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We described the nuclear excitation by electron transition (NEET) by using strict collision theory combined
with quantum electrodynamics. All stages of the process are considered, which include ionization of the atom
by an x-ray photon with the formation of the hole in an inner electronic shell, its decay accompanied by the
excitation of the nucleus, and the subsequent deexcitation of the nucleus. The cross sections for the NEET and
photoabsorption of x rays are calculated near the threshold. We also analyzed the fine structure of the NEET
curve analogous to the extended x-ray-absorption fine structure, well known in x-ray optics. The results agree
with the findings of Kishimoto et al. [Phys. Rev. C 74, 031301(R) (2006)].
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I. INTRODUCTION

X rays or electrons incident on the targets can ionize
their inner atomic shells. The vacancies formed are filled by
electrons from upper levels mainly with the emission of x-ray
photons or Auger electrons. But there is one more, although
weak, decay channel of vacancies—nuclear excitation by
electron transition (NEET), predicted first by Morita [1]. It
arises in those cases when atomic and nuclear transitions have
near energies and the same multipolarities. This effect already
has been observed for the nuclei 197Au [2], 189Os [3–6], and
237Np [7]. An attempt to observe the NEET effect at the 76-eV
level of 235U in a plasma produced by lasers has also been
undertaken in Ref. [8].

Most precise measurements were performed by Kishimoto
et al. [2], who irradiated the golden foil, which contained
197Au, by synchrotron radiation with a very narrow bandwidth
of �s = 3.5 eV. Incident x-ray photons, which ionized the K
orbit of the Au atom, further the electron transition between the
M1 and K levels, and led to the excitation of the isotope 197Au
due to the exchange by virtual photons between the electron
and the nucleus. The number of excited nuclei was counted by
detecting the emitted L-conversion electrons. By varying the
energy of the x-ray photons, they found that the NEET edge
was shifted higher by 40 ± 2 eV than the K-photoabsorption
edge and was steeper.

A general formula for the NEET probability PNEET has
been derived by Tkalya [9] and has been corrected slightly by
Harston [10]. Alternative attempts to derive the PNEET have
been undertaken in Refs. [6,11]. In all these papers, only the
restricted scheme of the NEET has been studied, when in the
initial state, the atom had a hole in an inner shell and the nucleus
was in the ground state, whereas, the final state consisted of
the hole in a final upper-lying shell and the excited nucleus.
The NEET itself was treated as a two-step exchange by
virtual photons between the atomic electrons and the nucleus.
Respectively, Tkalya [9] described this process in the second-
order approximation of the quantum electrodynamics (QED).
Unfortunately, such an approach has some shortcomings. First,
for the description of the resonances, the real energies in the
propagators were replaced ad hoc by their complex values.
But such a replacement leads to an infinite value of the

wave functions at the initial moment of the scattering process
when the time t → −∞. Another unpleasant procedure was
a “spreading” of the δ functions, which corresponds to the
energy-conservation law. More definitely, the δ function with
complex energies, which expresses the energy conservation
law, has been replaced by the Lorentzian function.

More correctly, the NEET problem has been solved by
Morel et al. [12] on the basis of the decay theory [13]. They
treated the NEET as an exponential decay of the vacancy,
which is formed in an inner shell at the initial moment t = 0.

All theories discussed above failed to explain behavior of
the NEET curve at the threshold since they did not regard the
formation of the vacancy by incident radiation as well as the
final stages of the process, i.e., the relaxation of the final
atomic hole followed by the decay of the excited nucleus.
Partly, such a program has been realized by Tkalya [14], who
took the initial stage of the NEET process into consideration,
i.e., the K-hole formation by the incident x-ray photon. It
has been performed again in the modified second-order QED
approach, which has the same faults. Of course, the QED,
which deals with the four-dimensional space where the spatial
coordinates and time are treated quite symmetrically, is the best
in such second-order calculations. But for the description of
multistep transitions, such as NEET, the collision theory [13]
turns out to be much simpler. It has been used in our previous
paper [15] where all phases of the NEET were considered,
which include the formation of the hole in an inner atomic
shell by incident x-ray photon, the relaxation of the electronic
subsystem accompanied by energy transfer to the nucleus, and
its subsequent decay. Both the NEET and the absorption of x
rays were analyzed on an equal footing in the framework of
a nonrelativistic theory. The main features of the NEET and
x-ray absorption curves as a function of x-ray photons were
explained. But we, like all previous theorists, did not touch
the fine structure of the NEET curve observed in Ref. [2]. As
correctly noticed by Kishimoto [2], the observed oscillations
of the NEET curve near the edge have the same nature as
the analogous oscillations of the absorption cross section of
x-ray photons in the vicinity of their absorption threshold.
Such oscillations are well known in x-ray optics as the
extended x-ray absorption fine structure (EXAFS) (see, e.g.,
Refs. [16,17]). They arise since photoelectrons, ejected from
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any atom of the crystal, suffer scattering by neighboring atoms.
The electron waves, coherently scattered in the backward
direction, interfere with the original electron wave, which gives
rise to EXAFS oscillations.

