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R-matrix analysis and prediction of low-energy neutron-induced fission cross sections
for a range of Pu isotopes
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Neutron-induced fission cross sections for the plutonium isotopes from 236 to 244 are computed for neutrons
of a few keV up to 5.5 MeV incident energy, using the Hauser-Feshbach statistical theory of nuclear reactions,
modified to treat the fission decay channel in the R-matrix formalism. The fluctuations of the fission decay widths
owing to the presence of intermediate structures in the second well and to the coupling of class I and class II
states are simulated by Monte Carlo sampling of the underlying model parameter distributions. The accuracy of
this approach is tested relative to the results of well-known analytical formulations for the average fission cross
sections. Special attention is paid to the choice and consistency of the model input parameters, in part obtained
from microscopic nuclear structure calculations. The predictive capabilities offered by our method are tested
against the neutron-induced fission of the very short-lived 243Pu (τ1/2 = 4.95 h) for which no measurement exist.
Our calculations, consistent over all the Pu isotope series, demonstrate that 243Pu is fissile, in contrast to what
is reported in the standard ENDF/B-VII.1 and JEFF-3.1.2 evaluated libraries. No recommendations are made in
the JENDL-4.0 data library for this isotope.
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I. INTRODUCTION

An abundance of data on the neutron-induced actinide
fission cross sections and higher transuranic nuclides has
been built up over decades and is still being added. It is
supplemented with a body of data on particle-transfer-induced
fission reactions. (More recently these have often been termed
surrogate reactions [1,2].) Yet, despite all this, the theoretical
description and analysis of such reactions is still not regarded
as fully satisfactory. It is our aim in this paper to show that
by using the best available microscopically based reaction
theory and the best available knowledge and understanding of
the physics of the deformed nucleus we can calculate fission
cross sections reliably enough to extract physically meaningful
parameters that show consistent patterns or trends across a
range of nuclides. We also aim to show that we can use this
method and information to make reasonable predictions of
cross sections that are unknown or poorly measured.

We limit the scope of this paper to first-chance fission,
i.e., the lower neutron energy range up to about 5.5 MeV,
above which inelastic neutron emission can leave the residual
nucleus in a state of excitation that is high enough to give
it a reasonable probability of fission. The upper limit of
5.5 MeV is also below the appearance of semidirect and direct
reactions, which are not treated in this work. In the lower part
of this energy range the detailed resonance structure is of great
importance in determining the average fission cross section.
Hence, we base the theory on an extension of the R-matrix
theory to the fission deformation variable as outlined by
Bjornholm and Lynn [3]. In the higher part of the energy range
detailed resonance structure is of much less importance and
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the fission cross section depends largely on the level densities
of the compound nucleus at barrier deformations and the level
density of the target nucleus at normal deformation, which
controls the competing inelastic neutron scattering reaction.
Therefore, special attention is paid to modeling these level
density functions and to interpreting fits to them where these
are required for matching cross-section data.

Our work seeks to implement this theory using consistent
sets of model input parameters for a suite of isotopes. This ap-
proach is unique in tackling the physics owing to the presence
in the fission path of a secondary well. While other approaches
[4–6] have been developed to cope phenomenologically with
this intermediate fission structure, this paper presents a sound
approach to compute consistently and to some extent predict
this complex behavior of low-energy neutron-induced fission
cross sections.

This article is organized as follows. The theoretical for-
malism is first introduced. In particular, the modifications
to the Hauser-Feshbach equations needed to treat the fission
channel properly are presented. Approximate formulas valid in
specific situations are discussed, but an original precise Monte
Carlo type calculation, involving the full sampling of the level
parameters from realistic probability functions, is used when
analytical approximations are not adequate. A large section
of this paper is devoted to our semimicroscopic combinatorial
level density calculation, the reliability of which is crucial
for good agreement between measured and calculated cross
sections over a large energy range. The full extent of the
developments presented in this paper is now implemented
in a Fortran 95 version of the AVXSF (average cross section
fission) program [7]. This new code treats several types
of reactions, such as neutron, particle transfer, and photon
leading to fission through the same compound nucleus with a
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single and consistent nuclear structure database. In particular,
particle-transfer-induced fission data have been used in our
study of even fissioning nuclei.1 The methodology applied
will be the topic of a separate publication.

The last section is devoted to the presentation of our
results on the neutron-induced fission cross sections for
a suite of plutonium isotopes. A consistent set of model
parameters is derived, largely by fitting our theory and models
to experimental data when available. The importance of
fission barrier heights and barrier penetrability parameters,
deformation-dependent nucleon pairing gaps, single-particle
and collective excitations, and total radiative capture widths
is emphasized. Our calculated fission cross sections are
compared to state-of-the-art evaluated nuclear data files that
are based mainly on experimental data. In addition we confirm
our confidence in our model by testing the results in terms of
average capture cross section for the 239Pu and 240Pu target
isotopes relatively to the best measurements available. The
paper concludes with an example of how unmeasured cross
sections, in this case 243Pu (τ1/2 = 4.95 h), can be estimated
with some confidence using our theory and parameters.

II. THEORETICAL BACKGROUND

A. Hauser-Feshbach theory

Neutron-induced average reaction cross-sections in the
unresolved resonance and fast energy ranges, typically from
a few keV to a few MeV, are commonly calculated using the
Hauser-Feshbach theory [8]. The average cross section σcc′ for
the entrance channel c at a given incident neutron energy En

and exit channel c′ reads

σcc′ (En) =
∑
Jπ

σ Jπ

c (En)

×
|I ′+i ′ |∑

s ′=|I ′−i ′|

|J+s ′ |∑
l′=|J−s ′ |

T J
π(l′s′ )

c′ (Ec′)∑
c′′ T J

π(l′′s′′ )
c′′ (Ec′′)

, (1)

where a channel c ≡ (l, s) is defined by its relative angular mo-
mentum l and spin s and where the summations obey the usual
conservation rules. I ′ and i ′ characterize the intrinsic spins of
the residual nucleus and ejectile, respectively. Ec′ is the exci-
tation energy carried by the “ejectile” in exit channel c′ (and
similarly for Ec′′ over the various possible exit channels c′′).
σJπ

c (En) is the compound nucleus formation cross section for
a given (J, π ), the expression of which is for neutron-induced
reactions,

σJπ

n (En) = πλ2g
J,I

|I+ 1
2 |∑

s=|I− 1
2 |

|J+s|∑
l=|J−s|

T Jπ(ls)

n (En), (2)

with gJ,I representing the statistical spin factor (2J + 1)/
[2(2I + 1)] and T Jπ(ls)

n representing the neutron entrance
transmission coefficients.

1To prevent confusion between target and fissioning nuclei, the “∗”
notation is usually favored in this article for the fissioning nucleus
such that AElement∗.

All elastic and inelastic neutron channel transmission
coefficients are calculated from the general form established
by Moldauer [9],

T Jπ(ls)

n = 1 − exp (−2πSl) , (3)

where Sl is the neutron strength function for a given l. At the
limit of small strength function, the classic narrow resonance
approximation is used for capture and fission transmission
coefficients,

T
Jπ (ls)
c′ = 2π

〈�c′ 〉
DJ

, (4)

where DJ is the mean average resonance spacing for a given
spin J .

To get the true average value of the reaction cross section,
it is conventional to make restitution for the nonuniform
resonance pattern of fluctuating widths by multiplying the
Hauser-Feshbach formula [Eq. (1)] by the customary width
fluctuation correction factor Wcc′ ,〈

�Jπ(ls)

c �J
π(l′s′ )

c′∑
c′′ �J

π(l′′s′′ )
c′′

〉
=
〈
�Jπ(ls)

c

〉 〈
�J

π(l′s′ )
c′

〉
∑

c′′
〈
�J

π(l′′s′′ )
c′′

〉 × Wcc′ . (5)

Wcc′ is calculated by numerical integration of the general
one dimension integral given by Dresner [10] (exhaustively
examined by Moldauer and summarized in Eq. (42) of
Ref. [9]), assuming a nonfluctuating capture width and, for
other reactions, a χ2 width distribution with ν effective degrees
of freedom for n open reaction channels. Channel width
fluctuations from resonance to resonance have an important
effect on average cross sections. When only few channels
are opened, the Wcc′ factors can significantly reduce the
value of partial reaction cross sections. The exception is
the elastic scattering, which is enhanced over the uniform
Hauser-Feshbach estimate by up to an asymptotic factor value
of three. The overall effect decreases with increasing number
of channels and thus with excitation energy [11].

In the case of Wnf , the exit fission channel must be seen
as an overall fission channel across the double-humped barrier
with a corresponding effective number of degrees of freedom
corrected for the intermediate structure effect. This special
treatment requires additional derivations that are detailed later
in this article.

B. Specialization to the double-humped barrier

Since Strutinsky [12], we know that quantum shell effects
modify significantly the single-humped barrier predicted by
the simple liquid-drop model and lead to a secondary well
on the path to fission (schematized in Fig. 1) and two sets
of compound states: the class II compound states, in which
wave functions lie, by definition, predominantly in the second
minimum, and the class I compound states located in the
ground-state deformation well. Class I compound states have
very small fission widths, �λI,f , and are characterized by a
high level density. By contrast class II compound states exhibit
much larger fission widths and a much lower density at the
same excitation energy. Because of the specific properties of
the class II compound states and of their coupling with class I
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FIG. 1. (Color online) Schematic representation of the potential
energy of deformation of a fissioning nucleus as a function of the
elongation. Comparison is made between the single hump of the
liquid drop model (LDM) and the double-hump barrier shape of
the shell correction method (SCM). The macroscopic contribution
provides the overall shape and magnitude of the fission barrier while
microscopic corrections lead to the well-known formation of a second
well along the main deformation axis.

compound states, we can eventually observe at low energy
either strong resonance clusters in the resolved resonance
neutron fission cross section below fission threshold [e.g.,
240Pu(n, f )] or large fluctuations (of average spacing DII; the
class II mean level spacing) superimposed on class I-type fine
structure resonances [e.g., 239Pu(n, f ) above neutron emission
threshold]. This particular type of intermediate structure is
characteristic of the presence of class II states acting as
doorway states in exit fission channels.

