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Pion-nucleus elastic scattering, double-charge-exchange reactions, and subthreshold resonances
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In the scattering of positive pions by nuclei the double-charge-exchange (DCX) reaction creates the possibility
of the formation of pionic atom states in the vicinity of the threshold of the reaction. These quasistationary states
can manifest themselves as resonances in the elastic scattering cross section. The strength and shape of these
resonances are strongly affected by the instability of the nucleus created in the DCX channel. It is shown that
this mechanism can explain oscillation structures in the excitation function observed in scattering of low-energy
positive pions from 12C.
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I. INTRODUCTION

Understanding the interaction of low-energy (below
50–60 MeV) pions with nuclei has always been a challenge for
the theory of pion-nucleus interactions (see, e.g., Refs. [1] and
[2]). Due to rather weak π -nucleon interaction at these energies
a pion can penetrate relatively deeply into a nucleus and
interact with several nucleons or nucleon clusters. It increases
the probability of pion absorption and the DCX reaction, as
either of these processes requires participation of at least two
nucleons. The pion isospin degree of freedom increases the
number of possible reaction channels significantly. In addition,
one cannot neglect the role of the Coulomb effects in this
energy region.

The present paper is devoted to a discussion of narrow
resonance structures in the elastic scattering of positive
pions from 12C observed in Ref. [3]. Similar resonance
structures in the production and absorption of low-energy
positive pions were found in Refs. [4–6]. In Ref. [3], the
differential cross sections were measured at six scattering
angles (37◦, 65◦, 83◦, 103◦, 118◦, and 142◦) in the energy
range of 18–44 MeV, with an increment in the incident
energy of 2 MeV. Here and throughout the present paper the
scattering angles and differential cross sections are given in the
center-of-mass reference frame. The differential cross sections
were compared to the calculations made within the framework
of the unitary scattering theory (UST) of the pion-nucleus
scattering developed in Ref. [1] (see Sec. II). Despite a good
description of the measured differential cross sections, the
experimental data presented in terms of the excitation function
(differential cross section at a given scattering angle as a
function of energy) showed oscillation structures which the
UST approach did not reproduce. These oscillations become
more pronounced at angles around 90◦.

A typical disagreement between theory and experiment for
the excitation function at 83◦ is shown in Fig. 1 by the solid line.
For completeness, the experimental data of other groups [7–11]
are presented. It should be noted that these data correspond
to slightly different scattering angles. For 13.9 MeV [7] and
34.7 MeV [10], the closest angle is 80.8◦. For 20 MeV [8],
30.3 MeV [9], and 40 MeV [11] there are two close angles:
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80.9◦ and 85.9◦. To account for variations of the differential
cross section with respect to the scattering angle, in Fig. 1
the mean values of the differential cross section measured
at these two angles are presented. One can see that the
greatest difference between the experimental data is observed
at energies around 35 MeV. In Ref. [12] the authors conducted
a comprehensive energy-dependent analysis of the elastic
scattering of positive pions from 12C, 16O, and 40Ca within the
framework of the optical model formalism developed in Refs.
[2] and [13]. For 12C, they observed a similar disagreement
between the theory and the data in Ref. [3] at angles near 90◦
and excluded those points from the analysis.

One of the possible explanations of these oscillations could
be the formation of a diproton resonance in the πNN system
proposed in [4]. However, a systematic experimental study [14]
of the π+ + d → p + p reaction in the same energy range of
18–44 MeV with an increment of 1–2 MeV did not show
any oscillations in either the total or the differential cross
sections. A narrow πNN resonance (d ′) proposed in Refs. [15]
and [16] may be seen at pion energies around 50 MeV but not
at ∼30–35 MeV. Also, this dibarion resonance does not decay
into the nucleon-nucleon channel. In Ref. [17], the explanation
of narrow resonance structures in the 12C (π+, pp)X reaction
as the manifestation of threshold cusp phenomena in pion-
nucleus reactions is proposed.

