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Coherent π 0η photoproduction on s-shell nuclei
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Coherent photoproduction of π 0η on the deuteron and 3He and 4He nuclei is considered in the energy region
from threshold to a laboratory photon energy Eγ = 1.2 GeV. The transition amplitude is derived in the impulse
approximation. The effects of pion absorption are included by means of the Fernbach-Serber-Taylor model.
For the reactions on d and 3He the interaction of the produced η meson with the recoiling nucleus is taken
into account. The corresponding ηd and η3He scattering amplitudes are obtained as solutions of the few-body
equations for ηNN and η − 3N systems. The impact of this interaction on the differential cross section in the
region of small relative η-nuclear momenta is discussed.
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I. INTRODUCTION

Among different photoproduction channels special interest
is focused today on the processes with two pseudoscalar
mesons in the final state. The experimental study of ππ and
πη photoproduction on nucleons and nuclei have become
an important part of the research programs of the European
Laboratory for Structural Assessment (ELSA) and the Mainz
Microtron (MAMI) facilities [1]. In particular, the database
for π0η photoproduction was greatly extended by new very
precise measurements, covering a large region of laboratory
photon energies from threshold up to 3 GeV [2–5]. Further-
more, a considerable amount of new data for polarization
observables has been reported in Refs. [6–9].

These new experimental results have generated a revival of
theoretical interest in π0η photoproduction. Besides the most
early studies of [10] a recent, rather detailed investigation of
this process on a free proton was performed in Refs. [11–13].
Most of the efforts were directed toward understanding the
general dynamical properties of those N∗ and � resonances
which are not very well seen in the reactions with a single
meson and for which only weak evidence exists [14]. The
analysis of the existing data within different models has
provided further insights into the details of the nucleon
excitation spectrum, in particular, in the third and the fourth
resonance region.

It is however clear that a systematic study of meson photo-
production requires detailed information on the same process
in nuclei. Here coherent reactions are of special use. Different
studies clearly demonstrate their importance, especially in
those cases for which the production proceeds dominantly
via resonance excitations. One of the main motivations for
studying these reactions is to obtain information on the isotopic
structure of the elementary production amplitude. An evident
advantage of using light nuclei as targets is the small number
of nucleons. This allows one to minimize the influence of a
nuclear environment on the elementary process on the one
hand and to adopt an accurate microscopic description of the
nuclear states on the other hand.
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An important question related to π0η photoproduction
on nuclei concerns the η-nuclear interaction in the final
state. Although the η-nuclear scattering problem is by itself
rather many-sided, the major related questions are connected
to the one central point −ηN phenomenology in the low-
energy regime. More specifically, the matter concerns the
determination of the ηN low-energy interaction parameters,
primarily the scattering length aηN . In the absence of direct
scattering results, the final state interaction (FSI) in the η
production on nuclei remains the major source of information
on ηN dynamics. A typical method of studying the ηN system
in these reactions follows the scheme of (i) η production on
nuclei, (ii) ηA model, and (iii) ηN interaction parameters.
The central point in this sequence is the η-nuclear interaction
model. Since in general one intends to connect ηA properties
with those of ηN , the ηA model should be based on a refined
microscopic approach, wherever possible, and at the same
time, it should allow one to take systematically into account
fundamental properties of the ηA system, such as unitarity
of the scattering matrix, which is especially important at low
energies.

The few-body calculations of Refs. [15–20], utilizing as
a rule a separable ηN matrix, have already acquired the
reputation of an effective theoretical method. Since these
calculations are mostly restricted to systems with three and
four particles, by now only η production on deuterium [21–25]
and 3He [26–28] have been considered in detail. According
to the results of Refs. [20,26,28], for “reasonable” values
of ηN scattering length with Re aηN = 0.6 ± 0.2 fm and
Im aηN = 0.3 ± 0.1 fm, the ηN attraction is too weak to
generate bound states of an η meson with two- and three-body
nuclei, so that only virtual poles in the scattering matrices of
these systems appear. On the other hand, for the higher values
of ReaηN of about 0.8–1.0 fm, the η-nuclear force becomes
almost strong enough to bind the system. As a consequence,
the corresponding virtual pole lies very close to the physical
region, resulting in a strong enhancement of the η production
cross section.

The case of 4He is less clear. First, the existing data of [29]
for the total cross section of dd → η4He show no threshold
enhancement due to the final state interaction. Furthermore,
for the same reaction in a recent experiment [30] no signal
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from the decay of a hypothetical η-mesic 4He into π −p 3He
was detected. These results are rather surprising irrespective
of the existence of η4He bound states. They mean that the
s-matrix pole, which in the case of η3He seems to be close
to the threshold energy on the Riemann surface, moves far
away from this point when one turns to 4He. Even if one
takes into account a larger number of nucleons in 4He and a
substantial increase of its density, the total disappearance of a
signal from the η4He interaction in the measured spectrum is
rather unexpected.