To model the intermediate structure, the deformation
variable along the fission path (symbolized by η) has been
included in the R-matrix theory in an explicit and formal way
by Lynn [13]. In this framework, the Hamiltonian operator is
decomposed into

H = Hη + Hint(ζ, η0) + Hc(η, ζ ; η0), (6)

where

(i) Hη is the sum of kinetic and potential energies of
vibration in the η mode with eigenstates denoted by
�η;

(ii) Hint, the so-called intrinsic Hamiltonian, incorporates
the energies of all other degrees of freedom, denoted
ζ at a fixed deformation η0, usually set to a value
corresponding to a barrier (the eigenstates of this
component are denoted by χμ);

(iii) Hc(η, ζ ; η0) refers to the interaction between the η
mode and other modes (collective- and single-particle
types) of excitation.

In the presence of a double-humped fission barrier, the
formal eigenstates Xλ (the observed levels in the experimental
cross sections) of H [Eq. (6)] can be decomposed into
two groups of auxiliary states, X

(I)
λI

and X
(II)
λII

, formed from
expansions on the η-vibrational states localized principally
in either the primary �(I)

ν or secondary well �(II)
ν . The

resulting eigenstates Xλ are obtained from the diagonalization
of H , which requires the determination of the submatrix
mixing elements 〈X(I)

λI
|Hc|X(II)

λII
〉 (or the reciprocal element)

characterizing the residual interaction between the λI and λII

compound state sets. These elements have the following form:〈
X

(I)
λI

∣∣Hc

∣∣X(II)
λII

〉 ≡ 〈λI|Hc|λII〉 =
∑
μ′′νII

∑
μ′νI

〈λI|μ′νI〉〈μ′νI|Hc

× |μ′′νII〉〈μ′′νII|λII〉, (7)

using the identity |μν〉〈νμ| ≡ 1.
〈μ′′νII|λII〉 is the fractionation of a class II vibrational state

into the class II compound states.
Before Strutinsky and the discovery of a double-humped

barrier, the importance of the coupling term Hc [Eq. (6)] was
disregarded in the fission transmission coefficient calculation.
In practice, it was equivalent to considering a full mixing of the
deformation-intrinsic product-pair wave functions �νχμ into
the final eigenstates Xλ of H . By contrast, several cases have
to be considered depending on the magnitude of the coupling
strength of the class II vibrational states with the other degrees
of freedom and then with the class I compound states through
the 〈λI|Hc|λII〉 submatrix elements. An extreme situation can
happen when the class II vibrational mode is not more than
moderately spread into the class II compound states and, if the
〈λI|Hc|λII〉 elements are weak, the fission decay probability
(or the fission cross section above neutron threshold energy)
can exhibit the “giant” resonance characteristic of a damped
vibrational resonance. This is indeed the case for the doubly
even fissioning nuclei studied in this work whose fission decay
probabilities were used to estimate their fission barrier heights
as mentioned in the Introduction.

1. Typical coupling situations

(a) Statistical regime. In the statistical regime, it is assumed
that there is a statistical equilibrium among all degrees of
freedom in the compound nucleus, meaning that there is a
complete mixing of the class II product-pair states in the
secondary well (so-called strong damping situation). This is an
assumption that manifests within the class I product-pair states
because of the difference in ground-state energies between the
two wells. Ultimately a full mixing arises between the two
sets of compound states so that there is no more distinction
between the two classes of compound states. In this framework,
the fission transmission coefficient is calculated as a two-
stage process [14]: Assuming a compound nucleus initially
formed in an excited state of the first well and a subsequent
transmission over barrier A (with transmission coefficient TA),
it can after equilibration in the second well essentially go
back through the inner barrier A or fission through the outer
barrier B (with transmission coefficient TB). The effective
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transmission coefficient over a specified outer Bohr fission
barrier channel μ is finally

Tf (μ) = TATB(μ)

TA + TB + TII,γ + TII,x
, (8)

where TII,γ and TII,x are, respectively, the (very small)
transmission coefficients for decay of class II states by
radiative and particle emission. TA and TB are the total fission
transmission coefficients over barriers A and B calculated from
the well-known Hill-Wheeler [15] expression such that

TA,B =
∑
Jπ

[
1 + exp

(
2π

EJπ

A,B − U

h̄ωJπ

A,B

)]−1

, (9)

with EJπ

A,B being the effective height corresponding to a specific
Jπ Bohr transition state, respectively, at saddles A and B
and, U being the compound nucleus excitation energy. The
sum over all Jπ in Eq. (9) is unlimited because there is no
genuine fission channel threshold. In practice, only a limited
decisive number of channels is handled individually on top of
fundamental barriers and the rest of the sum over “continuum”
fission channels is approximated by an integral preserving the
Hill-Wheeler tunneling shape [7] weighted by the density of
the intrinsic excitation states at saddle.

Eventually, the continuum level density might be described
as a series of constant-temperature regions (or phases φ), each
characterized by their own temperature (Tφ), nonlinear spin-
dispersion coefficient (σφ), and numerical constant (Cφ) such
that

ρφ(U ) = Cφ

(2J + 1)

4σ 2
φ

exp

(−J + 1
2

)2
2σ 2

φ

exp (U/Tφ), (10)

with σ 2
φ = C1,φ + C3,φ

√
U + C2,φU .

Further considerations are made on level densities later
in this article and in particular on the K quantum number
dependence of Bohr fission channels.

This statistical regime is essentially reached well above the
inner and outer barrier hump excitation energies or at least
when the excitation energy is much larger than the peak height
of the lowest hump.

(b) Sub-barrier energies: Average fission probability. At
sub-barrier and near-barrier excitation energies, the detailed
structure of class II levels has a significant impact on Tf . If
the bulk of the strength of Tf is concentrated in a narrow
energy interval about a class II level, the average fission
probability will vary strongly in the vicinity of this level. In the
neighborhood of a single class II level and on the assumption
of uniform class I and class II level spacings (so-called
“picket fence model”), Lynn and Back [16] have worked
out the average fission penetrability (P̄f ) corresponding to
an intermediate structure with moderately weak class I class
II coupling such that

P̄f =
[

1 +
(

TI

Tf

)2

+
(

2TI

Tf

)
coth

(
TA + TB

2

)]−1/2

,

(11)

with TI being the total class I transmission coefficient including
the elastic, inelastic, and radiative capture and fission open
reactions within the first well.

This formula assumes a strong damping situation in the
second well and does not include width fluctuation correction
factors. The noncorrected average neutron-induced fission
cross section, analogous to Eq. (1), is

σ non-cor.
nf =

∑
Jπ

σ Jπ

n P̄ Jπ

f . (12)

The application of Eq. (11) lowers the fission probability
obtained using the statistical assumption [Eq. (8)]. It can be
readily seen that Eq. (11) reduces asymptotically to P̄f =
TF /[TF + TI] in the limit of TA + TB � 1. However, this
“smooth-average” fission cross section (average over many
energy intervals) has to make allowance not only for the final
compound nucleus state resonance width statistical fluctua-
tions [conventionally defined by Eq. (5) and denoted Wnf ]
but also for class II coupling (�II↓) and fission (�II↑) width
fluctuations.2 In a first approximation, the class II width
fluctuation correction factor, WII, can be decoupled from the
fission transmission coefficient calculation and reduces to the
asymptotic value WII = 2/π when the class II fission width
is much greater than its coupling width. This WII factor,
approximated in such a way in a pioneer version of our
AVXSF code, is now accurately calculated either by numerical
integration under the same Wnf , WII, and P̄f decoupling
hypothesis or by Monte Carlo-type simulation involving
both intermediate structure and statistical width fluctuations
simultaneously. Physics related to those accurate Monte Carlo
calculations is summarized in the next sections.

2. Class-II state characteristics

(a) Coupling and fission widths. For a selected class II
state, λII, the average over neighboring class I levels, λI, of
the squared coupling matrix elements across a specified inner
fission barrier channel (α), defines the concept of class II state
partial coupling width, �λII↓ (α). This is summarized by the
following equation:

�λII↓ (α) = 2π〈〈λII|Hc(α)|λI〉2〉I/DI. (13)

By averaging over neighboring class II states, �λII↓ can be
related to the inner barrier transmission coefficient, TA, such
that

2π
〈
�λII↓(α)

〉
II

/
DII = TA(α). (14)

Similarly, the average class II fission width across a specified
outer fission barrier channel μ, is related to the outer fission
barrier transmission coefficient, TB , as

2π
〈
�λII↑ (μ)

〉
II

/
DII = TB(μ). (15)

To be rigorous, the fraction, �λII,γ↑ , of the class II radiation
width within the secondary well that leads to the spontaneously

2To prevent confusion with the “c” of channel and the “f ” of the
overall fission channel, Weigmann [17] notation (↑, ↓) is favored in
this article.
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fissioning isomer and then to delayed fission, should be added
to the class II total fission width, �λII↑ . In a neutron-induced
fission cross-section framework, this correction remains very
small (less than 1%).

In the present work, two main eligible intermediate struc-
ture coupling situations are considered for accurate fission
cross-section Monte Carlo calculations. Both situations are
discussed in Sec. II C.

(b) Width statistical fluctuations. Assuming a statistical
regime, we can express the average over neighboring class
II states of the double barrier fission transmission coefficient,
Tf , in terms of individual class II coupling and fission widths
on the basis of Eqs. (14) and (15) such that

〈Tf 〉λII ≈
〈

TATB

TA + TB

〉
λII

= 2π

DII

〈
�λII↓�λII↑

�λII

〉
λII

, (16)

where �λII represents the total width of a single class II
state.

In the spirit of Eq. (5) with an expansion over the many
outer barrier Bohr channels μ, we can express the right-hand
side of Eq. (16) in terms of individual class II width fluctuation
factor WII(μ) such that〈

�λII↓�λII↑
�λII

〉
λII

=
∑

μ

〈
�λII↓�λII↑(μ)

�λII

〉
λII

(17)

=
∑

μ

WII(μ)

〈
�λII↓

〉〈
�λII↑(μ)

〉
〈
�λII

〉 . (18)

We now assume that the statistical fluctuations of the class II
partial fission widths exhibit an independent Porter-Thomas
[18] (ν = 1) distribution across n fully open Bohr fission
channels. If the average partial fission widths for each outer
Bohr channel are equal, the distribution of the total fission
widths is then ruled by a χ2 law with ν = n degrees of freedom.
A fuzzier picture is expected for the distribution across the
inner Bohr fission channels, which are rather considered as a
whole (i.e., as lumped channels) with no assessment on their
character fully or partially open. However, the coupling width
distribution, similarly to the fission width distribution, can be
assumed to belong to a χ2 family with ν, the effective value
of the number of degrees of freedom.

