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Neutrino-nuclear response and photonuclear reactions
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Photonuclear reactions are shown to be used for studying neutrino (weak) nuclear responses involved in
astroneutrino nuclear interactions and double beta decays. Charged current weak responses for ground and
excited states are studied by using photonuclear reactions through isobaric analog states of those states, while
neutral current weak responses for excited states are studied by using photonuclear reactions through the excited
states. The weak interaction strengths are studied by measuring the cross sections of the photonuclear reactions,
and the spin and parity of the states are studied by measuring angular correlations of particles emitted from
the photonuclear reactions. Medium-energy polarized photons obtained from laser photons scattered off GeV
electrons are very useful. Nuclear responses studied by photonuclear reactions are used to evaluate neutrino
(weak) nuclear responses, i.e., nuclear beta and double beta matrix elements and neutrino-nuclear interactions,
and to verify theoretical calculations for them.
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I. INTRODUCTION

Fundamental properties of neutrinos and astroneutrino
nuclear interactions are studied by investigating nuclear double
beta (ββ) decays, nuclear inverse beta (β) decays, and neutral
current nuclear excitations. Here nuclear weak responses (the
square of the nuclear matrix element) are crucial to studying
neutrino properties of particle and astrophysical interest [1–3].

Neutrinoless double beta decays (0νββ) are the most
sensitive and realistic probes to study the Majorana properties
of neutrinos: their absolute mass scales and mass spectrum,
the lepton-sector CP phases, and other properties beyond the
standard model. They are discussed in review papers and
references therein [2–7]. The 0νββ transition rate via the
ν-mass process is given in terms of the effective ν mass mν as

T 0ν = G0ν(M0ν)2(mν)2, (1)

where T 0ν is the transition rate, G0ν is the phase space factor,
and M0ν is the 0νββ matrix element. Thus one needs the 0νββ
matrix element M0ν to design the optimum detector and to
extract the neutrino mass from 0νββ rate when it is observed.

The 0νββ matrix element is expressed as M0ν = ∑
k M

ββ
k ,

where M
ββ
k are the 0νββ matrix elements via the kth state in

the intermediate nucleus. Then the single β matrix elements of
Mk(β−) and Mk(β+) for the β transitions via the kth interme-
diate state can be used to help evaluate the ββ matrix element
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of M
ββ
k involved in M0ν . The 0νββ decay is associated with

medium momentum exchange of an intermediate virtual neu-
trino, and accordingly the intermediate states involved are the
ground and excited states with angular momenta of l ≈ 1–3.

Astroneutrino charged current (CC) interactions are studied
by measuring the inverse β± decays induced by the neutrinos,
and then the β matrix elements of M(β±) are needed to study
the interactions. Similarly neutral current (NC) studies require
the NC matrix element.

Accurate calculations of β and ββ matrix elements are hard
since they are sensitive to nuclear spin-isospin correlations,
nuclear medium effects, and nuclear structures, as discussed
in the review articles [1,2,7–9]. Accordingly, experimental
studies of them are of great interest [1–3,5,7].

The nuclear weak responses (matrix elements) are studied
experimentally by using neutrino or muon probes with weak
interactions, photon probes with electromagnetic (EM) inter-
actions, and nuclear probes with strong nuclear interactions
[1,3,6,7], as shown in Fig. 1.

Neutrino beams could be useful if intense neutrino beams
and multiton-scale detectors might be available. The neutrinos
from the Spallation Neutron Source (SNS) and the Japan
Proton Accelerator Research Complex (J-PARC) are of great
interest [2,10,11]. Recently μ capture reactions are shown to
be used to study β+ strengths [3,12,13].

Charge exchange reactions by using nuclear probes have
been extensively used for evaluating CC β± responses. The
high energy-resolution (3He,t) reaction at the Research Center
for Nuclear Physics (RCNP, Osaka) is very powerful for
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FIG. 1. Nuclear spin (σ ) and isospin (τ ) responses for CC weak
interactions and their studies by neutrino (ν) probes via weak
interaction, γ probes via EM interaction, and by nuclear probes via
strong nuclear interaction [1,2].

studying CC β− responses [7,14–16]. CC β+ response
studies by (t ,3He) reactions require radioactive t beams [17],
and those by (d,2He) reactions need a big spectrometer for
2He → 2p [18].

