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Fission properties of the Barcelona-Catania-Paris-Madrid energy density functional
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Fission dynamics properties of the Barcelona-Catania-Paris-Madrid energy density functional are explored
with mean-field techniques. Potential energy surfaces as well as collective inertias relevant in the fission process
are computed for several nuclei where experimental data exist. Inner and outer barrier heights as well as fission
isomer excitation energies are reproduced quite well in all the cases. The spontaneous fission half-lives tsf are
also computed using the standard semiclassical approach and the results are compared with the experimental
data. The experimental trend with mass number is reasonably well reproduced over a range of 27 orders of
magnitude. However, the theoretical predictions suffer from large uncertainties when the quantities that enter the
spontaneous fission half-life formula are varied. Modifications of only a few per cent in the pairing correlation
strengths strongly modify the collective inertias with a large impact on the spontaneous fission lifetimes in all the
nuclei considered. Encouraged by the quite satisfactory description of the trend of fission properties with mass
number, we explore the fission properties of the even-even uranium isotope chain from 226U to 282U. Very large
lifetimes are found beyond A = 256 with a peak at neutron number N = 184.
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I. INTRODUCTION

Fission is a physical phenomenon taking place in heavy
atomic nuclei that leads to the disintegration of a parent nucleus
into two or more emerging fragments. It involves the evolution
of the nucleus from its ground state to scission going through
a variety of intrinsic shapes covering a wide range of different
intrinsic deformation parameters [1–4]. Fission properties
depend upon the competition between the surface energy term
coming from the strong nuclear interaction and the Coulomb
repulsion and therefore they are often used as constraints
and/or guidance to refine the parameters of effective nuclear
interactions. A typical example is the D1S parametrization of
the Gogny [5] force with parameters fine-tuned to reproduce
the fission barrier of 240Pu [6]. For Skyrme forces, the SkM*
parametrization [7] is a typical example of an interaction
fitted to fission properties. More recently, fission-related
constraints have been used with Skyrme interactions to define
the UNEDF1 parametrization [8,9] that, unlike SkM*, also
performs well with binding energies.

The gross features of fission can be understood from a
mean-field perspective using the Hartree-Fock-Bogoliubov
(HFB) theory [10] and therefore the large amount of studies
devoted to this subject with Skyrme interactions [9,11–13]
or Gogny ones [6,14–21] or based on the relativistic mean
field [22–24] is not surprising. Fission observables also
depend on the inertia of the system to the relevant collective
degrees of freedom and therefore they are sensitive to pairing
correlations. As a consequence, fission is a good testing ground
for both the theories and interactions commonly used in
nuclear structure to describe pairing correlations. In addition,
an improved theoretical understanding of fission would be
relevant to other areas outside traditional nuclear physics like

*sam.and.giuliani@gmail.com
†luis.robledo@uam.es

safe energy production with nuclear reactors, radioactive waste
degradation, or the synthesis through the r-process of heavy
elements in the explosive galactic environments [25,26]. Last
but not least, a better understanding of fission could open the
door to a better estimation of magic numbers and, hence, extra
stability of superheavy nuclei beyond Z = 114. In this paper
we explore the ability of a newly proposed energy density
functional (EDF), denoted as Barcelona-Catania-Paris-Madrid
(BCPM) [27], to describe fission.

The BCPM is a recent parametrization of the BCP EDF
[28–31] devised for nuclear structure calculations. Its free
parameters have been adjusted to reproduce the binding
energies of all known even-even nuclei, including deformed
ones. Instead of the more traditional approaches where some
central potential form is guessed (contact, Gaussian, Yukawa,
etc.) and used afterwards to fit nuclear matter properties and/or
the nuclear matter equations of state EOS (both symmetric and
neutron), in the BCPM functional we start from a microscopic
EOS that is fitted by means of a low-order polynomial in the
density. That polynomial fit is translated to a finite nuclei EDF
just by replacing the nuclear matter density by the density of the
finite nucleus. This procedure is inspired by the local density
approximation (LDA) and is common practice in practical
applications of the Kohn-Sham theory in condensed matter
physics. The EDF is supplemented with a finite-range surface
term, a contact spin-orbit interaction of the same form as in
Skyrme or Gogny forces, the Coulomb interaction, and, finally,
a density-dependent zero-range pairing interaction [32] with
strengths fitted to reproduce Gogny’s neutron matter pairing
gap. The parameters of the functional (essentially those of the
finite range surface term plus some freedom in the polynomial
fit to fine tune the binding energy per nucleon) are fitted to
reproduce binding energies of the 518 even-even nuclei of
the 2003 mass table evaluation of Audi and Wapstra. The
properties of the interaction concerning quadrupole, octupole,
and fission dynamics have also been explored [27]. As shown
below, the BCPM functional gives reasonable results for fission
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observables, including spontaneous fission half-lives, fission
isomer excitation energies, inner and outer barrier heights, and
mass distribution of fragments. We have also shown that those
results could be improved by slightly modifying the amount of
pairing correlations, either by modifying the pairing strengths
or by going beyond the mean-field approximation to restore
the particle number symmetry broken by the HFB procedure.
As a consequence of the satisfactory performance of BCPM in
describing fission, we have explored fission properties of the
uranium isotopic chain from proton drip line to the neutron
drip line.