Here, we give a complete analysis of the NEET process,
induced by x-ray photons. To this aim, a strict collision theory
is used with inclusion of the QED methods for the relativistic
second-order calculation of the NEET strength.

At the initial NEET stage, the ionization of the atom by in-
cident x-ray photon occurs. We first regard the ionization of an
isolated atom by completely ignoring its crystal environment.
This simplification enables us to describe the general behavior
of both the NEET and the photoabsorption curves near their
thresholds. And then we take into account rescattering of the
photoelectrons by neighboring atoms of the crystal, that allows
us to reproduce the fine structure of the NEET curve.

II. BASIC EQUATIONS

The unperturbed Hamiltonian of the system (nucleus plus
atomic electrons plus quantized electromagnetic field) is

Ĥ0 = Ĥn + Ĥa + Ĥrad + Ĥc, (1)

where Ĥn, Ĥa, Ĥrad, and Ĥc are the Hamiltonians of the
nucleus, atomic electrons, quantized electromagnetic fields,
and the crystal, respectively.

The total Hamiltonian Ĥ = Ĥ0 + V̂r contains the perturba-
tion operator,

V̂r = V̂ (n)
r + V̂ (a)

r + V̂ (c)
r , (2)

where V̂ (n)
r , V̂ (a)

r , and V̂ (c)
r are the interaction operators of the

nucleus, the electrons of the atom absorbing x-ray photon, and
the electrons of the neighboring atoms in the crystal with the
quantized electromagnetic field, respectively [18],

V̂ (n)
r = 1

c

∫
dR Ĵ (R)Â(R), V̂ (a)

r = 1

c

∫
dr ĵ (r)Â(r),

(3)

and Ĵ (r), ĵ (r) are the four-dimensional electric current
density operators of the nucleus and atomic electrons, respec-
tively, and Â(r) is the four-vector potential operator of the
electromagnetic field.

The eigenfunctions and eigenvalues of the unperturbed
Hamiltonian Ĥ0 obey the equation,

Ĥ0χb = Ebχb. (4)

Let, at the initial moment t → −∞, the system be described
by the wave function,

χa = |IgMg〉�0|1ke〉, (5)

where the wave function |IgMg〉 describes the initial state of
the nucleus in the ground state with spin Ig and its projection
Mg on the quantization axis, �0 is the initial state of the atom,
|1ke〉 is the quantized field, which contains one x-ray photon
with the wave vector k, the polarization e, and the energy E.
The corresponding initial energy of the system equals

Ea = E, (6)

where the initial energies of the atom and nucleus are taken to
be zero. From now on, for brevity, we omit the wave function
and the energy of the crystal, which only enter the formula
Eq. (68) for the ionization cross section. At first, an electron
of any initial i shell (i = K,L, . . .), which has absorbed the
x-ray photon, flies away with the wave vector �κ and energy
ε. Note that this energy in metals is counted from the Fermi
level. Such a first intermediate state of the system is described
by the wave function,

|c1〉 = |IiMi〉�jimi
|�κ〉|0〉, (7)

where |0〉 stands for the wave function of the vacuum of the
electromagnetic field, |�κ〉 is the function of the ejected electron,
�jimi

is the wave function of the atom that contains a hole
in the i shell, specified by the quantum numbers jimi . The
corresponding eigenvalue of the unperturbed Hamiltonian Ĥ0

will be

E1 = Bi + ε. (8)

Hereafter, Bi and Bf are the binding energies of the electron
in the initial and final (f ) states.

Afterwards, the hole passes to level |jf mf 〉 with the
excitation of the nucleus so that the whole system undergoes
a transition into the second intermediate state,1

|c2〉 = |IeMe〉�jf mf
|�κ〉|0〉, (9)

which has the energy,

E2 = W (n)
e + Bf + ε, (10)

where |IeMe〉 and W (n)
e are the wave function and the energy

of the excited nucleus. The nuclear and electronic transition
energies involved in NEET are E

(n)
0 = W (n)

e and E
(a)
0 = Bi −

Bf with their mismatch,

δ = E
(n)
0 − E

(a)
0 . (11)

In principle, there exist two decay branches of state |c2〉:
deexcitation of the nucleus and decay of the f vacancy. But the
hole widths �i(f ) are, by many orders, larger than the nuclear
width �n. In particular, the width of the first excited level of
197Au is �n = 2.38 × 10−7 eV, whereas, the K- and M1-hole
widths are �K = 52 and �M1 = 14.3 eV [2]. Thus, at first,
fast decay of the f hole occurs and only then slow nuclear
decay. We will talk about single electron transition from an
upper level with the binding energy B ′ into the f hole, which
is accompanied by the emission of the photon that has the
energy E′ = h̄ω′.

