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Self-consistent Green’s functions formalism with three-body interactions

Arianna Carbone,1 Andrea Cipollone,2 Carlo Barbieri,2 Arnau Rios,2 and Artur Polls1

1Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos,
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We extend the self-consistent Green’s functions formalism to take into account three-body interactions. We
analyze the perturbative expansion in terms of Feynman diagrams and define effective one- and two-body
interactions, which allows for a substantial reduction of the number of diagrams. The procedure can be taken
as a generalization of the normal ordering of the Hamiltonian to fully correlated density matrices. We give
examples up to third order in perturbation theory. To define nonperturbative approximations, we extend the
equation-of-motion method in the presence of three-body interactions. We propose schemes that can provide
nonperturbative resummation of three-body interactions. We also discuss two different extensions of the Koltun
sum rule to compute the ground state of a many-body system.
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I. INTRODUCTION

The description of quantum many-body systems, whether of
nuclear, atomic or molecular nature, is an everlasting challenge
of theoretical physics [1,2]. Even if the Hamiltonian is well
known, the formalism needed to describe such systems can
be baffling. One of the issues is that the actual inter-particle
interactions in the medium can be very different from those
in free space. For strongly correlated many-body systems,
ordinary perturbation theory must be replaced by methods
which perform an all-order summation of Feynman diagrams.
The self-consistent Green’s functions (SCGF) formalism was
precisely devised to treat the correlated behavior of such
systems [3]. The time-dependent many-body field correlation
functions, also called Green’s functions (GFs) or propagators,
contain information associated with the addition or removal
of a given number of particles from the correlated ground
state. Consequently, they can be used to obtain invaluable
microscopic information on the many-particle system. More
importantly, knowledge of the N -body GFs translates into the
ability of computing all N -body operators and hence provides
access to a wide range of observables. At the one-body level,
the nonperturbative nature of the system is taken into account
through the self-consistent solution of the Dyson equation [4].

The original many-body Green’s functions formalism dates
back to the 1960s [2,5,6]. In the past few decades, com-
putational techniques have gradually improved to the point
of allowing for fully ab initio studies that take into account
beyond-mean-field correlations. First-principles calculations
are now routinely performed in solid state [7,8], atomic and
molecular physics [9–12], and nuclear structure [13,14]. In
nuclear physics, finite nuclei have been studied using a variety
of techniques, including the SCGF approach. The Faddeev
random phase approximation (FRPA) was used to describe
closed-shell isotopes [15,16]. Medium-mass nuclei with open
shells have been tackled within the Gorkov-Green’s function
method [17]. The behavior of correlations in infinite nuclear
matter was extensively studied using ladder summations
[18–21].

Initially, the many-body Green’s functions framework was
developed with Hamiltonians containing up to two-body (2B)
interactions in mind. In the specific case of nuclear systems,
however, three-body (3B) interactions play a substantial role.
In infinite matter, three-body forces (3BFs) are long thought to
be responsible for saturation [21–27]. Ab initio calculations of
light nuclei have pointed towards the essential role played by
3B interactions, particularly in reproducing the correct ground-
and excited-state properties [28–31]. Recent breakthroughs in
a wide variety of many-body techniques also indicate that 3B
interactions play a role in medium-mass nuclei [32–35]. In
spite of all these advances, many-body theory with underlying
3B interactions has only been pushed forward in an intermittent
fashion [31,36–38].

Our aim here is to develop the formal tools needed to
include 3B interactions in nonperturbative calculations within
the SCGF formalism. Although our main motivation is nuclear
systems, the formalism can be easily applied to other many-
body systems. Such an approach is pivotal both to provide
theoretical foundations to approximations made so far and
to advance the many-body formalisms for much-needed ab
initio nuclear structure. In the present paper, we present the
extension of the SCGF formalism to include 3BFs by working
out in full the first orders of the perturbation expansion and the
self-consistent equations of motion. Our approach is mainly
practical. We want to put forward the basic rules that are needed
to extend present calculations to include 3B interactions. These
include extensions in the perturbative expansion, Feynman
diagram rules, and the equation-of-motion (EOM) method.
Moreover, we extend the Galitskii-Migdal-Koltun (GMK) sum
rule to compute the total energy of the system including such
interactions [39,40]. In principle, the approach is also able to
incorporate 3B correlations in the many-body wave function,
but we will not discuss these explicitly here [41]. We will
also not comment on the actual numerical implementation of
the approach, which can be found elsewhere in the literature
[27,35].

This study is made all the more timely in view of the
notable recent efforts in improving the description of the
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strong interaction acting between nucleons. Realistic, phase-
shift-equivalent 2B potentials have been traditionally used
both in finite and infinite matter calculations [42–44]. Using
such interactions as a starting point, however, one needs to
evaluate the associated 3B forces consistently. Traditionally,
this was done either phenomenologically [45] or through an
extension of the meson-exchange picture [22]. In the last
decade, however, a more systematic approach was devised,
based on applying effective field theory to low-energy QCD
[46,47]. A particularly appealing advantage of this approach
is that it naturally gives rise to 2B, 3B, and many-body
interactions as the order of the expansion increases. This avoids
the somewhat ad hoc adjustment of different ingredients in 2B
and 3B potentials.

Another important motivation to develop a formalism that
explicitly includes 3BFs comes from recent advances in de-
veloping low-momentum interactions [48]. These approaches
reduce the computational effort on the many-body side by tam-
ing the strong force using renormalization group techniques.
However, this results in the appearance of induced 3BFs
(and other many-body forces). A number of approximations
have been proposed to include both contributions in different
many-body calculations [25,27,31–33,35,37]. Most of these
approaches involve, at some level, a normal ordering of the
Hamiltonian to average on the third, spectator particle. We
will show that such an approach is justified within the GFs
formalism, provided that a class of interaction-irreducible
diagrams are discarded to avoid double countings. Incidentally,
the latter approach goes beyond the usual normal ordering of
perturbation theory by incorporating fully correlated density
matrices in the averaging procedure.

Induced 3BFs are not exclusive to nuclear physics, as they
arise from any truncation in the many-body model space. They
play a role in a variety of other fields of physics [49,50]. The
bare and the induced 3B interactions, however, are treated
on the same footing from a many-body perspective. Hence,
techniques that deal with 3BFs and 3B correlations within a
many-body system are needed to describe such systems. The
developments proposed here are of relevance for applications
on systems where induced many-body forces play a role.

This paper is organized as follows. In Sec. II we exploit
effective one-body (1B) and 2B potentials to group diagrams
in the self-energy in a more compact form. We benchmark
this approach by explicitly presenting the expansion of the
single-particle (SP) GF up to third order in perturbation
theory. We study, in Sec. III, the hierarchy of EOMs including
3BFs by means of the interacting vertex � functions. There,
the truncation of � is presented up to second order in the
perturbative expansion. We also show that this truncation leads
to the irreducible self-energy diagrams obtained in Sec. II. Of
relevance for practical applications, we present an improved
ladder and ring summation that includes 3BFs. Section IV is
devoted to the GMK sum rule and its use for the calculation
of the ground-state energy of the many-body system. Two
extensions of this rule are presented which account for 3BFs.
Appendix A provides a revision of Feynman diagrams and
rules with 3BFs. We pay particular attention to additional
symmetry factors due to equivalent groups of lines. The proof
for the expressions of the effective 1B and 2B interactions

at arbitrary orders in perturbation theory is presented in
Appendix B.

II. PERTURBATIVE EXPANSION OF THE
ONE-BODY GREEN’s FUNCTIONS

We work with a system of N nonrelativistic fermions
interacting by means of 2B and 3B interactions. We divide the
Hamiltonian into two parts, Ĥ = Ĥ0 + Ĥ1. Ĥ0 = T̂ + Û is an
unperturbed, one-body contribution. It is the sum of the kinetic
term and an auxiliary one-body operator Û , which defines the
reference state for the perturbative expansion |�N

0 〉, on top
of which correlations will be added.1 The second term of the
Hamiltonian, Ĥ1 = −Û + V̂ + Ŵ , includes the interactions.
V̂ and Ŵ denote, respectively, the two- and three-body
interaction operators. In a second-quantized framework, the
full Hamiltonian reads

Ĥ =
∑

α

ε0
α a†

αaα −
∑
αβ

Uαβ a†
αaβ + 1

4

∑
αγ
βδ

Vαγ,βδ a†
αa†

γ aδaβ

+ 1

36

∑
αγ ε
βδη

Wαγ ε,βδη a†
αa†

γ a†
εaηaδaβ. (1)

The Greek indices α,β,γ, . . . label a complete set of SP
states which diagonalize the unperturbed Hamiltonian Ĥ0,
with eigenvalues ε0

α . a†
α and aα are creation and annihilation

operators for a particle in state α. The matrix elements of
the 1B operator Û are given by Uαβ . Equivalently, the matrix
elements of the 2B and 3B forces are Vαγ,βδ and Wαγε,βδη. In
the following, we work with antisymmetrized matrix elements
in both the 2B and the 3B sectors.

The main ingredient of our formalism is the 1B GF, also
called SP propagator or two-point GF, which provides a
complete description of one-particle and one-hole excitations
of the many-body system. More specifically, the SP propagator
is defined as the expectation value of the time-ordered product
of an annihilation and a creation operator in the Heisenberg
picture:

ih̄ Gαβ(tα − tβ) = 〈
�N

0

∣∣T [aα(tα)a†
β(tβ)]

∣∣�N
0

〉
, (2)

where |�N
0 〉 is the interacting N -body ground state of the

system. The time ordering operator brings operators with
earlier times to the right, with the corresponding fermionic
permutation sign. For tα − tβ > 0, this results in the addition
of a particle to the state β at time tβ and its removal from state
α at time tα . Alternatively, for tβ − tα > 0, the removal of a
particle from state α occurs at time tα and its addition to state β
at time tβ . These correspond, respectively, to the propagation
of a particle or a hole excitation through the system. We can

1A typical choice in nuclear physics would be a Slater determinant
of a single-particle harmonic oscillator or a Woods-Saxon wave
function.
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also introduce the four-point and six-point GFs:

ih̄ G
4−pt
αγ,βδ(tα, tγ ; tβ, tδ)

= 〈
�N

0

∣∣T [aγ (tγ )aα(tα)a†
β(tβ)a†

δ (tδ)]
∣∣�N

0

〉
, (3)

ih̄ G
6−pt
αγ ε,βδη(tα, tγ , tε ; tβ, tδ, tη)

= 〈
�N

0

∣∣T [aε(tε)aγ (tγ )aα(tα)a†
β(tβ)a†

δ (tδ)a†
η(tη)]

∣∣�N
0

〉
. (4)

Physically, the interpretation of Eqs. (3) and (4) follows that of
the two-point GF in Eq. (2). In these cases, more combinations
of particle and hole excitations are encountered depending on
the ordering of the several time arguments. Note also that these
propagators provide access to all 2B and 3B observables. The
extension to formal expressions for higher many-body GFs is
straightforward.

In the following, we will consider propagators both in time
representation, as defined above, or in energy representation.
Note that, due to time-translation invariance, the m-point GF
depends only on m − 1 time differences or, equivalently, m − 1
independent frequencies. Hence the Fourier transform to the
energy representation is only well defined when the total
energy is conserved:

2πδ(ωα + ωγ + · · · − ωβ − ωδ − · · · )

×G
m−pt
αγ ...,βδ...(ωα, ωγ , . . . ; ωβ, ωδ, . . .)

=
∫

dtα

∫
dtγ · · ·

∫
dtβ

∫
dtδ · · · ei(ωαtα+ωγ tγ +··· )

×G
m−pt
αγ ...,βδ...(tα, tγ , . . . ; tβ, tδ, . . .) e−i(ωβ tβ+ωδtδ+··· ). (5)

For the 1B GFs, one also considers

Gαβ(ω) =
∫

dτ eiωτGαβ(τ ) = G
2−pt
αβ (ω,ω). (6)

Interactions in the many-body system can be treated by means
of a perturbative expansion. For the 1B propagator G, this
expansion reads [3,4]

Gαβ(tα − tβ) = − i

h̄

∞∑
n=0

(
− i

h̄

)n 1

n!

∫
dt1 . . .

∫
dtn

× 〈
�N

0

∣∣T [
Ĥ1(t1) · · · Ĥ1(tn)aI

α(tα)aI
β

†
(tβ)

]∣∣�N
0

〉
conn,

(7)

where |�N
0 〉 is the unperturbed many-body ground state, i.e.,

our reference N -body state. aI
α and aI

β

†
are now operators in the

interaction picture with respect to H0. The subscript “conn”
implies that only connected diagrams have to be considered
when performing the Wick contractions of the time-ordered
product.