II. METHODS

Both the BCPM energy density functional [27] and its
predecessor BCP [28] contain a bulk part which is determined
by fully microscopic and realistic calculations of symmetric
and neutron matter equations of state [33,34] as in the LDA
of condensed matter physics. The two equations of state
(symmetric and neutron matter), given as a function of the
nuclear density, are parametrized by low order polynomials
of the densities. To account for finite-size effects related to
the surface energy, a phenomenological finite-range Gaussian
interaction is included. In addition, the Coulomb interaction
and the spin-orbit term are taken exactly as in the Skyrme or
Gogny forces. To deal with open-shell nuclei we include in the
BCPM and BCP functionals a zero-range density-dependent
pairing interaction fitted to reproduce the nuclear matter gaps
obtained with the Gogny force [32]. The calculations in finite
nuclei are carried out with a modification of the HFBAXIAL

computer code developed by one of the authors [35].
To describe fission we follow the usual procedure based

on the mean-field approach with pairing correlations: the
Hartree-Fock-Bogoliubov (HFB) theory with constraints [10].
As constraint operators we have used mainly the axially
symmetric quadrupole moment operator Q20 = z2 − 1

2 (x2 +
y2), although some exploratory calculations have also been
performed with the octupole Q30 and hexadecapole Q40

moment operators and the necking operator QN (z0, C0) =
exp[−(z − z0)2/C2

0 ]. Axial symmetry is preserved in the cal-
culations because of the high computational cost of releasing
this restriction. We are aware of the relevance of triaxiality
especially in the height of the inner fission barrier but its
effect is merely quantitative and, to a much lesser extent,
qualitative. On the other hand, reflection symmetry is allowed
to break at any stage of the calculation permitting octupole
deformation and asymmetric fission. As a consequence of the
breaking of the parity symmetry we are forced to constraint the
center of mass to the origin as to prevent spurious translational
motion of the nucleus as a whole. The quasiparticle creation
and annihilation operators of the HFB theory are expanded in
a harmonic oscillator basis (HO) preserving axial symmetry
and containing HO states with Jz quantum numbers up to
35/2 h̄ and up to 26 quanta in the z direction. The basis
contains over 3000 levels but time-reversal invariance and the
axial block structure reduces the computational complexity to
a manageable level. The two lengths characterizing the HO
basis, b⊥ and bz, have been optimized in a few nuclei for each
value of the quadrupole moment. For the others the oscillator

lengths computed for nearby nuclei are used. This optimization
procedure guarantees a good convergence for relative energies.
As the number of HFB configurations for each nucleus is large,
a robust and fast gradient-like algorithm to solve the HFB
equations is used [10,36]. The most evident advantage of this
method is the way it handles the constraints, which allows an
easy generalization to an arbitrary number of them.

The spontaneous fission lifetime formulas Eqs (4) and
(5) below depend crucially on the theory of the collective
mass B(Q20). We shall use two methods to calculate it
and compare in our results. The first is the well-known
cranking approximation to the adiabatic-time-dependent HFB
approximation [10]. The resulting mass is expressed in terms
of the moments M(−n) of the generating field Q20,

M(−n) =
∑
α>β

〈0|Q20|αβ〉 1

(Eα + Eβ)n
〈αβ|Q20|0〉 (1)

as [37–39]

B(Q20) = 1

2

M−3

(M−1)2
. (2)

Here |αβ〉 are distinct two-quasiparticle excitations and Eα +
Eβ is the excitation energy, neglecting the quasiparticle-
quasiparticle interaction (cranking approximation [37–39]).

An alternative method to calculate the mass is based on the
Gaussian overlap approximation to the generator coordinate
method (GCM). It is often simplified to obtain the expression
[10]

B(Q20) = 1

2

M2
−2

(M−1)3
. (3)

We shall calculate the lifetimes with both Eqs. (2) and
(3) and compare. We note that Ref. [40] compares several
forms of the mass, including Eqs. (2) and (3), in the context
of the Skyrme functionals. It is also important to mention
the dependence of the mass with the amount of pairing
correlations: It has been shown in Refs. [4,41] that the mass
is inversely proportional to the square of the pairing gap. It
means that the stronger the pairing correlations, the smaller
the mass.

Zero-point energy corrections to the HFB energy ε0(Q20)
are also considered in the ATDHFB and GCM approaches. In
addition, the rotational energy correction computed following
the phenomenological prescription of Ref. [42] is also sub-
tracted. This correction is very important to the shape of the
potential energy, as its value increases with deformation and
can reach several MeV for large deformations.

The spontaneous fission half-life is computed with the
standard WKB formalism of quantum mechanics. In the WKB
formalism the tsf is given (in seconds) by the formula (see
Ref. [4] for a discussion in the present context)

tsf = 2.86 10−21[1 + exp(2S)]. (4)

The action S along the Q20 constrained path is given by

S =
∫ b

a

dQ20

√
2B(Q20)(V (Q20) − (EGS + E0)), (5)
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where the integration limits a and b correspond to the
classical turning points which are determined by the condi-
tion V (Q20) − EGS − E0 = 0. For the collective quadrupole
inertia B(Q20) we have used both the ATDHFB and the
GCM expressions. The results obtained with the two different
theories can differ in several orders of magnitude as the
ATDHFB mass is known to be a factor in between 1.5 and
2 larger than the GCM mass. The potential energy V (Q20)
is given by the HFB mean-field energy corrected by zero-
point energies as described above, V (Q20) = EHFB(Q20) −
ε0(Q20) − ERot(Q20). Finally, an additional parameter, E0, is
added to the ground-state energy EGS. It is meant to represent
the true ground-state energy obtained after considering quantal
fluctuations in the quadrupole degree of freedom. This quantity
could be estimated to be half of the square root of the curvature
around the minimum divided by the collective inertia but
it is often taken as a free parameter or kept fixed at some
reasonable value. We have followed the latter approach with
E0 = 1.0 MeV and estimated the impact of considering a
larger value by repeating the calculations with E0 = 1.5 MeV.
The present framework has also been successfully applied to
the description of cluster emission as a highly asymmetric
fission process where the octupole moment is the relevant
degree of freedom [43].

