we obtain the transformation from partial
waves into the (angle-dependent) t matrix:

0t I =
∑

J

2J + 1

4π
dJ

00(θ ′)dJ
00(θ )0T IJ (q ′, q),

1t I =
∑

J

2J + 1

4π
dJ

01(θ ′)dJ
01(θ )1T IJ (q ′, q),

12t I =
∑

J

2J + 1

4π
dJ

00(θ ′)dJ
00(θ )12T IJ (q ′, q),

(17)
34t I =

∑
J

2J + 1

4π
dJ

01(θ ′)dJ
01(θ )34T IJ (q ′, q),

55t I =
∑

J

2J + 1

4π
dJ

00(θ ′)dJ
01(θ )55T IJ (q ′, q),

66t I =
∑

J

2J + 1

4π
dJ

01(θ ′)dJ
00(θ )66T IJ (q ′, q),

where we used the relation dJ
0,−1(θ ) = −dJ

01(θ ). As it stands,
our angle-dependent solutions contain unphysical states. On
the other hand, the well known antisymmetry requirement
for the NN system imply that only even or odd values
of J are allowed in a particular state of definite spin and
isospin. Thus, starting with Eq. (17) and making use of the
identities (−1)J dJ

00(θ ′) = dJ
00(π − θ ′) and (−1)J+1dJ

01(θ ′) =
dJ

01(π − θ ′), we can, in each case, identify the appropriate
combination of the direct and the exchange terms which must
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enter the antisymmetrized amplitudes. For those, we obtain

0t Ia (q̃ ′, q̃) ≡ 0t
1
0(q̃ ′, q̃) ± 0t

1
0(−q̃ ′, q̃)

= 2
∑

J= even
odd

2J + 1

4π
dJ

00(θ ′)dJ
00(θ )0T

1
0J (q ′, q), (18)

1t Ia (q̃ ′, q̃) ≡ 1t
1
0(q̃ ′, q̃) ± 1t

1
0(−q̃ ′, q̃)

= 2
∑

J= odd
even

2J + 1

4π
dJ

01(θ ′)dJ
01(θ )1T

1
0J (q ′, q), (19)

12t Ia (q̃ ′, q̃) ≡ 12t
1
0(q̃ ′, q̃) ± 12t

1
0(−q̃ ′, q̃)

= 2
∑

J= even
odd

2J + 1

4π
dJ

00(θ ′)dJ
00(θ )12T

1
0J (q ′, q), (20)

34t Ia (q̃ ′, q̃) ≡ 34t
1
0(q̃ ′, q̃) ∓ 34t

1
0(−q̃ ′, q̃)

= 2
∑

J= even
odd

2J + 1

4π
dJ

01(θ ′)dJ
01(θ )34T

1
0J (q ′, q), (21)

55t Ia (q̃ ′, q̃) ≡ 55t
1
0(q̃ ′, q̃) ± 55t

1
0(−q̃ ′, q̃)

= 2
∑

J= even
odd

2J + 1

4π
dJ

00(θ ′)dJ
01(θ )55T

1
0J (q ′, q), (22)

66t Ia (q̃ ′, q̃) ≡ 66t
1
0(q̃ ′, q̃) ∓ 66t

1
0(−q̃ ′, q̃)

= 2
∑

J= even
odd

2J + 1

4π
dJ

01(θ ′)dJ
00(θ )66T

1
0J (q ′, q), (23)

where one must read across the top (or bottom) to associate
the correct sign with the appropriate J values (even or
odd) and isospin (0 or 1). We also used the shorthand
notation for the exchange amplitude ntI (−q̃ ′, q̃) = ntI (q ′, π −
θ ′, q, θ ) for n = 0, 1, 12, 34, 55, 66.

Even more common to describe the NN system is the
|LSJ 〉 basis, because these states are traditionally related to
phase-shift analyses. In this basis the physical states can simply
be selected using the constraint that L + S + I must be odd.
To compare with the familiar partial wave states, we first invert
Eq. (16) with the help of the orthogonality relation

∫ π

0
dJ ′

0�(θ )dJ
0�(θ ) sin θ dθ = 2

2J + 1
δJJ ′, (24)

to obtain

〈λ′
1λ

′
2|T̂ IJ (q ′, q)|λ1λ2〉

= π (2J + 1)
∫ π

0

∫ π

0
dJ

0�′ (θ ′) 〈λ′
1λ

′
2|t I (q̃ ′, q̃)|λ1λ2〉

× dJ
0�(θ ) sin θ ′ sin θ dθ dθ ′. (25)

At this point, an elementary unitary transformation takes us
into the |LSJ 〉 partial wave basis. For explicit formulas see
Ref. [15,18].

B. Solving the Bethe-Goldstone equation in three dimensions

1. The Bethe-Goldstone equation in a helicity basis

In the nuclear matter frame, in analogy with the free-space
case and following steps similar to Eqs. (1)–(3), the Bethe-
Goldstone equation can be written as

ĜI (q ′, q, P, kF )

= V̂ I (q ′, q) + lim
ε→0

∫
R3

(26)

× V̂ I (q ′, q ′′)Q(q ′′, P, kF )ĜI (q ′′, q, P, kF )

(e∗(P, q) − e∗(P, q ′′) + iε)
d3q ′′,

where Q stands for the Pauli operator, which suppresses scat-
tering into states below the Fermi momentum, and the asterix
signify in-medium energies. Depending on the approach one
takes, the NN potential may or may not be medium-modified
through the use of effective masses in the Dirac spinors. In
Eq. (26), we have defined

e∗(P, q) = ε∗(P + q) + ε∗(P − q). (27)

The single-particle energy, ε∗, contains kinetic and potential
energy,

ε∗(P + q) = T (P + q) + U (P + q) = E∗ + UV , (28)

where E∗ =
√

(P + q)2 + (m∗)2, and the last step is a con-
sequence of the self-consistent determination of the nuclear
matter potential and its parametrization in terms of scalar and
vector potentials, US = m∗ − m and UV [19].

On the other hand, we are interested in the scattering of
two nucleons in the medium at some positive energy and
in their center-of-mass system (which makes the comparison
with free-space scattering more straightforward). For such a
case, P = 0 in the energies, although the Pauli operator still
depends on the relative velocity between the two frames, as the
momenta P ± q are the ones to be compared with the Fermi
momentum. Thus, in the center-of-mass system, and ignoring
medium effects other than Pauli blocking, the equation reads

ĜI (q ′, q, P, kF )

= V̂ I (q ′, q) + lim
ε→0

∫
R3

× V̂ I (q ′, q ′′)Q(q ′′, P, kF )ĜI (q ′′, q, P, kF )

2(E∗
q − E∗

q ′′ + iε)
d3q ′′.