In such a case, the system passes into another intermediate
state |c3〉 with the energy,

E3 = W (n)
e + B ′ + ε + E′. (12)

After that, the nucleus decays into a final state |If Mf 〉 by
emitting a γ quantum with the energy Eγ = h̄ωγ or by means
of internal conversion. For definiteness, we will only talk about

1By following tradition, we call this hole state final, although its
subsequent decay should also be traced.
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the radiative decay. The energy of the whole system in final
state |b〉 then becomes

Eb = W
(n)
f + B ′ + ε + E′ + Eγ . (13)

Such a multistep scattering process is determined by the
resonant part of the transition operator,

T̂ = V̂ (n)
r Ĝ+(Ea)V̂ (a)

r , (14)

where

Ĝ+(Ea) = (Ea + iη − Ĥ )−1 (15)

is the Green’s operator η → +0.
In (14), we would like to separate the parts which describe

the sequence of events discussed above. It can be performed in
full analogy with the description of the inelastic scattering of
electrons by atoms with the subsequent emission of photons
[13]. To this aim, we introduce the operators,

Â = Ea + iη − Ĥ , B̂ = Ea + iη − Ĥ0 − V̂ (n)
r , (16)

With the aid of the operator identity (see also Ref. [13]),

1

Â
− 1

B̂
= 1

B̂
(B̂ − Â)

1

Â
, (17)

we rewrite the transition operator (14) as

T̂ = V̂ (n)
r

1

Ea + iη − Ĥ0 − V̂
(n)
r

T̂ , (18)

where the new transition operator is

T̂ = V̂ (a)
r + V̂ (a)

r Ĝ+(Ea)V̂ (a)
r . (19)

By performing this in the same manner, one can separate
the initial transition operator T̂i, responsible for the ionization
of the atom by x rays and rescattering of the emitted electron
by the adjacent atoms of the crystal,

T̂i = V̂ (a)
r + V̂iĜ

+(E)V̂ (a)
r , (20)

where V̂i = V̂ (1)
r + V̂ (c)

r and the operator V̂ (1)
r =

c−1
∫

j1(r)A(r)dr determine interaction with the field
of an electron, which absorbs the x-ray photon and flies
away from the atom. The interaction operator V̂ (c)

r of the
neighboring atoms with the field is inserted into V̂i to describe
the rescattering of the photoelectron by these atoms.

Finally, one has

T̂ = V̂ (a)
r Ĝ′+(E)T̂i, (21)

where V̂ ′(a)
r = V̂ (a)

r − V̂ (1)
r and Ĝ′+(E) denotes the resolvent

of the operator Ĥ − V̂i (below, we will omit the prime).
Then, the matrix elements for the transition operator (18)

take the form

Tba =
∑

c1,c2,c3

〈b|V̂ (n)
r |c3〉 1

Ea − E3 + i�n/2
〈c3|V̂ (a)

r |c2〉

×G+
21(E)〈c1|T̂i|a〉, (22)

where the off-diagonal elements of the Green’s matrix G+
21 ≡

〈c2|Ĝ+(E)|c1〉 couple two overlapping resonant levels c1 and
c2. The sums over ci mean the summation over the magnetic
quantum numbers M and m, respectively, for the nucleus and
the atom.

The Green’s matrix G+
c′c(Ea) is determined by a system of

algebraic equations [19],

(Ea − E1 − R+
11)G+

11 −
∑

Me,mf

R+
12G

+
21 = 1,

−R+
21G

+
11 − (Ea − E2 − R+

22)G+
21 = 0, (23)

where the R matrix is given by the expansion,

R+
cc′ (Ea) = Vc,c′ +

∑
d 	=c,c′

VcdVdc′

Ea + iη − Ed

+ · · · . (24)

The imaginary parts of its diagonal elements are R11 =
−i�i/2, R22 = −i�f /2 − i�n/2, whereas, the real parts al-
ready are included in the energies of the nuclear and electronic
levels.