H1 contains contributions from 1B, 2B, and 3B interac-
tions. Thus, the expansion involves terms with individual
contributions of each force, as well as combinations of these.
Feynman diagrams are essential to keep track of such a variety
of different contributions. The set of Feynman diagrammatic
rules that stems out of Eq. (7) in the presence of 3B interactions
is reviewed in detail in Appendix A. In general, these are
unchanged with respect to the 2B case. However, we provide
a few examples to illustrate the appearance of nontrivial
symmetry factors when 3B are considered. This complicates

the rules of the symmetry factors and illustrates some
of the difficulties associated with many-particle interactions.
In the following, we will work mostly with unlabeled Feynman
diagrams. We also work with antisymmetrized matrix elements
but, in contrast to Hugenholtz diagrams [51], we expand the
interaction vertices and show them with different types of lines
for clarity.

A first reorganization of the contributions generated by
Eq. (7) is obtained by considering one-particle reducible
diagrams, i.e., diagrams that can be disconnected by cutting a
single fermionic line. Reducible diagrams are generated by an
all-orders summation through Dyson’s equation [3]:

Gαβ(ω) = G
(0)
αβ(ω) +

∑
γ δ

G(0)
αγ (ω)��

γδ(ω)Gδβ(ω). (8)

Thus, in practice, one only needs to include one-particle
irreducible (1PI) contributions to the self-energy ��. The
uncorrelated SP propagator G(0) is associated with the system
governed by the H0 Hamiltonian and represents the n = 0
order in the expansion of Eq. (7). In the previous equation,
ω corresponds to the energy of the propagating particle or
hole excitation. The irreducible self-energy ��, appearing in
Eq. (8), describes the kernel of all 1PI diagrams. This operator
plays a central role in the GF formalism and can be interpreted
as the nonlocal and energy-dependent interaction that each
fermion feels due to the interaction with the medium. At
positive energies, ��(ω) is also identified with the optical
potential for scattering of a particle from the many-body
target [51–55].

A further level of simplification in the self-energy expan-
sion can be obtained if unperturbed propagators, G(0), in the
internal fermionic lines are replaced by dressed GFs, G. This
process is generically called propagator renormalization and
further restricts the set of diagrams to skeleton diagrams [3,51].
These are defined as 1PI diagrams that do not contain any
portion that can be disconnected by cutting a fermion line twice
at any two different points. These portions would correspond
to self-energy insertions, which are already re-summed into
the dressed propagator G by Eq. (8). The SCGF approach is
precisely based on diagrammatic expansions of such skeleton
diagrams with renormalized propagators.

In principle, this framework offers great advantages. First,
it is intrinsically nonperturbative and completely independent
from any choice of the reference state and auxiliary 1B
potential Û , which automatically drops out of Eq. (8). Second,
many-body correlations are expanded directly in terms of
SP excitations which are closer to the exact solution than
those associated with the unperturbed state, |�N

0 〉. Third, the
number of diagrams is vastly reduced to 1PI skeletons. Fourth,
a full SCGF calculation automatically satisfies the basic
conservation laws [3,56,57]. In practice, however, calculating
diagrams with dressed propagators is computationally more
expensive than using the plain G(0) in perturbation theory.
Moreover, self-consistency requires an iterative solution for
�� and for G via the Dyson equation [Eq. (8)]. Therefore,
the SCGF scheme is not always applied in full detail, but it is
often employed to provide important guidance in developing
working approximations to the self-energy.
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= + + 1
4

GII

FIG. 1. Diagrammatic representation of the effective 1B inter-
action of Eq. (10). This is given by the sum of the original 1B
potential (dotted line), the 2B interaction (dashed line) contracted
with a dressed SP propagator G (double line with arrow), and
the 3B interaction (long-dashed line) contracted with a dressed 2B
propagator GII . The correct symmetry factor of 1/4 in the last term
is also shown explicitly.

A. Interaction-irreducible diagrams

It is possible to further restrict the set of relevant diagrams
by exploiting the concept of effective interactions. Let us
consider an articulation vertex in a generic Feynman diagram.
A 2B, 3B or higher interaction vertex is an articulation vertex
if, when cut, it gives rise to two disconnected diagrams.2

Formally, a diagram is said to be interaction-irreducible if
it contains no articulation vertices. Equivalently, a diagram is
interaction reducible if there exists a group of fermion lines
(either interacting or not) that leaves one interaction vertex and
eventually all return to it.

When an articulation vertex is cut, one is left with a cycle of
fermion lines that all connect to the same interaction. If there
were p lines connected to this interaction vertex, this set of
closed lines would necessarily be part of a 2p-point GF.3 If this
GF is computed explicitly in the calculation, one can use it to
evaluate all these contributions straight away. This eliminates
the need for computing all the diagrams looping in and out
of the articulation vertex, at the expense of having to find the
many-body propagator. An n-body interaction vertex with p
fermion lines looping over it is an n − p effective interaction
operator. Infinite sets of interaction-reducible diagrams can be
subsummed by means of effective interactions.

The two cases of interest when 2B and 3B forces are present
in the Hamiltonian are shown in Figs. 1 and 2 that give,
respectively, the diagrammatic definition of the 1B and 2B
effective interactions. The 1B effective interaction is obtained
by adding up three contributions: the original 1B interaction;
a 1B average over the 2B interaction; and a 2B average
over the 3B force. The 1B and 2B averages are performed
using fully dressed propagators. Similarly, an effective 2B
force is obtained from the original 2B interaction plus a 1B
average over the 3B force. Note that these go beyond usual
normal-ordering “averages” in that they are performed over
fully correlated, many-body propagators. Similar definitions
would hold for higher-order forces and effective interactions
beyond the 3B level.

Hence, for a system with up to 3BFs, we define an effective
Hamiltonian,

H̃1 = Ũ + Ṽ + Ŵ , (9)

21B vertices cannot be split and therefore cannot be articulations.
3More specifically, these fermion lines contain an instantaneous

contribution of the many-body GF that enters and exits the same
interaction vertex, corresponding to a p-body reduced density matrix.

= +

FIG. 2. Diagrammatic representation of the effective 2B interac-
tion of Eq. (11). This is given by the sum of the original 2B interaction
(dashed line) and the 3B interaction (long-dashed line) contracted
with a dressed SP propagator G.

where Ũ and Ṽ represent effective interaction operators.
The diagrammatic expansion arising from Eq. (7) with the
effective Hamiltonian H̃1 is formed only of (1PI, skeleton)
interaction-irreducible diagrams to avoid any possible double
counting. Note that the 3B interaction Ŵ remains the same as
in Eq. (1) but enters only the interaction-irreducible diagrams
with respect to 3B interactions. The explicit expressions for
the 1B and 2B effective interaction operators are

Ũ =
∑
αβ

[
− Uαβ − ih̄

∑
γ δ

Vαγ,βδ Gδγ (t − t+)

+ ih̄

4

∑
γ ε
δη

Wαγ ε,βδη GII
δη,γ ε(t − t+)

]
a†

αaβ, (10)

Ṽ = 1

4

∑
αγ
βδ

[
Vαγ,βδ − ih̄

∑
εη

Wαγ ε,βδη Gηε(t − t+)

]
a†

αa†
γ aδaβ.

(11)

We have introduced a specific component of the four-point
GFs,

GII
δη,γ ε(t − t ′) = G

4−pt
δη,γ ε(t+, t ; t ′, t ′+), (12)

which involves two-particle and two-hole propagation. This
is the so-called two-particle and two-time Green’s function.
Let us also note that the contracted propagators in Eqs. (10)
and (11) correspond to the full 1B and 2B reduced density
matrices of the many-body system:

ρ1B
δγ = 〈

�N
0

∣∣a†
γ aδ

∣∣�N
0

〉 = −ih̄ Gδγ (t − t+), (13)

ρ2B
δη,γ ε = 〈

�N
0

∣∣a†
γ a†

εaηaδ

∣∣�N
0

〉 = ih̄ GII
δη,γ ε(t − t+). (14)

In a self-consistent calculation, effective interactions should
be computed iteratively at each step, using correlated 1B and
2B propagators as input.

The effective Hamiltonian of Eq. (9) not only regroups
Feynman diagrams in a more efficient way, but also defines
the effective 1B and 2B terms from higher order interactions.
Averaging the 3BF over one and two spectator particles in the
medium is expected to yield the most important contributions
to the many-body dynamics in nuclei [31,33]. We note that
Eqs. (10) and (11) are exact and can be derived rigorously
from the perturbative expansion. Details of the proof are
discussed in Appendix B. As long as interaction-irreducible
diagrams are used together with the effective Hamiltonian
H̃1, this approach provides a systematic way to incorporate
many-body forces in the calculations and to generate effective
in-medium interactions. More importantly, the formalism is
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such that symmetry factors are properly considered and no
diagram is overcounted.

This approach can be seen as a generalization of the normal
ordering of the Hamiltonian with respect to the reference state
|�N

0 〉, a procedure that is already used in nuclear physics
applications with 3BFs [31,33,48]. In both the traditional
normal ordering and our approach, the Ũ and Ṽ operators
contain contributions from higher order forces, while Ŵ
remains unchanged. The normal ordered interactions affect
only excited configurations with respect to |�N

0 〉, but not
the reference state itself. Similarly, the effective operators
discussed above only enter interaction-irreducible diagrams.
As a matter of fact, if the unperturbed 1B and 2B propagators
were used in Eqs. (10) and (11), the effective operators Ũ and
Ṽ would trivially reduce to the contracted 1B and 2B terms of
normal ordering. In the present case, however, the contraction
goes beyond normal ordering because it is performed with
respect to the exact correlated density matrices. To some
extent, one can think of the effective Hamiltonian H̃ as
being reordered with respect to the interacting many-body
ground state |�N

0 〉, rather than the noninteracting |�N
0 〉.

This effectively incorporates correlations that, in the normal
ordering procedure, must be instead calculated explicitly by
the many-body approach. Calculations indicate that such
correlated averages are important in both the saturation
mechanism of nuclei and nuclear matter [27,35].

Note that a normal ordered Hamiltonian also contains a 0B
term equal to the expectation value of the original Hamiltonian
Ĥ , with respect to |�N

0 〉. Likewise, the full contraction of Ĥ ,
according to the procedure of Appendix B, will yield the exact
ground-state energy:

EN
0 = −ih̄

∑
αβ

Tαβ Gβα(t − t+)

+ ih̄

4

∑
αγ
βδ

Vαγ,βδ GII
βδ,αγ (t − t+)

− ih̄

36

∑
αγ ε
βδη

Wαγ ε,βδη GIII
βδη,αγ ε(t − t+)

= 〈
�N

0

∣∣H ∣∣�N
0

〉
, (15)

in accordance with our analogy between the effective Hamil-
tonian, H̃ = Ĥ0 + H̃1, and the usual normal ordering.

Before we move on, let us mention a subtlety arising in the
Hartree-Fock (or lowest-order) approximation to the two-body
propagator. If one were to insert Ṽ into the second term
of the right-hand side of Eq. (10), one would introduce a
double counting of the pure 3BF Hartree-Fock component.
This is forbidden because the diagram in question would be
interaction reducible. The correct 3BF Hartree-Fock term is
actually included as part of the last term of Eq. (10) (see also
Fig. 1). Consequently, there is no Hartree-Fock term arising
from the effective interactions. Instead, this lowest-order
contribution is fully taken into account within the 1B effective
interaction.

B. Self-energy expansion up to third order

As a demonstration of the simplification introduced by
the effective interaction approach, in this subsection we will
derive all interaction-irreducible contributions to the proper
self-energy up to third order in perturbation theory. We will
discuss these contributions order by order, thus providing an
overview of how the approach can be extended to higher-order
perturbative and also to nonperturbative calculations. Among
other things, this exercise will illustrate the amount and variety
of new diagrams that need to be considered when 3BFs are
used.

For a pure 2B Hamiltonian, the only possible interaction-
reducible contribution to the self-energy is the generalized
Hartree-Fock diagram. This corresponds to the second term on
the right-hand side of Eq. (10) (see also Fig. 1). Note that this
can go beyond the usual Hartree-Fock term in that the internal
propagator is dressed. This diagram appears at first order in
any SCGF expansion and it is routinely included in most GF
calculations with 2B forces. Thus, regrouping diagrams in
terms of effective interactions, such as Eqs. (10) and (11), give
no practical advantages unless 3BFs (or higher-body forces)
are present.