Second, there are still no correct few-body results for
η4He due to difficulty of the corresponding calculation. Less
sophisticated theories, such as the optical model, are unable
to take correctly into account important features of the low-
energy η-nuclear interaction, for example, the importance of
virtual target excitations between successive scattering events
(see, e.g., [28]). Therefore, even the qualitative results obtained
within this approach are unreliable. A further complication
comes from the fact that it is the η4He case where binding
may appear. The value of the scattering length corresponding
to a weakly bound or virtual state is known to be very sensitive
to small variations of the potential parameters. Therefore, it
may turn out that if we apply the few-body formalism to η4He,
the result will strongly depend not only on the ηN parameters
but also on the approximations used to describe the structure
of 4He (e.g., on details of the NN forces at short distances,
inclusion of a repulsive core into the NN potential, etc.). This
may lead to a strong model dependence of the calculation, in
addition to the five-body scattering problem being technically
very difficult by itself.

Since no microscopic ηA calculations are available for
nuclei with A > 3, methods allowing a model-independent
extraction of the ηA scattering parameters directly from the
measured observables are of special importance. Several steps
have already been taken in Refs. [31–41], where information
on the η-nuclear scattering from the characteristic behavior of
the cross section in the region of small ηA relative energies
was obtained. As a rule, the underlying method is based on the
approach developed by Watson [42] and Migdal [43]. Under
certain conditions this approach makes it possible to study the
ηA interaction directly from a distribution over the relative ηA
energy. The case in point is a characteristic enhancement of the
η yield due to a strong attraction between the η meson and the
recoiling nucleus. Here again, the coherent photoproduction
of π0η seems to have some advantages over other reactions,
such as A(p, ηp)A or A(π, ηN )B, for which one has to take
into account the interaction among all three final particles.
Even the simplest case, when the composite nature of the
nucleus is ignored (e.g., if one neglects its virtual excitations),
requires a three-body calculation. This problem should be
much less important for π0η photoproduction. In this case
one can safely neglect the interaction between η and π0, since
in the energy region under discussion, Eγ � 1.5 GeV, this
system does not resonate. As a result, the whole interaction
process may be approximated by the sum of ηA and π0A
rescatterings.

Although the reactions A(γ, π0η)A offer important ad-
vantages, up to now rather little effort has been devoted to
their theoretical study. Perhaps, the major reason for this

is the difficulty of the experimental identification of these
reactions due to the smallness of the coherent cross section in
comparison to the background quasifree process A(γ, π0ηN ).
This situation should change with new measurements of π0η
photoproduction on nuclei [1]. In anticipation of the new data,
we present here theoretical results for π0η photoproduction on
s-shell nuclei, for which we have chosen as specific examples
d, 3He, and 4He.

II. MODEL INGREDIENTS

We consider the process

γ (Eγ , �k; �ελ) + A(EA, �QA) → π0(ωπ, �qπ ) + η(ωη, �qη)

+A(E′
A, �Q′

A), (1)

where the four-momenta of the participating particles are given
in parentheses. For the calculations we choose the laboratory
frame where the initial nucleus A is at rest (QA = 0). The
circular polarization vector of the photon is denoted by �ελ

with λ = ±1.
One of the features of the reaction (1) is a rather high

momentum transfer associated with a relatively large mass of
the πη system. This first results in a rather low cross section
(of several hundred nanobarns) and, moreover, in a sensitivity
of its magnitude to details of the nuclear wave function at short
internuclear distances. At the same time, this sensitivity does
not necessarily mean that a refined microscopic nuclear model
is required for the calculation. Indeed, according to our general
notion of coherent production, its basic mechanism, yielding
the main part of the amplitude, is the impulse approximation
(IA) accompanied by FSI effects. Within this model, the
unpolarized cross section is mainly governed by the nuclear
form factor. The latter is free from ambiguities of the nuclear
structure and may well be described phenomenologically
without resorting to complicated microscopic calculations.
Furthermore, the interaction of pions with nuclei in the
resonance region is mostly manifested in the attenuation of
the pion wave function inside the nucleus, which is rather
insensitive to structural details of the nuclear model. As for
the η-nuclear interaction, which is one of the main objects
of the present study, in the low-energy region it is mainly
determined by the long-range part of the η-nuclear wave
function and therefore should also weakly depend on the
model which is used to describe the nuclear subsystem. Taking
into account this observation, we use for the nuclear wave
functions the phenomenological models, which reproduce the
corresponding form factors up to the values of momentum
transfer which are characteristic for πη production in the
second and third resonance regions. For the deuteron we take
the wave function of the Bonn potential (full model) [44].
For the 3He target the separable parametrization from [45] is
employed, and for 4He we adopt the Fourier transform of the
r-space wave function from [46].

The elementary operator has the well-known form re-
flecting the general spin structure of photoproduction of
pseudoscalar mesons on spin 1/2 fermions:

t = Lλ + i �Kλ · �σ , (2)
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FIG. 1. Diagrams for the reaction γN → π 0ηN used in the
present calculation. The isobars �(1232) and S11(1535) are denoted
by � and S11, respectively.

where λ = ±1 is the photon polarization index. In the case of
the spin-zero nucleus 4He the contribution of the spin-flip part
i �Kλ · �σ vanishes exactly.