The solution of Eq. (23) has the form

G+
11 = �E − ε − δ − R22

[�E − ε − R11][�E − ε − δ − R22] − E2
int

, (25)

and

G+
21 = R21

[�E − ε − R11][�E − ε − δ − R22] − E2
int

. (26)

Here, �E = E − Bi specifies the energy excess of the x-
ray photon over the x-ray absorption threshold Bi , and

E2
int =

∑
Me,mf

|R+
21(Ea)|2 (27)

determines the NEET strength.
It is convenient to split the Green’s functions into a sum of

two terms associated with two overlapping resonant levels of
the system.2 In particular, one has

G+
21(Ea) = R21

μ+ − μ−

(
1

ε − μ+
− 1

ε − μ−

)
, (28)

where

μ+ = �E + �BIC + i(�i − �BIC)/2,
(29)

μ− = �E − δ − �BIC + i(�f + �n + �BIC)/2.

Here, we introduced the following notations:

�BIC = δ

δ2 + (�i − �f )2/4
E2

int, (30)

and

�BIC = �i − �f

δ2 + (�i − �f )2/4
E2

int. (31)

The parameters �BIC and �BIC mean the shift and broad-
ening of the resonant levels caused by the bound internal
conversion (BIC), which is the reverse with respect to the
NEET process. In this case, the excited nucleus transfers its
energy back to an electron of the i shell, which returns to
the vacant f level. Our expression (31) for the BIC width

2Such a procedure for the overlapping resonances has been proposed
in Ref. [21].
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coincides with the standard formula (see, e.g., Ref, [20]) if we
omit �f . The width �f enters our formulas since the f vacancy
decays with the rate �f /h̄, which blocks the BIC channel in
accordance with the Pauli principle. The estimations [15] show
that

�BIC, �BIC, �n 
 �i(f ). (32)

Therefore, below, we will neglect both the BIC parameters and
the nuclear width.

III. NEET COUPLING PARAMETER

Now, we will calculate the coupling parameter E2
int, defined

by Eq. (27). The corresponding matrix element R21 is
determined by the second-order term of the expansion (24),

R21 =
∑

d 	=c1,c2

〈c2|V̂r |d〉〈d|V̂r |c1〉
h̄ωad + iη

, (33)

where h̄ωad = Ea − Ed . The summation in (24) includes
integration over wave vectors q of the virtual photons along
with the summation over their polarizations and corresponding
magnetic quantum numbers.

The transition from state |c1〉 to |c2〉 with the emission of
the virtual photon, which has the frequency ω, wave vector q,
and polarization eα , may proceed via two intermediate states,

|d1〉 = |IgMg〉|jf mf 〉|�κ〉|1q,α〉, (34)

and

|d2〉 = |IeMe〉|jimi〉|�κ〉|1q,α〉. (35)

The R matrix splits into two terms,

R21 =
∑
d1

〈c2|V̂ (n)
r |d1〉〈d1|V̂ (a)

r |c1〉
−h̄(ω − ω1) + iη

+
∑
d2

〈c2|V̂ (a)
r |d2〉〈d2|V̂ (n)

r |c1〉
−h̄(ω + ω2) + iη

, (36)

respectively, where frequencies ω1 and ω2 are

ω1 = (
E

(a)
0 + �E − ε

)
/h̄,

ω2 = (
E

(a)
0 − �E + δ + ε

)
/h̄. (37)

Near the photoabsorption threshold, ω2 ≈ ω1 ≈ ω0 = E
(a)
0 /h̄.

To calculate E2
int, it is useful to transform (36) to the form,

which includes the photon propagator [18],

Dμν(x − x ′) = i

h̄c
〈0|T̂ Âμ(x)Âν(x ′)|0〉, (38)

where T̂ is the chronological operator. This propagator
depends on the difference x − x ′ of the four-dimensional
vectors x = {ct, r} and x ′ = {ct ′, R} with the time difference
τ = t − t ′. Its introduction, which makes the bridge between
collision theory and QED, is realized easily with the aid of
identity,

1

h̄ωad + iη
= − i

h̄

∫ ∞

0
eiωadτ−ητ dτ. (39)

By substituting the relation (39) into (36), one has

R21 =
∫

dr
∫

dR jμ(r)f iJ
ν(R)eg

×
(

− i

h̄

) ∫ ∞

−∞
dτ e−iω|τ |+iω0τ 〈0|Aμ(r)Aν(R)|0〉.