Estimates of ν values relatively to inner and outer barriers
can be extracted from first and second moments of the
corresponding width distributions such that

νA,B =
[∑

c

〈
�λII↓,↑ (c)

〉]2
∑

c

〈
�λII↓,↑ (c)

〉2 ≡
[∑

c TA,B(c)
]2∑

c[TA,B(c)]2
. (19)

Alternatively expressed in terms of transmission coefficients,
estimates of WII(μ) are obtained by separating the fluctuating
component, TB(μ), from the constant term, TBcst, respectively
associated with the individual and continuum (or lumped)
outer barrier channels as

WII(μ) = TA +∑μ′ TB(μ′) + TBcst

TATB(μ)
〈Tf (μ)〉, (20)

where 〈Tf (μ)〉, the double fission barrier average transmission
coefficient dedicated to an individual μ channel, is

〈Tf (μ)〉 = νATBcst

4

(
νATBcst

2TA

) νA
2 ∏

μ′

(
TBcst

2TB(μ′)

) 1
2
∫ ∞

0
dt

×
⎧⎨
⎩e−t

[
t + νATBcst

2TA

]−( νA
2 +1)[

t + TBcst

2TB(μ)

]−1

×
∏
μ′

[
t + TBcst

2TB(μ′)

]− 1
2

⎫⎬
⎭ , (21)

while that quantity expressed for the lumped channels reduces
to

〈Tf (μ)〉 = νATBcst

2

(
νATBcst

2TA

) νA
2 ∏

μ′

(
TBcst

2TB(μ′)

) 1
2

×
∫ ∞

0
dt

e−t(
t + νATBcst

2TA

) νA
2 +1∏

μ′
(
t + TBcst

2TB (μ′)

) 1
2

.

(22)

Equation (22) is analogous to the general single variable
integral established by Dresner [10] of the Wn,γ fluctuation
factor. In our calculations, to speed up the processing of the
Wn,c fluctuation factors, we do consider the capture channel as
a global nonfluctuative lumped channel including all constant
components, meaning radiative capture, delayed fission from
the second well, and fission over outer barrier continuum
transition states. The very small transmission coefficient values
of the highest orbital angular momentum order contributions
are also mothballed in Wn,γ for the same reason.

We have got now the tools to calculate the WII(μ) factors
but we still need to estimate the effective value of the number
of degrees of freedom, νf , corresponding to the distribution
of the quasieigenstate fission widths across the double barrier,
for calculating the Wn,f factor. In standard Hauser-Feshbach
statistical theory with adequate width fluctuation correction
factor, νf should be equal to the number of open channels at
the outer barrier. However, the restriction of the transmission
across the outer fission channels because of the intermediate
structure, acts as a reduction of νf . The Monte Carlo procedure,
summarized in Sec. II D, supplies the frame for calculating the
actual (or effective) value of νf . To speed up the average
fission cross-section calculations, the νf values have been
pretabulated as function of νA and νB . Each νf has been
derived by maximum likelihood method from the value of
the double barrier quasieigenstate fission width averaged over
1600 Monte Carlo trials with the assumption that, at near-
barrier energy, the quasieigenstate fission width amplitude is
ruled by classic broad class II state hypothesis, to be recalled
in Sec. II C2.

The overall νf picture is presented in Fig. 2 as a bivariate
plot. For comparison with classic Porter-Thomas hypothesis,
the resulting values are normalized to a single fully open
outer Bohr channel (i.e., νf is divided by νB). We recover
the one-fission-channel single-hump situation (νf → 1) only
when νA is sizable. In any other coupling situation, νf is
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FIG. 2. (Color online) Effective number of degrees of freedom
corresponding to the distribution of the quasieigenstate fission widths
across the double barrier as function of νA (x axis) and νB (y axis).
The resulting values are normalized to a single fully open outer Bohr
channel.

strongly reduced by the intermediate structure (0 < νf < 1)
and the subsequent Wnf calculation will have to be cor-
rected accordingly. In practice, this is equivalent to replacing
Wn,f (νPorter-Thomas

f ) with Wn,f (νeff
f ).

(c) Level spacing distribution. Fluctuations of level spac-
ings also impact the average cross section. However, their
effect is expected to be much smaller than that of width
fluctuations. The main complication that arises in introducing
the level spacings is that they are not simply drawn from
a frequency function but that a sequence of spacings is
correlated. The long-range correlation in eigenvalue sequences
is a key feature of quantum chaos [19] and is associated
with the diagonalization of matrices with a large degree
of randomness in their nondiagonal elements. Appendix A
reviews the general problematic associated with the class I
and class II level spacing distributions and, particularly, in our
dedicated Monte Carlo procedure.

C. Specific class I and class II coupling modes

Monte Carlo simulations, involving actual sets of class I and
class II eigenstates as described in Sec. II D, make possible the
explicit treatment of class I and class II individual coupling
elements. For the time being, our approach has considered only
two specific sub-barrier modes that are extensively described
below.

1. Deep sub-barrier energies: Narrow class II
(with limit arbitrarily fixed to �λII � 4DI)

At deep sub-barrier energy, the equilibrium in the second
well does not go through a simple continuum of states but
rather through quasidiscrete class II states. When the class II
total width, �λII (with �λII = �λII↓ + �λII↑ + �λII,γ ), becomes
smaller than a few class I mean level spacings, we can expect
very weak or moderately weak 〈λIi |Hc|λII〉 coupling matrix
elements [Eq. (8)]. Then it is legitimate to consider only a

single class II state chosen at the medium energy of a sample
of nearby class I states and their mixing elements.

The limitation to a single class II state (indexed 1) allows an
exact diagonalization [13] of the matrix H [Eq. (6)] around this
state (with energy value EII

1 ) and the neighboring class I (with
energy values EI

i ) to compute the eigenvalues, ελi
(i = 1 to N ),

of the final eigenstates.
Under the two assumptions of zero mean Gaussian distri-

bution of the 〈νIα|Hc|λII〉 expansion coefficients and standard
normal distribution of the remaining 〈λI|νIα〉 expansion
coefficients, the Hamiltonian matrix limited to a single class II
state can be established as⎛
⎜⎜⎜⎜⎜⎜⎝

EII
1 〈λII|Hc|λI1〉 · · · 〈λII|Hc|λIN−1〉

〈λI1 |Hc|λII〉 EI
2 · · · 0

· · · · · ·
· · · · · ·

〈λIN−1 |Hc|λII〉 0 · · · EI
N

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with (N − 1) being the number of class I states within DII.
It is convenient to express the final eigenfunctions Xλ in

terms of expansion (or admixture) coefficients of class I and
class II states in the diagonalized states λi ,

Xλi
=
∑
λI

Cλi (λI)X
(I)
λI

+ Cλi (λII)X
(II)
λII

, (23)

with Cλi (λI) and Cλi (λII) directly derived from the (single class
II-many class I) coupled equations such that (Eqs. (3.184) in
Ref. [13])

C2
λi (λII) =

[∑
λI

〈λI|Hc|λII〉2(
EλI − ελi

)2 + 1

]−1

and

(24)

Cλi (λI) = −〈λI|Hc|λII〉2

EλI − ελi

Cλi (λII).

Note that Eqs. (23) and (24) are exact under the hypothesis of
a single class II state.

In the framework of very weak or moderately weak
coupling, it is plausible that a final eigenstate retains mostly the
properties of the class X state (the denomination “quasi-class
X eigenstate” will summarize this philosophy) weighted by
the admixture coefficient of the latter into the final eigenstate.
Eventually, if a reaction property is not exhibited by the
original state, the final eigenstate might possess the missing
characteristic because of the existence of, even weak, mixing
matrix elements. Thus, we can comfortably assess under the
classic narrow resonance approximation the following.

(i) The elastic and inelastic class I state properties
reemerge in the corresponding quasiclass I eigenstate
widths as

�λi (λI),n = 2Pl

[∑
λI

Cλi (λI)γλI,n

]2

and (25)

�λi (λI),n′ = 2Pl

[∑
λI

Cλi (λI)γλI,n′

]2

, (26)
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assuming zero mean Gaussian class I neutron elastic
and inelastic reduced-width amplitude (respectively,
γλI,n and γλI,n′ ) distributions, with Pl being the neutron
penetrability factor. On a similar basis but directly
constructed from the average total radiative width to
class I states, the total radiation width of quasi-class I
eigenstates is mainly

�λi (λI),γ =
∑
λI

C2
λi (λI)�̄λI,γ . (27)

(ii) In the case of very weak coupling the quasi-class II
eigenstate neutron elastic width is negligible because
of the second-well origin, whereas the quasi-class II
total radiation width can retain at least the radiative
strength of the original class II and is calculated on the
same footing as �λi (λI),γ :

�λi (λII),γ = C2
λi (λII)�̄λII,γ . (28)

(iii) In the end, the outer barrier partial fission widths,
�λi,f (μ), of a final eigenstate arise from the spreading
of the subsequent class II state fission strength and are
directly calculated as

�λi (λI or λII),f (μ) = γ 2
λi ,f

(μ)

= [Cλi (λII)γλII↑(μ)
]2

, (29)

on the assumption of zero mean Gaussian γλII↑(μ) par-
tial fission width amplitude distribution with �̄λII↑(μ)
standard deviation value.

2. Sub-barrier energies: Broad class II state (�λII > 4DI)

In the situation where the class II total width becomes
larger and its strength spreads through its coupling width over
many class I states (�λII↓ � �λII↑), the mixing elements are
somewhat large (so-called moderately weak coupling) and the
class II state fission width is mixed in a Lorentzian pattern
into the final R-matrix states. A similar resonance pattern
is observed when the class II state strength is spread by its
fission width instead (weak coupling situation). However, the
real-type level parameters of R-matrix formulation no longer
represent directly the widths of the observed resonances in
the cross section. This weak coupling situation requires the
expansion of the collision matrix (denoted S and derived
from the R matrix [3]) form of the collision matrix in the
complex energy plane to find the various S-matrix poles
and, in particular, the very broad complex pole (Ref. [17],
pp. 82–84). To deal with both cases, the exhaustive complex
pole formulation can be adopted to calculate the resulting
fission widths in terms of absolute values of the residues.
Owing to the rather large class I state sample overlapped,
mixing element contributions from neighboring class II states
have to be considered as well and are calculated using the
detailed approach just mentioned. The major contribution to
final eigenstate widths is, however, calculated very simply
from average class I and class II properties and suitable class II
coupling width.