In order to calculate the amplitudes Lλ and �Kλ we used the
isobar model of Ref. [12] (first solution), which is based on
the traditional phenomenological Lagrangian approach with
Born and resonance contributions calculated on the tree level.
The matrix element is diagrammatically illustrated in Fig. 1. It
may be represented as a sum of a background amplitude and a
resonance part:

t = tB +
∑

R(Jπ ,I )

tR, (3)

where the summation is performed over the resonance states
R determined by their spin-parity Jπ and isospin I .

The amplitude tB contains the Born terms [diagrams (a)–(f)
in Fig. 1] derived as a nonrelativistic reduction of the covariant
photoproduction amplitudes keeping only terms up to the order
(p/MN ), where MN is the nucleon mass. Here we included
only the most important Born diagrams, neglecting those
containing the ηNN coupling as well as baryon resonances
in the u channel.

The resonance part [diagrams (j) and (h) in Fig. 1] includes
those baryon resonances which are localized in the mass
region up to 1.95 GeV and have an appreciable πηN decay
width. Apart from the dominant D33(1700) and D33(1940)
resonances, the model also contains the positive-parity states
P33(1600), P31(1750), F35(1905), and P33(1920). The param-
eters of the resonances were fitted to the experimental angular
distributions of π and η mesons in γp → π0ηp as described
in Ref. [12].

To take into account multiple scattering in the πN and
ηN subsystems, the �(1232) and S11(1535) isobars were
introduced. Then the final πηN state results from a two-step
decay via intermediate quasi-two-body channels η� and πS11:

tR = tR(η�) + tR(πS11), (4)

as is schematically illustrated in Fig. 1.
In Fig. 2 we show the total cross section for γp → π0ηp.

The contributions of different terms are separately presented
on the right panel. According to the calculation, in the region

FIG. 2. Total cross section for γp → π 0ηp calculated using the
isobar model of Ref. [12] (solid curve on both panels). On panel (a),
the dash-dotted and the dashed curves correspond to the spin-flip part
�K and the spin-independent part L in Eq. (2). The data are from

Ref. [2] (open triangles), [3] (open circles), [4] (filled triangles), and
[5] (filled circles). On panel (b), the dashed and dash-dotted curves
show the contribution from the resonances D33(1700) and D33(1940),
respectively. The dotted curve is the combined contribution of
the remaining resonances [P33(1600), P31(1750), F35(1905), and
P33(1920)] and the Born terms.

up to Eγ = 1.2 GeV the major fraction of the cross section is
provided by the resonance D33(1700).

On the left panel of Fig. 2 we also plotted the components
σK and σL of the cross section coming from the spin-flip and
spin-independent part of the operator (2). Neglecting all terms
apart from D33(1700) one obtains for the ratio of σK to σL

σK

σL

= 1

2
+ 1

2

(
3 − √

3a

1 + √
3a

)2

, (5)

where a is the ratio of the 3/2 to 1/2 helicity amplitudes of
the D33(1700) resonance:

a = A3/2/A1/2. (6)

In the model of Ref. [12] this parameter changes from 0.9 to
1.1 in the energy region Eγ � 1.2 GeV, where the D33(1700)
resonance dominates (see Fig. 6 in [12]). Therefore, at these
photon energies the ratio (5) remains almost constant and is
equal to 0.60 ± 0.04, so that the components σK and σL are
comparable, as may also be seen from Fig. 2.

Within the impulse approximation the nuclear transition
operator is taken as a sum of single-nucleon operators (2),

T =
A∑

i=1

ti , (7)

with A denoting the number of nucleons in the target. By taking
into account antisymmetrization of the initial and final nuclear
wave functions, the amplitude on a nucleus is proportional
to that on a single nucleon, sandwiched between the nuclear
ground states with the spin J :

TλMM ′ = A〈�qη, �qπ ; JM ′|t1(ω)|�k, λ; JM〉, (8)

where the operator t1 acts on the nucleon ‘1’. The quantity ω
in (8) denotes the invariant γN energy for a nucleon on the
mass shell. To take properly into account the Fermi motion
effect, which should be important in the resonance region, we
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use the prescription of Refs. [47,48], in which the elementary
operator is frozen at the average effective nucleon momentum
in the laboratory system,

�pi = 〈 �pi〉 = −A − 1

2A
�Q, (9)

where �Q = �k − �qπ − �qη is the momentum transferred to the
nucleus and A is the nuclear mass number. This choice is
compatible with the requirements of energy and momentum
conservation together with the on-mass-shell conditions for
the nucleon in both the initial and final states.

The unpolarized cross section of the reaction (1) is
proportional to the square of the amplitude (8) averaged over
the initial spin states:

dσ

d
πdωπd
∗
η

= 1

(2π )5

E′
Aqπq∗

η

8Eγ ωηAW

× 1

2(2J + 1)

∑
λMM ′

|TλMM ′ |2, (10)

where the total ηA energy ωηA, the η momentum �q ∗
η , and

the corresponding solid angle 
∗
η are calculated in the ηA

center-of-mass (c.m.) frame.
Of primary importance for the coherent reaction is the

relative contribution of the transitions with isospins I =
1/2 and 3/2. Since η is an isoscalar particle, the isospin
structure of the operator (2) is similar to that of single pion
photoproduction. In particular, for π0η we have

t = A(0)τ3 + 1
3A(1/2) + 2

3A(3/2), (11)

where τ3 is the third component of the nucleon isospin operator
�τ . The amplitudes A(1/2) and A(3/2) in (11) are related to the
final π0ηN state with isospins I = 1/2 and 3/2, respectively.
The isoscalar amplitude A(0) leads only to states with isospin
1/2. According to the analyses of [10–12], in the energy
region Eγ = 1–1.4 GeV the process (2) is dominated by the
excitation of �-like resonances, so that the role of the A(0) and
A(1/2) components is small in the energy region considered.
Therefore, the resulting elementary cross section is practically
the same for proton and neutron targets. For reactions on nuclei
this means that the effect of coherence is maximal and the cross
section does not depend on the isospin of the target.