If 3BFs are considered, the only first-order, interaction-
irreducible contribution is precisely given by the one-body
effective interaction depicted in Fig. 1,

�
�,(1)
αβ = Ũαβ . (16)

Because Ũ is in itself a self-energy insertion, it will not appear
in any other, higher-order skeleton diagram. Even though it
only contributes to Eq. (16), the effective 1B potential is
very important because it determines the energy-independent
part of the self-energy. It therefore represents the (static)
mean field seen by every particle, due to both 2B and
3B interactions. As already mentioned, Eq. (10) shows that
this potential incorporates three separate terms, including
the Hartree-Fock potentials due to both 2B and 3BFs and
higher-order, interaction-reducible contributions due to the
dressed G and GII propagators. Thus, even the calculation of
this lowest-order term ��,(1) requires an iterative procedure to
evaluate the internal many-body propagators self-consistently.

Note that, if one were to stop at the Hartree-Fock level,
the four-point GF would reduce to the direct and exchange
product of two 1B propagators. In that case, the last term of
Eq. (10) (or Fig. 1) would reduce to the pure 3BF Hartree-Fock
contribution with the correct 1/2 factor in front, due to the two
equivalent fermionic lines. This approximate treatment of the
2B propagator in the 1B effective interaction was employed in
most nuclear physics calculations up to date, including both
finite nuclei [32,33,35] and nuclear matter [25–27,37,58,59]
applications. Numerical implementations of averages with
fully correlated 2B propagators are underway.

At second order, there are only two interaction-irreducible
diagrams, that we show in Fig. 3. Diagram Fig. 3(a) has
the same structure as the well-known contribution due to
2BFs only, involving two-particle–one-hole (2p1h) and two-
hole–one-particle (2h1p) intermediate states. This diagram,
however, is computed with the 2B effective interaction (notice
the wiggly line) instead of the original 2B force and hence
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(a) (b)

FIG. 3. 1PI, skeleton and interaction-irreducible self-energy di-
agrams appearing at second order in the perturbative expansion of
Eq. (7), using the effective Hamiltonian of Eq. (9).

it corresponds to further interaction-reducible diagrams. By
expanding the effective 2B interaction according to Eq. (11),
the contribution of Fig. 3(a) splits into the four diagrams of
Fig. 4 (see also a similar example in Fig. 16).

The second interaction-irreducible diagram arises from
explicit 3BFs and it is given in Fig. 3(b). One may expect
this contribution to play a minor role due to phase space
arguments, as it involves 3p2h and 3h2p excitations at
higher excitation energies. Moreover, 3BFs are generally
weaker than the corresponding 2BFs (typically, 〈Ŵ 〉 ≈ 1

10 〈V̂ 〉
for nuclear interactions [22,46]). Summarizing, at second
order in standard self-consistent perturbation theory, one
would find a total of five skeleton diagrams. Of these, only
two are interaction irreducible and need to be calculated when
effective interactions are considered.

Figure 5 shows all the 17 interaction-irreducible diagrams
appearing at third order. Again, note that, expanding the
effective interaction Ṽ , would generate a much larger number
of diagrams (53 in total). Diagrams Figs. 5(a) and 5(b) are
the only third-order terms that would appear in the 2BF
case. Numerically, these two diagrams only require evaluating
Eq. (11) beforehand, but can otherwise be dealt with using
existing 2BF codes. They have already been exploited to
include 3BFs in nuclear structure studies [21,25,27,35,37].

The remaining 15 diagrams, from Figs. 5(c)–5(q), appear
when 3BFs are introduced. These third-order diagrams are
ordered in Fig. 5 in terms of increasing numbers of 3B
interactions and, within these, in terms of increasing number of
particle-hole excitations. Qualitatively, one would expect that
this should correspond to a decreasing importance of their
contributions. Diagrams Figs. 5(a)–5(c), for instance, only
involve 2p1h and 2h1p intermediate configurations, normally

(a) (b)

(c) (d)

FIG. 4. These four diagrams are contained in diagram Fig. 3(a).
They correspond to one 2B interaction-irreducible diagram (a), and
three interaction-reducible diagrams (b)–(d).

needed to describe particle addition and removal energies to
dominant quasiparticle peaks as well as total ground-state
energies.

Diagram Fig. 5(c) includes one 3B irreducible interaction
term and still needs to be investigated within the SCGF method.
Normal-ordered Hamiltonian studies [31,33] clearly suggest
that this brings in a small correction to the total energy with
respect to diagrams Figs. 5(a) and 5(b). This is in line with
the qualitative analysis of the number of Ṽ and Ŵ interactions
entering these diagrams. Diagrams Figs. 5(a)–5(c) all represent
the first-order term in an all-order summation needed to
account for configuration mixing between 2p1h or 2h1p
excitations. Nowadays, resummations of these configurations
are performed routinely for the first two diagrams in third-order
algebraic diagrammatic construction, ADC(3), and FRPA
calculations [10,11,16].

The remaining diagrams of Fig. 5 all include 3p2h and
3h2p configurations. These become necessary to reproduce
the fragmentation patterns of shakeup configurations in
particle removal and addition experiments, i.e., Dyson orbits
beyond the main quasiparticle peaks. These contributions are
computationally more demanding. Diagrams Figs. 5(d)–5(k)
all describe interaction between 2p1h (2h1p) and 3p2h
(3h2p) configurations. These are split into four contributions
arising from two effective 2BFs and four that contain two
irreducible 3B interactions. Similarly, diagrams Figs. 5(l)–5(q)
are the first contributions to the configuration mixing among
3p2h or 3h2p states.

Appendix A provides the Feynman diagram rules to
compute the contribution associated with these diagrams.
Specific expressions for some diagrams in Fig. 5 are given.
We note that the Feynman rules remain unaltered whether
one uses the original, Û and V̂ , or the effective, Ũ or Ṽ ,
interactions. Hence, symmetry factors from equivalent lines
remain unchanged.

III. EQUATION-OF-MOTION METHOD

The perturbation theory expansion outlined in the previous
section is useful to identify new contributions arising from the
inclusion of 3B interactions. However, diagrams up to third
order alone do not necessarily incorporate all the necessary
information to describe strongly correlated quantum many-
body systems. For example, the strong repulsive character
of the nuclear force at short distances requires explicit all-
order summations of ladder series. All-order summations
of 2p1h and 2h1p are also required in finite systems to
achieve accuracy for the predicted ground-state and separation
energies, as well as to preserve the correct analytic properties
of the self-energy beyond second order.

To investigate approximation schemes for all-order sum-
mations including 3BFs, we now develop the EOM method.
This will provide special insight into possible self-consistent
expansions of the irreducible self-energy, ��. For 2B forces
only, the EOM technique defines a hierarchy of equations that
link each n-body GF to the (n − 1)- and the (n + 1)-body GFs.
When extended to include 3BFs, the hierarchy also involves
the (n + 2)-body GFs. A truncation of this Martin-Schwinger
hierarchy is necessary to solve the system of equations [5] and
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

(o) (p) (q)

FIG. 5. 1PI, skeleton and interaction-irreducible self-energy diagrams appearing at third order in the perturbative expansion of Eq. (7)
using the effective Hamiltonian of Eq. (9).

can potentially give rise to physically relevant resummation
schemes. Here, we will follow the footprints of Ref. [60] and
apply truncations to obtain explicit equations for the four-point
(and six-point, in the 3BF case) vertex functions.

A. Equation of motion for G and proper self-energy

The EOM for a given propagator is found by taking the
derivative of its time arguments. The time arguments are linked
to the creation and annihilation operators in Eqs. (2)–(4) and

hence the time dependence of these operators will drive that
of the propagator [51]. The unperturbed 1B propagator can be
written as the n = 0 order term of Eq. (7),

ih̄ G
(0)
αβ(tα − tβ) = 〈

�N
0

∣∣T [
aI

α(tα)aI
β

†
(tβ)

]∣∣�N
0

〉
. (17)

Its time derivative will be given by the von Neumann equation
for the operators in the interaction picture [6]:

ih̄
∂

∂t
aI

α(t) = [
aI

α(t), Ĥ0
] = ε0

αaI
α(t). (18)
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Taking the derivative of G(0) with respect to time and using
Eq. (18), we find

{
ih̄

∂

∂tα
− ε0

α

}
G

(0)
αβ(tα − tβ) = δ(tα − tβ)δαβ. (19)

Note that the delta functions in time arise from the derivatives
of the step functions involved in the time-ordered product.

The same procedure applied to the exact 1B propagator G
requires the time derivative of the operators in the Heisenberg
picture. For the original Hamiltonian of Eq. (1), the EOM for
the annihilation operator reads

ih̄
∂

∂t
aα(t) = [aα(t), Ĥ ] = ε0

αaα(t) −
∑

δ

Uαδaδ(t)

+ 1

2

∑
ε
δμ

Vαε,δμa†
ε (t)aμ(t)aδ(t)

+ 1

12

∑
εθ

δμλ

Wαεθ,δμλa
†
ε (t)a†

θ (t)aλ(t)aμ(t)aδ(t).

(20)

This can now be used to take the derivative of the full 1B
propagator in Eq. (2):{
ih̄

∂

∂tα
− ε0

α

}
Gαβ(tα − tβ)

= δ(tα − tβ)δαβ −
∑

δ

UαδGδβ(tα − tβ)

+ 1

2

∑
ε
δμ

Vαε,δμG
4−pt
δμ,εβ(tα, tα; t+α , tβ)

+ 1

12

∑
εθ

δμλ

Wαεθ,δμλG
6−pt
δμλ,εθβ(tα, tα, tα; t++

α , t+α , tβ ). (21)

This equation links the two-point GF to both the four- and
the six-point GFs. Note that the connection with the latter is
mediated by the 3BF and hence does not appear in the pure
2BF case. Regarding the time arguments in Eq. (21), the t+α
and t++

α present in the four- and six-point GFs are necessary
to keep the correct time ordering in the creation operators
when going from Eq. (20) to Eq. (21). An analogous equation
can be obtained for the derivative of the time argument tβ .
After some manipulation, involving the Fourier transforms of
Eqs. (5) and (6), one obtains the equation of motion for the SP
propagator in frequency representation:

Gαβ (ω) = G
(0)
αβ(ω) −

∑
γ δ

G(0)
αγ (ω)UγδGδβ(ω) − 1

2

∑
γ ε
δμ

G(0)
αγ (ω)Vγε,δμ

∫
dω1

2π

∫
dω2

2π
G

4−pt
δμ,βε(ω1, ω2; ω,ω1 + ω2 − ω)

+ 1

12

∑
γ εθ
δμλ

G(0)
αε (ω)Wγεθ,δμλ

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π
G

6−pt
δμλ,γβθ (ω1, ω2, ω3; ω4, ω, ω1 + ω2 + ω3 − ω4 − ω).

(22)

Again, this involves both the four- and the six-point
GFs, which appear because of the 2B and 3B interactions,
respectively. The equation now involves n − 2 frequency
integrals of the n-point GFs. The diagrammatic representation
of this equation is given in Fig. 6.

= + + +

G4−pt G6−pt

FIG. 6. Diagrammatic representation of the EOM, Eq. (22), for
the dressed 1B propagator G. The first term, given by a single line,
defines the free 1B propagator G(0). The second term denotes the
interaction with a bare 1B potential, whereas the third and the fourth
terms describe interactions involving the intermediate propagation of
two- and three-particle configurations.

The EOMs, Eqs. (21) and (22), connect the 1B propagator
to GFs of different orders. In general, starting from an n-body
GF, the derivative of the time-ordering operator generates a
delta function between an incoming and outgoing particle,
effectively separating a line and leaving an (n − 1)-body
propagator. Conversely, the 2B part of the Hamiltonian
introduces an extra pair of creation and annihilation operators
that adds another particle and leads to an (n + 1)-body GF.
For a 3B Hamiltonian, the (n + 2)-body GF enters the EOM
because of the commutator in Eq. (20). This implies that higher
order GFs will be needed, at the same level of approximation,
in the EOM hierarchy with 3BFs.

Equation (22) gives an exact equation for the SP propagator
G that, however, requires the knowledge of both the four-point
and six-point GFs. Full equations for the latter require applying
the EOMs to these propagators as well. Before that, however,
it is possible to further simplify contributions in Eq. (22)
by splitting the n-point GFs into two terms. The first one
is relatively simple, involving the properly antisymmetrized
independent propagation of n dressed particles. The second
term will involve the interaction vertices, �4−pt and �6−pt, 1PI
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vertex functions that include all interaction effects [51]. These
can be neatly connected to the irreducible self-energy.