We postulate from the properties of the two extreme
situations (�λII↓ � �λII↑ or �λII↓ � �λII↑), that the fission
width amplitude of the quasi-class II state (which is originally
the class II state located at the median energy in the class I
compound state sample) can be estimated as follows

γλi (λII),f (μ) =
√

1 − �λII↓
�λII

γλII↑(μ). (30)

On a similar ground, we address the associated radiative
capture width, gathering both first- and second-well radiative
capture decay contributions:

�λi (λII),γ =
(

1 − �λII↓
�λII

)
�̄λII,γ + �λII↓

�λII

�̄λI,γ . (31)

Associated elastic and inelastic neutron widths exhibit the
first-well properties carried into the quasi-class II eigenstate,

�λi (λII),n = �λII↓
�λII

�̄λI,n and (32)

�λi (λII),n′ = �λII↓
�λII

�̄λI,n′ , (33)

with �̄λI,n and �̄λI,n′ the average class I elastic and inelastic
neutron widths. The corresponding quasi-class I widths are
accordingly established as

�λi (λI),n = �λI,n and �λi (λI),n′ = �λI,n′ . (34)

Quasi-class I eigenstate capture widths carry principally
the electromagnetic radiation width of first well and are
approximatively equal to the average class I capture width

�λi (λI),γ ≈ �̄λI,γ . (35)

In addition to the main second-well capture decay contribution
[first term of the right-hand side of Eq. (31)] from the
medium-energy class II compound state, we might consider
the capture terms from neighboring class II states (λnbg.

II )
acting as second-order effects on quasi-class I eigenstate
capture widths. So we postulate that

�λi (λI),γ = �̄λI,γ +
∑
λ

nbg.
II

〈λI|Hc|λII〉2 · �̄λII,γ(
EλII − ελi

)2 + �2
λII

/
4

. (36)

In our current version of AVXSF, we include the fission decay
from quasi-class I eigenstates owing to neighboring class II
state contributions. These are assessed in terms of complex
S-matrix poles with an additional expansion over the inner
barrier channels (α). Thus, we set

γλi (λI),f (μ) =
∑

α

∑
λ

nbg.
II

〈λI|α〉〈α|Hc(μ)|λII〉γλII↑(μ)(
EλII − ελi

)− i�λII

/
2

. (37)

Because the broadness of the class II state width can
decouple significantly the mixing of class I and class II
states, we assume that the eigenstate energies are only slightly
perturbed, and so

ελi (λI) ≈ EλI for the quasi-class I states and
(38)

ελi (λII) ≈ EλII for the quasi-class II state.
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From a rigorous point of view, the above calculations of the
formal R-matrix fission width amplitudes have to include also
the contribution of the most distant class II compound states
acting as a third-order effect. Appendix B reports the relevant
equations.

D. Direct Monte Carlo sampling of class I and class II state
parameters for R-matrix calculations

An efficient alternative to analytical expressions valid
only under specific conditions, such as the statistical regime
(Sec. IIB1a), the moderately weak coupling (Sec. IIB1b), or
even the very weak coupling formulation described in Ref. [3],
is the Monte Carlo method. The Monte Carlo procedure
presents the advantage of providing average cross sections
taking full account of statistical nuclear data parameter
fluctuations under the relevant intermediate structure coupling
condition. Our present approach simulates R-matrix resonance
properties of a selected class II state and those of the
overlapped neighboring class I states, over at least a full class
II energy spacing, using a chain of pseudorandom numbers
for a fine-tuned selection process based on both level width
and spacing statistical distributions with suitable averages. To
model the full extent of intermediate structure fluctuations, the
Porter-Thomas width distributions of the dedicated elements
[〈λI|Hc|λII〉2, �λII↓ , and �λII↑ , as introduced by Eqs. (13)–(15),
respectively] were simulated accordingly.

In this work, the accurate Monte Carlo procedure was
carried each time as possible and in most cases supersedes
the analytical route and that, especially at deep sub-barrier
excitation energies (very weak coupling situation) where the
Lynn and Back formula fails. In this context, the average fission
cross section is directly retrieved as

σnf (En) =
∑
Jπ

σ Jπ

n (En) ×
|I′+i ′|∑

s ′=|I′−i ′|

|J+s ′ |∑
l′=|J−s ′ |

P̄ J
π(l′s′ )

f,MC , (39)

with P̄ J
π(l′s′ )

f,MC the exact average fission probability for given
(J, π ) computed by direct Monte Carlo treatment and σJπ

n (En)
the neutron-incident compound nucleus formation cross sec-
tion for given (J, π ) defined by Eq. (2).

At this stage, it is appropriate to get a feeling for the various
ingredients involved in the calculation of P̄f,MC by making
reference to the classic decoupling hypothesis between the
average fission sub-barrier probability P̄f and the Wn,c and
WII fluctuation correction factors. In this perspective and on the
argumentation developed in Sec. IIB2b, P̄f,MC can be pictured
as

P̄f,MC ≡ Wnf

(
νeff

f

)× P̄f × WII. (40)

Figures 3 and 4 show the behavior of the right-hand-side
terms of Eq. (40) as a function of neutron-incident energy,
respectively, for the 239Pu fissile and 240Pu nonfissile target
isotopes. We verify that both the typical sub-barrier tunneling
effect [estimated from the ratio of the Lynn and Back
formula—Eq. (11)—to the statistical regime—Eq. (8)] and
the overall width statistical fluctuation correction [estimated
from the Wnf (νeff

f ) × WII product] strongly impact the average
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FIG. 3. (Color online) Wnf (νeff
f ), WII, and Wnf (νeff

f ) × WII width
fluctuation correction factors calculated versus energy for the 239Pu +
n reaction. The average correction for the sub-barrier tunneling effect
(green double-dash-dotted curve) is similar to both the Wnf (νeff

f )
(blue long-dashed curve) and WII (red short-dashed curve) corrections
and so significantly smaller than the correction owing to the overall
fluctuations [Wnf (νeff

f ) × WII product; black solid line].

fission cross-section magnitude. Depending on fission barrier
heights relatively to neutron threshold energy, the sub-barrier
tunneling effect is either much smaller than the overall
statistical width fluctuation correction (typical situation of
fissile target isotopes as visible on Fig. 3) or much larger
in the case of nonfissile target nuclides (Fig. 4).

Fluctuation calculations have been carried up to a maximum
excitation energy of 2.1 MeV above the neutron binding energy
in the present study. Figures 3 and 4 well consolidate the choice
of this upper limit.
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FIG. 4. (Color online) Wnf (νeff
f ), WII, and Wnf (νeff

f ) × WII width
fluctuation correction factors calculated for the 240Pu + n reaction.
The average correction for the sub-barrier tunneling effect (green
double-dash-dotted curve) is significantly larger than the correction
owing to the overall fluctuations [Wnf (νeff

f ) × WII product; black solid
line], as expected for manifest cases of subthreshold fission.
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III. COMBINATORIAL QUASI-PARTICLE-VIBRATIONAL-
ROTATIONAL LEVEL DENSITY CALCULATION

Models of the level density vary from semiempirical
approaches such as the composite prescription of Gilbert and
Cameron [20] to fully microscopic techniques with pairing
correlations, vibrations, and rotational excitations calculated
for each many-particle-many-hole excited state (such as
Ref. [21]). Although the former are well suited for practical fits
on available experimental data, we might expect that the latter
possess more predictive capabilities outside the fitting region
because they are based on realistic single-particle spectrum
calculations. They also allow us to deal, with some confidence,
with level densities for larger deformations for which there
is no direct experimental evidence. The method developed
in this article aims to combine both virtues by associating
microscopic- and macroscopic-type information.

(i) The microscopic-type information reposes on the poles
of the quasiparticle Tamm-Dancoff approximation [22]
secular equation which supplies the unperturbed one-
quasiparticle excitations on the many-body configura-
tion,

Eexc
ν =

√
(eν − λ)2 + �2, (41)

with eν , being the energy of the single-particle state
ν and, λ and �, respectively the Fermi energy and
pairing gap with differentiation between neutron and
proton. Detailed microscopic information is obtained
from a neutron and proton single-particle Nilsson state
data base currently set up from Ref. [23].

(ii) The macroscopic-type information is contained in the
present vibrational treatment, which relies directly
neither on formal calculations of phonon vibrational ex-
citation energies nor on empirical vibrational enhance-
ment factor. We favored instead fined-tuned vibrational
spectra information from experimental measurement
feedback or from collective shell models with excitation
of few or many nucleons leading to near-spherical or
permanent prolate-spheroid deformations [24]. In the
case of an even-even fissioning nucleus, the lowest part
of the spectrum is sparsely populated with levels of only
collective character because the lowest quasiparticle
states resulting from the breaking of a neutron or a
proton pair demand a minimum energy equal to 2�n or
2�p, respectively, as suggested by Eq. (41).

The strategy adopted consists of constructing the relevant
vibrational spectrum from the zero-vibration ground-state
energy and the four elementary quanta which describe,
respectively,

(i) the β2 vibration about the prolate equilibrium shape
(cylindrical symmetry axis) [this degree of freedom
will act as the overall fission variable of Eq. (6) (i.e.,
η ≡ β2) and therefore will not be present in the Bohr
transition spectrum, whereas it will show up in the
inelastic spectrum];

TABLE I. Nonexhaustive phonon spectrum of collective character
expected on top of the inner fundamental barrier of the 241Pu fissioning
nucleus. Resulting multiphonon state energies can deviate from the
rule given by Eq. (42) because of anharmonicity effect in the dedicated
oscillator potential.

Vibrational state Energy Spin Parity
(MeV) projection (h̄)

Zero-vibration ground state 0.00 2.5 +1
1 γ phonon 0.14 2 +1
2 γ phonons 0.41 0 +1
2 γ phonons 0.35 4 +1
3 γ phonons 0.56 2 +1
3 γ phonons 0.48 6 +1
1 α3 phonon 0.70 0 −1
1 α3 + 1 γ phonon 0.84 2 −1
1 α3 + 2 γ phonons 1.05 4 −1
1 α3 + 3 γ phonons 1.15 0 −1
1 bending phonon 0.80 1 −1
1 bending + 1 γ phonon 0.94 1 −1
1 bending + 1 γ phonon 0.94 3 −1

(ii) the γ vibration, in the two directions perpendicular
to the β2 axis, which describes the departure from
spheroidal symmetry (so-called axial asymmetry),

(iii) the mass asymmetry octuple vibration (so-called α3),
which attests any softness towards pear-shape oscilla-
tions across the reflection plane,

(iv) and finally a higher order octuple vibration known as
bending vibration.