The present work aims at reporting possible photonuclear
reactions by using high quality EM photon probes for CC
β+ and NC responses. In fact, weak and EM responses have
similar spin-isospin operators, and thus the EM responses are
used to evaluate the weak ones, and vice versa, as used for
transitions via the isobaric analog state (IAS) [19–21] and also
for electron scattering and other application [22–24]. The use
of EM probes for ββ response studies is discussed in reviews
[6,10]. Unique features of EM photon probes are as follows.

(i) EM interactions involved in photonuclear reactions are
well known. The dominant lowest multipole transition
is well evaluated within the long-wave-length approxi-
mation in the present excitation region.

(ii) NC and CC β+ responses for nuclear ground and
excited states are studied by measuring photo-nuclear
excitations of them and those of the IASs, respectively.

(iii) Vector (τ isospin) and axial vector (στ spin isospin)
responses are studied by measuring electric (E) and
magnetic (M) photonuclear excitations, respectively.

(iv) Spin and parity of the state are determined by measuring
angular correlations of photonuclear reactions with
polarized photons.

(v) EM interactions are simple and photon probes are not
distorted in nuclei, while nuclear interactions involved
in nuclear probes are rather complicated and nuclear
beams are distorted by nuclear potential.

(vi) High energy-resolution intense photon beams with
large polarization are obtained from polarized laser
photons scattered off GeV electrons.

II. WEAK RESPONSES STUDIED BY PHOTO
NUCLEAR REACTIONS

Weak and EM transitions to be discussed in the present
paper are the vector and EL (E1, E2) transitions with natural
parity JP = 1−, 2+ and the axial-vector and ML (M1,M2)
transitions with unnatural parity Jπ = 1+, 2−. The weak
vector and axial-vector transition operators are expressed as
[1,22,24]

T (V L) = gV τ irLYL, L = 1, 2, (2)

T (AV L) = gAτ i[σ × rL−1YL−1]L, L = 1, 2, (3)

where gV and gA are the vector and axial-vector weak coupling
constants, and τ 3 and τ± are NC and CC isospin operators. The
EM transition operators corresponding to the V L and AV L
weak ones are expressed as [1,22,24]

T (EL) = gELrLYL, (4)

T (ML) = gS[σ × rL−1YL−1]L + gL[j × rL−1YL−1]L, (5)

gS = eh̄

2Mc
[L(2L + 1)]1/2

[
gs

2
− gl

L + 1

]
, (6)

gL = 2gl

L + 1
, (7)

where gEL, gs , and gl are the EM coupling constant (effective
charge), the spin g factor, and the orbital g factor, respectively.
In case of spin stretched ML transitions of J → J ± L, the
second term of T (ML) vanishes, and the transition operator is
given by the first term of Eq. (5) [22,24]. Then experimental
studies of EL and ML transition rates are used to evaluate the
analogous vector and axial-vector weak responses.

The weak axial-vector transitions of T (AV J ) = gAτ i[σ ×
rY1]J with Jπ = 0−, 1−, 2− are of the same order of mag-
nitude as T (V 1). However, the corresponding EM transitions
are 2–3 orders of magnitude weaker than T (E1). Then the 1−
contribution is negligible compared with the E1 transition.
There is no 0+ → 0−γ transition. Thus we discuss only
Jπ = 2−.

The EM coupling constant depends on the isospin z
component, namely on the proton or neutron. Using the isospin
operator τ 3 and τ 0 = 1, the coupling constant is expressed as

gi = gi(V )

2
τ 3 + gi(S)

2
τ 0, (8)

where gi with i = E, s, and l are the electric, the magnetic
spin, and the magnetic orbital coupling constants, and gi(V )
and gi(S) are the corresponding isovector and isoscalar
coupling constants. They are written by using the neutron
and proton coupling constants as gi(V ) = gi(n) − gi(p) and
gi(S) = gi(n) + gi(p).

The EM transition matrix element includes both the isovec-
tor and isoscalar components, and they are modified differently
by nuclear spin-isospin correlations and nuclear medium
effects. Consequently, the isovector weak matrix element is
not exactly the same as the corresponding EM matrix element.
Nevertheless, the measured EM matrix element helps evaluate
the weak matrix element and check or confirm theoretical
calculations of the weak matrix element. The IAS provides
a unique opportunity to select exclusively the isovector
component of the EM transition, which is analogous to the
β+ transition. So, we discusses mainly IAS γ transitions in
the present paper.

III. PHOTONUCLEAR REACTIONS
VIA ISOBARIC STATES

CC β+ responses are studied by photo nuclear reactions
through the IAS, as shown by the γ decays from the IAS
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FIG. 2. (Color online) Level and transition schemes of single β

and double β transitions and γ transitions via IAS. T − is the isospin
lowering operator to transfer a state to IAS [19–21]. Tz (=T ) is the
isospin z component.