For the four-point GF, this separation is shown diagram-
matically in Fig. 7. The first two terms involve two dressed
fermion lines propagating independently, and their exchange
as required by the Pauli principle. The remaining part, stripped
of its external legs, can contain only 1PI diagrams which are
collected in a vertex function, �4−pt. This is associated with
interactions and, at lowest level, it would correspond to a 2BF.
As we will see in the following, however, 3B interactions also
provide contributions to �4−pt. The four-point vertex function
is defined by the following equation:

G
4−pt
αγ,βδ(ωα, ωγ ; ωβ, ωδ)

= ih̄[2πδ(ωα − ωβ)Gαβ(ωα)Gγδ(ωγ )

− 2πδ(ωγ − ωβ)Gαδ(ωα)Gγβ(ωγ )]

+ (ih̄)2
∑
θμ
νλ

Gαθ (ωα)Gγμ(ωγ )

×�
4−pt
θμ,νλ(ωα, ωγ ; ωβ, ωδ)Gνβ(ωβ)Gλδ(ωδ). (23)

Equation (23) is exact and is an implicit definition of �4−pt.
Different many-body approximations arise when approxima-
tions are performed on this vertex function [3,14].

A similar expression holds for the six-point GF. In this
case, the diagrams that involve noninteracting lines can
contain either all three dressed propagators moving indepen-
dently from each other or groups of two lines interacting
through a four-point vertex function. The remaining terms
are collected in a six-point vertex function, �6−pt, which
contains terms where all three lines are interacting. This
separation is demonstrated diagrammatically in Fig. 8. The
Pauli principle requires a complete antisymmetrization of
these diagrams. For the “free propagating” term, this implies
all 3! = 6 permutations of the three lines. The second term,
involving �4−pt, requires 32 = 9 cyclic permutations within
both incoming and outgoing legs. The six-point vertex function
is already antisymmetrized and hence no permutations are
needed.

The equation corresponding to Fig. 8 is exact and provides
an implicit definition of the �6−pt vertex function:

G
6−pt
αγ ε,βδη(ωα, ωγ , ωε ; ωβ, ωδ, ωη) = (2π )2(ih̄)2 A[{αωα},{γωγ },{εωε}][δ(ωα − ωβ) δ(ωγ − ωδ) Gαβ(ωα)Gγδ(ωγ )Gεη(ωε)]

+ 2π (ih̄)3 Pcycl.
[{αωα},{γωγ },{εωε}]P

cycl.
[{βωβ },{δωδ},{ηωη}]

[
δ(ωα − ωβ)Gαβ(ωα)

×
∑
θμ
νλ

Gγθ (ωγ )Gεμ(ωε)�4−pt
θμ,νλ(ωγ , ωε ; ωδ, ωη)Gνδ(ωδ)Gλη(ωη)

]

+ (ih̄)4
∑
θμχ
νλξ

Gαθ (ωα)Gγμ(ωγ )Gεχ (ωε)�6−pt
θμχ,νλξ (ωα, ωγ , ωε ; ωβ, ωδ, ωη)

×Gνβ(ωβ)Gλδ(ωδ)Gξη(ωη). (24)

Here, we have introduced the antisymmetrization operator A, which sums all possible permutations of pairs of indices and
frequencies, {αωα}, with their corresponding sign. Likewise, Pcycl. sums all possible cyclic permutations of the index-frequency
pairs. Again, let us stress that both �4−pt and �6−pt are formed of 1PI diagrams only because they are defined by removing all
external dressed legs from the G4−pt and G6−pt propagators. However, they are still two-particle reducible, because they include
diagrams that can be split by cutting two lines. In general, �4−pt and �6−pt are solution of all-order summations analogous to the
Bethe-Salpeter equation, in which the kernels are 2PI and 3PI vertices [see Eqs. (27)–(29) below].

Inserting Eqs. (23) and (24) into Eq. (22), and exploiting the effective 1B and 2B operators defined in Eqs. (10) and (11), one
recovers the Dyson equation [Eq. (8)]. One can therefore identify the exact expression of the irreducible self-energy �� in terms
of 1PI vertex functions:

��
γδ(ω) = Ũγ δ − (ih̄)2

2

∑
μ
νλ

∑
ξθ
ε

Ṽγμ,νλ

∫
dω1

2π

∫
dω2

2π
Gνξ (ω1)Gλθ (ω2)�4−pt

ξθ,δε(ω1, ω2; ω,ω1 + ω2 − ω)Gεμ(ω1 + ω2 − ω)

+ (ih̄)4

12

∑
μφ
λνχ

∑
θξη
εσ

Wμγφ,λνχ

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π
Gλθ (ω1)Gνξ (ω2)Gχη(ω3)

×�
6−pt
θξη,εδσ (ω1, ω2, ω3; ω4, ω, ω1 + ω2 + ω3 − ω4 − ω)Gεμ(ω4)Gσφ(ω1 + ω2 + ω3 − ω4 − ω). (25)
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G4−pt = − + Γ4

FIG. 7. Exact separation of the four-point Green’s function,
G4−pt, in terms of noninteracting lines and a vertex function, as
given in Eq. (23). The first two terms are the direct and exchange
propagation of two noninteracting and fully dressed particles. The
last term defines the four-point vertex function, �4−pt, involving the
sum of all 1PI diagrams.

The diagrammatic representation of Eq. (25) is shown
in Fig. 9. We note that, as an irreducible self-energy, this
should include all the connected, 1PI diagrams. These can
be regrouped in terms of skeleton and interaction-irreducible
contributions, as long as �4−pt and �6−pt are expressed that
way. Note that effective interactions are used here. The
interaction-reducible components of Ũ , Ṽ , and W are actually
generated by contributions involving partially noninteracting
propagators contributions inside G4−pt and G6−pt. The first two
terms in both Eqs. (23) and (24) only contribute to generate
effective interactions. Note, however, that the 2B effective
interaction does receive contributions from both �4−pt and
�6−pt in the self-consistent procedure.

The first term entering Eq. (25) is the energy-independent
contribution to the irreducible self-energy, already found in
Eq. (16). This includes the subtraction of the auxiliary field
Û , as well as the 1B interaction-irreducible contributions
due to the 2B and 3BFs. Once again, we note that the
definition of this term, shown in Fig. 1, involves fully correlated
density matrices. Consequently, even though this is a static
contribution, it goes beyond the Hartree-Fock approximation.
The dispersive part of the self-energy is described by the
second and third terms on the right-hand side of Eq. (25). These

G6−pt = + +

6

Γ4 Γ6

3

3

FIG. 8. Exact separation of the six-point Green’s function, G6−pt,
in terms of noninteracting dressed fermion lines and vertex functions,
as given in Eq. (24). The first two terms gather noninteracting
dressed lines and subgroups of interacting particles that are fully
connected to each other. Round brackets with numbers above (below)
these diagrams indicate the numbers of permutations of outgoing
(incoming) legs needed to generate all possible diagrams. The last
term defines the six-point 1PI vertex function �6−pt.

account for all higher-order contributions and incorporate
correlations on a 2B and 3B level associated with the vertex
functions �4−pt and �6−pt, respectively. In Sec. III C below, we
will expand these vertices up to second order and show that
Eq. (25) actually generates all diagrams derived in Sec. II B.

B. Equation of motion for G4−pt and �4−pt

We now apply the EOM method to the four-point GF. This
will provide insight into approximation schemes that involve
correlations at or beyond the 2B level. Let us stress that our
final aim is to obtain generic nonperturbative approximation
schemes in the many-body sector. Taking the time derivative of
the first argument in Eq. (3) and following the same procedure
as in Sec. III A, we find

G
4−pt
αγ,βδ(ωα, ωγ ; ωβ, ωδ) = ih̄ [2πδ(ωα − ωβ)G(0)

αβ(ωα)Gγδ(ωγ ) − 2πδ(ωγ − ωβ)G(0)
αδ (ωα)Gγβ(ωγ )]

+
∑
μλ

G(0)
αμ(ωα)UμλG

4−pt
λγ,βδ(ωα, ωγ ; ωβ, ωδ)

− 1

2

∑
με
λθ

G(0)
αμ(ωα)Vμε,λθ

∫
dω1

2π

∫
dω2

2π
G

6−pt
λθγ,βεδ(ω1, ω2, ωγ ; ωβ, ω1 + ω2 − ωα, ωδ)

+ 1

12

∑
μεχ
λθη

G(0)
αμ(ωα)Wμεχ,λθη

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π

×G
8−pt
λθηγ,βεχδ(ω1, ω2, ω3, ωγ ; ωβ, ω4, ω1 + ω2 + ω3 − ωα − ω4, ωδ), (26)

which is analogous to Eq. (22) for the SP propagator. As expected, the EOM connects the two-body (four-point) GFs to other
propagators. The 1B propagator term just provides the noninteracting dynamics, with the proper antisymmetrization. The
interactions bring in admixtures with the four-point GFs itself, via the one-body potential, but also with the six- and eight-point
GFs, via the the 2B and the 3B interactions, respectively. Similarly to what we observed in Eq. (22), the dynamics involve n − 4
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= + +

Γ6−pt

Σ∗

Γ4−pt

FIG. 9. Diagrammatic representation of the irreducible self-
energy �� by means of effective 1B and 2B potentials and 1PI
vertex functions, as given in Eq. (25). The first term is the energy-
independent part of �� and contains all diagrams depicted in Fig. 1.
The second and third terms are dynamical terms consisting of excited
configurations generated through 2B and 3BFs. This is an exact
equation for Hamiltonians including 3BFs and it is not derived from
perturbation theory.

frequency integrals of the n-point GFs. The diagrammatic
representation of this equation is given in Fig. 10.

To proceed further, we follow the steps of the previous
section and of Ref. [60] and split the eight-point GF into
free dressed propagators and 1PI vertex functions. This
decomposition is shown in Fig. 11. In addition to the already-
defined vertex functions, one needs 1PI objects with four
incoming and outgoing indices. To this end, we introduce
the eight-point vertex �8−pt in the last term. Note that due
care has to be taken of all antisymmetrization possibilities
when groups of fermion lines that are not connected by �8−pt

are considered. The first term, for instance, involves four
noninteracting but dressed fermion lines, and there are 4! = 24
possible combinations. There are ( 4

2 )( 4
2 ) 1

2 = 72 equivalent

terms involving two noninteracting lines and a single �4−pt, as
in the second term of Fig. 11. The double �4−pt contribution
(third term) can be obtained in 6 × 3 = 18 equivalent ways.

G4−pt = − +

G4−pt

+ +

G6−pt G8−pt

FIG. 10. Diagrammatic representation of the EOM for the four-
point propagator, G4−pt, given in Eq. (26). The last term, involving
an eight-point GF, arises due to the presence of 3B interactions.

G8−pt = +

24

Γ4

6

+ +Γ4

3

+Γ6

4

Γ8Γ4

12

6 4

FIG. 11. Exact separation of the eight-point Green’s function,
G8−pt, in terms of noninteracting lines and vertex functions. The
first four terms gather noninteracting dressed lines and subgroups of
interacting particles that are fully connected to each other. Round
brackets with numbers above (below) these diagrams indicate the
numbers of permutations of outgoing (incoming) legs needed to
generate all possible diagrams. The last term defines the eight-point
1PI vertex function �8−pt.

With this decomposition at hand, one can now proceed
and find an equation for the four-point vertex function, �4−pt.
Inserting the exact decompositions of the four-, six- and eight-
point GFs, given, respectively, by Figs. 7, 8, and 11, into the
EOM [Eq. (26)], one obtains an equation with �4−pt on both
sides. The diagrammatic representation of this self-consistent
equation is shown in Fig. 12.

A few comments are in order at this point. The left-hand side
of Eq. (26) in principle contains two dressed and noninteracting
propagators, as shown in the first two terms of Fig. 7. In
the right-hand side, however, one of the 1B propagators is
not dressed. When expanding the GFs in Eq. (26) in terms
of the �2n−pt vertex functions, the remaining contributions
to the Dyson equation arise automatically (Fig. 6). The
free unperturbed line, therefore, becomes dressed. As a
consequence, the pair of dressed noninteracting propagators
cancel out exactly on both sides of Eq. (26). This dressing
procedure of the G(0) propagator happens only partially in
the last three terms of the equation and was disregarded in
our derivation. In this sense, Fig. 12 should be taken as an
approximation to the exact EOM for G4−pt.