To take into account the interaction between the emitted
pion and the final nucleus we used a simplified model in which
this interaction is described in terms of a classical propagation
of a pion in nuclear matter. In the resonance region the major
influence of the nucleus is the attenuation of the pion beam due
to absorption. Apart from true absorption on nucleon pairs,
the inelastically scattered pions, which in fact contribute to
the incoherent cross section, are also treated as if they are
absorbed.

An additional interaction effect, which however should be
less important in the energy region considered, comes from the
modification of the pion wave number in a nuclear medium,
which in particular results in changing the diffraction patterns
which are characteristic for coherent pion photoproduction in
the resonance region. Here we neglect the latter effect and take
into account only the absorption of the produced pions using
a simple prescription. Namely, the cross section is multiplied

R

q

r

l

FIG. 3. Illustration of the distance l(�r ) in Eq. (13).

by an energy-dependent damping factor, which was calculated
as follows. The pion wave function inside the nucleus was
taken in the form used by Fernbach, Serber, and Taylor [49]
for neutron interactions in nuclei:

φ
(−)
�qπ

(�r ) = exp (−i �qπ · �r )D(�r ), (12)

where the damping factor

D(�r ) = exp [−l(�r )/2λ] (13)

depends on the distance l(�r ), measured along the classical
trajectory of a meson between the point where it was produced
and the point where it escaped from the nucleus (see Fig. 3).

The optical properties of the nuclear environment are
determined by the mean free path λ of a pion. The latter can
be expressed (see, for example, Ref. [50]) through the depth
of the imaginary part VI of the square-well optical potential as

λ = − v

2VI

, (14)

where v is the pion velocity in the rest frame of the nucleus. The
values of VI for nuclear matter were deduced in Ref. [50] from
the pion-nucleon and pion-deuteron cross sections. In order to
take into account the relatively low density of the deuteron,
we multiplied VI in Eq. (14) by the energy-independent factor

ξ = ρd

ρ4He

≈ 2/R3
d

4/R3
4He

, (15)

where for Rd and R4He the corresponding r.m.s. radii R =√
〈r2〉 were used. The same procedure was applied to 3He.
For simplicity we take the damping factor D(�r ) out of the

matrix element at a mean value

D(�r ) = 1

A

∫
V

D(�r )ρ(r)d3r, (16)

where V is the nuclear volume. For the nuclear density ρ(r)
in (14) and (16) a simple hard-sphere form

ρ(r) = 3A

4πR3
, r < R,

(17)
= 0, r > R,

was taken.
The integral in Eq. (16) can quite easily be calculated in

a cylindrical coordinate system. Choosing the origin of this
system at the center of the nucleus and the z axis along the
vector �qπ one obtains for the distance l(�r)

l(�r ) =
√

R2 − ρ2 − z, (18)
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FIG. 4. Total cross section for coherent π 0 photoproduction on d , 3He, and 4He. The solid (dashed) curves are calculated using the impulse
approximation with (without) pion absorption. The elementary γN → π0N amplitude is taken from the MAID2007 model [52]. The data are
from [53] (triangles) and [54] (circles).

where the polar radius and the height are denoted as ρ and z,
respectively.

Using Eq. (18) in (13) and (16) one finds

D(�r ) = 3

2x

{
1 − 2

x2
[1 − (1 + x)e−x]

}
(19)

with

x = R

λ
. (20)

Then the absorption effect results in a suppression of the cross
section by a factor [D(�r )]2 � 1 (see also Ref. [51]).

To demonstrate the quality of our treatment of the π -nuclear
interaction in the final state, we show in Fig. 4 our results
for coherent single π0 photoproduction on all three nuclei in
the first resonance region. As one can see, for the reaction
on d and 4He, the method provides the required suppression
in the region of the maximum at Eγ ≈ 280 MeV. Above
Eγ ≈ 320 MeV the calculated cross section underestimates
the experimental results. However, in view of the extreme
simplicity of our model the agreement may be regarded as
quite reasonable.