Those β2, γ , α3, and bending elementary quanta are then
combined together to build multiphonon collective states
(a nonexhaustive sketch of those for the 241Pu∗ fissioning
nucleus is presented on Table I), for which energies (E), spin
projections on the β2 axis (K), and parities (π ) follow the rules
below:

Emulti-vib =
N∑

vib=1

Evib,

Kmulti-vib = ∣∣Kvib1 ± Kvib2 ± · · · ± KvibN

∣∣, (42)

πmulti-vib =
∏

vib=1,N

πvib.

In the case of an even-N -odd-Z fissioning nucleus, the
lowest excited states are, on the contrary, constructed from
a single-quasiproton state (or, for an odd-odd nucleus, a two-
quasiparticle state made from one single-quasineutron and one
single-quasiproton) carrying vibrational states and subsequent
rotational states. The energy, Erot, of each rotational state
is established classically relative to the fundamental barrier
height, Vf , and parity, K , of the bandhead such that

Erot = {h̄2/(2�)}{J (J + 1) − K(K + 1)} + Vf , (43)

with

Jπ =
⎧⎨
⎩

Kπ, (K + 1)π , (K + 2)π , . . . for K �= 0,
0+, 2+, 4+, . . . for K = 0+,
1−, 3−, 5−, . . . for K = 0−,
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FIG. 5. (Color online) Simulated normalized combinatorial
quasiparticle-vibrational-rotational LD versus excitation energy
above the inner barrier fundamental height of the 240Pu even-even
fissioning system. The various quasiparticle contributions with aZ
protons and bN neutrons are well dissociated. At low excitation
energy (below 2�n and 2�p; i.e., 1.75 MeV for 240Pu) the LD of
an even-even CN is built solely from pure collective excitations
(configuration 0Z-0N ).

where h̄2/(2�) is the rotational band constant and � is the
effective moment of inertia and is deformation dependent.
However, only the excitation states of purely collective
character are regulated by those rules when K = 0 because
of the dissimilar nature of the quasiparticles which are not
constrained by the reflection symmetry condition.

Above the breaking of a neutron- or a proton-pair energy,
multi-quasiparticle states carrying multiphonon vibrational
states show up in the even-even fissioning nucleus spectrum.
These multi-quasiparticle configurations are built according
to Eq. (42) and are labeled by the numbers of free protons
(aZ) and neutrons (bN ) such that we expect the gradual ap-
pearance of 0Z − 2N , 2Z − 0N , 0Z − 4N , 2Z − 2N , etc., or
1Z − 3N , 3Z − 1N , 1Z − 5N , 3Z − 3N , etc., respectively,
for an even-N -even-Z or odd-N -odd-Z fissioning nucleus.
The various energy thresholds are well visible in Fig. 5. We
realize immediately that low excitation energy level density
(LD) slopes and magnitudes are very sensitive to the presence
or not of quasiparticles states right above the ground state,
as Fig. 6 shows. Missed LD quasiparticle contributions might
cause severe difficulties for fission cross-section fits of odd-odd
fissioning nuclei.

IV. ESTIMATED PARAMETER VALUES

A. Fission barrier heights

The present work using the well-known Hill and Wheeler
[15] transmission coefficient definition is based on two com-
mon approximations: a unique one-dimensional fission path
and a representation of fission barriers as inverted parabola.

The approximation of a unique one-dimensional fission
path appears well justified in the case of plutonium isotopes,
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FIG. 6. (Color online) Comparison of simulated combinatorial
quasiparticle-vibrational-rotational level densities between an even-
even (240Pu, thick solid curve) and an odd-odd compound nucleus
(242Am, thin dotted curve) in terms of slope and magnitude.

as predicted by the static finite range liquid drop model
(FRLDM) calculations of Möller et al. [25]. The asymmetric
mode remains the main contribution to fission until past the
outer saddle point from which the symmetric path becomes
relevant. Even when these two modes coexist, they remain
distinct because of the existence of a significant separating
ridge (at least 1 MeV above the upper valley).

Figure 7 brings also a piece of information about the validity
of the inverted parabola approximation. This latter assumption
clearly appears to be well justified only for the heaviest
isotopes of plutonium (above mass 241). Further work will be
needed to explore the influence of replacing parabolic fission
barriers by more realistic shapes taken directly from nuclear
structure calculations such as FRLDM or Hartree-Fock.

Impact of the triaxiality observed at the inner barrier (see
Table XI of Ref. [26]) is taken into account in our calculations
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FIG. 7. (Color online) Fission paths—asymmetric mode dis-
played only—obtained in static FRLDM calculations by Möller
et al. [31] for the plutonium series as a function of the elongation
(with Q2/b, the normalized charge quadrupole moment).
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TABLE II. Fission barrier parameters selected in this work for
Pu isotope cross section modeling. Neutron emission threshold (Sn)
values are displayed for enlightening the fissile or fertile nature of
each isotope.

Fissioning Pu VA h̄ωA VB h̄ωB Sn

isotope mass number (MeV) (MeV) (MeV) (MeV) (MeV)

237 5.60 0.99 4.95 0.40 5.86
238 5.65 1.05 5.45 0.60 7.00
239 6.05 0.98 5.55 0.55 5.65
240 5.65 1.05 5.23 0.60 6.53
241 5.91 0.95 5.67 0.60 5.24
242 5.40 1.05 5.30 0.60 6.31
243 5.83 0.85 5.48 0.50 5.03
244 5.30 1.05 5.25 0.60 6.02
245 5.56 0.83 5.17 0.48 4.72

by modulating, for instance, the circular frequency associated
to the γ axis primary phonon vibration excitation. Whenever
the axial symmetry is recovered (at the outer barrier for
instance), the softness towards this axis is released by sup-
plying a high phonon quantum value. Barrier parameters are
usually derived from experimental observations and theoretical
assessments. Table II displays our consistent set of evaluated
fission barrier parameters, while Figs. 8 and 9 compare barrier
heights obtained with those supplied by Bjørnholm and Lynn
[3], Möller et al. [25], and alternatively compiled in the
RIPL-3 database [26]. This latter supplies two distinct sets of
fission barrier heights, one determined empirically by Maslov
et al. [27] from experimental fission cross section data near
threshold and another one based on Hartree-Fock-Bogolyubov
(HFB) calculations by Goriely et al. [28]. A few comments can
be made from these figures. The overview of our results (red
line) shows a general agreement with empirical data found
in the literature. However, the agreement with theoretical
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FIG. 8. (Color online) Systematics of Pu inner fission barrier
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Möller et al. [25] and Goriely et al. [28], and the empirical values
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FIG. 9. (Color online) Same as Fig. 8 but for the Pu outer fission
barrier heights.

predictions (FRLDM [25], right-pointing triangles; or HFB-
BCS [28], up-poining triangles) is poor.

The results from both microscopic [28] and macro-
microcopic [25] calculations increase smoothly with mass
number, whereas our barrier heights reveal an odd-even
character. The so-called “empirical” heights extracted by
Maslov [27] (down-pointing triangles) are logically more
consistent with our results. Data from Ref. [3] have been
used as prior inputs for the present work. Prior h̄ωA,B values
can be obtained from detailed resonance parameter analyses
of experimentally resolved class II state clusters. A pertinent
example of fine resonance structure study is the analysis made
by Auchampaugh and Weston [29], who were able to extract
the values3 of 0.71+0.21

−0.09 MeV and 0.53+0.09
−0.06, respectively, for

the (VA − Sn)/h̄ωA and (VB − Sn)/h̄ωB ratios corresponding
to the system 240Pu + n (i.e., h̄ωA = 1.06 MeV and h̄ωB =
0.81 MeV relative to present barrier heights). However, we re-
call that no special provision has been made in the present work
to reproduce observed fluctuations in the unresolved resonance
energy range, as for instance by putting explicitly vibrational
resonances in our calculation. Possible spin dependence of the
barrier heights can be estimated from fission cross-section fits
at high energies (above 100 keV), involving mainly higher
order l-wave components, which suggest, for instance, as
plausible curvature values for the 241Pu fissioning nucleus:
h̄ω

J=1/2
A = 0.95, h̄ω

J=3/2
A = 0.83, and h̄ω

J=5/2
A = 0.74 and

h̄ω
J=1/2
B = 0.60, h̄ω

J=3/2
B = 0.54, and h̄ω

J=5/2
B = 0.46.

In terms of barrier heights, we cannot expect usually an
uncertainty smaller than 200 keV because barrier heights
and transition state level densities play an anticorrelated role
resulting in several possible combinations of input parameters
with similar degrees of confidence. In the case of fissile
target isotopes, we overcome the difficulty of estimating
barrier heights below the neutron separation energy with the
insertion of transfer reaction data in the experimental database.
Transfer reaction data analyses, performed consistently with

3The superscript and the subscript given with the expectation value
define the range of the confidence interval.
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TABLE III. s-wave average resonance parameters at Sn adopted in this work for the Pu isotopes and their energy dependence parameters
above Sn. For comparison, �̄l=0

γ values from the Atlas of Neutron Resonances [39] and from the RIPL-3 data base [26] are shown as well.
Values with superscript �, •, �, or � correspond, respectively, to our normalized model, the ENDF/B-VII evaluation, the best experimental
assessment, or the best compromise for this isotope. Units are in meV except where otherwise stated.

CN Pu 237 238 239 240 241 242 243 244 245
isotope

�̄l=0
γ 37.3� 41.3� 37.0� 39.0� 30.6• 36.0� 23.0� 33.9� 20.3�

(Present)
�̄l=0

γ – – 34 ± 3 43 ± 4 31 ± 2 36 ± 6 22 – 20
(Atlas) ±1 ±2
�̄l=0

γ – – 34 ± 3 43 ± 4 31 ± 2 40.8 23 – –
(RIPL-3) ±4.6 ±2
� [MeV] 2.4 3.89 4.5 3.99 3.25 3.70 4.8 3.1 3.7
D0[eV ] 4.5 0.2 9.6 2.3 13.7 0.8 15.5 1.2 17.

±0.7 ±0.1

neutron-induced resonance cross-section data using AVXSF,
will be the topic of a separate publication.