Equation (26) links 1B, 2B, 3B, and 4B propagators. Cor-
respondingly, Fig. 12 involves higher-order vertex functions,
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=Γ4−pt + +

Γ4−pt Γ4−pt

α γ

β δ

γ

β δ

α γ

β δ

α

γβ

δ

α

(a)

(b)

(c)

+++

Γ4−pt

++Γ4−pt

Γ6−pt Γ6−pt Γ6−pt

α γ

β

δ

α

γ

β δ

α

γ

β δ

α γ

β δ

α

γβ

δ

γ(d)

(e)
(f)

(g)

(h)

+
Γ4−pt Γ4−pt

α

γ

β δ

(i)

+

Γ4−pt

Γ4−pt

α

β δ
(j)

+
Γ8−pt

α

γ

β δ
(k)

ex.

ex. ex.

ex.

FIG. 12. Self-consistent expression for the �4−pt vertex function derived from the EOM for G4−pt. The round brackets underneath some
of the diagrams indicate that the term obtained by exchanging the {βωβ} and {δωδ} arguments must also be included. Diagrams (a), (b), (c),
and (f) are the only ones present for 2B Hamiltonians, although (f) also contains some intrinsic 3BF contributions such as the {αωα} ↔ {γωγ }
exchange of (e). All other diagrams arise from the inclusion of 3B interactions. Diagram (b) is responsible for generating the ladder summation,
the direct part of (c) generates the series of antisymmetrized rings, and the three sets together [(b), (c), and the exchange of (c)] would give rise
to a Parquet-type resummation.

such as �6−pt and �8−pt, which are in principle coupled,
through their own EOMs, to more complex GFs. The hierarchy
of these equations has to be necessarily truncated. In Ref. [60],
truncation schemes were explored by neglecting the �6−pt

vertex function at the level of Fig. 12 (�8−pt did not appear
in the 2BF-only case). This level of truncation is already
sufficient to retain physically relevant subsets of diagrams,
such as ladders and rings. Let us note, in particular, that the
summation of these infinite series leads to nonperturbative
many-body schemes. For completeness, we show in Fig. 12
all contributions coming also from the �6−pt and �8−pt vertices,
many of them arising from 3BFs.

We have ordered the diagrams in Fig. 12 in terms of
increasing contributions from 3BFs and in the order of
perturbation theory at which they start contributing to �4−pt.
Intuitively, we expect that this should order them in decreasing
importance. Diagrams Figs. 12(a)–12(c) and 12(f) are those
that are also present in the 2BF-only case. Diagram Fig. 12(f),
however, is of a mixed nature: It can contribute only at

third order with effective 2BFs, but does contain interaction-
irreducible 3BF contributions at second order that are similar
to diagrams Figs. 12(d) and 12(e). Diagrams Figs. 12(d)–12(h)
all contribute to �4−pt at second order, although the first three
require a combination of a Ṽ and a W term. The remaining
diagrams in this group, Figs. 12(g) and 12(h), require two 3B
interactions at second order and are expected to be subleading.
Note that Fig. 12(d) is antisymmetric in α and γ , but it must
also be antisymmetrized with respect to β and δ. Its conjugate
contribution, Fig. 12(e), should not be further antisymmetrized
in α and γ , because such exchange term is already included
in Fig. 12(f). All the remaining terms, Figs. 12(i)–12(k), only
contribute from the third order on.

The simplest truncation schemes to �4−pt come from
considering the first three terms of Fig. 12, which involve
effective 2BFs only. In the pure 2B case, these have already
been discussed in the literature [60]. Retaining diagrams
Figs. 12(a) and 12(b) leads to the ladder resummation used
in recent studies of infinite nucleonic matter [21,27]:

�
4ladd
αγ,βδ(ωα, ωγ ; ωβ, ωα + ωγ − ωβ)

= Ṽαγ,βδ + ih̄

2

∫
dω1

2π

∑
εμθλ

Ṽαγ,εμGεθ (ω1)Gμλ(ωα + ωγ − ω1)�4ladd
θλ,βδ(ω1, ωα + ωγ − ω1; ωβ, ωα + ωγ − ωβ), (27)
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where we have explicitly used the fact that �2n−pt is only defined when incoming and outgoing energies are conserved.
Likewise, diagrams Fig. 12(a) and the direct contribution of Fig. 12(c) generate a series of ring diagrams which correspond to
the antisymmetrized version of the random phase approximation (RPA):

�
4ring

αγ,βδ(ωα, ωγ ; ωβ, ωα + ωγ − ωβ)

= Ṽαγ,βδ − ih̄

∫
dω1

2π

∑
εμθλ

Ṽαε,βμGμλ(ω1)Gθε(ω1 − ωα + ωβ)�
4ring

λγ,θδ(ω1, ωγ ; ω1 − ωα + ωβ, ωα + ωγ − ωβ). (28)

Adding up the first three contributions together, Figs. 12(a)–12(c), and including the exchange, will generate a Parquet-type of
resummation, with ladders and rings embedded into each other:

�
4Parquet

αγ,βδ (ωα, ωγ ; ωβ, ωα + ωγ − ωβ)

= Ṽαγ,βδ + ih̄

∫
dω1

2π

∑
εμθλ

[
1

2
Ṽαγ,εμGεθ (ω1)Gμλ(ωα + ωγ − ω1)�

4Parquet

θλ,βδ (ω1, ωα + ωγ − ω1; ωβ, ωα + ωγ − ωβ)

− Ṽαε,βμGμλ(ω1)Gθε(ω1 − ωα + ωβ)�
4Parquet

λγ,θδ (ω1, ωγ ; ω1 − ωα + ωβ, ωα + ωγ − ωβ)

+ Ṽαε,δμGμλ(ω1)Gθε(ω1 + ωγ − ωβ)�
4Parquet

λγ,θβ (ω1, ωγ ; ω1 + ωγ − ωβ, ωβ)

]
. (29)

Equations (27) and (28) can be solved in a more or less simple fashion because the corresponding vertex functions effectively
depend on only one frequency (� = ωα + ωγ and � = ωα − ωβ , respectively). Hence these two resummation schemes have
been traditionally used to study extended systems [7,8,14]. The simultaneous resummation of both rings and ladders within the
self-energy is possible for finite systems, and it is routinely used in both quantum chemistry and nuclear physics [11,35,61,62].
The Parquet summation, as shown in Eq. (29), does require all three independent frequencies and it is difficult to implement
numerically. Specific approximations to rewrite these in terms of two-time vertex functions have been recently attempted [63],
but further developments are still required.

The next approximation to �4−pt would involve diagrams Figs. 12(d) and 12(e), and the exchange part included in Fig. 12(f).
All these should be added together to preserve the antisymmetry and conjugate properties of the vertex function. The resulting
contributions still depend on all three frequencies and cannot be simply embedded in all-order summations such as the ladder,
Eq. (27), or the ring, Eq. (28), approximations. However, these diagrams could be used to obtain corrections, at first order in the
interaction-irreducible Ŵ , to the previously calculated four-point vertices. The explicit expression for these terms is

��
4d+e+e′
αγ,βδ (ωα, ωγ ; ωβ, ωα + ωγ − ωβ)

= (ih̄)2

2

∫
dω1

2π

∫
dω2

2π

∑
εμξ
θλν

[−Wανγ,εμδ Gεθ (ω1)Gμλ(ω2) �θλ,βξ (ω1, ω2; ωβ, ω1 + ω2 − ωβ) Gξν(ω1 + ω2 − ωβ)

+ Wανγ,εμβ Gεθ (ω1)Gμλ(ω2) �θλ,δξ (ω1, ω2; ωα + ωγ − ωβ, ω1 + ω2 − ωα − ωγ + ωβ) Gξν(ω1 + ω2 − ωα − ωγ + ωβ)

− �γν,εμ(ωγ , ω1 + ω2 − ωγ ; ω1, ω2) Gεθ (ω1)Gμλ(ω2) Wαθλ,βδξ Gξν(ω1 + ω2 − ωγ )

+�αν,εμ(ωα, ω1 + ω2 − ωα; ω1, ω2) Gεθ (ω1)Gμλ(ω2) Wγθλ,βδξ Gξν(ω1 + ω2 − ωα)]. (30)

Equation (30) has some very attractive features. First, it
should provide the dominant contribution beyond those as-
sociated with the effective 2B interaction Ṽ . Perhaps more
importantly, this contribution can be easily calculated in
terms of one of the two-time vertex functions, �4ladd and
�4ring . This could then be inserted in Eq. (23) to generate
corrections of expectation values of 2B operators stemming
from purely irreducible 3B contributions. A similar correction
for the irreducible self-energy is also discussed in the next
section.

Once a truncation scheme is chosen at the level of the
vertex functions, one can immediately derive a diagrammatic
approximation for the self-energy [3]. Conserving approxima-
tions can plausibly be derived from some of these truncation
schemes [56]. A general derivation of � derivability with

3BF should be possible, but goes beyond the scope of
this work.

C. Contributions to the irreducible self-energy

In this subsection, we demonstrate the correspondence
between the techniques derived in Sec. II and the EOM
method. In particular, we want to show how the perturbative
expansion of Eq. (7) leads to the self-energy obtained with the
EOM expression [Eq. (25)]. We will do this by expanding the
self-energy up to third order and showing the equivalence of
both approaches at this order. To this end, we need to expand
the vertex functions in terms of the effective Hamiltonian
H̃1. The lowest order terms entering �4−pt can be easily
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FIG. 13. Skeleton and interaction-irreducible diagrams contribut-
ing to the �4−pt vertex function up to second order. The round brackets
above (below) some diagrams indicate that the exchange diagram
between the {αωα} and {γωγ } ({βωβ} and {δωδ}) arguments must
also be included.

read from Fig. 12. We show these second-order, skeleton
and interaction-irreducible diagrams in Fig. 13. Only the
first three terms would contribute for a 2BF. There are two
terms involving mixed 2BFs and 3BFs, whereas the final two
contributions come from two independent 3BFs. Note that, to
get the third-order expressions of the self-energy, we expand
the vertex functions to second order, i.e., one order less.

Analogously, we display the expansion up to second order
of �6−pt in Fig. 14. Most contributions to this vertex function
contain 3BFs. The lowest order term, for instance, is given
by the 3B interaction itself. Note, however, that second-order
terms formed of 2B effective interactions are possible, such as
the second term on the right-hand side of Fig. 14. These will
eventually be connected with a 3BF to give a mixed self-energy
contribution [see Eq. (25) and Fig. 9].

If one includes the diagrams in Figs. 13 and 14 into the
irreducible self-energy �� of Fig. 9, all the diagrams discussed
in Eq. (16), Figs. 3 and 5 of Sec. II B are recovered. This does
prove, at least up to third order, the correspondence between
the perturbative expansion approach and the EOM method
for the GFs. Proceeding in this manner to higher orders, one
should obtain equivalent diagrams all the way through.

It is important to note that diagrams representing conjugate
contributions to �� are generated by different, not necessarily
conjugate, terms of �4−pt and �6−pt. For instance, diagram
Fig. 5(d) is the result of the term 13(e + f ) and its exchange,
on the right-hand side of Fig. 13. Its conjugate self-energy
diagram, Fig. 5(f), however, is generated by the second
contribution to �6−pt, Fig. 14(b). This term is also related to
diagram Fig. 5(g). More specifically, the term 14(b) has nine
cyclic permutations of its indices, of which six contribute to
diagram Fig. 5(f) and three to diagram Fig. 5(g). On the other

= +Γ6−2nd

α γ ε

β δ η

α γ

δ

α

δ(a)

cycl.
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α

δ
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+
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δ
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β
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β
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ε

ε
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η η

η
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FIG. 14. The same as Fig. 13 for the �6−pt vertex function. The
round brackets above (below) some diagrams indicate that cyclic
permutations of the {αωα}, {γωγ } and {εωε} ({βωβ}, {δωδ} and {ηωη})
arguments must also be included.

hand, the conjugate of Fig. 5(g) is diagram Fig. 5(e), which
is entirely due to the exchange contribution of the Fig. 13(d)
term in �4−pt. The direct contribution of this same term leads
to diagram Fig. 5(c), which is already self-conjugate.