In contrast to the pion case, the interaction in the η-nucleus
system, where the major role is played by the strong s-wave
attraction, is mostly important at lower relative energies.
This well-known property is also observed in other reactions
[32–36] where it leads to a pronounced peak in the distribution
over the relative η-nuclear energy E in the region of small E
values. To extract the ηA interaction parameters, one assumes
that this FSI effect is independent of the η production mech-
anism and, therefore, can be unambiguously isolated. In fact,
this assumption is justified only if the following conditions
are fulfilled [42,43]: (i) the driving reaction mechanism (π0η
photoproduction in our case) is of short-range nature, i.e., its
effective radius is essentially smaller than the characteristic
range of the ηA forces, and (ii) the attraction between the
particles is comparatively strong and is characterized by a low
relative momentum, so that it acts during a sufficiently long
time. For the reactions with more than two strongly interacting
particles in the final state a third obvious condition should
be added: (iii) other particles having high velocities quickly
escape the region in which the production mechanism works,
and thus they have little effect on the interacting pair.

Of these three conditions the first two seem to be fairly well
satisfied in our case. Indeed, the smallness of the effective
range of an interaction responsible for πη production is
ensured by a rather large momentum transfer. The strong ηA
attraction is due to a nearby pole in the corresponding s-wave
amplitudes. The third condition is fulfilled due to the small pion
mass, which results in a rather high velocity of the produced
pion, so that in the major fraction of the reaction events it is at
a distance well removed from the ηA pair. This latter aspect is
considered in the next section in more detail.

Our method of calculating the η-nucleus final state interac-
tion is very similar to that adopted for the reactions γ d → ηd
and np → ηd in Refs. [19,23] as well as for 3He(γ, η)3He in
Ref. [28]. It is based on the few-body scattering formalism
with separable representation of the interactions in the ηN
and NN subsystems. The latter were restricted to the s-wave
states only, which are well known to strongly dominate the
ηN and NN dynamics at low energies. Following Ref. [19],
the subsystems ηN and NN will be denoted by N∗ and d,
respectively. For the corresponding scattering matrices we use
the simplest rank-one separable ansatz. In detail, for the NN
interaction in 1S0 and 3S1 states we take

t
(s)
d (z, q ′, q) = g

(s)
d (q ′)τ (s)

d (z) g
(s)
d (q), (21)

where s = 0, 1 stand for the 1S0 and 3S1 NN states, respec-
tively. The quasiparticle NN propagator reads

τ
(s)
d (z) = − 1

2MN

[
1 − 1

4π2

∫ ∞

0

[
g

(s)
d (q)

]2

zMN − q2 + iε
q2dq

]−1

,

(22)

where MN is the nucleon mass. For the vertex functions we
used

g
(s)
d (q) =

√
2π

6∑
i=1

C
(s)
i

q2 + β
(s)2
i

, (23)

where the parameters C
(s)
i and β

(s)
i were fitted in Ref. [55] to

the off-shell behavior of the Paris NN potential.
In the ηN state only the S11(1535) resonance, which

provides the dominant contribution, was taken into account.
To parametrize the corresponding ηN scattering matrix we
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TABLE I. Parameters for ηd and η3He low-energy scattering obtained within the few-body approach developed in Refs. [19] and [28]. For
orientation the corresponding values of the ηN scattering length are also given.

aηN (fm), Ref. aηd (fm) r0 ηd (fm) aη3He (fm) r0 η3He (fm)

1 0.50 + i 0.33, [56] 1.232 + i 1.110 2.429 − i 1.037 1.866 + i 2.752 1.934 − i 0.532
2 0.75 + i 0.27, [57] 2.221 + i 1.153 1.870 − i 0.471 4.199 + i 4.817 1.442 − i 0.139
3 1.03 + i 0.41, [58] 3.318 + i 2.648 1.818 − i 0.456 −3.767 + i 9.362 1.631 − i 0.187

adopted an energy-dependent potential, leading to the familiar
isobar ansatz

tN∗ (z, q ′, q) = gN∗ (q ′)τN∗ (z)gN∗(q), (24)

with

τN∗ (z) =
[
z − M0 − �η(z) − �π (z) + i

2
�ππ (z)

]−1

, (25)

where M0 is the bare isobar mass and for α ∈ {η, π}

�α(z) =
∫ ∞

0

[
gα

N∗ (q)
]2

z − MN − mα − q2/2μαN + iε

q2dq

2π2
,

with μαN = mαMN

mα + MN

, (26)

are the corresponding S11(1535) self-energies related to the
ηN and πN channels. The two-pion channel was included in
a simplified manner by adding the corresponding decay width
�ππ , parametrized by

�ππ (z) = γππ

z − MN − 2mπ

mπ

, γ = 4.3 MeV. (27)

The ηN parameters were chosen in such a way that three
different values of the ηN scattering length aηN , listed in
Table I, are reproduced and at the same time provide a
reasonably good description of the reactions πN → πN and
πN → ηN in the S11 partial wave.

The separable representation of the driving two-particle
potentials, as described above, allows one to reduce the n-
body problem to a system of effective two-body equations of
Lippmann-Schwinger type. In the three-body case ηNN the

=Z dN*
=Z N*N*

= + +

= 2
d

N*

N
X N*d

X dd X N*d

X dd X N*d

FIG. 5. Diagrammatic representation of the three-body integral
equations (31) and (32).

resulting equations read

Xij ( �p ′, �p )

= Zij ( �p ′, �p ) +
3∑

k=1

∫
d3p ′′

(2π )3
Zik( �p ′, �p ′′)τkXkj ( �p ′′, �p )

(28)

for i, j = 1, 2, 3 (where unessential spin-isospin indices are
omitted) The amplitudes Xij in (28) define the transitions
between the quasi-two-body states |i, �p 〉 containing the
spectator particle i and the interacting two-particle subsystem
(jk) (N∗ or d). Denoting the nucleons as N1 and N2 we have
three different states corresponding to three possible partitions
of the ηNN system:

(1) : N1 + (ηN2),

(2) : N2 + (ηN1), (29)

(3) : η + (N1N2).