[19–21]. The β and γ matrix elements are related as

〈f |gmβ |i〉 ≈ g

e
K〈f |emγ |IAS〉, (9)

where gmβ and emγ are analogous β and γ transition operators
with g and e being the weak and EM coupling constants, K =
(2T )1/2 is the normalization constant, and |IAS〉 = K−1T −|i〉
with T − being the isospin lowering operator.

The relation between the weak and EM matrix elements
for IAS transitions is based on the rotation (T −) symmetry in
the isospin space. Then one can obtain the β matrix element
for |f 〉 → |i〉 by observing the analogous γ absorption for
|f 〉 → |IAS〉. Here |f 〉 and |i〉 are the final and intermediate
states in the ββ decay, and the initial and final nuclei in the
antineutrino CC nuclear interaction. This is a useful method
used extensively for (p, γ ) reactions through the IAS on
various nuclei as discussed in [25]. The β, ββ, and analogous
γ transitions are schematically shown in Fig. 2.

In medium and heavy nuclei, the IAS is observed as an
isobaric analog resonance (IAR) in the medium-excitation
region. The photonuclear cross section via the IAR with Jπ is
expressed as

σ (γ, n) = S(2J + 1)π

k2
γ

�γ �n

(E − ER)2 + �2
t /4

, (10)

where �γ , �t , and �n are the γ capture width, the total width,
and the neutron decay width, S is the spin factor, and kγ is the
incident photon momentum.

The integrated photonuclear cross section is given by
∫

σ (γ, n)dE = S(2J + 1)2π2

k2
γ

�γ �n

�t

. (11)

.
IAR at the excitation region well above the particle

threshold energy decays by emitting mostly neutrons since
proton decays are suppressed by the Coulomb barrier. Then one
gets �t ≈ �n, where �n is the sum of the neutron decay widths
to all states. In the case of the 0+ → 1± excitation in even-even
nuclei, the �γ width is obtained from the measured integrated
cross section

∫
σ (γ, n)dE = π2k−2

γ �γ , where σ (γ, n) is the
sum of the (γ, n) cross sections for neutron decays to all final
states.

Now we discuss photonuclear cross sections for E1 and
M1 photoexcitations on even-even nuclei with Jπ = 0+.
The reduced widths of �γ (E1) and �γ (M1) are expressed,
respectively, in terms of the E1 and M1 matrix elements of
M(E1)ef m and M(M1)eh̄/(2Mc) and in terms the excitation
(photon) energy Eγ in units of MeV as [22]

�γ (E1) = 1.59 × 1015E3M(E1)2/s, (12)

�γ (M1) = 1.76 × 1013E3M(M1)2/s. (13)

The M(E1) and M(M1) for IAR are expressed as M(E1) =
M1(E1)/K and M(M1) = M1(M1)/K , where M1(E1) and
M1(M1) are the corresponding isovestor γ matrix elements.

The matrix elements for typical E1 and M1 excitations on
medium-heavy nuclei in the mass region of A = 100, T = 8,
K = 4 are M1(E1) ≈ 0.125 [24] and M1(M1) ≈ 1.15 [24].
Using these values, for example, one gets M(E1) ≈ 0.03 and
M(M1) ≈ 0.28 for the photon absorption into the IAS. The
IAR excitation energy is around E = 8 MeV in this mass
region. Then the cross sections are obtained as

∫
σ (γ, n)dE = 2.9 × 10−3 MeV fm2 (E1), (14)

∫
σ (γ, n)dE = 2.7 × 10−3 MeV fm2 (M1). (15)

Then the counting rates with a typical target of 10 g/cm2 are
Y (E1) = 1.7 × 10−6εNγ /s and Y (M1) = 1.6 × 10−6εNγ /s,
where Nγ is the number of photons per second per MeV and ε
is the detection efficiency. Thus experimental studies of these
photo nuclear reactions are quite realistic by using medium
energy photons with Nγ ≈ 108–9/(MeV s).

In heavy nuclei, IAR shows up as a sharp resonance on the
top of the E1 giant resonance (GR). Then the E1 photonuclear
reaction is given by [21]

dσ (γ, n)

d

= k

[
A2

I + A2
G + 2 Re(AIAGeiφ)

]
, (16)

where AI and AG are the IAR and GR amplitudes and the
third term is the interference term with φ being the relative
phase. It is noted that the phase of the matrix element can be
determined from the interference pattern.