The above expressions assume that the quadrupole moment
is the only relevant degree of freedom for fission. If other
degrees of freedom Qi were to be considered, the inertia should
be replaced by the standard formula [4,44]

B(s) =
∑
i,j

Bi,j

dQi

ds

dQj

ds
, (6)

where s represents a path in the multidimensional energy
surface. We have checked in our case that the contributions
of the octupole and hexadecapole degrees of freedom to the
above expression of the inertia are small.

The spontaneous fission half-life obtained in this way is
subject to several uncertainties that can lead to differences of
several orders of magnitude. The uncertainties are as follows.
(1) The height of the inner fission barrier gets reduced when
triaxial shapes are allowed in the mean-field calculation. The
amount of reduction is typically of a couple of MeV, but
it can show some isotopic modulation (see Ref. [17] for a
recent account in the actinide region). (2) The value of E0

influences tsf especially for long-lived isotopes where the
fission barrier is wide. The reason is that the value of E0 shifts
the classical turning points. (3) The values of the correlation
energy corrections to the HFB energy included in V (Q20) are
computed under certain assumptions and approximations and
a better estimation of their values can lead to some changes
to V (Q20). (4) The approximations involved in the evaluation
of the collective masses can lead to differences with the exact
value of the order of 40 or 50%. (5) The pairing correlation is an
important ingredient both in the evaluation of the zero-point
energy as well as in the evaluation of the collective inertia.
As shown below, changes of only a few per cent in the pairing
strength values can lead to changes in the theoretical estimation
of the half-lives in the range of 5 to 12 orders of magnitude.

On the other hand, the experimental values of the parame-
ters defining the potential energy of the fission process, namely
the inner and outer barrier heights and the excitation energy of
the fission isomer, are more robust quantities to compare with
as they are not as sensitive to pairing correlations as the other
parameters. However, these “experimental quantities” are
obtained by model-dependent assumptions that can mask the
physical meaning of the parameters. Therefore, although we
have compared our barrier height values with the experimental
ones, we prefer to deal with real observables like the trends in
spontaneous fission life times as a function of N and Z.

III. RESULTS

A. Comparison with other interactions

Before comparison with the experimental data, a com-
parison with the HFB results obtained with the two most
commonly used Gogny interactions, namely D1S and D1M,
is in order. The Gogny D1S interaction has been used [17]
in a thorough study of heavy nuclei properties, including
fission, and it has proved to reproduce quite nicely most of the
properties analyzed. On the other hand, the fission properties
of D1M [45] have not been analyzed in detail, yet but its
good behavior regarding other aspects of nuclear structure
like binding energies [45], radii [46], quadrupole [47,48],
and octupole [49] properties make it a good candidate for
comparison. As we have already made comparison [27] with
D1S concerning fission properties of actinides (240Pu) and
superheavies (262Sg), we will just explore another actinide:
the nucleus 234U.

In Fig. 1(a) we compare the HFB energy as a function of
Q20 for the three functionals in the nucleus 234U. We observe
how the shape of the three curves starting at Q20 = 0 b look
rather similar up Q20 = 60 b, apart from a constant shift of a
few MeV. From there on, the D1M interaction declines more
gently than D1S. The BCPM results are between D1M and D1S
but closer to D1M than to D1S. The decline of energy with
increasing quadrupole moment is correlated with the surface
energy coefficient in nuclear matter, which is larger in D1M
and BCPM than in D1S [27]. The other three curves only
present at large Q20 values correspond to HFB solutions with
two well-separated fragments. They intersect the one-fragment
curves at Q20 values around 130 b and show a fast quasilinear
decrease in energy as the quadrupole moment increases. The
charge and mass of each fragment are the ones that lead
to the minimum energy for each quadrupole moment. For
very large Q20 values the distance between the fragments
is larger than the range of the nuclear strong interaction
and therefore only the Coulomb repulsion energy between
the fragments plays a role. In this two-fragment regime
the quadrupole moment is directly linked to the separation
distance between fragments [43] and therefore increasing the
quadrupole moment is equivalent to separating the fragments,
in this way reducing the total energy of the system as a
consequence of a smaller Coulomb repulsion. Although the
two-fragment curves seems to intersect the one-fragment
ones, this is just a consequence of projecting out paths in a
multidimensional space of collective variables (quadrupole,
octupole, hexadecapole, necking, etc.) into a one-dimensional
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FIG. 1. (Color online) Comparison of mean-field quantities as a
function of the mass quadrupole moment Q20 for the 234U nucleus.
Curves starting at Q20 ≈ 120 b correspond to solutions with two
fragments. The BCPM EDF (black line, bullet symbol) as well
as the D1S (red times symbol) and D1M (blue plus symbol)
parametrizations of the Gogny force are included. In (a) the HFB
energy is given. In (b) the particle-particle correlation energy Epp =
−Tr(�κ) is plotted for protons (dashed) and neutrons (full) for the
three different sets of calculations. In panel (c) the octupole (short
dashed) and hexadecapole (full line) moments are given. The two long
dashed curves correspond to the two-fragment solutions. Finally, in
(d) the ATDHFB collective inertia is depicted.

plot (see below) [50]. There is a minimum action path with a
ridge connecting both the one-fragment and the two-fragment
curves that goes along the multidimensional space. This path
contributes to the action that enters the WKB formula to
compute the tsf half-lives. As the determination of this path
is cumbersome and its contribution to the action is small, we
will neglect its contribution to the action. This simplification
amounts to consider both curves as intersecting ones.