The relative momentum of particle i with respect to the center
of mass of the other two particles (jk) is �p. The driving terms
Zij (i, j = 1, 2, 3) are the matrix elements of the free three-
particle Green’s function G0:

Zij ( �p ′, �p ) = (1 − δij )〈i, �p ′|G0|j, �p 〉. (30)

As is shown in Ref. [19] the identity of nucleons allows one
to reduce the set of equations (28) to only two independent
equations, which may be presented in a schematic form as

Xdd = 2ZdN∗τN∗XN∗d , (31)

XN∗d = ZN∗d + ZN∗dτdXdd + ZN∗N∗τN∗XN∗d . (32)

Their structure is illustrated in Fig. 5. The equations are
similar to those obtained, e.g., in [59] for πNN scattering
[see expressions (3.1) and (3.2) of this reference].

In Ref. [19], where coherent η photoproduction was studied,
the incident η meson in the driving term ZN∗d was simply
replaced by the photon in order to take into account the
electromagnetic interaction in the entrance channel:

ZdN∗ → Z
(γ )
dN∗ = 〈

d, �k ∣∣G(γ )
0

∣∣N∗(γ ), �p 〉
, (33)

where G
(γ )
0 is the free γNN propagator and |N∗(γ )〉 is the

vertex function for the transition γN → N∗. Inserting Eq. (32)
into Eq. (31) and making the substitution (33), one obtains the
reaction amplitude in the form

X
(γ )
dd = V

(γ )
dd + V

(γ )
dd τdXdd + V

(γ )
dN∗τN∗XN∗d , (34)
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= 2 +

+

2

2 X N*d

X dd X dd
d

N*

FIG. 6. Illustration of the amplitude (34) for coherent η photo-
production on a deuteron used in Ref. [19].

which is illustrated in Fig. 6. The effective driving terms in (34)
are

V
(γ )
dd ≡ 2Z

(γ )
dN∗τN∗ZN∗d , (35)

V
(γ )
dN∗ ≡ 2Z

(γ )
dN∗τN∗ZN∗N∗ . (36)

Equations (31), (32), and (34) were used in Ref. [19]
to calculate η photoproduction on a deuteron. In order to
apply this formalism to the coherent photoproduction of π0η

we simply replace the driving term V
(γ )
dd in Eq. (34) by

the amplitude T IA for d(γ, π0η)d calculated in the impulse
approximation. Since in this case the final state includes three
free particles, the calculation of the integrated cross section
becomes rather time consuming. For the sake of simplicity, we
retained in the NN propagator τd only the pole contribution

τd (z) → τ 0
d (z) = N2

d

z + |Ed | , (37)

where Ed is the deuteron binding energy and Nd is the normal-
ization constant of the deuteron wave function. Furthermore,
we dropped in (34) the less essential last term containing
XN∗d which leads to additional rescattering of the produced
meson on the second nucleon. The resulting expression for the
reaction amplitude represented in Fig. 7 reads

T = T IA + T IAτ 0
d Xdd . (38)

Here the scattering amplitude Xdd is a solution of the set
of equations (31) and (32) taken between ηd configurations,
with d being the bound 3S1 NN state. Equation (38),
which is formally similar to the well-known distorted wave
impulse approximation formula, is the basic expression of
our calculation of the d(γ, π0η)d cross section. An analogous
procedure was used for the reaction 3He(γ, π0η)3He.

Following Refs. [19] and [28] we solved the few-body
integral equations for ηNN and η − 3N only for the lowest
s-wave configurations. This approach is well justified by
the strong dominance of s waves in the ηN and NN
interactions. In Table I we list the values of the ηA scattering
length and effective range, which are predicted for three
different sets of ηN parameters. As already discussed in the
Introduction, there is still no microscopic calculation for the

= 2 + 2T
d

Xdd

FIG. 7. Representation of the amplitude for d(γ, π0η)d as given
by Eq. (38). In the propagator τd in the second term on the right-hand
side only the pole contribution τ 0

d (37) was taken into account.

η4He system, primarily because of the obvious difficulty in
the corresponding five-body problem. Therefore, the η-nuclear
interaction was taken into account only for the reactions on a
deuteron and 3He, whereas for 4He only the absorption of the
produced pions was included.

III. DISCUSSION OF THE RESULTS

We would like to start our discussion with the total cross
section presented in Fig. 8. As noted above, its value is
independent of the nuclear isospin and should be mostly
determined by the spin of the target and its density. In
particular, the cross section turns out to be rather sensitive
to the details of the target wave function. For example,
if one neglects the deuteron d-wave component, the total
cross section for d(γ, π0η)d is reduced by about 30% at
Eγ = 1 GeV with respect to its value obtained with the
full deuteron wave function. Furthermore, since, as discussed
above, the contributions of the spin-flip and spin-independent
parts in π0η photoproduction are comparable, the nuclear cross
section strongly depends on the nuclear spin. The interplay
between the nuclear from factor at high momentum transfer
and the spin structure of the production matrix element leads
to a nontrivial dependence of the cross section on the choice of
the target. As we can see from Fig. 8, without FSI the deuteron
cross section turns out to be almost twice as large as that on
3He.