In the present paper we explore the possibility that these
oscillations [3] result from the formation of quasistationary
pionic atom states in the vicinity of the threshold of the
DCX reaction channel. The DCX 12C(π+, π−)12O reaction
creates two oppositely charged particles that can form pionic
atom states below the threshold of this reaction. If a π−
forms a bound state with 12O, it cannot escape below the
threshold owing to lack of energy. It is known that such
quasibound states can manifest themselves as resonances in
the elastic cross section. This type of subthreshold resonance
was first investigated and described systematically by Baz’
and coworkers [18,19]. Another argument in favor of this
mechanism comes from the fact that the mass excess of 12O is
32.06 MeV [20]. This brings the Q value of the DCX channel
in π+-12C scattering into the ∼30-MeV energy region. It is
noteworthy that one of the first experimental observations of
12O was obtained in the DCX reaction 12C(π+, π−)12O [21].

Resonant formation of pionic atoms in nuclear reactions
initiated by different projectiles (see, e.g., Ref. [22]) was
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FIG. 1. Excitation function at 83◦. The data from Ref. [3] (filled
squares) are presented along with the data from Refs. [7–11]. The
solid line presents the UST calculations without taking into account
the effect of subthreshold resonances.

investigated with regard to the search for deeply bound pionic
states [23,24]. The cross sections of most of these reactions
should show narrow resonance oscillations in the vicinity of
the threshold of these reactions. However, as shown in this
paper it might be very difficult to observe these structures
unless a pionic atom is formed by an unstable nucleus with
the decay width much bigger than the corresponding elastic
width.

The paper is organized as follows. In Sec. II we present
a short overview of the UST approach which is used for
the description of pion-nucleus interaction. Section III is
devoted to the theory of subthreshold resonances owing to
formation of quasibound pionic atom states. In Sec. IV, a
systematic comparison of theoretical calculations with the data
is presented. In Sec. V we discuss the main results of the paper.
In the Appendix, a brief derivation of the main formulas in
Sec. III within the framework of the R-matrix formalism is
presented.

II. THEORY

In this section we briefly summarize the UST formalism [1]
that we use in the description of pion-nucleus scattering. For
simplicity we consider the scattering of pions by nuclei with
zero spin. The pion-nucleus scattering amplitude is presented
in a standard way as

fπA = fC + fsc, (1)

where fC is the Coulomb amplitude, and fsc is the nuclear-
Coulomb amplitude,

fsc = 1

2ik

∞∑
l=0

e2iσ±
l

(
Sle

2iδ±
R,l − 1

)
, (2)

where σ±
l are the Coulomb phases and δ±

R,l the Coulomb
corrections caused by the effects of the Coulomb distortion
of the pion wave. A detailed procedure for calculating these
corrections is given in Ref. [1]. The hadronic part is presented

by the S matrix,

Sl = e2iδπA,l , (3)

where δπA,l are pure hadronic phase shifts which we calculate
within the framework of the UST approach [1].

The UST approach is based on the method of evolution
with respect to the coupling constant [25,26]. The consistency
theory along with the unitarity provides a correct separation
of the potential effects from the nonpotential (true pion
absorption) effect. The basic equations are formulated for
calculation of the pion-nucleus phase shifts:

δπA(k) = δ
pot
πA(k) + δabs

πA(k). (4)

Here, δpot is the part of the pion-nucleus phase shift that is
formed by the multiple scattering of a pion by the nuclear
nucleons, and δabs is the absorption correction. The “potential”
part is expressed in terms of the pion-nucleon phase shifts
and the nuclear ground-state characteristics such as nuclear
form factor and correlation functions. The absorption part is
expressed in terms of the absorption parameters B̃0 and C̃0,

δabs
πA(k) = A(A − 1)

1 + ε

1 + 2ε/A
ρ̂2(�q)[B̃0(k) + C̃0(k)( �κ ′ · �κ)],

(5)

where ε = ωπ (k)/2M , ωπ is the pion energy, M is the mass of a
nucleon, ρ̂2(�q) is the Fourier transform of the square of nuclear
density ρ(r) normalized to unity, �q = �k′ − �k is the momentum
transfer, and �κ and �κ ′ are the pion momenta in the π − 2N
center-of-mass system. The absorption parameters determined
from the pionic atom data are [1]

B̃0(k) = (−0.1 + i0.1) fm4,
(6)

C̃0(k) = (−2.8 + i1.0) fm6.

In its standard form the UST formalism does not take
into account the possibility of formation of subthreshold
resonances in pion-nucleus interactions.