A measure of pairing correlations, the pairing interaction
energy Epp = −Tr(�κ) is shown as a function of the mass
quadrupole moment for protons (dashed lines) and neutrons
(full lines) in Fig. 1(b). Again, the shape of the curves
looks rather similar for the three functionals but BCPM

yields lower values of Epp than D1S and D1M. Those lower
values correspond to less intense pairing correlations in the
BCPM case with a severe quenching of the proton’s pairing
correlations. In Fig. 1(c), the octupole and hexadecapole
moments as a function of Q20 are given. The results for the
three EDFs are very similar, to the extent that they appear
as a single curve for many Q20 values. The full curves
correspond to the one-fragment solutions, whereas the long
dashed ones correspond to the scissioned configurations. As
mentioned before, the values of the multipole moments of
the two kinds of curves differ substantially and therefore the
paths are quite separated in the multidimensional space of
parameters. Finally, in Fig. 1(d), the collective inertia in the
ATDHFB approximation is plotted. As in the case of the
HFB and particle-particle energies the shape of the curves
for the different interactions are quite similar but the BCPM
inertia is larger than the inertias obtained with the Gogny
forces by up to a factor of three. The large value of the
BCPM inertia is a direct consequence of the quenched
pairing correlations: Fewer pairing correlations imply a lower
gap and therefore smaller two-quasiparticle energies. As the
two quasiparticle energies enter the collective inertia in the
denominator, quenched pairing correlations imply enlarged
collective inertias [4,41]. On the other hand, the D1M inertia
is around 15% smaller than the D1S one, consistent again
with the quenched pairing correlations in D1M as compared
to the D1S ones. The GCM inertias, not depicted, look rather
similar in shape to the ATDHFB ones but are a factor of 0.5–0.6
smaller. The inertia for the two-fragment solutions corresponds
to the reduced mass of the two fragments [43] and is constant
with quadrupole deformation.

In the calculation of the tsf half-life with the WKB formula
the configuration with the lowest energy is always chosen.
This is an approximation that neglects the path in the multidi-
mensional space that connects the one-fragment solution with
the two-fragment solution and therefore the tsf obtained are
to be considered as lower bounds. In order to make a more
quantitative assessment on the validity of this assumption, we
have carried out a calculation where the number of particles
in the neck QN has been constrained from its value in the
one-fragment solution (around 13.5) to the value in the two-
fragment case (around 3) and keeping the mass quadrupole
moment constant at Q20 = 140 b. When QN decreases the
system goes through a ridge around 5 MeV high and located
at QN = 5.5. However, the corresponding collective inertia
is small compared to the inertia of the quadrupole degree of
freedom and therefore this path connecting the one-fragment
with the two-fragment configurations only contributes an
extra 8% to the WKB action increasing tsf by 4 orders of
magnitude. The choice of the path and collective coordinate
is not necessarily optimal and therefore that increase of four
orders of magnitude has to be considered as an upper limit.

As is well known, inclusion of triaxiality leads to a reduction
of the inner barrier height or the order of one or two MeV.
However, the triaxial inertia is larger than the axial one [17],
leading to a larger action in the exponent of the WKB formula
(see, however, Ref. [51] for another result). As a consequence,
the axial path is favored by the dynamics and therefore triaxial
effects have not been included in the present calculation. The
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values of the tsf half-life obtained for the three EDFs computed
with the GCM inertias are tsf = 2.3 × 1038 s, 4.7 × 1029 s, and
1.3 × 1023 s for BCPM, D1M, and D1S, respectively. The large
differences observed of up to 15 orders of magnitude can be
attributed partly to the difference in the HFB energy curve but
mostly to the very different values of the collective inertias.
The previous tsf values have been obtained without taking
into consideration the reduction of the inner barrier height
as a consequence of triaxiality. Also, increasing the value of
the E0 parameter from 1 to 1.5 MeV reduces the half-lives
by 6, 2, and 4 orders of magnitude respectively. In any case,
the values obtained are several orders of magnitude larger
than the experimental value of 4.7 × 1023 s except for Gogny
D1S. If the ATDHFB inertias are used instead of the GCM
ones, much longer lifetimes are obtained: tsf = 7.8 × 1052

s, 5 × 1040 s, and 2.9 × 1032 s for BCPM, D1M, and D1S,
respectively. This tendency to produce longer lifetimes when
the ATDHFB inertias are used is common to all the isotopes
considered in this study. The ATDHFB inertias are typically
a factor 1.5 larger than the GCM ones (see Refs. [40,42]
for examples), implying a 20% increase in the action and
therefore a 20% increase in the exponent of the penetration
factor. This is a source of theoretical uncertainty in the
evaluation of tsf that deserves further investigation. Another
source of uncertainty comes from the fact that the inertias
are computed in the “perturbative cranking approximation,”
where the energy of elementary excitations is replaced by
the sum of HFB quasiparticle energies. This approximation
can lead to overestimation in the inertias as large as 40–50%
for ground-state configurations [42]. Given the impact of
these effects on the fission observables a better quantitative
understanding is highly desirable. In the following, to simplify
the presentation, we will consider only the GCM inertias in
the evaluation of the lifetimes.