The two-neutrino ββ matrix element is expressed by the
sum of the products of the single β− and β+ matrix elements
via low-lying intermediate 1+ states [5]. Similarly, the 0νββ
matrix element may be given approximately by those of the
single β− and β+ matrix elements via low-lying intermediate
states with Jπ = 0±, 1±, 2±, 3± and so on. In cases of medium
energy neutrino interactions, 0±, 1±, 2± states are involved.
The single β+ matrix elements for the 1± states are studied by
measuring photonuclear reactions via the IASs of the 1± states.

IV. ANGULAR CORRELATIONS
OF PHOTONUCLEAR REACTIONS

Nuclear states excited by medium-energy photons decay by
emitting mostly neutrons. The spin and parity of the excited
state are identified by measuring angular distributions of the
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emitted particles with respect to the photon beam and its
polarization.

Let us consider the photonuclear reaction on an even-even
nucleus by using linearly polarized photons �γ ,

�γ + N (0+) → N∗(JP ) → Nr

(
JP

r

) + n, (17)

where N , N∗, and Nr are the target nucleus in the ground
state, the excited nucleus, and the outgoing recoil nucleus,
respectively, with corresponding spin-parities of 0+, JP , and
JP

r , and n is the outgoing neutron. We calculate the azimuthal
and polar angular distributions of the outgoing neutron. We
choose the z axis along the incoming photon momentum, and
the x axis along the photon polarization.

The angular distribution is defined as

W (θ, φ) =
∑
σMr

|AS(JJrσMrθφ)|2, (18)

where AS is the amplitude for excitation of the target nucleus to
the excited state and subsequent decay to the recoil nucleus and
the neutron. The superscript S stands for natural (S = N) or
unnatural (S = U) spin-parity excitation. Mr and σ are the spin
projections of the recoil nucleus and the neutron, respectively,
and θ and φ are the polar and the azimuthal angles of the
neutron momentum, respectively. The angular distribution is
normalized as ∫

W (θ, φ) d cos θ dφ = 1. (19)

The transition amplitude is given as

AS(JJrσMrθφ) =
∑
lm

alC
S(JJr lmσMr )Ylm(θφ), (20)

where al is the partial amplitude of the neutron decay with
orbital angular momentum l, and CS is the coefficient for
the angular momentum couplings as written in terms of the
Clebsch-Gordan coefficients for the coupling of the angular
momenta involved in the reaction.

Let us consider photonuclear reactions on two typical nuclei
of 76Se and 100Mo [26]. The photo excitations discussed are
the EM transitions to the IASs of 76As and 100Tc. Thus they
are used to evaluate the analogous weak transitions to 76As
and 100Tc with the same multipole and spin-parity:

�γ + 76Se → 76Se(Jp) → 75Se
(

3
2

−) + n, (21)

�γ + 100Mo → 100Mo(Jp) → 99Mo
(

1
2

+) + n. (22)

The odd neutron of the recoil nucleus 75Se is in the orbital
p state, while that of the recoil nucleus 99Mo is in the s state.
This difference is important for the angular distribution of
the outgoing neutron. We will consider the azimuthal angular
distribution at the fixed polar angle θ = π/2 and the polar
angular distribution at the fixed azimuthal angle φ = π/2.

A. Natural parity excitations

The angular distributions for natural parity 1− excitations
are presented in Fig. 3. In case of Se, the possible orbital
configurations of the outgoing neutron from the 1− state to the
(3/2)− ground state in 75Se are s (l = 0) and d (l = 2). The first

FIG. 3. Top: Azimuthal (left) and polar (right) angular distribu-
tions (relative) of the neutron from the 1− photonuclear excitation
on 76Se with x being the fraction of the d configuration (see text).
Bottom: The angular distributions for 100Mo.

case leads to the isotropic distribution, while the second one
gives the anisotropic distribution, determined by Y2-spherical
harmonics. We introduce a variable x defined as the relative
probability of d neutron emission. It is proportional to a2

l=2. We
use x as a parameter that varies from 0 to 1.0. The distributions
with x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 are shown in Fig. 3. In
the case of Mo, only p (l = 1) neutron emission is allowed
from the 1− state to the (1/2)+ ground state in 99Mo. The
distribution is close to (but not exactly) sin2φ.

The angular distributions for natural parity 2+ excitations
are shown in Fig. 4. In the case of Se, the possible orbital
configurations of the outgoing neutron to the (3/2)− ground
state in 75Se are p and f (l = 3). Here x is the relative
probability of the f neutron. Then, the angular distribution
is defined by Y1 and Y3 spherical harmonics. In the case of the
Mo nucleus, only the d configuration is allowed, which results
in superposition of Y 2

2 harmonics.