B. Fission transition states

1. Individual states

At low excitation energies above fundamental fission
barriers, ad hoc sequences of individual transition states are
postulated from the model described in Sec. III (see also
Ref. [30]). Similarly, sequences of low-lying states are set
up for the target nuclei from the literature (ENSDF database),
augmented whenever needed by additional levels to complete
the rotational bands predicted by our model. The consistency
between input parameter and nuclear structure data was
ensured among all Pu compound nuclear systems, for which
the structures are especially dependent on their even-even or
even-odd character.

2. Continuum level density

Approximately 1 MeV above the onset of each individual
state sequence (corresponding to the energy where precise
knowledge on the individual states fails), combinatorial
quasiparticle-vibrational-rotational (QPVR) calculations were
performed to construct LDs. Our QPVR procedure is fully
consistent with the construction of the individual states
because this is simply a generalization of the method used.
The generalized model relies, in particular, on the neutron,
�n, and proton, �p, pairing gaps [Eq. (41)] and the moments
of inertia, h̄2/(2�) [Eq. (43)]; all those parameters are possibly
dependent on nucleus deformation and excitation energy.
Strong considerations on those parameters are difficult to
extract from neutron-induced cross-section experimental data
fits alone, but the present work is aiming to marry theoretical
and experimental information.

Nuclear structure calculations [25,32] indicate that the
nucleus deviates from axial symmetry at the first saddle
point, but recovers it at the outer saddle, where it exhibits
mass-asymmetric shapes or higher order octuple deformations.
Level densities are strongly dependent on broken symmetries

at a particular point in configuration space and on nucleon
pairing gaps.

Our QPVR model was primarily used as a support for
constructing level densities at normal deformation, at which
nucleon pairing gap parameters were adjusted to reproduce
the observed slow neutron average resonance spacing values
(listed in Table III). Figure 10 displays an example of total
LD corresponding to the ground state with pairing gap values
�p = 0.81 MeV, �n = 0.74 MeV for the fissioning 240Pu
nucleus. After some trial and error, it was decided to use our
parametrized QPVR LD model for the inner barrier and an
empirical pragmatic LD for the outer barrier [in the form of
the multiphase-temperature model shown by Eq. (10)] whose
parameters were tuned to reproduce reasonable experimental
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FIG. 10. (Color online) 240Pu* total level densities as a function
of excitation energy. The blue-triangled thick solid curve is our
empirical outer barrier LD (15 constant temperature phases up to
7 MeV excitation energy) fitted to experimental cross sections,
whereas the blue thin solid curve is based on our combinatorial
model for the same density with pairing gap values (�p = 1.05 MeV,
�n = 0.9 MeV). The green-dotted solid curve is our postulated inner
barrier combinatorial LD (1.0, 0.79), superseded below 1.5 MeV by
the specific inner individual transition state sequence.
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FIG. 11. (Color online) Present-work Pu neutron gaps (circles)
plotted, respectively, at normal deformation (orange thin solid curve)
and inner (blue thick solid line) and outer (green circles) barrier
deformations. Theoretical values (open squares) by Möller [31] at
normal deformation (orange thick dashed curve) and inner barrier
deformation (blue thin dashed line) are displayed for comparison.

fission cross-section data and with, nonetheless, a strong
support brought by a prior QPVR calculation. At the end,
a value about 10% higher for the pairing energy parameters of
the inner barrier relative to those of the normal deformation
and 10% lower relative to those of the outer barrier has been
found plausible on a nuclear surface dependence basis. This
comes from the fact that the neutron and proton pairs, which
participate actively in the pairing interaction, accumulate near
the Fermi energy surfaces [33]. In addition, our pairing values
tend to satisfy the common experimental observation [34]
that in heavy nuclei the average proton pairing values tend
to be higher than the neutron ones (Fig. 11 compared to
Fig. 12). Finally, we can compare our estimated neutron and
proton pairing gap parameters at ground-state and inner barrier
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FIG. 12. (Color online) Present-work Pu proton gaps (triangles)
plotted, respectively, at normal deformation (orange thin solid curve)
and inner (blue thick solid line) and outer (green triangles) barrier
deformations. Theoretical values (open diamonds) by Möller [31] at
normal deformation (orange thick dashed curve) and inner barrier
deformation (blue thin dashed line) are displayed for comparison.

deformation with the theoretical results from Möller et al. [31].
A general agreement over mass number is observed with the
theoretical values as visible on Figs. 11 and 12 although at inner
barrier deformation, our neutron pairing gaps are lower than
the theoretical ones, whereas the opposite trend is noticed for
the proton pairing gaps. The explanation comes from the fact
that our neutron and proton pairing gaps were subordinated
during the present LD fit; decorrelated adjustment of those
quantities would have resulted in a very good agreement. At
ground-state deformation, the systematic trend to be lower
exhibited by our neutron and proton pairing gap parameters is
simply attributable to actual renormalization on the observed
slow neutron average resonance spacing data (D0). At outer
barrier deformation, no special comparison is made with the
theoretical results from Möller et al. [31] because of our
final choice of an adjusted multiphase-constant-temperature
LD with no dedicated feedback on the pairing gap values.

3. Multiphase-constant-temperature level density

The use of a multiphase-constant-temperature LD for the
outer barrier [Eq. (10)] can be justified by the following
argument: Our present QPVR calculation performed at a
given barrier deformation is representative of a frozen number
of degrees of freedom in the excited nucleus (established
quasiparticle, collective, and rotational spectrum configura-
tions). No special credit is made for gradual or sudden shape
changes of the deformed nucleus with increasing energy
(tending towards sphericity) for which the nuclear temperature
parameter might attest. Our fitted multiphase LD, ρ(U, T ), by
using a constant but independent temperature T in each phase,
can cope with this argument although other approaches exist to
reproduce collective and rotational attenuations with increas-
ing excitation energy (a blocking parameter for instance). No
substantial investigations have been made in this issue during
this work. However, use of temperature-dependent LD has
been noticed in microscopic HFB calculations [35] but over a
much larger excitation energy range (0–200 MeV).

4. Semimicroscopic vs microscopic level densities

Because reliable level densities are a crucial factor in any
accurate determination of cross sections over any large energy
range, it is interesting to compare our QPVR calculations with
the HFB plus combinatorial method from Ref. [28].

Figures 13 and 14 show the level densities at ground
state and at inner and outer barrier deformations obtained
in the present study, respectively, for a fissile and a fertile
isotope as well as with the HFB approach of Ref. [28] (which
data are available from RIPL-3). The RIPL-3 second saddle
LD contain by default the left-right asymmetry enhancement
factor (Ksym ≈ 2), whereas the corresponding first saddle
data do not contain any asymmetry enhancement factor for
convenience. In our fit of the LD at the outer barrier, we
have constrained the difference in collective enhancement
(inner/outer ratio) within a range of 2–4, this ratio being judged
acceptable on the following argument (quoting Ref. [36]): “If
a saddle point exhibits a departure from axial symmetry with
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FIG. 13. (Color online) 240Pu* total level densities as a function
of excitation energy at ground state and, at inner and outer barrier
deformations obtained in the present study and compared with HFB-
BCS results [28]. Displayed LDs correspond, from bottom to top, to
ground state and inner (multiplied by 100) and outer (multiplied by
10 000) barrier deformations. The wavy shape of our outer barrier
multiphase temperature LD (15 constant temperature phases up to
7 MeV above fundamental barrier excitation energy, dash-dotted
black curve) contrasts with our postulated inner barrier QPVR-BCS-
type calculation (open-circle blue solid line); a maximum difference
in collective enhancement factor of 4 is applied on the former for
magnitude comparison.

preservation of D2 symmetry relatively to the symmetry of the
ground state, it implies an increase of a factor

√
(π/2)σk and

an additional factor 2 would result from a departure from
reflection symmetry.” For a direct comparison in terms of
inner barrier LD, a maximum enhancement factor of 8 for
axial symmetry breaking (triaxiality) with mirror symmetry
was applied to the RIPL-3 first saddle data, which now look
compatible with our calculated LD. This factor is also close
to the values extracted from systematics on the Np family by
Vladuca et al. [6].

From a general point of view, both LD shape and magnitude
at ground state at inner barrier deformation are in good
agreement. In terms of outer barrier LD, magnitudes are
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FIG. 14. (Color online) Same as Fig. 13, but for 239Pu*.

similar, although the wavy shape of our combinatorial model
LD departs from the monotonic slope of the RIPL-3 LD. From
the considerations above and because pure microscopic HFB
barriers are higher by a few hundred keV (with an increasing
trend with mass number; see Figs. 8 and 9) than the present
values (Table II), we can expect difficulties in providing
reasonable fission cross sections from pure microscopic HFB
for the Pu series. The authors of study [35] have logically
obtained a significant agreement improvement by normalizing
individually the prior microscopic barriers (prior fission cross
section calculations were too low in magnitude) or an even
better compatibility by fine tuning the LD, similar to the
present approach, on both low-energy experimental target
nucleus level schemes and neutron resonance spacing values
at neutron threshold energy.

C. Total radiative capture widths

Prior estimates of total radiative capture widths, �Jπ
γ , for

each Pu isotope are obtained from

�̄J π

γ = DJπ

2π

∫ E

0
dεγ f (E, εγ )

J+1∑
Jf =|J−1|

ρ(E − εγ , Jf ), (44)

where f (E, εγ ) contains the phase space factor ε(2L+1)
γ and

radiation strength function for the multipolarity of the γ -ray
transition while ρ(E − εγ , Jf ) is the LD of the states of the
compound nucleus at excitation energy (E − εγ ).

We confine our model to E1 and M1 transitions on the
grounds that electric quadrupole and higher multipolarity
transitions contribute only very weakly to the overall neutron
capture cross section. For the radiative strength function we
use a modified version of the Kopecky-Uhl model [37]. For
E1 transitions the strength function is

�γ (E1)

Dε3
γ

= 0.418 × 10−9A2/3 + 4.62 × 10−6 NZ

N + Z

×
∑
k=1,2

k

3

�Gk(εγ )εγ[(
ε2
γ − E2

Gk

)2 + ε2
γ �2

Gk(εγ )
] , (45)

where �G(ε) = �G0 = Bε2+C

E2
G

.

The quantities EG,k, EG0,k and B,C are input parameters
for the model. In the present work we have used values for
EG,k, EG0,k that are close to the generally accepted parameters
for the photonuclear giant resonance for the actinides, namely,

EG,1 = 11 MeV, �G0,1 = 2.9 MeV,

EG,2 = 14 MeV, �G0,2 = 4.5 MeV,

B = 1, C = 10.