In Fig. 2 contour plots of the densities for three values
of the quadrupole moment are depicted. They are obtained in
calculations with BCPM and differ little from the same quanti-
ties computed with D1M and D1S. For the quadrupole moment
Q20 = 130 b, two densities, corresponding to the one-fragment
(1F) and two-fragment (2F) solutions, are presented. The two
solutions with Q20 = 130 b have different values of Q30 (40.72
b3/2 for the 1F solution and 23.44 b3/2 for the 2F one) and
Q40 (99.75 b2 for the 1F solution and 68.90 b2 for the 2F
one). The two-fragment solution shows a spherical fragment
that corresponds to Z = 51.60 and N = 82.00 and an oblate
deformed fragment with Z = 40.40 and N = 60.00. The non-
integer proton and neutron numbers are due to the existence
of low density nuclear matter between the two fragments. The
oblate and slightly octupole deformed fragment (β20 = −0.21
and β30 = 0.03 acquires this shape to minimize the rather large
Coulomb repulsion energy (assuming pointlike fragments, the
classical repulsion energy amounts to 196 MeV). This effect
has also been observed in other calculations [52,53]. This is
an interesting result because it is commonly assumed [50] that
the fission fragments only have spheroidal shapes. Coming
back to the one-fragment density at Q20 = 130 b, it is worth
mentioning that the number of particles with z between −∞
and 1 fm are Z = 52.84 and N = 82.92. Increasing the range
to 2 fm leads to Z = 54.35 and N = 85.47. Those are the
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FIG. 2. Contour plot of the total density of 234U for three different
configurations along the fission path with quadrupole deformation
parameters indicated in each panel. Contour levels correspond to
densities between 0.02 and 0.16 fm3 in steps of 0.02 fm3. The results
correspond to the BCPM EDF.

expected range of Z and N values in the heaviest fragment
according to some models of scission [50]. Whether scission
takes place according to this scheme or is driven by magic
numbers of the fragments is still subject to discussion but the
comparison with experimental systematics points to the former
explanation as the most likely one.

B. Varying pairing strengths

In the BCPM functional the pairing interaction is taken as
a density-dependent contact pairing interaction with strength
parameters fixed to reproduce the neutron matter pairing gap
of the Gogny force [32]. We have shown in the previous
subsection that the particle-particle correlation energy, a
quantity related to the amount of pairing correlations, was
much smaller for BCPM than for the Gogny forces, leading
to much larger collective inertias. It is therefore reasonable
to investigate the behavior of fission properties as a function
of the pairing strength for the same functional. To this end, a
parameter η has been introduced as a multiplicative factor in
front of the pairing gap field �kl . For the sake of simplicity
we have considered a unique parameter for both protons
and neutrons, although the use of different parameters will
give more flexibility to reproduce the experimental data. The
outcome of the calculations with η values of 1.05 and 1.10
for the nucleus 234U are presented in Fig. 3. We observe in
Fig. 3(a) that increasing the pairing strength by 10% (η = 1.10)
leads to an overall gain of the order of 1 MeV in binding
energy. For the ground state this 1-MeV energy gain has to
be compared to the 1 MeV of pairing correlation energy for
the standard BCPM. The gain is even larger (1.6 MeV) for
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FIG. 3. (Color online) Same as shown in Fig. 1 but for different
pairing strengths. The pairing strengths are given in terms of the
reference value and a scaling parameter η taking the values 1.00 (the
standard calculation), 1.05, and 1.10.

the configuration with Q20 = 26 b and corresponding to the
top of the inner barrier. However, the standard BCPM pairing
correlation energy is 2.06 MeV for that configuration. The net
effect of increasing the pairing strength by 10% is to decrease
the inner barrier eight (BI) by 0.6 MeV, whereas the other
parameters, namely the outer barrier height BII and the fission
isomer excitation energy, remain more or less the same. The
particle-particle correlation energies Epp shown in Fig. 3(b)
for protons and neutrons increase with increasing η but the
slope is larger for neutrons than for protons. The multipole
moment values depicted in Fig. 3(c) do not change at all when
the pairing strength is increased and the different values lie
on top of each other for different η values. Finally, the impact
on the collective inertia is clearly visible in Fig. 3(d) and is
associated to the inverse dependence of the mass on the square
of pairing gap [4,41]. Increasing the pairing strength by 5%
reduces the collective inertia by roughly 30% whereas a 10%
increase leads to a reduction of 50%. The consequences of
these reductions on the tsf are dramatic, decreasing its value
by 11 orders of magnitude in going from η = 1.0 to η = 1.05
(tsf = 8.0 × 1027 s) and six additional orders of magnitude in

going from η = 1.05 to η = 1.10 (tsf = 6.7 × 1021 s). This
result is a clear indication of the very important role played
by pairing correlations in the description of fission. The
result suggests that experimental fission data could be used
to fine-tune the pairing strength instead of more traditional
approaches based on odd-even staggering. From a theoretical
perspective, the result also points to the very important role
that the correlations associated to particle number symmetry
restoration should have in fission dynamics. Restoring particle
number symmetry usually leads to larger pairing correlations
than the ones present at the mean-field level and therefore
will have a tremendous impact on fission lifetimes. In this
respect it is worth mentioning that the dependence on density
of BCPM is on integer powers of the density, allowing the
use of the regularization techniques suggested to solve some
technical problems associated to the evaluation of the energy
kernel overlaps required by symmetry restoration theories (see
Refs. [56,57] and references therein).

Given the large variability of the lifetimes with the different
parameters entering the WKB formula, a direct comparison
with the experimental data is meaningless and only compar-
isons with the trends along a series of nuclei or isotopes, all of
them computed in the same conditions, can lead to meaningful
conclusions regarding fission properties.