III. DCX AND SUBTHRESHOLD RESONANCES

The opening of the DCX reaction channel,

π+ +12 C → (π−,12O)∗ → π+ +12C, (7)

creates the possibility of formation of bound pionic atom states
below the threshold of this reaction. As shown by Baz’ and
coworkers [18,19], the formation of such subthreshold bound
states is reflected by creating resonances in the elastic cross
section. In Refs. [18] and [19], the general case of elastic
scattering of two particles X(a, a)X below the threshold of the
inelastic channel X(a, b)Y when particles b and Y can form
bound states was considered. The main idea of the theoretical
description of the effect of subthreshold resonances is based on
the fact that one can neglect the energy dependence of the wave
functions of (a,X) and (b, Y ) systems arising from the strong
interaction and focus on the analysis of energy dependence of
the Coulomb wave function of the bound (b, Y ) system.

The formation of the quasibound states owing to opening
of the DCX channel modifies the partial S matrix, (3), in the
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following way (see the Appendix):

Sl = e2i(δπA,l+δres
l ), (8)

where the resonance part below the threshold is given by

δres
l = tan−1 α2 + β2(−1)l+1ζl cot πη

α1 + β1(−1)lζl cot πη
, (9)

where parameters α1,2 and β1,2 are the real and imaginary parts
of energy independent complex parameters α = α1 + iα2 and
β = β1 + iβ2 in the vicinity of the threshold energy Ethr. These
constants are expressed in terms of the logarithmic derivatives
of pion-nucleus wave functions in the strong interaction region
as shown in the Appendix. The parameter

ζl = π (2k2ηR)2l+1

(2l + 1)
2(2l + 1)
, (10)

where k2 is the pion momentum in the c.m.s. of the π+-12O
system, R = r0A

1/3 is the radius of the strong interaction
region, A is the atomic mass number, and

η = (Z + 2)e2
√

μπA

2|E − Ethr| . (11)

Here, E ≡ Tπ is the pion kinetic energy, Z + 2 is the charge
of the nucleus created owing to DCX, Z is the charge of
the nucleus in the initial elastic channel, and μπA is the pion-
nucleus reduced mass. The parameter ζl is energy independent,
as k1η = −(Z + 2)e2μπA.

The resonance energies are determined by the condition of
δres = nπ + π

2 , which gives the equation

cot πη = (−1)l
α1

ζlβ1
, (12)

where ζl is defined in (10). The solution of this equation can
be written as

Eres
nl = Ethr + Enl, Enl = − (Z + 2)2e4μπA

2n2ξ 2
nl

,

(13)

ξnl ≡ 1 + 1

nπ
tan−1 (−1)l

ζlβ1

α1
, n = 1, 2, 3, . . . .

Here, ξnl represents the strong interaction shift of pure
Coulomb energy levels,

EC
n = − (Z + 2)2e4μπA

2n2
. (14)

From Eq. (13) it follows that for a given total pion-nucleus an-
gular momentum (l) there is an infinite number of resonances
with increasing density as E → Ethr. It is easy to see that the
width of the resonance region is determined by the energy
of the first Coulomb level. For reaction (7) the energy of the
lowest pionic atom level is given by

EC
1 = −μπN (Z + 2)2e4

2
. (15)

As shown in the Appendix, in the vicinity of each resonance
energy E = Eres

nl the S matrix can be approximated by the
Breit-Wigner formula as

Sl ≈ e2iδπA,l

(
1 −

∞∑
n=1

i
e
nl

E − Eres
nl − i
e

nl/2

)
, (16)

where 
e
nl is the elastic width of each resonance. In applications

to real processes the upper limit should be replaced by some
finite number N which is determined by experimental energy
resolution.

A simple procedure for generalization of this formalism to
include the important case where one of the particles created
in the opening reaction channel is unstable was proposed in
Ref. [18]. In this case Eq. (16) is replaced by

Sl ≈ e2iδπA,l

(
1 −

N∑
n=1

i
e
nl

E − Eres
n,l − i

(

e

nl + 

)
/2

)
, (17)

where 
 represents the particle’s energy width. In the con-
sidered case this particle is the nucleus created in the DCX
reaction.