More importantly, however, nonperturbative self-energy
expansions can be obtained by means of other hierarchy
truncations at the level of �4−pt and �6−pt. Translating these
into self-energy expansions is then just an issue of introducing
them in Eq. (25). According to the approximation chosen for
the vertex functions appearing in Fig. 9, we will be summing
specific sets of diagrams when solving the Dyson equation,
Eq. (8). However, from the above discussion it should be
clear that extra care must be taken to guarantee that the
truncations lead to physically coherent results. In particular,
it is not always possible to naively neglect �6−pt. The last
two terms of the self-energy equation, Eq. (25), generate
conjugate contributions. Hence, neglecting one term or the
other will spoil the analytic properties of the self-energy
which require a Hermitian real part and an anti-Hermitian
imaginary part. In the examples discussed above, diagrams
Figs. 5(f) and 5(g) would be missing if �6−pt had not been
considered.

When no irreducible 3B interaction terms are present in
the hierarchy truncation, only the �4−pt term contributes to
Eq. (25). The ladder and the ring truncations, shown in
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Γ4−pt

Γ4−pt

FIG. 15. Diagrammatic representation of the self-energy correc-
tion ����W� given in Eq. (31).

Eqs. (27) and (28) generate their own conjugate diagrams and
can be used on their own to obtain physical approximations to
the self-energy. However, this need not be true in general.
A counterexample is actually provided by the truncation
of Eq. (30) which, if inserted in Eq. (25) without the
corresponding contributions to �6−pt, cannot generate a correct
self-energy. Because of its diagrammatic content, Eq. (30) can
only be used as a correction to �4−pt.

As far as 3B interaction-irreducible diagrams are con-
cerned, the most important contribution should be that as-
sociated with Fig. 5(c) as discussed in Sec. II B. Further
contributions with similar structures are also expected to
contribute to the correlation dynamics. To include such terms,
one can go beyond third order by replacing the effective 2BFs
at the upper and lower ends by ladder or ring summations.
Note that this is precisely the structure that arises from the
hierarchy truncation associated with Eq. (30). This would lead
to a generalized contribution, whose diagrammatic content is
summarized by Fig. 15. The corresponding expression for the
self-energy would read

��
��W�

αβ (ω) = − (ih̄)4

4

∫
dω1

2π
· · ·

∫
dω4

2π

∑
γ δν
στχ

∑
μελ
ξηθ

×�
4−pt
αγ,δν(ω,ω1 + ω2 − ω; ω1, ω2)Gδμ(ω1)

×Gνε(ω2)Gθγ (ω1 + ω2 − ω) Wμελ,ξηθ Gξσ (ω3)

×Gητ (ω4) Gχλ(ω3 + ω4 − ω)

×�
4−pt
στ,βχ (ω3, ω4; ω,ω3 + ω4 − ω). (31)

To quantify the importance of these terms, they would need to
be included in the self-consistent procedure. Moreover, these
corrections should also be considered when computing the
total energy, as we will see next.

To conclude this section, we would like to stress the fact that
extensions to include 3BFs beyond effective 2B interactions,
like Ṽ , are a completely virgin territory. To our knowledge,
these have not been evaluated for nuclear systems (or any
other system, for that matter) with diagrammatic formalisms.
Truncation schemes, like those proposed here, should provide
insight on in-medium 3B correlations. The advantage that the
SCGF formalism provides is the access to nonperturbative,

conserving approximations that contain pure 3B dynamics
without the need for ad hoc assumptions.

IV. GROUND-STATE ENERGY

SCGF calculations aim at providing reliable calculations
for the SP propagator of correlated systems via diagrammatic
techniques. Traditionally, there have been two motivations to
do this. On the one hand, the SP propagator provides access
to all 1B operators and hence is a useful tool to characterize
a wide range of the system’s properties. On the other hand,
the ground-state energy is a critically important 2B observable
that can be obtained from the 1B GF itself. This is a crucial
result, that arises from the GMK sum rule [39,40]. The sum
rule is valid both at zero and at finite temperature, where the
1B propagator also provides access to the energy and, at least
approximately, to all other thermodynamical properties [64].
In this section, we investigate the modifications of the GMK
sum rule when 3BF are included in the Hamiltonian.

Not all the information content from the propagator is
needed to obtain the ground-state energy. The hole part, which
includes details about the transition amplitude for the removal
of a particle from the many-body system, is enough for these
purposes. One therefore defines the diagonal part of the hole
spectral function:

Sh
α (ω) = 1

π
Im Gαα(ω)

=
∑

n

∣∣〈�N−1
n

∣∣aα

∣∣�N
0

〉∣∣2
δ
[
h̄ω − (

EN
0 − EN−1

n

)]
, (32)

for energies below the Fermi energy, h̄ω < ε−
F = EN

0 − EN−1
0 .

The nth excited state of the N − 1 particle system is described
by the many-body wave function |�N−1

n 〉 and has a total
energy EN−1

n . The transition amplitude between the N and
the N − 1 body systems is closely related to the definition
of the theoretical spectroscopic factor [14] and also provides
information on removal strength distributions. The complete
spectral function represents a direct link between theory and
experiment, as well as determining energy centroids [65].

To obtain the GMK sum rule, one starts by considering the
first moment of the hole spectral function:

Iα =
∫ ε−

F

−∞
dω ω Sh

α (ω). (33)

From the spectral representation above, it is easy to see that
this sum rule is also the expectation value over the many-body
state of the commutator:

Iα = 〈
�N

0

∣∣a†
α[aα,Ĥ ]

∣∣�N
0

〉
. (34)

Using the Hamiltonian in Eq. (1), one can evaluate the
commutator to find

Iα = 〈
�N

0

∣∣∑
β

Tαβ a†
αa

†
β + 1

2

∑
γβδ

Vαγ,βδ a†
αa†

γ aδaβ

+ 1

12

∑
γ εβδη

Wαγ ε,βδη a†
αa†

γ a†
εaηaδaβ

∣∣�N
0

〉
. (35)
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Note that, in general, T represents the 1B part of the
Hamiltonian which, in addition to the kinetic energy, might
also contain the 1B potential. Summing over all the external
SP states, α, one finds∑

α

Iα = 〈
�N

0

∣∣T̂ + 2V̂ + 3Ŵ
∣∣�N

0

〉
. (36)

In other words, the sum over SP states of the first moment
of the spectral function yields a particular linear combination
of the contributions of the 1B, 2B, and 3B potentials to the
ground-state energy,

EN
0 = 〈

�N
0

∣∣Ĥ ∣∣�N
0

〉 = 〈
�N

0

∣∣T̂ + V̂ + Ŵ
∣∣�N

0

〉
. (37)

Because T̂ is a 1B operator, one can actually compute its
expectation value from the SP propagator itself:

〈
�N

0

∣∣T̂ ∣∣�N
0

〉 = 1

π

∫ ε−
F

−∞
dω

∑
αβ

TαβIm Gβα(ω). (38)

The energy integral on the right-hand side yields the 1B density
matrix element, Eq. (13):

ρ1B
βα = 1

π

∫ ε−
F

−∞
dω Im Gβα(ω), (39)

which can be used to simplify the previous expression. For the
2B case, this is enough to provide an independent constraint
and hence allows for the calculation of the total energy.
The ground-state energy can then be computed from the 1B
propagator alone.

When 3BFs are present, however, one needs a third indepen-
dent linear combination of 〈T̂ 〉, 〈V̂ 〉, and 〈Ŵ 〉. Knowledge of
the 1B propagator is therefore not enough to compute the total
energy, because either the 2B or the 3B propagators are needed
to compute 〈V̂ 〉 or 〈Ŵ 〉 exactly. Depending on which of the
two operators is chosen, one is left with different expressions
for the energy of the ground state. This freedom in choice
could in principle be exploited to test the validity of different
approximations. In practical applications, however, one should
choose the combination that provides minimum uncertainty.

Let us start by considering the case where the 3B operator is
eliminated. Adding 2〈T̂ 〉 and 〈V̂ 〉 to the sum rule, Eq. (36), one
finds the following exact expression for the total ground-state
energy:

EN
0 = 1

3π

∫ ε−
F

−∞
dω

∑
αβ

(2Tαβ + ωδαβ)Im Gβα(ω)

+ 1

3

〈
�N

0

∣∣V̂ ∣∣�N
0

〉
. (40)

The calculation of this expression requires the hole part of
the 1B propagator and the two-hole part of the 2B propagator,
which would appear in the second term. We note that this
expression is somewhat equivalent to the original GMK, in
that the ground-state energy is computed from 1B and 2B
operators, even though the Hamiltonian itself is a 3B operator.
This might prove advantageous in calculations where the 2B
propagator is computed explicitly.

Alternatively, one can eliminate the 2B contribution from
the GMK sum rule by adding 〈T̂ 〉 and subtracting 〈Ŵ 〉 to the
sum rule, Eq. (36). This leads to the following expression:

EN
0 = 1

2π

∫ ε−
F

−∞
dω

∑
αβ

(Tαβ + ωδαβ)Im Gβα(ω)

− 1

2

〈
�N

0

∣∣Ŵ ∣∣�N
0

〉
. (41)

The first term in this expression is formally the same as
that obtained in the case where only 2BFs are present in the
Hamiltonian. In that sense, the second term can be thought of as
a correction to the total energy associated with the 3BF. Note,
however, that the 3BF does influence the 1B propagator on the
first term and hence the correction should only be applied at
the very end of the self-consistent procedure.

Equations (40) and (41) are both exact. Which of the two is
employed in actual calculations will mostly depend on the
accuracy associated with the evaluation of the expectation
values, 〈V̂ 〉 and 〈Ŵ 〉. If the 2B interaction is dominant with
respect to the 3BF, for instance, the former will be a large
contribution. Small errors in the calculation of the 2B propa-
gator could eventually yield artificially large corrections in the
ground-state energy. In nuclear physics, the 3BF expectation
value is expected to provide a smaller contribution than
the 2BF [22,46]. Consequently, approximations in Eq. (41)
should lead to smaller absolute errors. This was the approach
that we recently followed in both finite nuclei and infinite
nuclear matter [27,35]. In finite nuclei, evaluating 〈Ŵ 〉 at first
order in terms of dressed propagators leads to satisfactory
results. However, accuracy is lost if free propagators, G(0)

are used instead. Equation (40) may eventually be useful in
calculations of infinite matter, in which the �4−pt is calculated
nonperturbatively.

This first-order approximation with undressed propagators
is traditionally used in nuclear structure. In this context,
three-body forces have been often discussed in the Hartree-
Fock approximation with Skyrme or Gogny functionals [1,66].
Zero-range forces have also been employed in ab initio–type
calculations [67]. It is perhaps instructive to point out at this
stage that the previous formulas apply to this case as well. In
particular, the Hartree-Fock approximation with 3BF can be
alternatively derived from the variational principle, under the
assumption that the many-body state is described by a Slater
determinant, |�N

0 〉. Diagonalizing an effective 1B hamiltonian
leads to a series of Hartree-Fock orbitals with single-particle
energies εα . The total energy under a 2B Hamiltonian is not the
sum of these energies, but rather requires a correction to avoid
double counting [1]. Similarly, in the 3B case, the energy is
computed as follows:

EHF
0 =

∑
α

εα − 〈V̂ 〉HF − 2〈Ŵ 〉HF. (42)

This result is straightforwardly derived by noticing that, in the
Hartree-Fock approximation, the sum rule, Eq. (36), reduces
to the first term. Within this approximation, the expectation
values can be directly computed from the uncorrelated 1B
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density matrix:

〈V̂ 〉HF = 1

2

∑
αγ
βδ

Vαγ,βδρ
HF
βα ρHF

δγ , (43)

〈Ŵ 〉HF = 1

6

∑
αγ ε
βδη

Wαγ ε,βδηρ
HF
βα ρHF

δγ ρHF
ηε . (44)

If the 3B contribution is perturbative, one would expect
Eq. (44) to provide a good starting point to evaluate the
full 3BF contribution of Eq. (41). This seems to be the
case in finite nuclei where, however, the internal density
matrices should be appropriately dressed [35] to find accurate
results.

To close this section, let us comment on the use of effective
interactions in the calculation of the ground-state energy itself.
Two errors can arise in this context. The first would involve
incorrectly accounting for the different pre-factor in the 1B
and 2B effective interactions. This double counting of the HF
potential was already discussed at the end of Sec. II. The
second issue would arise if a 3B correction to the energy was
neglected. The Hartree-Fock case provides a good example
of the latter. Replacing the bare 2B interaction in Eq. (42)
by the effective 2B force would immediately lead to errors.
The 3B correction in Eq. (42) would necessarily have to
change to provide the same result. Consequently, performing
a calculation with an effective 2B force and simply computing
the energy with the usual 2B formulas is not enough. The 3B
correction is needed anyway and is different if one uses the
bare or the effective interaction.