C. Nuclei with known experimental data

In order to validate BCPM as a functional able to describe
fission properties, we have performed calculations for those
even-even nuclei where the spontaneous fission half-life has
been measured. We will also compare the parameters defining
the theoretical potential energy surface, namely the inner and
outer barrier heights (BI and BII) and the excitation energy of
the fission isomer EII with available experimental data [54,55].
It has to be mentioned that the experimental data for BI and
BII [55] is model dependent and therefore less reliable that the
pure tsf data. In Table I the experimental and theoretical values
for BI, BII, and EII are given for all nuclei where experimental
data exist [54,55]. The theoretical values have been obtained
by considering the HFB energy as a function of Q20 with the
rotational energy correction (computed in the way described
in the previous section) subtracted. The effect of the zero-
point energy correction ε0(Q20) has not been included, mainly
because it is almost constant as a function of Q20. We notice
that the theoretical predictions for BI are typically one or two
MeV larger than experiment. This is not surprising as it is well
known that the theoretical inner fission barrier is affected by
triaxiality and its height typically decreases by one or two MeV
when the effect is included in the calculation [17]. Triaxiality
is not included at present because we still do not have access
to a triaxial code incorporating the BCPM functional but work
in this direction is in progress. The situation is slightly better
in the comparison with the EII and BII values. For them, no
significant triaxial effects are expected and the agreement with
experiment is better than for the BI . In Ref. [9] a thorough
comparison of these data with various model predictions has
been made. In that paper, the rms deviations for the fission
isomer energy and second barrier height are given for several
mean-field models. The BCPM values σ (EII) = 0.57 MeV
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TABLE I. Fission barrier height parameters BI (inner) and BII

(outer) as well as excitation energy of the fission isomer EII. The
three parameters are given in MeV. The theoretical values have been
obtained from the rotational energy corrected HFB potential energy
surface. The experimental values are taken from [54] for the EII and
from [55] for the B’s.

Nucleus BTh
I ETh

II BTh
II B

Exp
I E

Exp
II B

Exp
II

234U 5.87 1.78 5.59 4.80 – 5.50
236U 6.49 1.90 6.04 5.0 2.75 5.67
238U 6.99 2.03 6.54 6.30 2.55 5.50
238Pu 6.91 1.85 5.20 5.60 2.4 5.10
240Pu 7.43 2.08 5.69 6.05 2.8 5.15
242Pu 7.72 2.27 6.30 5.85 2.2 5.05
244Pu 7.89 2.47 6.30 5.70 – 4.85
240Cm 6.8 1.2 3.90 – 2 –
242Cm 7.4 1.7 4.5 6.65 1.9 5.0
244Cm 8.0 1.9 5.0 6.18 2.2 5.10
246Cm 8.4 2.3 5.5 6.0 – 4.80
248Cm 8.34 2.04 5.47 5.80 – 4.80
250Cf 8.65 1.25 4.24 – – 3.8
252Cf 8.35 0.83 3.84 – – 3.5

and σ (BII) = 0.72 MeV are similar in magnitude to the ones of
UNEDF1 [8], a Skyrme variant specifically tailored to describe
fission. This is a quite satisfactory result, taking into account
that BCPM does not use any fission data in its fit.

In Fig. 4 the theoretical tsf results obtained for different
choices of the E0 and η parameters are compared to the known
experimental values. The experimental tsf values [58] span a
range of 27 orders of magnitude for a mass range A = 232–
286. The theoretical predictions, not including triaxial effects
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FIG. 4. (Color online) Experimental tsf half-lives (bullets) are
compared to different theoretical results (open symbols) for several
isotopic chains where experimental data exists. The tsf are plotted as
a function of the fissibility parameter Z2/A. See text for details.

and computed with the GCM masses and zero-point energies,
span an even larger range of values and show a large variability
depending upon the choices for the parameters. Focusing on
the “standard” theoretical values η = 1.0 and E0 = 1.0 we
observe differences with the experiment of up to 16 orders
of magnitude for the lighter nuclei that steadily decrease to
differences of just a couple of orders of magnitude for the
heavier ones. The largest differences are observed for nuclei
with higher and wider barriers where the impact of parameters
like E0 is larger. The comparison in isotopic chains indicate
that the trend with neutron number compares much better with
the experiment than the absolute values. The same conclusion
can be drawn for the overall trend with mass number as can
be inferred from the plot. Therefore, we conclude that the
HFB predictions, although subject to large uncertainties due to
uncontrolled approximations in the evaluation of the different
parameters, can be used to estimate with reasonable confidence
the trends of tsf with mass number. The second conclusion
drawn from this plot is the extreme sensitivity of the half-lives
to changes in η and E0: Increasing the pairing strength by 10%
(η = 1.10) decreases tsf by several orders of magnitude. In the
uranium isotopes the reduction is of 12 orders of magnitude,
bringing the theoretical predictions on top of the experimental
data. On the contrary, in the Fm and No isotopic chains the
reduction represents only 6 orders of magnitude but worsens
the agreement with experiment. On the other hand, the increase
of E0 from 1 to 1.5 MeV also reduces tsf by several orders
of magnitude, but the reduction is not as severe as with the
increase of pairing strength. In the uranium case, the reduction
represents on the average 6 orders of magnitude. Incidentally,
the tsf values obtained with η = 1 and E0 = 1.5 MeV are
in most of the cases very close to the results (not shown)
corresponding to η = 1.05 and E0 = 1 MeV.

The sensitivity of the results to the pairing strength demands
a theory beyond HFB to describe pairing correlations. A first
candidate would be particle number restoration supplemented
with configuration mixing using the pairing gaps as collective
coordinates. Also the sensitivity to the E0 parameter justifies
an effort to better understand its rationale. This is obviously a
task for the future.