Formula (16) can be simplified if the width of the created
nucleus is much larger than the elastic widths of corresponding
subthreshold resonances. Indeed, if 
 � 
e

nl , one can neglect
the quantities 
e

nl in the denominators and present Eq. (16) in
the form

Sl ≈ e2iδπA,l

(
1 − i
e

tot,l

E − Eres
l − i
/2

)
, (18)

where


e
tot,l =

∞∑
n=1


e
nl, (19)

and Eres
l is some average value of the subthreshold resonance

energy. This formula can be rewritten as

Sl ≈ e2iδπA,l

(
1 − γl

i


E − Eres
l − i
/2

)
, (20)

where γl ≡ 
e
tot,l/ 
. The derived formula presents a single-

term Breit-Wigner approximation for the infinite series of the
subthreshold resonances contributing to the scattering process.
It is important to note that 
e

tot,l is an effective elastic width
representing the contribution from all resonances at a given
orbital momentum l.

IV. CALCULATIONS

In scattering of positive pions from 12C the DCX reaction
creates two oppositely charged particles (π−,12O) which can
form a pionic atom below the threshold of this reaction. This
reaction has a positive Q value (32.06 MeV). In addition,
a positive pion needs to overcome the nucleus Coulomb
barrier. Therefore, the threshold energy of the DCX reaction
channel will be determined by the sum of the reaction Q value
and the magnitude of the Coulomb repulsion barrier δVC ,
i.e., Ethr ≈ Q + δVC , where δVC = Ze2/R, R = r0A

1/3, and
r0 = 1.1 fm. For (π+,12C), δVC ≈ 3.43 MeV. Therefore, the
threshold energy Ethr ≈ 35.45 MeV. The resonance energies
are shifted down from the threshold energy by the amount of
the corresponding binding energy in accordance with Eq. (13).
The lowest resonance energy corresponds to the 1s state
in the (π−,12O) atom. Using Eq. (15) one can obtain that
EC

1 ≈ −0.23 MeV, and the value of the resonance energy
Eres

1s ≈ 35.26 MeV. In the calculations below, this value will be
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FIG. 2. Excitation function at 83◦. Experimental data are taken
from Ref. [3]. The dashed line represents the UST calculations
without taking into account the effect of subthreshold resonances
(γ0 = 0); the dotted line corresponds to γ0 = 0.01; the dash-dotted
line, γ0 = 0.05; the solid line, γ0 = 0.1; the dash-dot-dotted line,
γ0 = 0.5; and the short-dash-dotted line, γ0 = 1.0.

used as the average subthreshold resonance energy in Eq. (20)
as well.

The 12O nucleus is unstable. The width of the ground state
of unbound 12O is known with a large uncertainty: 
 = 0.40 ±
0.25 MeV [20]. The main decay mode is two-proton emission
to the ground state of 10C. The “elastic” strong interaction
width of the 1s state of (π−,12O) is about 10−3 MeV (see,

FIG. 3. Excitation functions at fixed scattering angles. Filled
squares are the data from [3], the lines represent UST calculations
without (γ0 = 0) and with (γ0 = 0.1) inclusion of the subthreshold
resonance effect from formation of the (π−,12 O) atom.

e.g., [27]). Because the elastic width is much smaller than
the width 12O one can use the derived one-term Breit-Wigner
approximation, (20).

The spin and parity of the 12O ground state is 0+. Therefore,
the subthreshold s resonances can be generated by the pion s
wave only. The s-wave S matrix is given by

S0 ≈ e2iδπA,0

(
1 − γ0

i


E − Eres
0 − i
/2

)
, (21)

where, in accordance with (20), γ0 = 
e
tot,0/
 is the ratio of

the total elastic width of the 1s level to the decay width of 12O,
and Eres

0 = Ethr + EC
1 .

The 2s energy level in the (π−,12O) atom is separated by
0.18 MeV, and the distance between the higher energy levels
is rapidly decreasing as ∼1/n3. Therefore, one can expect
that only several low-lying levels will make a noticeable
contribution to 
e

tot. In our calculations we consider this
quantity as a free parameter to be determined from the data.

In Fig. 2 we present calculations at 83◦ for different values
of γ0 = 
e

tot,0/
. This parameter determines the magnitude
of the effective elastic width 
e

tot,0. In our calculations 
 =
0.4 MeV. It is seen that the best description of the data
is obtained with γ0 = 0.1, which corresponds to 
e

tot,0 =
0.04 MeV. The threshold energy Eres = 35.26 MeV.