(29)

The Pauli operator for symmetric nuclear matter is defined
as

Q(q ′′, P, kF ) ≡ (|P + q ′′| − kF )(|P − q ′′| − kF ), (30)

where  is the Heaviside step function, P is one half the
center of mass momentum, P ± q is the momentum of
the two particles in the nuclear matter rest frame, and kF

is the Fermi momentum, related to the nucleon density by
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ρ = 2k3
F

3π2 . Clearly, the free-space equation is recovered by
using free-space energies and setting Q = 1.

From Eq. (29) we obtain the corresponding φ-integrated
Bethe-Goldstone equation

〈λ′
1λ

′
2|gI (q̃ ′, q̃)|λ1λ2〉

= 〈λ′
1λ

′
2|vI (q̃ ′, q̃)|λ1λ2〉 +

∑
λ′′

1 ,λ
′′
2=±

π

∫ ∞

0

∫ π

0

〈λ′
1λ

′
2|vI (q̃ ′, q̃ ′′)|λ′′

1λ
′′
2〉 Q(q̃ ′′, P , kF ) 〈λ′′

1λ
′′
2|gI (q̃ ′′, q̃)|λ1λ2〉

E∗
q − E∗

q ′′ + iε
q ′′2 sin θ ′′ dθ ′′ dq ′′.

(31)

It is important to choose a frame such that P points along
the z axis, since this allows Q to become independent of φ′′
because we can set φ′′ = 0 inside Q without loss of generality.
In this paper we have chosen P = q ẑ and kF = 1.4 fm−1, or
ρ = 0.185 fm−3, close to normal matter density. Thus, we will
suppress the dependence of gI on those variables.

2. The Pauli operator and the spherical approximation.

The Pauli operator and its effect on Eq. (29) is the focal point
of this paper. Mathematically, Q restricts the θ ′′ integration to

| cos θ ′′| < a, where a ≡ P 2 + q ′′2 − k2
F

2Pq ′′ , (32)

TABLE I. Our calculated and transformed free-space LSJ partial waves (inside square brackets), along with the direct partial wave
decomposition solution (outside square brackets). We show on-shell partial waves at ELab = 50, 100 MeV (i.e., q ′ = q = 153.21, 216.67 MeV).

Partial wave 50 (10−9 MeV−2) 100 (10−9 MeV−2)

1S0 −2165.71 − i1902.87[−2165.69 − i1902.72] −1240.24 − i637.93[−1240.20 − i637.87]
3P0 −1002.57 − i243.73[−1002.56 − i243.73] −623.64 − i133.38[−623.63 − i133.38]
1P1 685.36 − i110.33[687.55 − i111.06] 607.79 − i126.39[612.35 − i128.38]
3P1 671.08 − i105.66[671.08 − i105.66] 701.09 − i170.76[701.09 − i170.76]
3S1 −1885.57 − i3277.79[−1885.67 − i3277.58] −1491.65 − i1222.11[−1491.63 − i1222.05]
3S1-3D1 −78.35 − i105.27[−78.38 − i105.30] −79.19 − i39.96[−79.21 − i39.97]
3D1-3S1 −78.35 − i105.27[−78.38 − i105.29] −79.19 − i39.96[−79.21 − i39.97]
3D1 506.59 − i63.63[506.59 − i63.63] 642.79 − i144.98[642.79 − i144.98]
1D2 −119.96 − i3.30[−119.96 − i3.30] −175.20 − i10.10[−175.19 − i10.10]
3D2 −730.69 − i125.87[−730.66 − i125.86] −944.44 − i327.76[−944.40 − i327.74]
3P2 −459.85 − i53.59[−459.83 − i53.59] −597.58 − i130.22[−597.55 − i130.21]
3P2-3F2 139.64 + i15.74[139.64 + i15.74] 148.16 + i32.51[148.15 + i32.51]
3F2-3P2 139.64 + i15.74[139.64 + i15.74] 148.16 + i32.51[148.15 + i32.51]
3F2 −26.02 − i4.68[−26.01 − i4.68] −41.08 − i8.12[−41.08 − i8.12]
1F3 92.12 − i1.94[92.10 − i1.94] 126.03 − i5.22[126.01 − i5.22]
3F3 56.39 − i0.73[56.38 − i0.73] 89.49 − i2.63[89.48 − i2.63]
3D3 −28.23 − i4.12[−28.22 − i4.12] −96.55 − i15.89[−96.53 − i15.88]
3D3-3G3 −131.03 − i0.21[−131.00 − i0.21] −197.13 − i2.74[−197.10 − i2.74]
3G3-3D3 −131.03 − i0.21[−131.00 − i0.21] −197.13 − i2.74[−197.10 − i2.74]
3G3 21.36 − i4.04[21.36 − i4.04] 54.63 − i13.79[54.62 − i13.79]
1G4 −11.89 − i0.03[−11.89 − i0.03] −22.00 − i0.16[−21.99 − i0.16]
3G4 −58.64 − i0.79[−58.61 − i0.79] −122.59 − i4.94[−122.53 − i4.93]
3F4 −7.71 − i0.07[−7.70 − i0.07] −22.37 − i0.46[−22.36 − i0.46]
3F4-3H4 15.40 + i0.03[15.40 + i0.03] 30.10 + i0.28[30.08 + i0.28]
3H4-3F4 15.40 + i0.03[15.40 + i0.03] 30.10 + i0.28[30.08 + i0.28]
3H4 −2.00 − i0.06[−2.00 − i0.06] −5.81 − i0.31[−5.81 − i0.31]
1H5 13.34 − i0.04[13.32 − i0.04] 30.26 − i0.30[30.21 − i0.30]
3H5 6.69 − i0.01[6.68 − i0.01] 17.13 − i0.10[17.10 − i0.10]
3G5 4.04 − i0.07[4.04 − i0.07] 9.70 − i0.58[9.68 − i0.58]
3G5-3I5 −16.65 + i0.02[−16.63 + i0.02] −40.76 + i0.22[−40.71 + i0.22]
3I5-3G5 −16.65 + i0.02[−16.63 + i0.02] −40.76 + i0.22[−40.71 + i0.22]
3I5 1.83 − i0.06[1.83 − i0.06] 7.08 − i0.56[7.07 − i0.56]
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as can be easily shown from Eq. (30). As already discussed
in the Introduction, nonspherical components can be included
by evaluating the matrix elements of Q and including them
in a partial wave scattering equation. This method generates
couplings between intermediate states with different total
angular momentum as well as dependence on the magnetic
quantum number. On the other hand, the three-dimensional
solution requires some initial effort, but the inclusion of
the exact Pauli operator is then absolutely straightforward.
Another common method, which avoids the latter approaches,
is to use the partial wave scattering equation along with the
so-called spherical or angle-averaged Pauli operator Q̄ (see
Ref. [14] and references therein)

Q(q ′′, P, kF ) ≈ Q̄(q ′′, P , kF )

=
∫

Q(q ′′, P, kF ) d�′′∫
d�′′

= 1

2

∫ a

−a

d(cos θ ′′) = P 2 + q ′′2 − k2
F

2Pq ′′ , (33)

unless it is equal to zero or one. In the next section
we explore the differences (or similarities) resulting from

using the exact Pauli operator in a three-dimensional cal-
culation, or the spherical Pauli operator in a partial wave
calculation.