FIG. 4. Top: Azimuthal (left) and polar (right) angular distribu-
tions (relative) of the neutron from the 2+ photonuclear excitation
on 76Se with x being the fraction of the f configuration (see text).
Bottom: The angular distributions for 100Mo.
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FIG. 5. Top: Azimuthal (left) and polar (right) angular distribu-
tions (relative) of the neutron from the 1+ photonuclear excitation
on 76Se with x being the fraction of the f configuration (see text).
Bottom: The angular distributions for 100Mo with x being the fraction
of the d configuration (see text).

B. Unnatural parity states

The angular distributions for unnatural parity 1+ excitations
are presented in Fig. 5. In the case of Se, the possible orbital
configurations of the outgoing neutron to the (3/2)− ground
state in 75Se are p and f , which result in anisotropic φ
dependence with maxima at φ = π/2 and 3π/2. In Fig. 5
the variable x denotes the relative contribution of the f orbital
neutron. The distributions for x = 0 are not quite different
from those for the natural parity 1− state. Then, measurements
of the neutron decays to other excited states also can be used
to identify the spin-parity of the state. In the case of Mo, the s
and d configurations contribute. Then one gets the anisotropic
distribution by interplay of Y 2

0 and Y 2
2 harmonics, depending

on the relative weight x of the d neutron.

FIG. 6. Top: Azimuthal (left) and polar (right) angular distribu-
tions (relative) of the neutron from the 2− photonuclear excitation
on 76Se with x being the fraction of the d configuration (see text).
Bottom: The angular distributions for 100Mo with x being the fraction
of the f configuration (see text).

Angular distributions of neutrons from an unnatural parity
2− state are shown in Fig. 6. In the case of Se, s and d orbital
configurations are involved. Here x is the relative probability of
the d neutron. The angular distributions are given by interplay
of Y 2

0 and Y 2
2 for s and d, respectively. The first one gives

an isotropic distribution. In the second case, the sum over the
Mr and spin projections results in isotropic φ dependence.
For the Mo nucleus, the p and f configurations give the
angular distribution defined by an interplay of Y 2

1 and Y 2
3

harmonics. Here x is the relative probability of the f neutron.
The sum over the neutron spin projection results in anisotropic
φ dependence.

V. REMARKS

The present paper shows by theoretical considerations
and calculations that NC and CC β+ weak responses are
studied by using photonuclear excitations. The EM cou-
pling constant given in Eq. (5) is mainly the spin (gs)
component in the case of the isovector IAS transition as
the axial-vector weak coupling constant. Then they are
renormalized similarly by spin-isospin correlations. Thus
the EM matrix element can be used to evaluate the single
β+ (weak) matrix element associated with the 0νββ matrix
element. Actually, the renormalization effects on weak and
EM transitions are in general not exactly the same, and one
needs to carefully consider the possible state dependence in
cases of EM transitions to different (non-IAS) states.

The β transition operator of the first forbidden β decays
with 
J = 1 includes three terms of T (rY1), T (α), and T (σ ×
rY1)1. Then the term T (rY1) is derived from the analogous E1
transition, and the term T (α) relative to T (rY1) is evaluated
from the Conserved Vector Current (CVC) theory. Therefore,
the spin matrix element M(σ × rY1)1 can be deduced if both
the β and γ transition rates are measured [20,21].

Experimental studies of E1 and M1 photonuclear reactions
are quite realistic, while studies of E2 excitations require
very intense photon beams. M2 excitations could hardly be
realistic because of very small cross sections. Inelastic electron
scatterings for them are interesting.

The High Intensity γ -ray Source (HIGS) is very attractive.
The intense γ rays with E = 2–70 MeV, 
E/E ≈ 1%,
and Iγ ≈ 107/(MeV s) are obtained by intracavity Compton
backscattering of Free Electron Laser (FEL) photons off
1.2 GeV electrons at the Duke Storage Ring [27]. Possible
studies of photonuclear excitations of the IAS in 76Se were
discussed [28]. The photon intensity will be increased by
two orders of magnitude in the future. Canadian Light Source
(CLS) aims at intense photons from CO2 lasers scattered off the
3 GeV electrons in the CLS ring [29]. The laser-backscattered
source at NewSUBARU provides γ rays with E =
17–40 MeV, 
E/E = 2% and Iγ ≈ 107/s [30]. These pho-
tons are promising photon probes for the present photonuclear
reactions.
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