(40)

Here, the integral over time is nothing but the Fourier transform
of the photon propagator, that is,

R21 = −
∫

dr
∫

dR ĵ μ(r)f i Ĵ
ν(R)egDμν(ω0, r − R), (41)

where Dμν(ω0, r − R) is the photon propagator in the mixed
frequency-coordinate representation [18],

Dμν(ω0, r − R) = −gμν

eik0|r−R|

|r − R| , (42)

with the wave vector k0 = ω0/c and the metric matrix gμν .
Substituting (41) and (42) into (27) for pure transition of

the multipolarity L and type π = E or M , one gets the result,
derived previously in [10]

E2
int = 4πe2k2L+2

0

(
ji

1
2L0|jf

1
2

)2

L2 [(2L + 1)!!]2

× |Me(πL)|2B(πL; Ig → Ie), (43)

where B(πL; Ig → Ie) is the reduced probability of the
nuclear transition, Me(πL) stands for the matrix element for
the electronic transition (for its relativistic expression, see
Refs. [9,10]). It is interesting to note, however, that simple
nonrelativistic calculations [22] of the NEET probability for
the 31-y isomer 178Hf

m2
practically give the same numbers as

the cumbersome relativistic Hartree-Fock calculations [23,24].

IV. NEET CROSS SECTION

The cross section for the transition from |a〉 to |b〉 is
determined by the formula,

σa→b = 2π

h̄c
|Tba|2δ(Ea − Eb), (44)

with the transition matrix Tba defined in Eq. (22).
After substitution of (22) into (44), we yet have to average

σa→b over the initial states and sum over all possible final |b〉’s.
Such a summation includes integration over the states of an
emitted γ quantum with frequency ωγ , x-ray photon ω′, and a
photoelectron. We rewrite the volume element in the integral
for the electron d�κ/(2π )3 as d��κρe(ε)dε with the solid angle
d��κ and the density of the electronic states in the continuous
spectrum ρe(ε) = mκ/(2π )3h̄2, where m is the electron mass.
By performing first integration over ω′ with the aid of the δ
function, we find that

σNEET(E) =
∫ ∞

0

�n(e → f )/2π(
Eγ − E

(0)
γ

)2 + (�n/2)2
dEγ

× �f

2π

∫ ∞

0
dε|G+

21(E)|2σion(ε), (45)
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where E(0)
γ = W (n)

e − W
(n)
f is the transition energy to the final

state of the nucleus, �n(e → f ) is the partial nuclear width
for the transition from |IeMe〉 to |If Mf 〉, �n is the total width
of the excited state, and σion(ε) represents the ionization cross
section,

σion(ε) = 2π

h̄c

∑
mi

∫
d��κ |〈c1|T̂i|a〉|2ρe(ε). (46)

Trivial integration over Eγ immediately gives the branching
ratio,

R(e → f ) = �n(e → f )/�n. (47)

Then, the reaction cross section will be equal to the product
of the nuclear excitation cross section σNEET(E) and the
branching ratio,

σr (E) = σNEET(E)R(e → f ). (48)
As to the NEET cross section, it is determined by the integral
over the electron energy (see also Refs. [14,15]),

σNEET(E) = E2
int

(
�f

2π

) ∫ ∞

0

σion(ε)dε

[(ε − �E)2 + (�i/2)2][(ε − �E + δ)2 + (�f /2)2]
. (49)

Previously [14,15], the cross section σion(ε) was replaced
by a constant σ (at)

ion , which is possible if one ignores the
environment of the atom, which absorbs the x-ray photon and
then emits a photoelectron. In other words, σ (at)

ion means the
ionization cross section of a single atom when the rescattering
of the emitted electron wave by the neighboring atoms of
the crystal is disregarded. In the Born approximation, the
transition operator T̂i in Eq. (46) should be replaced by V̂ (a)

r .
Calculations of the ionization cross section σ (at)

ion at the K
shell, presented in Ref. [25], show that it can really be treated
as a constant. When

�E,�E − δ � �i,�f , (50)

the lower limit of integration in (49) may be replaced by
−∞. Then, the integral is calculated easily by the contour
integration, which gives

σNEET(∞) = PNEETσ (at)
ion , (51)

where the designation σNEET(∞) is associated with energies
which satisfy the condition (50) and PNEET is the decay
probability of the i hole through the NEET channel, calculated
earlier in [9,10,12]

PNEET =
(

1 + �f

�i

)
E2

int

δ2 + (�i + �f )2/4
. (52)

In the vicinity of the threshold, the NEET cross section can
be written as

σNEET(E) = σNEET(∞)FNEET(E), (53)

where FNEET(E) describes the energy dependence of the NEET
cross section at the threshold. With the aid of the partition (28),
we find this edge factor,

FNEET(E) = f+(E) + f−(E) + f±(E)

(1 + �f /�i)[δ2 + (�i − �f )2/4]
, (54)

with

f+(E) = �f

�i

[
δ2 −

(
�i

2

)2

+
(

�f

2

)2]