For the sake of generality, we note that the above Pauli
operator can be extended to the case of two different Fermi
momenta, kF1 and kF2. This makes it suitable for an isospin-
asymmetric nuclear matter calculation. All that needs to be
done is to modify the angular integration to implement the
restrictions

|P + q ′′| > kF1 and |P − q ′′| > kF2 ⇒
Q(q ′′, P, kF1, kF2) ≡ (|P + q ′′| − kF1)

 (|P − q ′′| − kF2), (34)

which again is easily implemented into our three-dimensional
formalism.

III. RESULTS AND DISCUSSION

As an initial check of our formalism, we calculate the t
matrix and transform it into the |LSJ 〉 basis via Eq. (25). Our
comparisons are displayed in Tables I and II, where we show

TABLE II. Same as Table I but at ELab = 200, 300 MeV (i.e., q ′ = q = 306.42, 375.29 MeV).

Partial wave 200 (10−9 MeV−2) 300 (10−9 MeV−2)

1S0 −315.87 − i48.55[−315.83 − i48.54] 125.14 − i9.39[125.23 − i9.40]
3P0 −77.92 − i2.89[−77.91 − i2.89] 227.48 − i31.43[227.49 − i31.44]
1P1 513.00 − i133.59[522.53 − i138.97] 452.83 − i132.73[467.74 − i142.51]
3P1 693.46 − i260.99[693.46 − i260.99] 668.79 − i332.51[668.81 − i332.54]
3S1 −547.70 − i156.54[−547.67 − i156.52] −14.13 − i3.07[−13.74 − i3.08]
3S1-3D1 −69.25 + i3.77[−69.25 + i3.77] −65.77 + i24.97[−65.85 + i25.02]
3D1-3S1 −69.25 + i3.77[−69.25 + i3.77] −65.77 + i24.97[−65.85 + i25.02]
3D1 641.71 − i221.33[641.71 − i221.33] 565.21 − i223.02[565.23 − i223.05]
1D2 −224.60 − i24.26[−224.59 − i24.26] −220.56 − i29.52[−220.55 − i29.52]
3D2 −869.31 − i459.72[−869.28 − i459.70] −711.51 − i394.54[−711.47 − i394.51]
3P2 −559.24 − i166.64[−559.21 − i166.63] −452.36 − i134.09[−452.21 − i134.00]
3P2-3F2 95.61 + i29.80[95.60 + i29.80] 46.29 + i14.26[46.31 + i14.26]
3F2-3P2 95.61 + i29.80[95.60 + i29.80] 46.29 + i14.26[46.31 + i14.26]
3F2 −42.65 − i5.65[−42.65 − i5.65] −22.70 − i1.71[−22.70 − i1.71]
1F3 134.38 − i8.62[134.35 − i8.62] 134.40 − i10.84[134.37 − i10.83]
3F3 111.75 − i5.95[111.73 − i5.95] 119.08 − i8.50[119.06 − i8.49]
3D3 −200.29 − i42.51[−200.26 − i42.50] −231.33 − i56.65[−231.27 − i56.64]
3D3-3G3 −217.68 − i10.32[−217.64 − i10.31] −195.35 − i12.68[−195.31 − i12.67]
3G3-3D3 −217.68 − i10.32[−217.64 − i10.31] −195.35 − i12.68[−195.32 − i12.67]
3G3 103.94 − i28.09[103.92 − i28.08] 128.30 − i33.32[128.28 − i33.31]
1G4 −32.53 − i0.50[−32.51 − i0.50] −39.59 − i0.93[−39.56 − i0.93]
3G4 −192.78 − i17.82[−192.68 − i17.81] −223.02 − i30.19[−222.89 − i30.17]
3F4 −51.83 − i2.16[−51.80 − i2.16] −73.35 − i4.49[−73.31 − i4.49]
3F4-3H4 43.10 + i1.30[43.08 + i1.30] 46.13 + i2.43[46.11 + i2.43]
3H4-3F4 43.10 + i1.30[43.08 + i1.30] 46.13 + i2.43[46.11 + i2.43]
3H4 −11.68 − i0.95[−11.68 − i0.95] −14.76 − i1.40[−14.75 − i1.40]
1H5 45.59 − i0.99[45.53 − i0.99] 49.27 − i1.45[49.21 − i1.45]
3H5 30.16 − i0.43[30.12 − i0.43] 36.12 − i0.78[36.08 − i0.78]
3G5 11.41 − i2.30[11.39 − i2.29] 5.19 − i3.85[5.19 − i3.84]
3G5-3I5 −68.52 + i0.98[−68.43 + i0.97] −80.09 + i1.57[−79.98 + i1.57]
3I5-3G5 −68.52 + i0.98[−68.43 + i0.97] −80.09 + i1.57[−79.98 + i1.57]
3I5 18.46 − i2.40[18.44 − i2.39] 27.61 − i4.29[27.57 − i4.28]
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FIG. 2. (Color online) Real and imaginary parts of 0gI
a and 0t I

a (both isospins) as a function of q ′. We set θ = arccos(0.5), q = 153.21 MeV,
and θ ′ = 0.1, 1.6, 3. The solid (red) curve is the free-space calculation while the dotted (green) and dashed (blue) curves are the exact and
spherical Pauli operator calculations respectively.