The results of calculations of the excitation function with
and without taking into account the subthreshold resonance
effect at all scattering angles measured in Ref. [3] are presented
in Fig. 3. These calculations were performed with γ0 = 0.1

FIG. 4. Total cross sections: σel, σtot, and σr = σtot − σel. Lines
represent the results of UST calculations without (γ0 = 0) and
with (γ0 = 0.1) consideration of the subthreshold resonance effect.
Experimental data are taken from Ref. [28]
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(
e
tot,0 ≈ 0.04 MeV), which was found to provide the best

description of the data at 83◦.
Figure 4 shows the effect of the S-wave subthreshold

resonance on the total cross sections. One can see that the
reaction cross section can reach the magnitude of ∼300 mb.

At each resonance energy the partial cross section reaches
its “kinematic” maximum σl,res = 4π

k2 (2l + 1). For example,
for Tπ = 35 MeV with l = 0, σ0,res = 4π

k2 ≈ 500 mb. It means
that even at low energies the reaction cross section can be
quite large, comparable to the cross pion-nucleus sections
at the �33 resonance region. There are no direct systematic
experimental data on total cross sections at the subthreshold
resonance region. The data from Ref. [28] cover the energy
region from 45 to 65 MeV and are in agreement with the UST
calculations.

V. CONCLUSION

In this paper we have presented an explanation for the
energy dependence of the excitation function in scattering
of positive pions from 12C at pion energies in the 30- to
35-MeV region which were observed in Ref. [3]. It is shown
that these oscillations can be explained by formation of
the quasistationary pionic atom states in the vicinity of the
threshold of the DCX reaction channel. The threshold energy
is determined by the reaction Q value and the positive pion’s
kinetic energy required to overcome the Coulomb barrier. In
the considered case the threshold energy is about 35 MeV.

The width of the resonance region is determined by the
magnitude of the first Coulomb level of the pionic atom, which
is about 0.23 MeV for the (π−,12 O) atom. The narrowness of
this region may explain why other experimental groups (a
detailed comparison of existing experimental data is given in
Ref. [3]) did not see these oscillations. Fortunately, in Ref. [3]
the data sets at different pion energies include the pion’s energy
at 35.4 MeV.

In the presented analysis there is one free parameter:
the elastic width of the subthreshold resonances. The best
description of the oscillations was obtained with 
e

tot,0 ≈
0.04 MeV. It is important to note that this value refers to the
integrated elastic width, which accounts for the contribution of
an infinite series of resonances at a given orbital momentum.
In Sec. II it is shown that one can approximate the sum over
all resonances by a single Breit-Wigner formula, (20), if the
particle’s decay width is much larger than the corresponding
elastic widths. In the considered reaction this condition is
satisfied, as the 12O decay width is ∼0.4 MeV.

As the pion energy approaches the subthreshold resonance
energies the reaction cross section varies significantly as shown
in Fig. 4. This means that, despite the fact that the DCX
reaction cross section is quite small by itself at low energies,
the subthreshold resonance effect amplifies the DCX role in
pion-nucleus dynamics. In addition, if the decay width of the
nucleus created owing to the DCX is much larger than the
corresponding elastic width, the final state of the quasibound
system is determined by the nuclear decay. In other words, one
can say that positive pions become effective “burners” of the
nuclei when their energy matches the energy of subthreshold

resonances caused by the formation of pionic atom states below
the threshold of the DCX reaction.
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APPENDIX: R-MATRIX FORMALISM
AND SUBTHRESHOLD RESONANCES

In this Appendix we present a brief derivation of formu-
las (8) and (9) for the S matrix using the R-matrix method
[18,19], which allows us to separate strong-interaction short-
range effects from the long-range effects caused by Coulomb
interaction. It is assumed that the forces are central and the
reaction region is confined by a sphere of radius R. A general
expression for the S matrix in terms of the corresponding R
matrix is given by

Ŝ = (ψ (+) − R̂ψ (+)′)−1(ψ (−) − R̂ψ (−)′), (A1)

where ψ (±) and ψ (±)′ are the radial scattering wave functions
and their derivatives in the region outside the reaction region
and are calculated at r = R. Below, we omit the partial wave
index l in all quantities, for simplicity.