×
[

1

2
+ 1

π
arctan

(
2 �E

�i

)]
,

f±(E) = δ�f

2π
ln

[
(�E)2 + (�i/2)2

(�E − δ)2 + (�f /2)2

]
,

f−(E) =
[
δ2 +

(
�i

2

)2

−
(

�f

2

)2]

×
[

1

2
+ 1

π
arctan

(
2(�E − δ)

�f

)]
, (55)

where the terms f+(E) and f−(E) represent the contribution
into the integral of the squared terms of G+

21 with the
poles μ+ and μ−, respectively, whereas, f±(E) is associated
with their interference. Our formulas (53)–(55) agree with
those of Ref. [14], except for the factor 1/π , missed in
Ref. [14] in the expressions for F1, F2. Once �E → ∞,
the factor FNEET(E) → 1. Note that, in (55), the term f−(E)
for 197Au is larger than f+(E) and f±(E) since �f 
 �i .
Specifically, for the Au atom, �M1/�K ≈ 0.3. Therefore, the
significant rise in the NEET curve, described by the edge factor
FNEET(E), occurs only in the vicinity of the point �E = δ
(see Fig. 1).

 0.5

1

 40-100 0  100  200  300  400

ΔE (eV)

Fabs(E)

FNEET(E)

FIG. 1. The calculated NEET edge function FNEET(E) and the
K-absorption one Fabs(E) for 197Au versus the energy �E = E − BK

of the x-ray photons.
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V. ABSORPTION OF X RAYS

The absorption cross section of x rays by electrons accord-
ing to the optical theorem (see, e.g., Ref. [13]) is determined
by the imaginary part of the transition matrix element Taa ,
which describes the elastic scattering of the x-ray photons to
the zero angle,

σa(E) = 2

h̄c
Im Taa. (56)

From estimations (32), it follows that the NEET matrix
element is |R21| 
 �f . As a result, one has the inequality
|G+

21(Ea)| 
 |G+
11(Ea)|, which means that the absorption of x

rays by the electrons of the i shell proceeds mainly without an
energy transfer to the nucleus. In the same approximation, the
expression (25) for G11(Ea) simplifies

G+
11(Ea) ≈ 1

�E − ε + i�i/2
. (57)

As a result, the transition matrix becomes

Taa =
∑
mi

∫
d�κ

(2π )3
〈a|T̂i|c1〉G+

11(Ea)〈c1|T̂i|a〉. (58)

And for the absorption cross section, we have the following
expression:

σa(E) = �i

2π

∫ ∞

0

σion(ε)dε

(ε − �E)2 + (�i/2)2
. (59)

Again, by replacing σion(ε) with a constant σ (at)
ion , one gets

σa(E) = Fabs(E)σ (at)
ion , (60)

where the photoabsorption edge factor,

Fabs(E) = 1

2
+ 1

π
arctan

[
2 �E

�f

]
. (61)

VI. AVERAGING

The cross sections σa(E) and σNEET(E) should yet be
averaged over the energy distribution of the incident photons.
It is convenient to approximate it by the Lorentzian function,

ws(E) = �s/2π

(E − Ē)2 + (�s/2)2
, (62)

where Ē and �s are the average energy and the width of the
distribution of photons emitted by a source. It may be rewritten
in the integral form

ws(E) = 1

π
Re

∫ ∞

0
ei(E−Ē)μ−�sμ/2dμ. (63)

Then, the edge factor Fabs(E) convoluted with the distribution
ws(E) takes the form

Fabs(Ē) ≡ 〈Fa(E)〉
= �i

2π2
×

∫ ∞

0
dε Re

∫ ∞

0
dμ

∫ ∞

−∞
dE

× ei(E−Ē)μ−�sμ/2

(E − Bi − ε)2 + (�i/2)2
. (64)

By the contour integration, we first calculate the integral over
E, then over μ and ε. Finally, one arrives at the following
formula for the averaged absorption edge factor:

Fabs(Ē) = 1

2
+ 1

π
arctan

[
2 �Ē

�a

]
, (65)

where �Ē = Ē − BK and the width �a = �s + �i .
In analogy, only by keeping the leading term f−(E) in (54)

do we see that the averaged NEET cross section σ̄NEET(Ē) in
units of σ (at)

ion is equal to the factor,

FNEET(Ē) = 1

2
+ 1

π
arctan

[
2(�Ē − δ)

�NEET

]
, (66)

where the width is �NEET = �s + �f .
Both the absorption and the NEET near their edges are well

described by their derivatives of (65) and (66) over the mean
energy Ē,

F ′
abs(Ē) = (�abs/2)2

(�Ē)2 + (�abs/2)2
,

(67)

F ′
NEET(Ē) = (�NEET/2)2

(�Ē − δ)2 + (�NEET/2)2
.