LSJ on-shell matrix elements at laboratory energies equal to
50, 100, 200, and 300 MeV. (The laboratory energy ELab

is related to the on-shell center-of-mass momentum q by
ELab = 2q2

m
.) We use the familiar spectroscopic notation for

partial waves, e.g., for coupled states (2S+1)L′
J -(2S+1)LJ refers

to 〈L′SJ |T̂ |LSJ 〉.
Looking at the tables in terms of relative error (with the

partial wave solution taken to be exact), the majority of
our results in Tables I and II have errors less than ≈0.1%.
Coupled states have slightly larger errors. For instance, the
real part of 3S1 at 300 MeV has an error of ≈3%. Only
the 1P1 case has consistently larger discrepancies, the largest
being ≈7% and occurring in the imaginary part at 300 MeV.
The 1P1 state is a central partial wave with both spin and
isospin equal to zero and notoriously problematic, due to large
attraction at short range. Thus, some larger discrepancy may

be expected. Nevertheless, the worst case we have observed
still yields reasonable agreement: −1.33 × 10−7 MeV−2 vs
−1.43 × 10−7 MeV−2.

Before moving on to showing our main results, it is useful
to recall that Eq. (12) implies rotational invariance (hence
conservation of total angular momentum). While the angle-
average calculation clearly maintains rotational invariance,
this symmetry is broken when handling the Pauli operator
exactly, due to the directional dependencies introduced. Thus,
when entering the medium, we stay with the direct output of
our three-dimensional equation, antisymmetrized as displayed
in the left-hand side of Eqs. (18)–(23). The other element
of the comparison consists of three-dimensional solutions
constructed from the (Pauli-modified, but rotationally in-
variant) partial waves as shown in the right-hand side of
Eqs. (18)–(23).
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FIG. 3. (Color online) Same as Fig. 2 but for 1gI
a and 1t I

a .

We perform calculations as described in Appendix B for
several initial momenta. Because we wish to highlight the
impact of Pauli blocking in the two different approaches (exact
vs angle-averaged), we apply no other medium effects at this
time and thus the matrix elements can be quite different than
those from a realistic Brueckner or Dirac-Brueckner calcula-
tion (although we may refer to our Pauli-modified calculation
as a g-matrix calculation). We will show a representative set
of amplitudes from Eqs. (18)–(23).

In Figs. 2–13 the real and imaginary parts of amplitudes
0gI

a , 1gI
a , and 12gI

a are displayed as a function of the off-shell
momentum q ′. In each figure, the on-shell momentum q
and initial polar angle θ are held fixed. Furthermore, each
frame corresponds to a selected value of θ ′. Both isospin
states are displayed. The four on-shell momenta selected for
Figs. 2–13 correspond to (in-vacuum) laboratory energies
equal to 50, 100, 200, and 300 MeV, respectively. In all
frames, the solid (red) curve shows the predictions in free
space, while the dashed (blue) and the dotted (green) curves
show the predictions obtained with the angle-averaged and
exact Pauli operator, respectively, close to nuclear matter
density.

As a general pattern, the imaginary part is considerably
more sensitive to the handling of Pauli blocking. This is not
surprising, as the absence (or presence) of an imaginary part
arising from the residue in Eq. (31) depends on whether Q
vanishes (or not) for a particular combination of q, P , and kF ;
thus, it should be sensitive to how Q is defined and treated.

Concerning energy dependence, the impact of Pauli block-
ing, i.e., the differences between the solid (red) curve and
either of the other two, is larger at lower on-shell momentum,
as expected. However, differences between the two sets of
Pauli-modified calculations tend to be more noticeable at those
on-shell momenta where the g matrix is complex.

For a given on-shell momentum (or in-vacuum energy),
model dependence is largest at smaller values of q ′, but
comparable at all angles considered in the figures.

Interesting observations can be made with regard to how
the different types of physical amplitudes respond to the
improved description of Pauli blocking. The least sensi-
tive is the uncoupled singlet 0gI

a , shown in Figs. 2, 5, 8,
and 11. Its real part shows hardly any sensitivity to the removal
of the spherical approximation, whereas the imaginary part
reveals some small to moderate sensitivity at q = 216.67 MeV
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FIG. 4. (Color online) Same as Fig. 2 but for 12gI
a and 12t I

a .

and q = 306.42 MeV. This can be understood. Although the
connection to the conventional description in terms of LSJ
states must be taken with caution (for the reasons explained
earlier), such connection is not entirely lost. Thus, we recall
that a major singlet state is the 1S0 partial wave, which is not
expected to be sensitive to the introduction of nonspherical
components in the Pauli operator.

The uncoupled triplet states 1gI
a show moderate sensitivity,

mostly in their imaginary parts; see Figs. 3, 6, 9, nad 12. On the
other hand, the coupled triplet states ngI

a for n = 12, 34, 55, 66,
show some remarkable differences between the two sets of
predictions. As a member of the four coupled states defined
in Eqs. (20)–(23), we selected 12gI

a , shown in Figs. 4, 7, 10,
and 13. Differences between the dotted (blue) and dashed
(green) curves at low q ′ can be substantial in all cases where
the imaginary part is nonzero.

Concerning isospin dependence, generally the pattern is
similar for I = 0 and I = 1, with slightly more sensitivity

in I = 0 states. In terms of LSJ states, the 3S1 wave,
which receives large contribution from the tensor force, is
likely to be sensitive to a nonspherical treatment of Pauli
blocking.

At this point it is appropriate to elaborate further on the fact
that the largest differences between predictions originating
from different handlings of such an important medium effect
as Pauli blocking occur in the imaginary part of the g matrix.
We note that such differences would be entirely suppressed
if for instance in-medium differential cross sections, which
are an important ingredient of transport models in heavy-ion
collisions, were calculated using the real R matrix (also known
as the K matrix). In-medium equivalence of the R matrix
and T matrix formalisms (an assumption which is correct
in-vacuum, provided there are no open inelastic channels),
implies the validity of free-space unitarity. However, the latter
is violated in the medium due to the presence of Pauli-blocked
(but otherwise energetically open) channels. We believe this
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FIG. 5. (Color online) Same as Fig. 2 but at q = 216.67 MeV.

renders the use of the R matrix unsuitable in the medium, even
in the absence of inelasticities in the potential. The present
observation of the imaginary part being the most sensitive to
modifications in the Pauli operator appears to strengthen this
point.