For a two-channel reaction, one can derive the following
expression for the elastic scattering S matrix using (A1):

S11 = ψ−
1

ψ+
1

(1 − R11τ
∗
1 )(1 − R22τ2) − R2

12τ
∗
1 τ2

(1 − R11τ1)(1 − R22τ2) − R2
12τ1τ2

, (A2)

where τ1 ≡ ψ
(+)
1

′
/ψ

(+)
1 and τ2 ≡ ψ

(+)
2

′
/ψ

(+)
2 are the logarith-

mic derivatives of the wave functions calculated at r = R in
channels 1 and 2. The wave function ψ

(+)
2 ∼ Gl + iFl , where

Gl and Fl are the standard Coulomb functions. Channel 1
corresponds to the elastic scattering process; channel 2, to the
DCX reaction.

From (A2) it follows that the S matrix can be presented as
the product of two quantities,

S11 = S(1)S(2), (A3)

where

S(1) = ψ−
1

ψ+
1

(1 − R11τ
∗
1 )

(1 − R11τ1)
(A4)

and

S(2) = 1 − �∗
12τ2

1 − �12τ2
, �12 ≡ R22 − R2

12τ1

1 − R11τ1
. (A5)

In Eq. (8), S(1) ≡ exp(2iδπA), S(2) ≡ Sres = exp(2iδres).
The logarithmic derivative τ2 in (A5) can be calculated

analytically [18,19]. In the vicinity of the threshold of channel
2 one can present S(2) as

S(2) = α + βζ t

α∗ + β∗ζ t
, (A6)
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where

t =
{

i for E > Ethr,

(−1)l+1 cot(πη) for E < Ethr.
(A7)

Here, η is defined by Eq. (11), and the complex parameters α
and β are given by

α ≡ 1 − �12
∗(pl − ql), β ≡ 1 − �12

∗pl,
(A8)

pl ≡ l + 1

R
, ql = 2l + 1

l + 1

l + 1

R
.

It is important to note that for l = 0, pl − ql = 0 and α = 1.
Below the threshold, using (A7), we obtain the following

expression for Sres ≡ S(2):

Sres = α∗ + β∗(−1)l+1ζ cot(πη)

α + β(−1)l+1ζ cot(πη)
, (A9)

which represents Eq. (9) for corresponding phase shifts.
The subthreshold resonance energies are determined by

Eq. (12), and in the vicinity of the resonance energy E =
Eres

nl , the S matrix can be approximated by the Breit-Wigner
formula, (16). To derive it we start from formula (A9),
presenting the pion energy as E = Eres

nl + ε and expanding
cot(πη) in powers of ε. The first two terms of this expansion
are

cot(πη) = (−1)l
α1

β1ζ
+

(
1 + α2

1

β2
1ζ 2

)
π

√
EC

n

Enl

ε

2Enl

, (A10)

where Enl and EC
n are determined by Eqs. (13) and (14),

respectively.

Substituting (A10) into (A9) one can obtain

Sres = β

β∗
c + ε

c∗ + ε
, (A11)

where

c = (−1)l+1 α − βζω

βζν
, ω = α1

β1ζ
,

(A12)

ν = 1

2
πn(1 + ω2)ξ 3 1

EC
n

,

and the parameters ζ and ξ are defined by Eqs. (10) and (13),
respectively. Finally, this formula can be represented in the
Breit-Wigner form as

Sres = β

β∗

(
1 − i
e

E − Eres + i
e/2

)
, (A13)

where 
e = 2c2 and Eres = Ethr + Enl − c1, c1 = Rec, and
c2 = −Imc. 
e ∼ R2

12 can be interpreted as the decay width
from channel 2 back to channel 1. Using Eqs. (A5) and (A8)
it can be shown that the phase factor β

β∗ ≈ 1 and c2 << Enl

if |R12| is much less than |R11| and |R22|. This is justified in
the considered case of the DCX channel, as the DCX cross
section is less than the corresponding elastic scattering cross
section by an order of magnitude. Therefore, finally, we obtain
Eq. (16),

Sres ≈
(

1 − i
e

E − Eres + i
e/2

)
, (A14)

where Eres = Ethr + Enl .
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