V. CONCLUSIONS

We have presented an extension of the SCGF approach to
include 3B interactions. The method allows one to incorporate
consistently 2B and 3B forces on an equal footing and should
be interesting for nuclear physics applications. Other many-
body systems in which induced 3BF are generated by cuts in
the model space could potentially benefit from this treatment
as well.

The 3BF was introduced in two different but equivalent
ways in the formalism. On the one hand, we have studied
the diagrammatic perturbative expansion of the propagator
including 1B, 2B, and 3B forces. The expansion is analogous
to cases previously studied in the literature, but the 3BF
requires some careful handling. We present in Appendix A
the Feynman rules associated with this expansion. Within
a SCGF approach, where propagators are dressed and the
Dyson equation is used iteratively, only 1PI skeleton diagrams
enter the expansion. The number of diagrams can be further
reduced by introducing effective interactions, which sum up a
subseries of interaction-reducible diagrams. These effective
interactions can be interpreted as a generalization of the
normal ordering of the many-body Hamiltonian. Instead of
ordering with respect to an uncorrelated state, however,
the effective interactions include the effect of many-body
correlations by construction. The proper self-energy can be

defined from 1B, 2B, and 3B forces and still be computed
within the Dyson’s equation. We have shown how this effective
grouping of operators reduces the number of diagrams by
considering the perturbation expansion up to third order. The
equivalence between the original diagrammatic expansion and
that obtained from the effective interaction at any arbitrary
order is proven in Appendix B.

On the other hand, the propagator method can be expressed
using the EOM. We have re-derived the basic equations of this
method, consistently including 3BFs. The Martin-Schwinger
hierarchy now connects the (n)-body propagator to the
(n − 1)-, the (n + 1)-, and, via the 3BF, the (n + 2)-body GF. In
turn, this requires the introduction of vertex functions beyond
the four-point level. Through the hierarchy of the EOM, we
have found an expression for the vertex function �4−pt, which
embodies the higher order interacting contributions beyond
the mean field. Truncation to second order of this function,
together with complete second-order expression for the six-
point � function, provides the third-order approximation
for the irreducible self-energy. The correspondence to the
diagrams obtained in the perturbative expansion indicates that
these two different approaches are equivalent.

Moreover, we have shown that, using the 2B effective
interaction in truncation schemes based on �4−pt, leads to
either ladder, ring or parquet approximations that effectively
include some 3B terms. Within these approximations, the
general structure of the formalism, based on 2BFs, remains
unaltered [14]. Results obtained recently both in calculations
for infinite nuclear matter [27] as well as nuclei [35] exploit
this expanded self-consistent Green’s functions approach to
include 3B nuclear forces.

More importantly, however, this approach is able to provide
a general mechanism to devise nonperturbative resummation
schemes. In particular, we have proposed a potentially rel-
evant correction to the self-energy that includes interaction-
irreducible three-body effects explicitly. Extensions to include
3BFs beyond the effective 2BF approach are lacking in the
literature and could prove to be potentially relevant in some
instances, particularly in nuclear physics.

Finally, we have presented a general method to compute the
energy of the many-body ground state by means of the GMK
sum rule. The sum rule still allows for the calculation of the
ground-state energy from the 2(n − 1)-point GFs in spite of the
fact that the energy itself is an n-body operator. Two possible
approaches have been proposed, which require the calculation
of either a 2B or a 3B expectation value. Depending on the
relative importance of the 2B and the 3B forces in the system,
one or the other might be preferable.

Calculations performed using this extended SCGF formal-
ism have already been presented in the literature [27,35].
This expanded approach provides a firm basis for further
studies of nuclear systems from a Green’s functions point of
view. The formalism can be extended to finite temperature
and off-equilibrium settings. More importantly, it provides
a framework to compute many relevant quantities for the
description of a quantum many-body system, from binding
energies, to thermodynamical properties or even pairing. On
the same footing, the Gorkov-Green’s function formalism for
finite nuclei could be improved to include 3BFs.
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We believe that this extended approach is an interesting
tool to study quantum many-body systems from an ab
initio microscopic point of view. In principle, the framework
provides a coherent description of the correlated, nonpertur-
bative dynamics of systems with many-body interactions. The
generalization to Hamiltonians including N -body forces can
be performed along similar lines. In addition to its academic
interest, advances in interaction-tunable ultracold gases might
require these developments. In nuclear physics, the importance
of 4BFs, either bare or induced, could also be assessed using
analogous techniques. Ultimately, the methods presented here
should be a good starting point to foster new initiatives
that systematically address the issue of many-body forces in
quantum many-body systems.
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APPENDIX A: FEYNMAN DIAGRAM RULES
FOR TWO- AND THREE-BODY INTERACTIONS

We present in this appendix the Feynman rules associated
with the diagrams arising in the perturbative expansion of
Eq. (7). The rules are given both in time and energy formu-
lation, and some specific examples will be considered at the
end. We pay particular attention to nontrivial symmetry factors
arising in diagrams that include many-body interactions. We
work with antisymmetrized matrix elements, but for practical
purposes represent them by extended lines.

We provide the Feynman diagram rules for a given p-body
propagator, such as Eqs. (3) and (4). These arise from a
trivial generalization of the perturbative expansion of the 1B
propagator in Eq. (7). At kth order in perturbation theory, any
contribution from the time-ordered product in Eq. (7), or its
generalization, is represented by a diagram with 2p external
lines and k interaction lines (from here on called vertices), all
connected by means of oriented fermion lines. These fermion
lines arise from contractions between annihilation and creation
operators,

aI
δ (t)aI †

γ (t ′) ≡ 〈
�N

0

∣∣T [
aI

δ (t)aI †
γ (t ′)

]∣∣�N
0

〉 = ih̄ G
(0)
δγ (t − t ′).

Applying the Wick theorem to any such arbitrary diagram,
results in the following Feynman rules.

Rule 1: Draw all, topologically distinct and connected
diagrams with k vertices, and p incoming and p outgoing
external lines, using directed arrows. For interaction
vertices the external lines are not present.

Rule 2: Each oriented fermion line represents a
Wick contraction, leading to the unperturbed propagator
ih̄G

(0)
αβ(t − t ′) [or ih̄G

(0)
αβ(ωi)]. In time formulation, the t

and t ′ label the times of the vertices at the end and at the
beginning of the line. In energy formulation, ωi denotes
the energy carried by the propagator.

Rule 3: Each fermion line starting from and ending at the
same vertex is an equal-time propagator, −ih̄G

(0)
αβ(0−) =

ρ
(0)
αβ .

Rule 4: For each 1B, 2B or 3B vertex, write down a
factor i

h̄
Uαβ , − i

h̄
Vαγ,βδ or − i

h̄
Wαγ ξ,βδθ , respectively. For

effective interactions, the factors are − i
h̄
Ũαβ , − i

h̄
Ṽαγ,βδ .

When propagator renormalization is considered, only skele-
ton diagrams are used in the expansion. In that case, the
previous rules apply with the substitution ih̄G

(0)
αβ → ih̄Gαβ .

Furthermore, note that Rule 3 applies to diagrams embedded
in the one-body effective interaction (see Fig. 1) and therefore
they should not be considered explicitly in an interaction-
irreducible expansion. In calculating Ũ , however, one should
use the correlated ραβ instead of the unperturbed one.

Rule 5: Include a factor (−1)L where L is the number
of closed fermion loops. This sign comes from the odd
permutation of operators needed to create a loop and does
not include loops of a single propagator, already accounted
for by Rule 3.

Rule 6: For a diagram representing a 2p-point GF, add a
factor (−i/h̄), whereas for a 2p-point interaction vertex
without external lines (such as �� and �2p−pt ) add a factor
ih̄.

The next two rules require a distinction between the time
and the energy representation. In the time representation,

Rule 7: Assign a time to each interaction vertex. All the
fermion lines connected to the same vertex i share the
same time ti .

Rule 8: Sum over all the internal quantum numbers and
integrate over all internal times from −∞ to +∞.

Alternatively, in energy representation,

Rule 7′: Label each fermion line with an energy ωi , under
the constraint that the total incoming energy equals the
total outgoing energy at each interaction vertex,

∑
i ω

in
i =∑

i ω
out
i .

Rule 8′: Sum over all the internal quantum numbers and
integrate over each independent internal energy, with an
extra factor 1

2π
, i.e.,

∫ +∞
−∞

dωi

2π
.

Each diagram is then multiplied by a combinatorial factor
S that originates from the number of equivalent Wick contrac-
tions that lead to it. This symmetry factor represents the order
of the symmetry group for one specific diagram or, in other
words, the order of the permutation group of both open and
closed lines, once the vertices are fixed. Its structure, assuming
only 2BFs and 3BFs, is the following:

S = 1

k!

1

[(2!)2]q[(3!)2]k−q

(
k
q

)
C =

∏
i

Si . (A1)
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1
12

1
12

1
12

1
6

(a) (b)

(c) (d)

FIG. 16. Examples of diagrams containing symmetric and inter-
acting lines, with explicit symmetry factors. Diagrams (b) to (d)
are obtained by expanding the effective interaction of diagram (a)
according to Eq (11). Swapping the 3B and 2B internal vertices in (c)
gives a distinct, but topologically equivalent, contribution.

Here, k represents the order of expansion. q (k − q) denotes
the number of 2B (3B) vertices in the diagram. The binomial
factor counts the number of terms in the expansion (V + W )k

that have q factors of V and k − q factors of W . Finally, C
is the overall number of distinct contractions and reflects the
symmetries of the diagram. Stating general rules to find C
is not simple. For example, explicit simple rules valid for the
well-known λφ4 scalar theory are still an object of debate [68].
An explicit calculation for C has to be carried out diagram by
diagram [68]. Equation (A1) can normally be factorized in a
product factor Si , each due to a particular symmetry of the
diagram. In the following, we list a series of specific examples
which is, by all means, not exhaustive.

Rule 9: For each group of n symmetric lines, or symmetric
groups of lines as defined below, multiply by a symmetry
factor Si= 1

n! . The overall symmetry factor of the diagram
will be S = ∏

i Si . Possible cases include the following:

(i) Equivalent lines. n equally oriented fermion lines are
said to be equivalent if they start from the same initial
vertex and end on the same final vertex.

(ii) Symmetric and interacting lines. n equally oriented
fermion lines that start from the same initial vertex
and end on the same final vertex, but are linked via
an interaction vertex to one or more close fermion
line blocks. The factor arises as long as the dia-
gram is invariant under the permutation of the two
blocks.

1

1
2

1
2

(a) (b)

(c)

FIG. 17. Examples of diagrams entering the static part of the
self-energy. Applying rule 9-ii, diagrams (a) and (b) take a factor
Ssi = 1

2 from the symmetry between the two bubbles attached to the
upper three body vertex. The symmetry is broken in diagram (c),
where the overall factor is Ssi = 1

(iii) Equivalent groups of lines. These are blocks of inter-
acting lines (e.g., series of bubbles) that are equal to
each other: They all start from the same initial vertex
and end on the same final vertex.

Rule 9-i is the most well-known case and applies, for
instance, to the two second-order diagrams of Fig. 3. Diagram
Fig. 3(a) has two upward-going equivalent lines and requires
a symmetry factor Se = 1

2! . In contrast, diagram Fig. 3(b) has
three upward-going equivalent lines and two downward-going
equivalent lines, that give a factor Se = 1

2! 3! = 1
12 .

Figures 16 and 17 give specific examples of the application
of rule 9-ii. Diagram Fig. 16(a) has three upward-going
equivalent, noninteracting lines, which yield a symmetry
factor Se = 1

3! due to rule 9-i. However, there are also two
downward-going symmetric and equivalent lines, that interact
through the exchange of a bubble and thus give rise to a
factor Ssi = 1

2! . The total factor is therefore S = Se × Ssi =
1

12 . Let us now expand the two 2B effective interactions
that are connected to the intermediate bubble according to
Eq. (11). Diagram Fig. 16(a) is now seen to contain three
contributions, diagrams Figs. 16(b)–16(d), with the symmetry
factors shown in the figure. Note that drawing the contracted
3B vertex above or below the bubble in Fig. 16(c) leads
to two topologically equivalent diagrams that must only be
drawn once, i.e., diagram Fig. 16(c). However, because the
diagram is no longer symmetric under the exchange of the

U +1
2

+1
8

+ . . .. . . −1
2

FIG. 18. Diagrams entering the effective one-body interaction, Eq. (10), obtained by substituting the right-hand side of Fig. 13 into Eq. (23).
The two bubble terms correctly reproduce the symmetric factor inferred by applying rules 9-i and 9-ii.
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1
2

(a)

1

(b)

FIG. 19. Examples of a diagram where equivalent group of lines
are present and one where rule 9-iii does not apply. Swapping the
two chains of bubbles in (a), one finds an identical diagram. This
is precisely the case of rule 9-iii, which brings in a factor Segl =
1
2 . Performing the same exchange in diagram (b) generates a graph
where the direction of the internal loop is reversed. No symmetry rule
applies here and Segl = 1

two downward-going equivalent lines, rule 9-ii does not apply
anymore and the Ssi factor is no longer needed.