Before closing, some comments are appropriate concerning
the density dependence. In fact, densities lower than saturation
density play an important role in the construction of optical
potentials. As a demonstration of the density dependence,
we take some selected amplitudes and show predictions for
Fermi momenta equal to 1.1, 1.4, and 1.6 fm−1 with both
exact Q and angle-averaged Q; see Fig. 14. In each frame we
plot the real and imaginary parts of amplitudes 0gI

a , 1gI
a , and

12gI
a (both isospins) as a function of the off-shell momentum

q ′. We choose specific conditions, namely q = 306.42 MeV,
θ = arccos(0.5), and θ ′ = 3, which are a subset of the most
sensitive cases from Figs. 2–13. In all frames, the solid
(red), dotted (green), and dashed (blue) curves are exact

Pauli operator calculations performed at kF = 1.1, 1.4, and
1.6 fm−1, respectively. The dashed-dotted (orange), dashed-
double-dotted (pink), and double-dashed (purple) curves are
the corresponding spherical Pauli operator calculations pre-
formed at kF = 1.1, 1.4, and 1.6 fm−1, respectively.

Consistent with our previous findings, at all three densities
the real part is less sensitive to model differences than the
imaginary part, an observation which applies to all frames in
Fig. 14. Also, the I = 0 case tends to be more sensitive than
the I = 1 case at all three densities.

By looking, for instance, at the imaginary part of 1g0
a , we

see that the differences between the two sets of calculations
[solid (red) vs dashed-dotted (orange) for kF = 1.1 fm−1, and
dashed (blue) vs double-dashed (purple) for kF = 1.6 fm−1],
are larger at the larger density. Furthermore, at the highest
density the imaginary parts of 12g0

a and 12g1
a , as calculated with

the two methods, show different qualitative trends, whereas at
the lower densities all curves tend to display similar trends.
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FIG. 6. (Color online) Same as Fig. 2 but for 1gI
a and 1t I

a at q = 216.67 MeV.

In summary, we identified some remarkable differences
between predictions with or without the angle-average approx-
imation in the Pauli operator, particularly in the imaginary part
of the coupled states. Application of the present g matrix in
nuclear systems or reactions which are sensitive to the off-shell
nature of the NN amplitudes have the best potential to reveal
sensitivity to the improved description of Pauli blocking.

IV. SUMMARY AND CONCLUSION

We have solved the integral equation for scattering of two
nucleons in the medium without the use of partial wave expan-
sion. As part of our three-dimensional formalism, we provided
explicit formulas for the three-dimensional relativistic OBE
amplitudes, which are more general than those already in
literature.

First, we verify the accuracy of our calculation by repro-
ducing closely existing free-space results. We then proceed
to apply Pauli blocking effects in the integral equation and

compare our predictions with those obtained with the popular
spherical approximation. Although the implementation of the
exact Pauli operator is straightforward in the three-dimensional
formalism, care must be exercised when extracting the physical
states in the medium.

We observe potentially significant differences, particularly
in the imaginary part of specific combinations of off-shell
helicity amplitudes. Coupled states, which are driven by the
tensor force, appear to be most impacted by the presence
of a non-spherical Pauli operator. It will be interesting and
informative to explore to which extent these differences may
impact physically observable systems, a focal point of our
future research.
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FIG. 7. (Color online) Same as Fig. 2 but for 12gI
a and 12t I

a at q = 216.67 MeV.

APPENDIX A: ONE-BOSON-EXCHANGE POTENTIALS
IN PLANE-WAVE HELICITY FORMALISM

The momentum space one-boson-exchange potentials
(OBEP) presented in this section are a modification of those
found in Machleidt et al. ([18], Appendix E). The following
modifications are performed:

(i) Full three-dimensional treatment is used for momenta
and rotated helicity wave functions.

(ii) The formulas apply to two baryons with different
masses.

(iii) The Thompson propagator is used in place of the
Blankenbecler and Sugar propagator. This allows the
transition from Eqs. (1) to (3).

1. Interaction Lagrangians and Dirac spinors

Guided by symmetry principles, simplicity, and physical in-
tuition, the most commonly used interaction Lagrangians [20]

for meson-nucleon coupling are the scalar (s), pseudovector
(pv), and vector (v)

Ls = gsψ̄ψϕ(s), Lpv = − fps

mps

ψ̄γ 5γ μψ∂μϕ(ps),

(A1)

Lv = gvψ̄γμψϕ
μ
(v) + fv

4m
ψ̄σμνψ

(
∂μϕν

(v) − ∂νϕ
μ
(v)

)
.

We adhere to the conventions and notations of Machleidt, e.g.,
ψ (m) is the nucleon and ϕk (mk) for k = s, ps, v the meson
field (mass). In relativistic nuclear structure calculations the
pv Lagrangian is used in place of the ps Lagrangian. This is
because the contribution from the nucleon-antinucleon pair
diagram becomes very large when using the ps coupling,
leading to unrealistically large pion-nucleon scattering lengths,
whereas the same contributions are strongly reduced when
using the pv Lagrangian [21].

In addition to the interaction Lagrangians, we also need
Dirac spinors in a helicity basis (similar expressions for primed
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FIG. 8. (Color online) Same as Fig. 2 but at q = 306.42 MeV.

coordinates),

u(q, λ1) =
√

W1

2m1

(
1

2λ1|q|
W1

)
|λ1〉,

(A2)

u(−q, λ2) =
√

W2

2m2

(
1

2λ2|q|
W2

)
|λ2〉 .

The most general spinor rotated into a direction with polar
angles θ and φ through the usual Euler rotations can be written
as [17]

|λ〉 ≡ |θ, φ, λ〉 = Rφ,θ,−φ χλ = eiφλRφ,θ,0 χλ, (A3)

with Rφ,θ,0 = exp(− i
2σzφ) exp(− i

2σyθ ) operating on the con-
ventional Pauli spinor χλ. Notice that χλ1 and χ−λ2 must be
used for particles 1 and 2 respectively. This is due to the
opposite direction of motion in the center-of-mass frame.

The spinors are normalized covariantly, e.g.,
u†( p, λ)γ 0u( p, λ) = ū( p, λ)u( p, λ) = 1, and W1(2) ≡
E1(2) + m1(2) where E1(2) =

√
q2 + m2

1(2).