Since for the π -nucleus interaction we take into account
only absorption, the only influence of the πA FSI is the
attenuation of the cross section. Clearly, it should increase
with increasing number of nucleons and increasing nuclear
density. This means that among the three nuclei considered
here the largest effect should be observed for 4He, as indeed
is seen in Fig. 8. Furthermore, absorption is known to be
especially important in the region of the �(1232), where the
πA scattering becomes highly inelastic, leading for heavier
nuclei to the so-called surface production mechanism. In our
case it is responsible for a significant reduction of the total
cross section, especially above Eγ = 1 GeV.

As already noted above, an important feature of the
reaction (1) is that the time the produced pion spends in
the interaction region is short in comparison to that for the
η meson. To demonstrate this feature we present in Fig. 9
the distribution of the cross section for 3He(γ, π0η)3He over
the relative velocity in the η3He and π3He subsystems. The
velocity was calculated in the corresponding ηA and πA c.m.
frames as

vmA = λ1/2
(
ω2

mA,M2
m,M2

A

)
ω2

mA − M2
m − M2

A

(39)

for m ∈ {π, η}, where the triangle function λ is defined as

λ(x, y, z) = (x − y − z)2 − 4yz. (40)

As one can see, the maximum in the distribution over vπA is
shifted to much higher values with respect to the maximum
of dσ/dvηA. The corresponding average values of vmA are
vηA = 0.38c and vπA = 0.83c.

Using the distribution in Fig. 9 one can estimate the
characteristic time the meson m takes to propagate a scattering
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FIG. 8. Total cross section for π 0η photoproduction on the deuteron, 3He, and 4He. The solid (dashed) curves are obtained with (without)
inclusion of the interaction in the final state. For the ηA interaction parameter set 2 in Table I was used. In the case of 4He only pion absorption
was taken into account.

center of radius R as

tm = R + 1/q∗
m

vmA

+ Qm, (41)

where the wavelength 1/q∗
m takes into account the wave proper-

ties of a particle and Qm is a time delay due to attraction. Taking
vπA = 0.83 c, q∗

π = 190 MeV (corresponding to the chosen
value of vπA), R = 2 fm, and Qπ = 1/�� ≈ 1/120 MeV−1

one obtains for the pion tπ ≈ 1.62 × 10−23 s.
To calculate Qη one can use the Eisenbud-Wigner formula

[60]

Qη = 2
d

dE
δ0(E), (42)

where δ0(E) is the phase shift of the s-wave ηA scattering, for
which one can take

δ0(E) ≈ Re aηA

√
2μηAE. (43)

The relative ηA energy E is determined as

E = ωηA − Mη − MA, (44)

where MA is the mass of the nucleus. Taking Re aη3He = 4 fm
from Table I and E = 38 MeV (corresponding to the average
relative velocity vηA = 0.38c), one obtains for the time delay

FIG. 9. Distribution of the cross section for 3He(γ, π 0η)3He over
the relative velocity in the η3He (solid curve) and π 3He (dashed
curve) subsystems.

Qη = 6.67 × 10−23 s, so that the resulting value of tη (41)
turns out to be 9.34 × 10−23 s, almost six times larger than
tπ . This result supports our intuitive assumption that the pion
tends to quickly escape the interaction region and its presence
should have little effect on the ηA interaction.

To demonstrate the important role of the η-nuclear interac-
tion in our reactions, we show in Figs. 10 and 11 the distribution
over the kinetic energy of the η meson in the ηA center-of-mass
system. As expected, the spectrum rises rapidly from zero and
exhibits a peak very close to the lower limit T ∗

η = 0. On the
whole, the inclusion of the ηA FSI enhances the η yield. The
resulting total cross in Fig. 8 is visibly increased due to the ηA
attraction in the region up to Eγ = 1 GeV. At higher energies,
the pion absorption takes over, leading to the reduction of the
total cross section.

As already noted in the previous sections, the interaction of
the η meson with the nucleus was included only in the reactions

FIG. 10. (a) Kinetic energy spectrum of the η meson in the reac-
tion d(γ, π 0η)d averaged over the energy range Eγ = 0.9–1.1 GeV.
The dotted curve is calculated without the ηd interaction. The
dash-dotted, dashed, and the solid curves, including the effect of
the ηd interaction, are obtained with sets 1, 2, and 3 of the ηN

scattering parameters listed in Table I. In all cases the interaction of
the pion with the deuteron is included as described in the text [see
Eqs. (12) through (15)]. The filled squares are the preliminary data
from Ref. [1]. (b) Ratio of FSI to IA cross sections plotted against
the relative ηd energy. Notations of the curves are as on the left
panel. Empty and filled circles show the pn → ηd and pd → ηpd

cross sections from Refs. [32] and [33], respectively, divided by the
arbitrarily normalized phase space.
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FIG. 11. Same as in Fig. 10 for 3He(γ, π 0η)3He. The points on
the right panel show the pd → η3He cross section from Ref. [61]
divided by the phase space. The normalization of the data is arbitrary.

on d and 3He, whereas for 4He, where no correct microscopic
η4He model exists, only the absorption of the produced pions
was taken into account. In this respect, since the attractive
character of the ηA forces leads to a general enhancement of
the cross section, the result, shown in Fig. 8(c) by the solid
line, is expected to underestimate σtot at least at low energies.