For M1 transitions the radiation strength function we use is

�γ (M1)

Dε3
γ

= 0.237 × 10−9A1/3 + 0.536 × 10−7A1/3

× �GM1εγ[(
ε2
γ − E2

GM1

)2 + ε2
γ �2

GM1

] , (46)

with the parameters recommended in Ref. [37]; i.e., EGM1 =
6.6 MeV and �GM1 = 4 MeV.
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The LD function that we use for the final states of the
compound nucleus is calculated from our combinatorial QPVR
model described in Sec. III. The pairing gap parameters
are adjusted to give the neutron resonance spacing at the
neutron separation energy. At the separation energy we join the
combinatorial LD to a Fermi-gas form for the higher excitation
energies; this conforms with the usage in our AVXSF code class
I state densities of the compound nucleus.

Although the estimates for the coefficients in Eqs. (45)
and (46) for the strength functions are mainly from theoretical
considerations and the total radiation widths calculated in
this way broadly agree (within 10% to 20%) with measured
radiation widths, we have made a further empirical adjustment
to them so that for 240Pu + n the calculation is in very close
agreement with the radiation width measurement by Harvey
et al. [38] at the 1.06-eV resonance; this appears to be the
most accurate radiation width measurement available in the
literature.

We have also used the above model to calculate radia-
tion widths at energies well above the neutron separation
energy. These exhibit a general increase in energy, which
we have expressed approximately by applying an exponential
factor to the value calculated at the separation energy, the
“temperature” parameter in this factor being on the order of
3 MeV. This energy variation of the radiation width affects
considerably the value of the radiative capture cross section
at the higher neutron energies. Finally, we have taken into
account the reduction of the capture cross section by the
lower energy primary γ rays resulting in (n, γ n′) and (n, γf )
branching.

Table III lists the s-wave average total radiation widths
(�̄l=0

γ ) and mean spacings (D0) at neutron emission energy
(E = Sn) used in this work. The radiation width, with no dis-
tinction of parity, is assumed to follow an exponential energy
dependence �̄l

γ (E) = �̄l
γ (Sn) × e(En/�), whose parameters are

quoted in Table III as well.

V. FISSION CROSS SECTIONS CALCULATED
OVER A SUITE OF Pu ISOTOPES

We have compared our calculated cross sections to selected
measurements or/and state-of-the-art evaluated libraries (e.g.,
ENDF/B-VII [40], JEFF-3.1.2 [41], and JENDL-4.0 [42]).
In the case of the most important Pu isotopes (238–242),
the evaluations are essentially based on experimental data
where a plethora of direct (n, f ) cross-section measurements
exist.

The fission cross-section picture of the whole Pu family
is well illustrated by sorting the isotopes as a function of
their odd-even character. Figure 15 shows neutron-induced
fission cross sections for the even Pu isotope targets, whereas
Fig. 16 focuses on the odd Pu isotope targets. The first remark
that we can make is about the generally good agreement
between our results and the evaluated curves with the notable
exception of the 243Pu(n, f ) reaction. Standard fission-cross
section evaluations include this isotope among the nonfissile
nuclei, a fact invalidated by the present barrier height values,
which are deduced from the 242Pu(t, pf ) reaction and much
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FIG. 15. (Color online) Overview of our calculated Pu fission
cross sections versus neutron incident energy and masses (even
isotope targets) compared to standard evaluated files (ENDF/B-VII.1
[40], JEFF-3.1.2 [41], and JENDL-4.0 [42]) and to recent measure-
ments by Tovesson et al. [43], Laptev et al. [44], Fursov et al. [45],
and Gromova et al. [46].

smaller than the neutron emission threshold (refer to 244Pu* in
Table II).

Additionally, we can make the following statements.

(i) The shape of the 236Pu neutron-induced fission cross
section is similar to that of a fissile nuclide on the basis
of the barrier heights as determined from the analysis
of the 237Np(3He,df ) reaction. The values of these are
both lower than the neutron emission threshold energy
(Table II). Readers may refer to Appendix C to visualize
the sensitivity to choice of barrier height parameters in
the case of a fissile nuclide.

(ii) The 238Pu(n, f ) reaction conserves partly the
236Pu(n, f ) characteristic with an outer barrier height
slightly below the neutron emission energy threshold,
whereas the higher odd Pu fissioning systems are clearly
pure nonfissile materials.

(iii) The pure nonfissile systems clearly manifest intermedi-
ate structures in their sub-threshold fission cross section
and, depending on the energy resolution function of
the apparatus and of their nature (class II compound
states or incompletely damped vibrational class II
states), might be partially or well resolved at low
energy. Although smaller in magnitude relative to the
fission cross-section level, experimental evidence of
intermediate structures show up as well for the fissile
isotopes (e.g., 240Pu and 242Pu* on Fig. 16).

(iv) The fit to the present 240Pu neutron-induced fission
cross section is satisfactory above 200 keV but our
calculation is under-running a little bit below. Our
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FIG. 16. (Color online) Overview of our calculated Pu fission
cross sections as a function of neutron incident energy and masses
(odd isotope targets) compared with the standard evaluated files
(ENDF/B-VII.1, JEFF-3.1.2, and JENDL-4.0) and the recent mea-
surements performed by Tovesson et al. [49] and Shcherbakov et al.
[51]. The 237Np(3He,df )238Pu∗ fission probability measurement from
Back et al. [52], transposed in terms of fission cross section, is the
unique experimental data support for the (237Pu + n) system.

subthreshold fission calculation (VA = Sn + 670 keV>
VB = Sn + 430 keV) is strongly conditioned to the
specific inner barrier transition state tunneling factor
and particularly on the Nilsson single-neutron quasi-
particle state sequence we use in combination with
the zero- and one-γ vibrations. We keep in mind that
we do calculate an average fission cross section and
no special provision has been made in the present
work to reproduce the observed fluctuations, possibly
owing to incompletely damped class II vibrational res-
onances. Among the evaluated files displayed with our
(240Pu + n) simulation, none rely on strong theoretical
support. JENDL-4.0 results from a fine average of
genuine experimental data, JEFF-3.1.2 uses a pragmatic
steplike function (in three groups) based on integral
data feedback [47] in the [5.7–40]-keV unresolved
resonance energy range (URR), whereas ENDF/B-
VII.1 is based on a standard Hauser-Fesbach average
cross-section calculation in the URR domain. Between
40 and 550 keV, the ENDF/B-VII.1 fission cross section
borrows the JENDL-4.0 evaluation.

(v) A notable departure from the overall trend with mass
number of the odd-mass target fission cross sections
is that of 239Pu, which shows a considerably lower
value at low neutron energies than the others. This
illustrates the influence of the individual transition
states within the energy gap at the barrier deformations.
239Pu has spin and parity Jπ = 1/2+, implying that
s-wave neutrons form the compound nucleus in 0+ and

1+ states, the latter being predominant. There is no
single or combined vibrational mode that will provide
a low-energy transition state with Jπ = 1/2+; the most
obvious candidate for such a state at the outer barrier is
the combination of the mass-asymmetry mode (Kπ =
0−) with a bending vibration (Kπ = 1−). This is also
a candidate (at higher energy) for the inner barrier, but
another possible candidate is a two-quasiparticle state
above the energy gap. In our calculations physically
reasonable values are assigned to these transition
states and succeed in explaining the comparatively low
value of the low-energy fission cross section of 239Pu
(see also Ref. [48]).

(vi) Our computed 241Pu neutron-induced fission cross
section lies between the two measurements by Tovesson
et al. [49] and Szabo et al. [50]. The high-precision
data from Tovesson et al. [49], although resulting from
a well-tested technique, are 20%–30% lower than the
standard evaluations and need to be confirmed.

VI. RESULTS ON CAPTURE CROSS SECTIONS

Because our work is supported by the commonly admitted
GDR (based on Fermi-liquid theory) model of the total capture
width whose constants have been carefully adjusted in this
study to the most accurate radiation width measurement
available over the range of the Pu isotope series (see Sec. IV C),
it is opportune to gauge the accuracy of our calculations in
terms of capture cross section. The 239Pu and 240Pu neutron-
induced capture cross sections are the most suitable candidates
for that comparison because sound experimental data do exist,
the information from which is well represented by the most
commonly used evaluated files.

Figure 17 shows our calculated 240Pu neutron-induced cap-
ture cross section compared to the best capture measurement
by Weston and Todd [53]. The authors claim an accuracy
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FIG. 17. (Color online) 240Pu neutron-induced capture cross
section (orange solid curve) computed with AVXSF and compared with
evaluated data (ENDF/B-VII.1, JEFF-3.1.2, and JENDL-4.0) and the
most accurate capture measurement by Weston and Todd [53].
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FIG. 18. (Color online) 239Pu capture cross section (orange solid
curve) computed with AVXSF and compared to some evaluated
data (ENDF/B-VII.1, JEFF-3.1.2, and JENDL-4.0) and the old
measurement by Hopkins et al. [55].

of 7% at the lower edge energy (250 eV), reaching 20%
at the upper edge (325 keV). The agreement of the present
calculation is satisfactory with this experimental data set,
which is also used as reference for the ENDF/B-VII.1 and
JENDL-4.0 evaluations. It is apparent from Fig. 17 that the
JEFF-3.1.2 curve is significantly lower than Weston and Todd
[53] data (precisely by a factor −12%). However, an average
capture width of (30.7 ± 2.5) meV is quoted by the author
of study [47], a study which, in addition to condensing the
information from the whole resonance range, is the foundation
of the JEFF-3.1.2 evaluation at low energy (En < 40 keV).
This value consolidates the choice we have made for the
normalization of our total capture width prediction model
but also advocates a renormalization of the Weston and
Todd [53] capture measurement (possibly between −3%
and −5%). Above 1 MeV, we observe strong differences
between evaluated radiative capture cross sections because
of the lack of experimental data. This fact is well identified
in Ref. [54], whose authors also emphasize the weakness
of the fission models in standard average cross-section
codes.

Another valuable comparison can be conducted on the 239Pu
neutron capture cross section (see Fig. 18). The experimental
database above the resonance range is rather poor and we must
rely on the unique and old average measurement by Hopkins
et al. [55]. We observe that the evaluations differ significantly
above 700 keV, where no experimental data are available
and where the very small value of the capture cross section
complicates any measurement. The present AVXSF calculation
deviates from the smooth compound nucleus formation shape
at about 1.5 MeV. The investigation of this Wigner-cusp-
type inflection shows that this is attributable to the strong
competition by other open channels. From this observation,
we do realize the importance of relying on sound theoretical
grounds for the best possible treatment of the inelastic and
fission competitive cross sections.