2. Relativistic momentum space OBEP

From the interaction Lagrangian’s and Dirac spinors we can
derive the modified OBEP. By definition the OBEP is

〈λ′
1λ

′
2|V̂ I (q ′, q)|λ1λ2〉

≡
∑

α=σ,η,ω

〈q ′λ′
1λ

′
2|Vα|qλ1λ2〉 + (δI1 − 3δI0)

×
∑

α=π,δ,ρ

〈q ′λ′
1λ

′
2|Vα|qλ1λ2〉, (A4)

with scalar (δ, σ ), pseudoscalar (π , η), and vector (ρ, ω)
particles. In the above formula δij stands for the Kronecker
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FIG. 9. (Color online) Same as Fig. 2 but for 1gI
a and 1t I

a at q = 306.42 MeV.

delta function, and it is utilized to assign the proper isospin coefficient.
For scalar particles (δ, σ ),

〈q ′λ′
1λ

′
2|Vs |qλ1λ2〉 = −g2

s Cs

(
1 − 4λ1λ

′
1|q||q ′|

W ′
1W1

)(
1 − 4λ2λ

′
2|q||q ′|

W ′
2W2

)
〈λ′

1λ
′
2|λ1λ2〉 . (A5)

For pseudoscalar particles (π , η),

〈q ′λ′
1λ

′
2|Vpv|qλ1λ2〉 = f 2

ps

m2
ps

Cps(4m1m2)

[(
2λ′

1|q ′|
W ′

1

− 2λ1|q|
W1

)(
2λ′

2|q ′|
W ′

2

− 2λ2|q|
W2

)
+ (E′

1 − E1)(E′
2 − E2)

4m1m2

×
(

2λ′
1|q ′|
W ′

1

+ 2λ1|q|
W1

)(
2λ′

2|q ′|
W ′

2

+ 2λ2|q|
W2

)
+ E′

1 − E1

2m1

(
2λ′

1|q ′|
W ′

1

+ 2λ1|q|
W1

)(
2λ′

2|q ′|
W ′

2

− 2λ2|q|
W2

)

+ E′
2 − E2

2m2

(
2λ′

1|q ′|
W ′

1

− 2λ1|q|
W1

)(
2λ′

2|q ′|
W ′

2

+ 2λ2|q|
W2

)]
〈λ′

1λ
′
2|λ1λ2〉 . (A6)
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FIG. 10. (Color online) Same as Fig. 2 but for 12gI
a and 12t I

a at q = 306.42 MeV.

For vector particles (ρ, ω) the potential is the sum of three terms Vv = Vvv + Vtt + Vvt

〈q ′λ′
1λ

′
2|Vvv|qλ1λ2〉 = g2

vCv

[(
1 + 4λ′

1λ1|q ′||q|
W ′

1W1

)(
1 + 4λ′

2λ2|q ′||q|
W ′

2W2

)
〈λ′

1λ
′
2|λ1λ2〉

− 4

(
λ1|q|
W1

+ λ′
1|q ′|
W ′

1

)(
λ2|q|
W2

+ λ′
2|q ′|
W ′

2

)
〈λ′

1λ
′
2|σ (1) · σ (2)|λ1λ2〉

]
, (A7)

〈q ′λ′
1λ

′
2|Vvt |qλ1λ2〉 = 2gvfvCv

[{(
W ′

1 + W ′
2 + W1 + W2

2m

)(
16λ′

1λ
′
2λ1λ2|q ′|2|q|2

W ′
1W

′
2W1W2

)

−
(

E′
1 + E′

2 + E1 + E2 − 2(m1 + m2)

2m

)}
〈λ′

1λ
′
2|λ1λ2〉 −

{(
m1 + m2

2m

)(
2λ1|q|

W1
+ 2λ′

1|q ′|
W ′

1

)

×
(

2λ2|q|
W2

+ 2λ′
2|q ′|
W ′

2

)
+ E′

1 − E1

m

(
λ′

1|q ′|
W ′

1

− λ1|q|
W1

)(
λ′

2|q ′|
W ′

2

+ λ2|q|
W2

)

+ E′
2 − E2

m

(
λ′

1|q ′|
W ′

1

+ λ1|q|
W1

)(
λ′

2|q ′|
W ′

2

− λ2|q|
W2

)}
〈λ′

1λ
′
2|σ (1) · σ (2)|λ1λ2〉

]
, (A8)
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FIG. 11. (Color online) Same as Fig. 2 but at q = 375.29 MeV.

〈q ′λ′
1λ

′
2|Vtt |qλ1λ2〉 = f 2

v Cv

[{
m1m2

m2

(
1 + 4λ′

1λ1|q ′||q|
W ′

1W1

)(
1 + 4λ′

2λ2|q ′||q|
W ′

2W2

)
− E′

1 + E′
2 + E1 + E2

2m2

×
[
m1

(
1 + 4λ′

1λ1|q ′||q|
W ′

1W1

)(
1 − 4λ′

2λ2|q ′||q|
W ′

2W2

)
+ m2

(
1 − 4λ′

1λ1|q ′||q|
W ′

1W1

)(
1 + 4λ′

2λ2|q ′||q|
W ′

2W2

)]

+ 1

2m2

(
1 − 4λ′

1λ1|q ′||q|
W ′

1W1

)(
1 − 4λ′

2λ2|q ′||q|
W ′

2W2

)

×
[

4m1m2 + 1

2
{(E′

1 + E1)(E′
2 + E2) − (E′

1 − E1)2 − (E′
2 − E2)2 + |q ′|2 + |q|2 + 2q ′ · q}

]}
〈λ′

1λ
′
2|λ1λ2〉

−
{

m1m2

m2

(
2λ1|q|

W1
+ 2λ′

1|q ′|
W ′

1

)(
2λ2|q|

W2
+ 2λ′

2|q ′|
W ′

2

)
+ m1(E′

2 − E2)

2m2

(
2λ1|q|

W1
+ 2λ′

1|q ′|
W ′

1

)

×
(

2λ′
2|q ′|
W ′

2

− 2λ2|q|
W2

)
+ m2(E′

1 − E1)

2m2

(
2λ′

1|q ′|
W ′

1

− 2λ1|q|
W1

)(
2λ′

2|q ′|
W ′

2

+ 2λ2|q|
W2

)

+ (E′
1 − E1)(E′

2 − E2)

4m2

(
2λ′

1|q ′|
W ′

1

− 2λ1|q|
W1

)(
2λ′

2|q ′|
W ′

2

− 2λ2|q|
W2

)}
〈λ′

1λ
′
2|σ (1) · σ (2)|λ1λ2〉

]
. (A9)
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FIG. 12. (Color online) Same as Fig. 2 but for 1gI
a and 1t I

a at q = 375.29 MeV.

In the above formulas

Ck ≡ 1

4(2π )3

[Fk(|q ′ − q|2)]2(|q ′ − q|2 + m2
k

)
√

W ′
1W

′
2W1W2

E′
1E

′
2E1E2

, Fk(|q ′ − q|2) =
(

�2
k − m2

k

�2
k + |q ′ − q|2

)nk

, for k = s, ps, v. (A10)

Numerical values for the parameters mk , nk , �k and the coupling constants fk , gk can be found on p. 347 of Ref. [20] or in
Ref. [18].