In the region of low values of the relative ηA momenta
q∗

ηR  1, the shape of the spectrum close to the peak may be
described in a simple manner as [42,43]

dσ

dE
(E) ∼ P (E) |f (0)(E)|2, (45)

where P (E) is the reaction phase space and f (0)(E) is the
s-wave part of the ηA scattering amplitude, depending on the
energy E (44). For ηd elastic scattering f (0) is related to the
s-wave part X

(0)
dd of the matrix Xdd in Eqs. (31) and (32) as

X
(0)
dd = − 2π

μηd

f (0). (46)

Using the effective range formula

q∗
η cot δ0 = 1

a
+ r0

2
q∗2

η , (47)

one can expand the ratio P (E)/σ (E) in powers of the
momentum q∗

η as

P (E)

dσ/dE
∼ 1

|f (0)(E)|2 = q∗2
η |cot δ0 − i|2 ,=

4∑
n=0

Cnq
∗n
η .

(48)

Since the scattering length aηA has a nonzero imaginary part,
the expansion (48) contains odd powers of q∗

η . In particular, the
ratio of the first two coefficients C0 and C1 is proportional to

C1

C0
= −2 Im aηA. (49)

The information on the imaginary part of the scattering
length is of special interest in the case of the η3He interaction in
view of the existing discrepancy between the theoretical values
of aη3He and the analysis of the measurements of pd → η3He
in Refs. [34–36]. According to the latter results, Im aη3He is
almost an order of magnitude smaller than Re aη3He, being in
disagreement with the theoretical predictions of [20,22,26].
Such a strong suppression of the ηN inelasticity in a nucleus

is also in contradiction to the intuitive expectation that with
an increasing number of nucleons the inelastic effects in the
ηA interaction should become more and more important, so
that for heavier nuclei the effect of enhancement in the η yield
becomes practically invisible [62,63].

Also desirable are measurements of the spectrum in the
reaction γ 4He → π0η4He in the region of low η4He relative
energies. As already noted in the Introduction, an enhancement
effect due to the η-nuclear attraction, which is rather well
seen in the reactions γ 3He → η3He and pd → η3He, was
not observed in the reaction dd → η 4He [29,30]. It is
therefore important to prove whether also the peak in the
distribution over the relative energy η4He in the above reaction
will disappear or at least will be much less pronounced in
comparison to that observed on d and 3He.

IV. CONCLUSION

In this work we have considered several aspects of the
coherent photoproduction of π0η pairs on s-shell nuclei. As
is discussed in the Introduction, these reactions have some
clear advantages, making them preferable to corresponding
processes with hadrons as probes. Because of the relative
weakness of the electromagnetic interaction, photoinduced
reactions are known to furnish a special opportunity to study
effects of the interaction in the final state. Furthermore, the
underlying elementary process γN → π0ηN seems to be
under control, in the sense that the results of different analyses
[10–12] of the existing data agree with each other. This is in
contrast to the reactions pd → ηpd or pd → η3He, where
the driving mechanism is still not completely understood
[31,64,65]. Furthermore, due to smallness of the pion mass the
pion tends to escape the interaction region with high velocity,
and the major fraction of the production events corresponds to a
low relative velocity between η and the recoiling nucleus. This
allows one to study in a cleaner way the η-nuclear interaction in
comparison to pd → ηpd, where the pd interaction in the final
state should always strongly affect the interaction between the
η meson and the deuteron. Therefore, measurements of these
reactions may be an additional important source of information
on the ηN low-energy dynamics.

One of the innovations of the present paper is the study
of the dependence of the total cross section on the spin and
isotopic spin of the target. Since the π0η photoproduction
seems to be dominated by the D33 wave, among the s-shell
nuclei the largest cross section is predicted for 4He, whereas
for 3He it appears to be half of that for the deuteron.

We have analyzed the effects of the final state interaction
in the region of low ηA relative energies. In the simplest case
when the pole in the amplitude is close to zero energy, a
measurement of the distribution over the relative ηA energy
may be utilized to estimate the relative value of the imaginary
part of the scattering length aηA using the ratio (49) of the
first two coefficients in the polynomial ansatz (48). This
information is clearly important for our understanding of the
role of inelasticity in the ηA interaction at low energy.

It is also worth mentioning that coherent π0η photo-
production on 4He provides a unique opportunity to obtain
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information on the η 4He interaction in electromagnetic pro-
cesses on 4He. By contrast, in the reaction 4He(γ, η)4He,
where the s wave in the final state is forbidden by the
spin-selection rule, the cross section appears to be practically
insensitive to the η 4He interaction effect.
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