These functions are represented by the Lorentzians with the
edge widths �abs and �NEET.

VII. NEET FINE STRUCTURE

The general expression for the ionization cross section of
the K shell, which takes the interference of the photoelectron
waves into account, coherently scattered in a crystal, has the
form (see, e.g., Ref. [16])

σion(ε) = σ (at)
ion

[
1 +

∑
j

1

κR2
j

|fj (π )|e−2κ2u2
e−2Rj /λ(κ)

× sin[2κRj + 2δ1(κ) + θj (κ)]

]
, (68)

where σ (at)
ion is the ionization cross section of an isolated atom,

Rj is the distance from the atom, which emits a photoelectron
to the neighboring j th atom, δ1(κ) is the phase shift of the
partial electron wave with the orbital angular momentum l = 1
scattered by the atom, fj (π ) = |fj (π )|eiθj is the coherent
backscattering amplitude of the electrons by the j th atom,
which is fixed in the crystal site, and its vibrations give rise to
the factor e−2κ2u2

, where u2 denotes a mean-squared amplitude
of the vibrations of the atom about its equilibrium position.
Attenuation of the wave inside the crystal is characterized
by the factor e−2Rj /λ(k), where λ(κ) stands for the mean-free
path of the electrons in the medium. Equation (68) describes
the oscillating cross section, whose beats attenuate with an
increase in electron energy ε. Therefore, far away from
the absorption threshold, the cross section σion(ε) takes the
constant value σ (at)

ion . In Eq. (68), a short lifetime of the vacancy
in the atomic shell is neglected, but it manifests itself in the
more accurate formula (59) to give a complete description of
the x-ray absorption.
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To estimate the amplitude u2, we use the Debye model
where

u2 = 3h̄2

M

1

kBθD

∫ θD/T

0

[
1

ex − 1
+ 1

2

]
x dx, (69)

θD is the Debye temperature, and M is the mass of the atom.
For the Au crystal with θD = 165 K, we obtained (u2)1/2 ≈
0.050 Å.

We approximate the interaction of electrons with atoms of
the crystal by a screened Coulomb potential,

Vc(r) = −Ze2

r
e−r/r0 , (70)

where r0 is the screening length and Z is the charge number of
the atom. Following Ref. [26], for r0, we take the characteristic
atomic size ra = a0Z

−1/3, predicted by the Thomas-Fermi
model, where a0 is the Bohr radius of the atom. In par-
ticular, for gold, r0 ≈ 0.13 Å. For the elastic backscattering
amplitude of electrons in the potential (70), we employ the
expression,

fB(π ) = 2mZe2

h̄2

1

4κ2 + 1/r2
0

, (71)

calculated in the plane-wave Born approximation, where m is
the electron mass. We see that fB(π ) is a real number, i.e.,
its phase is θj (κ) = 0. Besides, in analogy with the EXAFS
analysis of Emura et al. [27], we set the phase δ1(κ) to be zero
as well.

At last, for the mean-free path of the electrons, we apply
the empirical formula of Teo [17],

λ(k) =
(

1

0.53

)[(
3.9

k̃

)4

+ k̃

]
, (72)

where the dimensionless number is k̃ = k × 1 Å.
Equation (49) combined with (68) completely determines

the NEET cross section. It has been calculated numerically for
197Au in the golden crystal with a face-centered-cubic lattice
where the edge length is a = 4.0782 Å. In the sum over j of
Eq. (68), we took the contribution of 12 nearest neighbors
separated by R1 = a/

√
2 and 6 nearest neighbors separated

by R2 = a into account. The calculated NEET cross section
σNEET(ε), in units of σNEET(∞), is presented in Fig. 2.

VIII. DISCUSSION

The NEET process is caused by a resonant coupling of the
nuclear level and atomic hole levels via the electromagnetic
field. We studied both the photoabsorption of x rays and the
photoinduced NEET by making use of the collision theory. It
allowed us to consider all phases of the NEET, which start
with the hole formation along with the rescattering of the
photoelectrons and end with the deexcitation of the nucleus.
The system nucleus plus atomic electrons has two resonant
levels, which are associated with two poles of the Green’s
matrix (54), which lie in the points μ+ ≈ �E + i�i/2 and
μ− ≈ �E − δ + i(�f + �n)/2 on the complex plane of the

0

 0.5

1

-100 0  100  200  300  400  500

σ N
E

E
T
(E

)/
σ N

E
E

T
(∞

)

ΔE (eV)

FIG. 2. The NEET cross section σNEET(E) in units of σNEET∞.

photoelectron energy ε. A small perturbation of these complex
energies is shown to be caused by the reverse BIC process.