3. Helicity matrix elements

For completeness, we provide expressions for the helicity state matrix elements with general dependence on θ, θ ′, φ, φ′. These
can be derived using Eq. (A3):

〈+ + | + +〉 = 1
2 [1 + cos θ ′ cos θ + sin θ ′ sin θ cos(φ′ − φ)],

〈+ + | + −〉 = 1
2 {cos θ ′ sin θ − sin θ ′[cos θ cos(φ′ − φ) + i sin(φ′ − φ)]},

〈+ + | − −〉 = 1
2 [−1 + cos θ ′ cos θ + sin θ ′ sin θ cos(φ′ − φ)],

〈+ − | + +〉 = 1
2 {sin θ ′ cos θ − sin θ [cos θ ′ cos(φ′ − φ) + i sin(φ′ − φ)]},

〈+ − | + −〉 = 1
2 [sin θ ′ sin θ + (1 + cos θ ′ cos θ ) cos(φ′ − φ) + i(cos θ ′ + cos θ ) sin(φ′ − φ)],
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FIG. 13. (Color online) Same as Fig. 2 but for 12gI
a and 12t I

a at q = 375.29 MeV.

〈+ − | − +〉 = 1
2 [− sin θ ′ sin θ + (1 − cos θ ′ cos θ ) cos(φ′ − φ) + i(cos θ ′ − cos θ ) sin(φ′ − φ)],

〈+ + |σ (1) · σ (2)| + +〉 = 〈+ + | + +〉 − 2, 〈+ + |σ (1) · σ (2)| + −〉 = 〈+ + | + −〉,
〈+ + |σ (1) · σ (2)| − −〉 = 〈+ + | − −〉 + 2, 〈+ − |σ (1) · σ (2)| + +〉 = 〈+ − | + +〉,
〈+ − |σ (1) · σ (2)| + −〉 = 〈+ − | + −〉, 〈+ − |σ (1) · σ (2)| − +〉 = 〈+ − | − +〉, (A11)

〈− − | − −〉 = 〈+ + | + +〉, 〈− − | + −〉 = 〈+ + | + −〉,
〈+ + | − +〉 = 〈− − | − +〉 = − Re(〈+ + | + −〉) + i Im(〈+ + | + −〉), (A12)

〈+ − | − −〉 = 〈+ − | + +〉 , 〈− + | + +〉 = 〈− + | − −〉 = − Re(〈+ − | + +〉) + i Im(〈+ − | + +〉),
〈− − | + +〉 = 〈+ + | − −〉, 〈− + | + −〉 = Re(〈+ − | − +〉) − i Im(〈+ − | − +〉),
〈− + | − +〉 = Re(〈+ − | + −〉) − i Im(〈+ − | + −〉),

〈− − |σ (1) · σ (2)| − −〉 = 〈+ + |σ (1) · σ (2)| + +〉, 〈− − |σ (1) · σ (2)| + −〉 = 〈+ + |σ (1) · σ (2)| + −〉,
〈+ + |σ (1) · σ (2)| − +〉 = 〈− − |σ (1) · σ (2)| − +〉 = − Re(〈+ + |σ (1) · σ (2)| + −〉) + i Im(〈+ + |σ (1) · σ (2)| + −〉),
〈+ − |σ (1) · σ (2)| − −〉 = 〈+ − |σ (1) · σ (2)| + +〉,
〈− + |σ (1) · σ (2)| + +〉 = 〈− + |σ (1) · σ (2)| − −〉 = − Re(〈+ − |σ (1) · σ (2)| + +〉) + i Im(〈+ − |σ (1) · σ (2)| + +〉),
〈− − |σ (1) · σ (2)| + +〉 = 〈+ + |σ (1) · σ (2)| − −〉,
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FIG. 14. (Color online) Real and imaginary parts of ngI
a (both isospins) for n = 0, 1, 12 as a function of q ′. We set θ = arccos(0.5),

q = 306.42 MeV, and θ ′ = 3. The solid (red), dotted (green), and dashed (blue) curves are exact Pauli operator calculations preformed at
kF = 1.1, 1.4, and 1.6 fm−1, respectively. The dashed-dotted (orange), dashed-double-dotted (pink), and double-dashed (purple) curves are the
corresponding spherical Pauli operator calculations preformed at kF = 1.1, 1.4, and 1.6 fm−1, respectively.

〈− + |σ (1) · σ (2)| + −〉 = Re(〈+ − |σ (1) · σ (2)| − +〉) − i Im(〈+ − |σ (1) · σ (2)| − +〉),
〈− + |σ (1) · σ (2)| − +〉 = Re(〈+ − |σ (1) · σ (2)| + −〉) − i Im(〈+ − |σ (1) · σ (2)| + −〉). (A13)

APPENDIX B: CONVERTING THE BETHE-GOLDSTONE INTEGRAL EQUATIONS INTO MATRIX EQUATIONS

In this section we give details on the numerical solution of Eq. (31). Clearly, the free-space Thompson equation follows along
similar lines.

Six integral equations are obtained from Eq. (31) using the linear combinations in Eq. (11) along with information from
Eq. (9):

0gI (q̃ ′, q̃) = 0vI (q̃ ′, q̃) + π

∫ π

0

(
P

∫ ∞

0

(0,0)f I (q ′′)q ′′2

E∗
q − E∗

q ′′
dq ′′ − iπqE∗

q
(0,0)f I (q)

)
sin θ ′′ dθ ′′, (B1a)

1gI (q̃ ′, q̃) = 1vI (q̃ ′, q̃) + π

∫ π

0

(
P

∫ ∞

0

(1,1)f I (q ′′)q ′′2

E∗
q − E∗

q ′′
dq ′′ − iπqE∗

q
(1,1)f I (q)

)
sin θ ′′ dθ ′′, (B1b)
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12gI (q̃ ′, q̃) = 12vI (q̃ ′, q̃) + π

∫ π

0

(
P

∫ ∞

0

[(12,12)f I (q ′′) + (55,66)f I (q ′′)]q ′′2

E∗
q − E∗

q ′′
dq ′′

− iπqE∗
q [(12,12)f I (q) + (55,66)f I (q)]

)
sin θ ′′ dθ ′′, (B1c)

34gI (q̃ ′, q̃) = 34vI (q̃ ′, q̃) + π

∫ π

0

(
P

∫ ∞

0

[(34,34)f I (q ′′) + (66,55)f I (q ′′)]q ′′2

E∗
q − E∗

q ′′
dq ′′

− iπqE∗
q [(34,34)f I (q) + (66,55)f I (q)]