Another important piece of relevant information is the mass
distribution of the fission fragments. The mass of the fragments
is determined by the nuclear shape in the neighborhood of the
scission point. As the scission point is difficult to characterize
in a mean-field theory that explores just a few degrees of
freedom, we have preferred to take a different approach that
involves the evaluation of quasifusion configurations. They are
obtained by constraining the number of particles in the neck
of the parent nucleus,

QN = 〈φ|Q̂N (z0, C0)|φ〉,
to a small value and then releasing the constraint to do a
self-consistent calculation. Most of the time the self-consistent
solution ends up in a solution with two well-separated
fragments. To make sure that the configuration is the lowest
in energy the procedure is repeated with different choices of
the neck operator parameters z0 (position of the neck along
the z direction) and C0 (the width of the neck distribution).
Those configurations are constrained to larger quadrupole

054325-7



SAMUEL A. GIULIANI AND LUIS M. ROBLEDO PHYSICAL REVIEW C 88, 054325 (2013)

40

50

60

70

80

90

100

110

120

130

140

150

160

Z
1,

 Z
2 

  N
1,

 N
2 

 A
1,

 A
2 

23
8P

u
24

0P
u

24
2P

u
24

4P
u

24
8C

m
25

0C
f

25
2C

f
25

0F
m

25
2F

m
25

4F
m

25
6F

m
25

2N
o

25
4N

o
25

6N
o

25
6R

f
25

8R
f

26
0R

f
25

8S
g

26
0S

g
26

2S
g

26
4H

s
28

6F
l

Z

N

A

FIG. 5. (Color online) Proton (Z1,2), neutron (N1,2), and mass
number (A1,2) of the two fragments emitted by the fission of the
parent actinides (perpendicular labels on top). The magic numbers 50
and 82 as well as its sum are highlighted with horizontal lines.

moments in order to separate the fragments (please remember
that for two fragments the quadrupole moment is proportional
to the separation of the fragments [43]). An example of
those quasifusion curves has already been presented in Fig. 1.
In Fig. 5 the proton (Z) and neutron (N ) numbers of the
fragments obtained for the actinides considered are given. The
Z values of the fragments are mostly determined by the Z = 50
magic number except in 252Fm. Also for the heaviest nucleus
considered 266

114Fl larger Z values are observed. For neutrons,
the magic N = 82 seems also to be dominant neutron number
but here the exceptions are more numerous. For the plutonium
and heavier isotopes the heaviest fragment has a mass
number between 130 and 132, 10 units less than the average
experimental value of Refs. [59,60]. The discrepancy can be
attributed to the lack of quantum fluctuations in our model that
can modify substantially the raw mean-field numbers [16].

Obviously, the numbers given here are meant to represent
the peaks of the fragments’ mass distribution, which is a
broad distribution as a consequence of exchange of particles
during the scission process as well as a consequence of
neutron evaporation. A better dynamical theory is required (see
Ref. [16] as an example of such theory) in order to reproduce
the experimental broad distribution.

D. Neutron-rich uranium isotopes

In the previous section we concluded that the description
of fission based on the HFB theory is subject to large
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FIG. 6. (Color online) HFB energies as a function of the
quadrupole moment Q20 for some neutron-rich uranium isotopes.
The energies have been shifted upwards for the heavier isotopes in
order to fit all the curves in a single plot. Along with the one-fragment
curves starting at Q20 = 0 the curves corresponding to the energy of
the two fragments resulting in fission are given.

uncertainties coming from the poor understanding of the way
the different quantities entering the WKB formula should
be determined. However, we also concluded that the HFB
theory is reproducing reasonably well the experimental tsf

trends with mass number. Encouraged by the result, we have
performed calculations in the uranium isotopic chain from the
light uranium 226U up to the neutron drip line corresponding
to 282U with the aim of understanding and analyzing the trends
in spontaneous fission half-lives and the mass of the emerging
fission fragments. To illustrate the results, the HFB potential
energies for the 240U, 250U, 260U, 270U, and 280U isotopes are
depicted as a function of Q20 in Fig. 6. The energies of the
heavier isotopes have been shifted by different amounts (55,
100, 135, and 160 MeV, respectively) to fit all the curves
in a single plot. In addition, the curves corresponding to the
two-fragment solution with the lowest energy are depicted.

We observe the ground-state evolution from a quadrupole
deformed ground state in 240U with β20 = 0.26 to a spherical
one for 270U (corresponding to N = 178) and for 280U. It is
also worth mentioning the existence of a second fission isomer
in 240U (excitation energy of 3.9 MeV) and 250U (excitation
energy of 3.8 MeV, lower than the excitation energy of the first
isomer). The situation in 260U is not as well defined as in the
previous cases as there are three very swallow minima. The
second one could be associated to the first fission isomer that is
shifted to larger quadrupole moment values and zero octupole
moment. Two fission isomers reappear in 270U but both are
located at a very high excitation energy (around 9 MeV) and
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FIG. 7. (Color online) Experimental tsf half-lives (bullets) are
compared to different theoretical results (open symbols, fission; aster-
isk α decay) for the uranium isotopes up to the drip line nucleus 282U.