A similar situation occurs when the two interacting fermion
lines start and end on the same vertex, as in Fig. 17. Consider
the left-most and right-most external fermion bubbles. In
all three diagrams, they are connected to each other by a
3B interaction vertex above and by a series of interactions
and medium polarizations below. The intermediate bubble
interactions in diagrams Figs. 17(a) and 17(b) are symmetric
under exchange. There are therefore two sets of symmetric
interacting lines (the two up-going and two down-going
fermion lines) and hence both diagrams take a factor Ssi = 1/2.
In contrast, the two external loops in 17(c) are not symmetric
under exchange due to the lower 3B vertex. Rule 9-ii does
not apply anymore and Ssi = 1. If all the vertices between the
external loops were equal (e.g., effective 2B terms Ṽ ), a factor
Ssi = 1/2 would still apply.

The case of Fig. 17 is of particular importance because these
diagrams directly contribute to the energy-independent 1B
effective interaction. In the EOM approach, these contributions
arise from the first three terms on the right-hand side of Fig. 13.
Note that the ladder diagram has a symmetry factor Se = 1/2
and that the exchange contribution in the bubble term has to be
considered. Using these diagrams to define the 2B propagator
in Eq. (23) and inserting these in the last term of Eq. (10), one
finds the contributions to Ũ shown in Fig. 18. The two bubble
terms have summed up to form diagram Fig. 17(a), each of
them contributing a factor 1/4 from Eq. (10). Consequently,
the approach leads to the correct overall Ssi = 1/2 symmetry
factor. In our approach, there is no need to explicitly compute
these diagrams because they are automatically included by
Eq. (10).

Finally, rule 9-iii applies to the diagram in Fig. 19. In this
case, the two chains of bubble diagrams are equal and start and
end at the same 3BF vertices. Hence, they are equivalent groups
of lines and the diagram takes a factor Segl = 1

2 . Diagram
Fig. 19(b) is different because the exchange of all the bubbles
generates a diagram in which the direction of the internal
fermion loop is reversed. Therefore no symmetry rule applies
and the symmetry factor is just Segl = 1. This is, however,
topologically equivalent to the initial diagram and hence must
be counted only once.

As an example of the application of the above Feynman
rules, we give here the formulas for some of the diagrams
in Fig. 5. Let us start by a contribution that was discussed in
Sec. III, diagram Fig. 5(c). There are two sets of upward-going
equivalent lines, which contribute to a symmetry factor Se =
1
22 . Considering the overall factor of Eq. (A1) and the presence
of one closed fermion loop, one finds

�
(5c)
αβ (ω) = − (ih̄)4

4

∫
dω1

2π
· · ·

∫
dω4

2π

∑
γ δνμελ
ξηθστχ

Ṽαγ,δνG
(0)
δμ(ω1)G(0)

νε (ω2)Wμελ,ξηθG
(0)
ξσ (ω3)G(0)

ητ (ω4)

×G
(0)
θγ (ω1 + ω2 − ω)Ṽστ,βχG

(0)
χλ(ω3 + ω4 − ω). (A2)

Diagrams Figs. 5(h) and 5(i) differ only for the orientation of a loop. Hence, there are two pairs of equivalent lines in the first
case and one pair and one triplet of equivalent lines in the second, which is reflected in their different symmetry factors:

�
(5h)
αβ (ω) = (ih̄)5

4

∫
dω1

2π
· · ·

∫
dω5

2π

∑
γ δε

ξθσμνλ
ητφχζ

Ṽαγ,δεG
(0)
δξ (ω1)G(0)

νγ (ω2)Wξθσ,μνλG
(0)
μη(ω3)G(0)

χθ (ω4)

×G(0)
ετ (ω − ω1 + ω2) Wητφ,βχζ G

(0)
λφ(ω5) G

(0)
ζσ (ω2 + ω3 + ω5 − ω1 − ω4), (A3)

�
(5i)
αβ (ω) = (ih̄)5

12

∫
dω1

2π
· · ·

∫
dω5

2π

∑
γ δε

ξθσμνλ
ητφχζ

Ṽαγ,δεG
(0)
δξ (ω1)G(0)

εθ (ω2)Wξθσ,μνλG
(0)
μη(ω3)G(0)

ντ (ω4)

×G(0)
χγ (ω1 + ω2 − ω) Wητφ,βχζ G

(0)
λφ(ω5) G

(0)
ζσ (ω3 + ω4 + ω5 − ω1 − ω2). (A4)
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APPENDIX B: INTERACTION-IRREDUCIBLE
DIAGRAMS WITH EFFECTIVE 1B AND

2B INTERACTIONS AT ALL ORDERS

Interaction-irreducible diagrams can be used to distin-
guish between two different many-body effects in the SCGF
approach. On the one hand, effective interactions sum all
the instantaneous contributions associated with “averaging
out” subgroups of particles that lead to interaction-reducible
diagrams. This has the advantage of reducing drastically the
number of diagrams at each order in the perturbative expan-
sion. It also gives rise to well-defined in-medium interactions.
On the other hand, the remaining diagrams will now include
higher-order terms summed via the effective interaction itself.

In this appendix, we prove that the perturbative expansion
can be recast into a set containing only interaction-irreducible
diagrams at any given order, as long as properly defined
effective interactions are used. The argument we propose
was often used to demonstrate how disconnected diagrams
cancel out in the perturbative expansion. We now apply it to
a slightly different case that requires extra care. We focus on
the case of a diagram that includes only 2B and 3BFs. The
extension to the general case of many-body forces should be
straightforward.

Equation (7) gives the perturbative expansion of the 1B GF
in terms of the Hamiltonian, H (t), in the interaction picture.
The kth order term of the perturbative expansion reads

G
(k−th)
αβ (t − t ′) =

(−i

h̄

)k+1 1

k!

∫
· · ·

∫
dtk

k terms

〈
�N

0

∣∣T [
aI

α(t)aI†
β (t ′)H (t1) · · · H (tk)

]∣∣�N
0

〉
conn. (B1)

Only connected contributions are allowed and we take the
interaction picture external creation and destruction operators
to the left for convenience. Let us assume, without loss of
generality, that the diagram is composed of q 2B and k − q

3B interaction operators. This gives rise to ( k
q ) identical con-

tributions when expanding H (t) = T (t) + V (t) + W (t) in the
time-ordered product, as discussed right after Eq. (A1) above.

Let us denote with O(t) a generic operator, representing
either a 2B, V (t), or a 3B, W (t), potential. Suppose now that
there is a subset of m operators that are arbitrary connected
to each other, but that share the external links with a unique
operator, O(tn), outside the subset. In other words, O(tn) is
the only way to enter and exit the subset of m operators
{O(tn+1), · · · ,O(tn+m)} as drawn below:

O(t1) · · · O(tn−1) · O

∣∣∣∣ (tn) · { O(tn+1) · · · O(tn+m) }. (B2)

O(tn) is also necessarily connected to the other interactions
and, hence, this is an articulation vertex. In general, there can

be an arbitrary number of articulation vertices, such as O(tn),
at any given order. Each one of these vertices would isolate
a particular subset of operators. The following arguments can
be applied to each subset separately.

For simplicity, let us restrict the argument to the sim-
plest case of one articulation vertex only. Suppose that,
among m terms, there are a 2B and b 3B interactions,
with a + b = m. The number of time-ordered products V (t)
and W (t) in Eq. (B1) that is consistent with the above
decomposition is(

k

q

)(
q

a

)(
k − q

b

)
=

(
k

m

)(
m

a

)(
n

q − a

)
, (B3)

where m + n = k.
Let us consider the case in which O(tn) is a 3B operator,

with matrix elements Wμγδ,θσξ connected with four legs to the
internal subset of m vertices and with two legs to the rest of
the diagram. We can factorize the amplitude in Eq. (B1) by
adding an intermediate identity operator as follows:

1

n!

(
n

q − a

) ∫
· · ·

∫
dtn

n terms

〈
�N

0

∣∣T [
aI

α(t)aI†
β (t ′)O(t1) · · · O(tn−1) aI†

μ (t+n )aI
θ (tn)

]∣∣�N
0

〉
Wμγδ,θσξ

1

(3!)2

(
3
1

)2

× 1

(m)!

(
m
a

)∫
· · ·

∫
dtk

m terms

〈
�N

0

∣∣T [
aI†

γ (t+n )aI†
δ (t+n )aI

ξ (tn)aI
σ (tn)O(tn+1) · · ·O(tk)

]∣∣�N
0

〉
δk,n+m. (B4)

Note that the factorization of the time-ordered product, by
inserting a |�N

0 〉〈�N
0 |, is possible because the Wick theorem

normal-orders these products with respect to the reference
state, |�N

0 〉. In other words, both Eqs. (B1) and (B4) lead to
exactly the same results after all Wick contractions have been
carried out.

All possible orders in which a general O(t) enters Eq. (B4)
are equivalent and are accounted for by the binomial factors.

The factor ( 3
1 ) accounts for all the possible ways, eventually

decided by contractions, in which the six creation/annihilation
operators in W (tn) can be separated in the two factors
[see also Eq. (B7) below]. We also include an additional
factor ( 3

1 ) coming from all the possible ways to choose
one creation/annihilation operator among the three possible
pairs. The correct time ordering for creation and annihilation
operators associated with W (tn) is preserved using a†(t+n ).
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With this decomposition, we can identify the sec-
ond line of Eq. (B4) as an mth order contribution
(with a 2B and m − a 3B operators) to the pertur-
bative expansion of G

4−pt
σξ,γ δ(tn, tn; t+n , t+n ) = GII

σξ,γ δ(tn − t+n ).

Collecting all possible contributions of form (B2)
and (B4) in which the first n operators are unchanged,
the kth order interaction-reducible contribution to G
becomes

G
(k−th)
αβ (t − t ′) →

(−i

h̄

)n+1 1

n!

(
n

q − a

) ∫
· · ·

∫
dtn

〈
�N

0

∣∣T [
aI

α(t)aI†
β (t ′)O(t1) · · · O(tn−1)aI†

μ (t+n )aI
θ (tn)

]∣∣�N
0

〉
int-irr

× Wμγδ,θσξ

i h̄

(2!)2
G

II (m−th,a)
σξ,γ δ (tn − t+n )

U eff
μθ

, (B5)

where GII (m−th,a) sums all the diagrams at mth order with a
two-body operators. Note that the last term no longer depends
on time and can be seen as an energy-independent correction
to the 1B potential. We can automatically take into account
these interaction-reducible terms by reformulating the initial
Hamiltonian to include the effective 1B vertex:

Ũμθ → Uμθ + Wμγδ,θσξ

ih̄

(2!)2
GII

σξ,γ δ (t − t+)

− i
h̄

ρ2B
σξ,γ δ

, (B6)

where now we use an exact GII . The perturbative expansion
obtained with this effective interaction should only contain
interaction-irreducible diagrams to avoid double counting.

Note that in Eq. (B5) we automatically obtain the correct
symmetry factor 1/(2!)2 associated with the contraction of W

with the two pairs of incoming and outgoing lines of GII . In
the general case, a c-body vertex can be reduced to a d-body
one (with d < c) by using a (c − d)-body GF. The overall
combinatorial factor in that case will be

1

(c!)2

(
c!

d!(c − d)!

)2

= 1

(d!)2︸ ︷︷ ︸
new vertex

1

((c − d)!)2︸ ︷︷ ︸
c−d equal lines

. (B7)

This yields both the correct combinatorial factors entering
the new effective d-body vertex and the symmetry factor
associated with the contraction with the (c − d)-body GF.
The above arguments can be generalized to any starting
n-body Hamiltonian. Applying these derivations to all possible
cases for a 3B Hamiltonian leads to the effective interactions
discussed in Eqs. (10) and (11).
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