We found the NEET cross section in the form of the
integral (49), which depends on the ionization cross section
σion(ε). To understand the main features of the NEET, we
first neglect the dependence of the ionization cross section
σion(ε) on the energy of the photoelectrons by replacing it with
the constant value σ (at)

ion . Such an approximation immediately
allowed us to get the analytical solutions (51)–(54) for the
cross section σNEET(ε) in the form of the product of the NEET
probability PNEET far from the edge, σ (at)

ion and the edge factor
FNEET(E), which describes the behavior of the NEET in the
vicinity of the edge. The function FNEET(E) consists of three
terms, born by two resonant terms of the Green’s matrix (54).
The f+(E) and f−(E) represent separate contributions of the
resonant levels, which correspond to the poles of the Green’s
matrix in the points μ+ and μ−, whereas, f±(E) results from
their interference. The functions f+(E) and f−(E) describe
two NEET edges at the energies �E ≈ 0 and �E ≈ δ,
respectively, with the widths �i and �f . The interference term
becomes significant for the overlapping resonances when the
mismatch of the nuclear and atomic transitions δ is smaller than
the atomic widths �i, �f or is of the same order of magnitude.
Note also that the term f− is higher than f+ by the factor
∼�f /�i . In the case of 197Au with δ ∼ �i and �f /�i ∼ 0.3,
the first weak upswing at �E ≈ 0 is smashed out, whereas,
in Fig. 1, the second at �E ≈ δ is seen absolutely clearly
in correspondence with the observations [2]. In addition, it
is worth noting that the main rise in the NEET curve for
189Os takes place far below the photoabsorption edge as
�E ≈ δ = −1287 eV (see also Ref. [14]).

Kishimoto et al. [2] registered the NEET edge at the
energy of x-ray photons �ENEET = 40 ± 2 eV. This point
corresponds to FNEET = 0.5. It was believed [2] that there
is an exact equality �ENEET = δ, which follows from the
energy conservation law �E = δ + ε if ε = 0. It is so if we
do not consider the final phases of the NEET process. But the
real energy conservation law Eb = Ea for the whole NEET
process, if the energy of the emitted γ quantum Eγ is replaced
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by its resonant value E(0)
γ , is written as

ε = �E − δ − (E′ − E′
0). (73)

Since the distribution of the emitted x-ray photons over the
energies E′ is on the order of �f , from the condition ε =
0, it only follows the approximate equality �ENEET ≈ δ. In
addition, we see that the NEET channel in 178Au becomes
open at �E ≈ 0, which is owed to the equality (73). Here, the
process is weak because it proceeds at the wing of the emission
line of x-ray photons ω′, emitted during the filling of the f hole.
Note also that, if we only retained the leading term f−(E) of the
edge factor, we would get the NEET edge exactly in the point
�E = δ. But small terms f+(E) and f±(E) lead to any shift
in the edge from this position. Really, our fitting of the NEET
edge for 197Au, presented in Fig. 1, shows that FNEET = 0.5
in the point �E = 40 ± 2 eV when δ = 45 ± 2 eV.

By taking the table [28] energy W
(n)
0 = 77.351 keV of the

first excited level of 197Au and by comparing it with the energy
of the atomic transition in gold W

(a)
0 = 77.300 keV [29], one

has their mismatch of δ = 51 eV. Recently, for 197Au, a new
value of W

(n)
0 = 77.339 ± 0.003 keV was reported [30], which

lowers the mismatch up to δ = 39 ± 3 eV. So, we see that
the calculated result for the mismatch δ lies between these
experimental data. However, we get additional lowering of
δ when an account is taken of the photoelectron rescattering
inside the crystal, determined by the operator T̂i. This operator
provides well-known EXAFS oscillations of the ionization
cross section σion(ε), given in Eq. (68). Our numerical
calculations of the NEET cross section (49) with (68) reveal
that σNEET(E)/σNEET(∞) = 0.5 if δ = 36 eV, which agrees
well with the data of Kirischuk et al. [30]. The fine structure
of the NEET curve, drawn in Fig. 2, qualitatively reproduces
the results of Kishimoto et al. [2].

The width of the NEET edge �NEET appears to be much less
than that of the K-absorption edge �abs because �K � �M1 .
For 197Au by means of Eqs. (67), we found �NEET = 17.8 and
�abs = 55.5 eV, which correlates well with the experimental
data �NEET = 14 ± 9, �abs = 58 ± 3 eV [2].
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