different quadrupole deformations than the ones in the light
uranium isotopes. As a consequence of the increasing height
and widening of the fission barriers as the neutron number
approaches the neutron drip line, we expect increasing tsf

values. Our fission barrier heights are consistent with the
semiclassical values obtained in Ref. [61] and remarkably
differ from the macroscopic-microscopic model predictions
discussed in that paper. Both our results and the semiclassical
Thomas Fermi results of Ref. [61] support enhanced stability
against fission as the neutron drip line is approached. In
Fig. 7 the spontaneous fission half-lives tsf of the uranium
isotopes computed with different choices of the η and E0

parameters are plotted as a function of mass number A. Like
the previous cases, the tsf values have been obtained with the
GCM collective mass and not taking into account the effects
of triaxiality in the first barrier. The usual range of up to 12
orders in magnitude depending on the choice of parameters is
observed. However, the trend with mass number A is the same
in all the four sets of parameters considered. This again gives
us confidence in the validity of the conclusions extracted from
the trends with mass number. A decrease in the tsf values is
observed up to mass number A = 256, where the trend changes
to a steady increase with mass number up to 276U, where the tsf

values reach a maximum that corresponds to a neutron number
of 184 that is precisely one of the predicted magic numbers
in the superheavy region (see Ref. [62] for a discussion and
other predictions). The two neutron separation energy drops
by 3 MeV in going from A = 276 (4.99 MeV) to A = 278
(S2N = 1.94 MeV), indicating extra stability. The half-lives for
this and the other isotopes beyond 260U are very large and the
corresponding nuclei can be considered as stable against the
spontaneous fission decay channel. As the BCPM functional
has been created to provide a reasonable description of masses,
it is reasonable to use its predictions for the binding energies
of uranium and thorium to compute the half-lives of α decay
using the phenomenological Viola-Seaborg formula [63,64].
The results for the uranium isotopes are plotted as asterisks
in the figure. We observe a steady increase of tα with mass
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FIG. 8. (Color online) The number of protons (Z1,2), neutrons
(N1,2), and mass number (A1,2) of the fission fragments is plotted as
a function of the mass number A of the parent uranium isotope.

number that reaches its maximum at A = 264, where α decay
is no longer favorable energetically. From A = 244 on fission
is faster than α decay.

In Fig. 8 the proton, neutron, and mass numbers of the
fragments in the fission of the uranium isotopes are plotted as
a function of mass number A. Those numbers are obtained by
integrating the densities of each of the fragments coming out
of the two-fragment (fusion valley) self-consistent solutions
mentioned before and corresponding to the lowest energy.
They do not take into account the dynamics of rupture in
the scission point that determines the fate of the protons and
neutrons present in the neck prior to scission. In some cases,
there are additional fusion valleys with different masses of
the fragments but they lie higher in energy. The issue of
how to describe dynamically the evolution of the system
through those valleys is a very interesting subject of research
(see, for instance, Ref. [16]) with many practical applications
(the real fission fragment mass distribution) but exceeds the
scope of the present paper. The numbers discussed below are
to be taken as a rough indication of the peaks (most favorable
mass) of the mass distribution of fragments prior to neutron
emission. For all the nuclei considered, the number of neutrons
in one of the fragments always corresponds to the magic num-
ber N = 82. The neutron number of the other fragment varies
linearly accordingly to the mass number of the parent. On the
other hand, the number of protons, that is close to the magic
number Z = 50 for the light isotopes (in good agreement with
experiment [65]) varies linearly with mass number except for
the isotopes 238−244U, where it stabilizes at Z = 50. For the
256U isotope a symmetric splitting with equal fragments (Z =
46 and N = 82) is obtained. Concerning the mass distribution
of the fragments, the heavy fragment has a mass number
around 136 for the light isotopes that decreases with the mass
number of the parent until the 256U isotope is reached. At this
point the mass number of the heavy isotope starts to increase
linearly. This change in tendency is due to the increasing
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number of neutrons: as the number of neutrons increases, the
fragment with N = 82 is no longer the heaviest one.

IV. CONCLUSIONS

The fission properties of several actinides and superheavy
nuclei have been computed with the recently proposed BCPM
EDF. The theoretical results for the spontaneous fission half-
lives show a large variability consequence of uncertainties in
the evaluation of some parameters of the theory and also on
the strong dependence of the collective inertia with pairing
correlations. As a consequence of the large uncertainties in
the theoretical results we are only able to compare with the
experimental data trend with mass number (for instance,
the reduction by 27 orders of magnitude in the spontaneous
fission half-lives in going from A = 232 to A = 286). The
theoretical predictions seem to reproduce such a trend, giving
us confidence in the convenience of the method and EDF
for the study of fission properties of neutron-rich uranium
isotopes. There we find that the spontaneous fission half-lives
remain more or less constant up to A = 260, where they
increase enormously as a consequence of the proximity to the
magic neutron number N = 184. Therefore, it is confirmed
the prevalence of this magic number in a extreme neutron-rich
case. On the other hand, a comparison of the parameters
defining the potential energy surface for fission (inner and
outer barrier heights and fission isomer excitation energies)

with the model-dependent “experimental data” show a rather
good agreement that gives us additional confidence on the
validity of our conclusions. The results obtained clearly show
that more attention has to be paid to a proper description
(including beyond-mean-field effects) of pairing correlations
in the configurations relevant to fission. The evaluation of the
quasifission valley in the HFB model also allows us to predict
the peaks of the mass distribution of fission fragments. It is
shown that the magic proton number Z = 50 and the magic
neutron number N = 82 play an important role in determining
the mass of the fragments.

To conclude, our study has shown the applicability of
the BCPM EDF for fission studies in heavy and superheavy
nuclei. We have also pointed out the large variability of the
theoretical predictions to the models used to evaluate the
relevant parameters. However, this variability seems to respect
the trend with mass number of the spontaneous fission half-life
and therefore we have applied our method to study fission
properties of the uranium isotopes up to the neutron drip line.
It is shown that beyond A = 264 the uranium isotopes can be
considered as stable against fission and α decay.
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