VII. CROSS-SECTION PREDICTION CAPABILITY OVER
THE COMPOUND NUCLEUS ENERGY RANGE

The consistent approach, carried out all the way during
this work and on the suite of the Pu isotopes, gives us the
opportunity to interpolate or extrapolate barrier parameters to
the poorly known nuclei of that series with some reliability.
Because of the total lack of neutron-induced experimental
data, a prediction on the average fission cross section of the
very short-lived 243Pu (τ1/2 = 4.95 h) is a suitable example
of application of the methodology developed. However,
the existence of a surrogate measurement, the 242Pu(t, pf )
reaction from Back et al. [52] brings some support for
choosing representative barrier heights but the robustness of
the prediction is mainly ensured by the models and trends
used in the cross section study of the other Pu isotopes (in
particular on the information derived from the 243Pu* excited
nucleus and the 244Pu residual nucleus level densities involved,
respectively, in the analyses of the neutron-induced 242Pu and
244Pu cross sections). We observe in Fig. 19 that our predicted
average subthreshold fission cross section is about twice the
ENDF/B-VII.1 (≡JEFF-3.1.2) evaluated cross section. This
well demonstrates that the 243Pu target isotope is a fissile
nucleus with estimated inner and outer barrier heights of
5.30 and 5.25 MeV, respectively, significantly lower than the
neutron emission threshold (6.02 MeV). Contrary to the fission
reaction, no conflicting trends with the ENDF/B-VII.1 (JEFF-
3.1.2) evaluations are found in terms of capture or inelastic
cross sections, confirming that the origin of the differences
is essentially attributable to the choice of different barrier
heights. Both evaluated files (ENDF/B-VII.1, JEFF-3.1.2) rely
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FIG. 19. (Color online) 243Pu partial cross sections (orange solid
curves) computed with AVXSF and compared to the ENDF/B-VII.1
(blue dotted curves) and JEFF-3.1.2 (black solid curves with circles)
evaluated data. No recommendation is found in the JENDL-4.0
data library for this isotope. Thick, medium-thick, and thin curves
correspond, respectively, to the (n, f ), (n, γ ), and (n, n′

tot) reactions.
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on the old Howerton-MacGregor evaluation (1975) [56], which
included very poor experimental information (three fission
cross-section data points above the fission threshold (from 1.5
to 2 MeV) and a few spectrum-averaged fission and capture
data points). Ultimately, Howerton-MacGregor complemented
their evaluation in terms of fission cross section at the higher
energies from systematics.

VIII. CONCLUSIONS AND FUTURE ORIENTATIONS

The R-matrix theory applied to the modeling of fission cross
sections was developed in the early 1970s and carefully used to
interpret specific experimental cases of intermediate structure
until the end of the 1980s. However, this is the first time
that this theory has been used methodically and consistently
for a whole isotope family (plutonium) over a broad energy
range, from the upper end of the resolved resonances to the
onset of second chance fission. In addition, a direct Monte
Carlo sampling of class I and class II state parameters for R-
matrix calculations of double-hump barrier resonance effects
is performed and supersedes the assumption of decoupled
class II fluctuation correction factor and analytical sub-barrier
average probability. This leads to a significantly improved
partial cross section accuracy with, in particular, a correction
of up to 20% of the usual calculated average fission cross
section.

Another significant improvement on the agreement between
experimental and simulated fission cross sections is achieved
by assigning fined-tuned quasiparticle-vibrational sequences
of individual transition-state bandheads, the impact of which
is quite sizable at low excitation energies (relative to the fission
barriers). At higher energies our robust semimicroscopic com-
binatorial LD as a function of deformation provides the desired
strong physics background to give cross-section simulations
of quality comparable with current evaluations. Although in
our current analysis scheme it is still necessary to fit the outer
barrier LD, we can show that the fit is semiquantitatively de-
scribable by our semimicroscopic formulation. Furthermore,
the energy gap parameters necessary for these level densities
increase systematically with nuclear deformation, and this
increase can explain the odd-even staggering of barrier heights
relative to the ground state.

By applying this approach consistently through a long
series of plutonium isotopes, possible deficiencies in modern
evaluated libraries can be identified. Finally, we show that
extrapolated or interpolated barrier heights and level densities
can be used to make reliable cross-section predictions for the
short-lived isotopes of the series. As far as the 244Pu* excited
nucleus is concerned, our predicted neutron-induced fission
cross section is twice the value of the ENDF/B-VII.1 and
JEFF-3.1.2 evaluations in the low-energy range and therefore
suggests a revision of those files because it has been obtained
in a quite consistent approach between all Pu isotopes.

The collaboration work summarized in this article will
eventually be integrated in the validated routes and/or modern
code structures such as CONRAD [57] at CEA Cadarache and
GNASH [58] and COH [59] at LANL. It might also supply
additional pieces of information in the framework of the new

CIELO [60] international effort on current standard evaluated
data libraries.

Ongoing developments in the AVXSF code will continue
to refine class I and class II state coupling models. The
latter objective will require consideration of the S-matrix
formulation of the collision matrix, rather than the R-matrix
form, but only in very special coupling situations. Another
effect will focus on the consistent treatment of transfer as well
as photon-induced fission reactions in addition to the more
common (n, f ) reactions.
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APPENDIX A: LEVEL SPACING DISTRIBUTIONS

The direct Monte Carlo technique adopted in this study
relies, in particular, on class I and class II eigenstate energy
selection from relevant level spacing statistical distributions
with suitable averages. Because the number of class II levels
involved in a trial calculation is much smaller than the
number of class I levels (DI ≈ 50 × DII about Sn), we can
diagonalize “on line” the corresponding matrices to determine
a plausible sequence of class II eigenvalues. However, to
reduce the amount of computational effort, we use “quintaxial”
matrices, in which all the elements are zero except those on
the diagonal axis and the two adjacent axes on either side
of the diagonal. The diagonal elements are drawn from a
poisson distribution and the nonzero nondiagonal elements
from a Gaussian distribution with zero mean and dispersion
value that is equal to the square of the mean of the Poisson
distribution. We find that these “quintaxial” matrices result
in both satisfactory first-neighbor spacing distributions and
long-range correlations. Figure 20 shows an example of class II
level spacing distribution (blue thin histogram) constructed
from our hypotheses.

The amount of computer time required to diagonalize the
large matrix involved for a class I sequence in each trial of a
Monte Carlo process would be prohibitively large. Therefore,
we use a separately computed file of a large eigenvalue
sequence. This has the properties of a first-neighbor spacing
distribution that is similar to the Wigner form [61] and
has long-range correlations that approximate closely to the
Dyson-Mehta � statistic [62]. This ad hoc class I spacing
distribution is also plotted on Fig. 20 (red thick histogram)
and compared to the standard Wigner law (dashed curve). The
choice to use the same class I energy sequence for every trial
can be justified by locating randomly the “medium-energy”
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class II state within this sequence and therefore “watching” a
different pattern of class I states in every trial.

Differences observed on plotted level spacing distributions
suggest a possible impact on the resulting Monte Carlo average
fission cross section value although the average over numerous
direct Monte Carlo calculations will likely wash out these very
small deviations which, at the end of the day, will be of a
magnitude comparable to or even smaller than the background
contribution of the “distant class II states” (see Appendix B).

APPENDIX B: DISTANT CLASS II BACKGROUND EFFECT

Far away from the medium-energy class II level selected,
the contribution of the most distant class II compound states
[other than the neighboring class II states already considered
in Eqs. (36) and (37)] might also be significant. From a general
point of view, the reduced-width amplitude of final R-matrix
eigenstates in a reaction channel c can be split into four
components,

γλi,c = Cλi (λIImedium )γλIImedium ,c +
∑
λI

Cλi (λI)γλI,c

+
∑

λIIneighbors

Cλi (λII)γλII,c +
∑

λIIdistant

Cλi (λII)γλII,c. (B1)

The fourth component of the right-hand side in Eq. (B1) acts
as a background term and can be expressed using perturbation
theory such that

∑
λIIdistant

Cλi (λII)γλII,c ≈
∑

λIIdistant

〈λI|Hc|λII〉(
EλII − EλI

)γλII,c. (B2)

In particular, the sum of the squares of the distant class II state
contributions [right-hand side in Eq. (B2)] to a quasi-class I
radiative capture reduced width, under the assumption of
no correlations in sign among matrix elements, can be

approximated as

∑
λIIdistant

〈〈λI|Hc|λII〉2〉(
EλII − EλI

) 〈γ 2
λII,γ

〉

≈
{∣∣∣∣∣ 1

sin2(πx)
− 1

π2

[
1

x2
+

NλII∑
j=1

(
1

(j − x)2
+ 1

(j + x)2

)]}

× π

2

DI

D2
II

�̄λII↓ �̄λII,γ , (B3)

with x = ελi
− E

DII
and E the incident particle energy.
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FIG. 21. (Color online) 236Pu fission, inelastic, and capture cross
sections computed with our AVXSF code. The red solid curves have
been established using inner and outer barrier heights, respectively,
equal to 5.6 and 4.95 MeV, whereas the blue dashed curves correspond
to the same barriers but increased by 100 keV.
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Because any partial fission width over a single Bohr tran-
sition channel (μ) is assumed to follow a Porter-Thomas
distribution with one degree of freedom only, the assumption
of no correlation between reduced-width amplitudes in sign
does not hold for fission and the result from Eq. (B3)
is used as standard deviation for drawing from a zero-
mean Gaussian distribution the amount and the sign of the
background term to be added to the previously calculated
reduced fission width amplitude of the quasi-class I eigenstates
[Eq. (29) or (37)].

APPENDIX C: EXAMPLE OF SENSITIVITY TO CHOICE
OF BARRIER HEIGHT PARAMETERS

Figure 21 shows the fission, inelastic, and capture neutron-
induced cross sections of 236Pu. An increase by 100 keV on
the barrier heights has a major impact on the predicted capture
and inelastic cross sections, whereas no comparable change is
encountered on the corresponding fission cross section. That
pattern is characteristic of fissile isotopes whose barrier heights
lie below the neutron emission threshold (respectively, 260 and
910 keV below Sn at barriers A and B in the 237Pu* system),
by contrast with a fertile isotope for which neutron-induced
fission cross-section sensitivity is large with barrier height.
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