)
sin θ ′′ dθ ′′, (B1d)

55gI (q̃ ′, q̃) = 55vI (q̃ ′, q̃) + π

∫ π

0

(
P

∫ ∞

0

[(12,55)f I (q ′′) + (55,34)f I (q ′′)]q ′′2

E∗
q − E∗

q ′′
dq ′′

− iπqE∗
q [(12,55)f I (q) + (55,34)f I (q)]

)
sin θ ′′ dθ ′′, (B1e)

66gI (q̃ ′, q̃)66vI (q̃ ′, q̃) + π

∫ π

0

(
P

∫ ∞

0

[(34,66)f I (q ′′) + (66,12)f I (q ′′)]q ′′2

E∗
q − E∗

q ′′
dq ′′

− iπqE∗
q [(34,66)f I (q) + (66,12)f I (q)]

)
sin θ ′′ dθ ′′, (B1f)

where we defined (n,m)f I (q ′′) ≡ nvI (q̃ ′, q̃ ′′)Q(q̃ ′′, P ,
kF )mgI (q̃ ′′, q̃) for n,m = 0, 1, 12, 34, 55, 66.

The iε term present in Eq. (31) was converted into a
principle value integral (denoted by P) plus an imaginary
term using the Plemelj formula. To handle the principle value
integral, we symmetrically distribute Gauss-Legendre (GL)
points about the singularity. This is accomplished by breaking
the integral into two parts, P

∫ ∞
0 dq ′′ = ∫ 2q

0 dq ′′ + ∫ ∞
2q

dq ′′

and creating an N ′′-point GL rule. Namely, Xi ≡ (X1 X2) and
Wi ≡ (W 1 W 2) for i = 1, 2, . . . , N ′′. The N ′′-point GL rule
is built from two separate GL rules: the first being a N1-point
GL rule over (0, 2q) (with nodes and weights X1, W 1) and
the second a N2-point GL rule over (2q,∞) (with nodes and
weights X2, W 2). Choosing N1 = even will ensure that the
points are distributed symmetrically about the singularity. With
regard to the integration over (2q,∞), we found that better
stability could be achieved by truncating the integration at a
sufficiently large value rather than using one of the standard
transformations. Finally, for the (0, π ) integral a standard
N ′′

θ -point GL rule is used with nodes and weight given as
x,w.

Although various methods exist for solving Fredholm
integral equations of the second kind, we prefer the Nystrom
method. “Delves and Mohamed [22] investigated methods
more complicated than the Nystrom method. For straightfor-
ward Fredholm equations of the second kind, they concluded
‘. . . the clear winner of this contest has been the Nystrom
routine . . . with the N -point Gauss-Legendre rule. This routine
is extremely simple. . . . Such results are enough to make a
numerical analyst weep”’ [13]. The details of the Nystrom
method can be found in Ref. [13], but the general idea is to
convert the system of integral equations into a system of matrix
equations. From there, we solve them using a LAPACK [23] LU
factorization routine. The matrix equations corresponding to

Eq. (B1) are

0K I (q)0gI (q) = 0vI (q), (B2a)
1K I (q)1gI (q) = 1vI (q), (B2b)(

12K I (q) 55K I (q) − 1
66K I (q) − 1 34K I (q)

)(
12gI (q) 55gI (q)
66gI (q) 34gI (q)

)

=
(

12vI (q) 55vI (q)
66vI (q) 34vI (q)

)
. (B2c)

Convenient definitions (for n = 0, 1, 12, 34, 55, 66) are
the two N ′′

θ (1 + N ′′) × Nθ matrices nvI
jk(q) ≡ nvI (q̃ ′

j , q, θk),
ngI

jk(q) ≡ ngI (q̃ ′
j , q, θk), and the N ′′

θ (1 + N ′′) × N ′′
θ (1 + N ′′)

matrix nK I (q) ≡ 1 − (nαI (q) nβI (q)). The N ′′
θ (1 + N ′′) × N ′′

θ α

matrix and the N ′′
θ (1 + N ′′) × N ′′N ′′

θ β matrix are defined as

nαI
jk(q) ≡ −iπ2qE∗

qwk sin(xk)Q(q, xk, P, kF )nvI (q̃ ′
j , q, xk),

(B3a)

nβI
jk(q) ≡ πWmw�

X2
m sin(x�)

E∗
q − E∗

Xm

×Q(Xm, x�, P, kF )nvI (q̃ ′
j , Xm, x�), (B3b)

m ≡
⌊

k − 1

N ′′
θ

+ 1

⌋
, � ≡ k − N ′′

θ (m − 1).

In the previous equations we utilize the definition of q̃ ′ ≡
(q ′, θ ′) to create a vector of points,

q̃ ′ ≡
(

y

z

)
, yj ≡ (q, xj ), zk ≡ (Xm, x�), (B4)

where m and � in terms of k are given in Eq. (B3b). Also keep
in mind that we sometimes denote matrices and vectors by
their entries, e.g., A as Ajk .

054619-21



L. WHITE AND F. SAMMARRUCA PHYSICAL REVIEW C 88, 054619 (2013)

As we stated in Sec. II A1, in our formalism we solve
the solution over the q ′ × θ ′ × θ grid. This extra dimension
requires us to introduce an additional set of points which are
not needed, for instance, in the scheme of Ref. [6]. A natural
set of points are the nodes θ for a Nθ -point GL rule over
(0, π ). Fortunately, this added dimension has little effect on
computational time. This is because the matrices are dependent
only on q. Thus, once LU factorization is complete the actual
solution for multiple right-hand sides (i.e., the θ dimension) is
trivial.

A brief mention of our computational parameters is in
order. We use a 30-point GL rule over (0, 2q), a 100-point
GL rule over (2q,∞), an 80-point GL rule over (0, π ), and
a 20-point GL rule over (0, 2π ) for the φ-integrated NN

potential. Unfortunately, the number of points needed for a
stable GL rule is high. The reason is the structure of the
three-dimensional NN potentials [see in particular Eq. (A10)].
Notice that, when the angle-dependent potentials are diagonal
in the three-momenta, the form factor becomes ineffective in
its role of cutting out high-momentum component. The largest
value of q ′′ needed for a stable integration to infinity was
20 000 MeV and occurred for 0t0. The others required a smaller
cutoff ≈3000 MeV. Furthermore, initial stability tests can be
very time consuming. Although the computational time was
dramatically reduced using OPENMP [24] to fill in the entries
of the matrices, once agreement with existing t matrices is
verified we simply run the g-matrix calculation under the same
computational conditions.
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