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Extension of coupled-cluster theory with a noniterative treatment of connected triply excited
clusters to three-body Hamiltonians
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We generalize the coupled-cluster (CC) approach with singles, doubles, and the noniterative treatment of triples
termed �CCSD(T) to Hamiltonians containing three-body interactions. The resulting method and the underlying
CC approach with singles and doubles only (CCSD) are applied to the medium-mass closed-shell nuclei 16O, 24O,
and 40Ca. By comparing the results of CCSD and �CCSD(T) calculations with explicit treatment of three-nucleon
interactions to those obtained using an approximate treatment in which they are included effectively via the zero-,
one-, and two-body components of the Hamiltonian in normal-ordered form, we quantify the contributions of the
residual three-body interactions neglected in the approximate treatment. We find these residual normal-ordered
three-body contributions negligible for the �CCSD(T) method, although they can become significant in the
lower-level CCSD approach, particularly when the nucleon-nucleon interactions are soft.
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I. INTRODUCTION

Chiral effective field theory (EFT) provides a systematic
link between low-energy quantum chromodynamics (QCD)
and nuclear-structure physics [1–7]. To make accurate QCD-
based predictions using ab initio many-body methods employ-
ing Hamiltonians constructed within chiral EFT, the inclusion
of three-nucleon (3N ) forces is inevitable [6,7], affecting
various important nuclear properties, such as binding and ex-
citation energies [8–14]. While some many-body approaches,
such as the no-core shell model (NCSM) [15–20] and its
importance-truncated (IT) extension [18,21,22] or coupled-
cluster (CC) theory [23–30] truncated at the singly and
doubly excited clusters (CCSD) [22,31–42] have already been
extended to the explicit treatment of 3N interactions and were
successfully applied to light and medium-mass nuclei [10,11,
14,43,44], other approaches remain to be generalized to the
explicit 3N case. Among these are the more quantitative CC
approaches, including those based on a noniterative treatment
of the connected triply excited clusters on top of CCSD,
such as CCSD(T) [43,45], CR-CCSD(T) [33,35–37,46–51],
CCSD(2)T [52–55], �CCSD(T) [14,40,44,56–59], and CR-
CC(2,3) [22,38,41,60–63], or the in-medium similarity renor-
malization group [13,64].

Considering the substantial cost of ab initio many-body
computations with 3N interactions, it is important to examine
how much information about the 3N forces has to be
included in such calculations explicitly. A common practice in
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nuclear-structure theory is to incorporate 3N forces into
the many-body considerations with the help of effective
interactions that can provide information about these forces via
suitably re-defined lower-particle terms in the Hamiltonian.
In particular, the normal-ordering two-body approximation
(NO2B), where normal ordering of the Hamiltonian becomes
a formal tool to demote information about the 3N interac-
tions to lower-particle normal-ordered terms and the residual
normal-ordered 3N term is subsequently discarded, has led
to promising results in NCSM and CCSD calculations for
light and medium-mass nuclei [10,11,14,43,44]. In the case
of the IT-NCSM and CCSD approach, contributions from the
residual 3N interactions have been shown to be small [11,43,
44], although not always negligible [11,44]. In many cases
one needs to go beyond the CCSD level within the CC
framework to obtain a highly accurate quantitative description
of several nuclear properties, including binding and excitation
energies [22,33,35–38,40,41,46,59,65]. Thus, a more precise
assessment of the significance of the residual 3N contribution
in the normal-ordered Hamiltonian at the CC theory levels that
incorporate the connected triply excited clusters in an accurate
and computationally manageable manner, such as CCSD(T),
�CCSD(T), and CR-CC(2,3), is an important and timely ob-
jective. It is nowadays well established that once the connected
triply excited clusters are included in the CC calculations, the
resulting energies can compete with the converged NCSM,
high-level configuration interaction (CI), or other nearly exact
numerical data, which is a consequence of the use of the
exponential wave function ansatz in the CC considerations,
where various higher-order many-particle correlation effects
are described via products of low-rank excitation operators (for
the examples of the more recent nuclear-structure calculations
illustrating this statement, see Refs. [14,22,33,35–38,40–44,
46,59,65]; cf., also, Ref. [66]). This makes the examination of
the CC models that account for the connected triply excited
clusters, in addition to the singly and doubly excited clusters
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and their products captured by CCSD, and their extensions to
3N interactions even more important.

In our earlier work on CC methods with noniterative
treatment of the connected triply excited clusters (called
triples) using two-nucleon (NN ) interactions in the Hamil-
tonian, the highest theory level considered thus far was CR-
CC(2,3) [22,41]. The experience of quantum chemistry, where
several CC approximations of this type have been developed,
indicates that CR-CC(2,3) represents the most complete and
most robust form of the noniterative triples correction to
CCSD (cf., e.g., Refs. [60–62,67–70]), producing results that
in benchmark computations are often very close to those
obtained with a full treatment of the singly, doubly, and triply
excited clusters via the iterative CCSDT approach [71,72], at
a small fraction of the computing cost [60,61,70]. However,
there also exist other methods in this category, such as
the �CCSD(T) approach that was examined in the nuclear
context as well [14,44,59], which represent approximations
to CR-CC(2,3) [60–62,70] and are almost as effective in
capturing the connected triply excited clusters in closed-shell
systems, while simplifying programming effort, particularly
when 3N interactions need to be examined and when efficient
angular-momentum-coupled codes have to be developed.
Thus, although we would eventually also like to work on an
angular-momentum-coupled formulation of the CR-CC(2,3)
method for Hamiltonians including 3N forces, in this first
work on the examination of the role of 3N interactions in
the CC theory levels beyond CCSD, we focus on the simpler
�CCSD(T) approach. Following the considerations presented
in Ref. [57] for the case of two-body Hamiltonians and those
presented in Refs. [60,61,63] in the more general CR-CC(2,3)
context, which help us to identify additional terms in the
equations due to the 3N forces, we derive the �CCSD(T)-style
triples energy correction for three-body Hamiltonians which
we subsequently apply to the medium-mass closed-shell nuclei
16O, 24O, and 40Ca. By comparing the CCSD and �CCSD(T)
binding energies obtained with the explicit treatment of 3N
interactions with their counterparts obtained within the NO2B
approximation, we quantify the contributions of the residual
3N interactions that are neglected in the NO2B approximation
at two different CC-theory levels, with and without the
connected triply excited clusters.

II. THEORY

A. Brief synopsis of coupled-cluster theory

The CCSD and �CCSD(T) approaches examined in this
study, and the CR-CC(2,3) counterpart of �CCSD(T) used in
our considerations as well, are examples of approximations
based on the exponential ansatz of single-reference CC theory,
in which the ground state |�〉 of an A-particle system is
represented as [23–30]

|�〉 = eT |�〉, (1)

where |�〉 is the reference determinant (in the computations
reported in this paper, the Hartree-Fock state) and

T =
A∑

n=1

Tn (2)

is a particle-hole excitation operator, defined relative to the
Fermi vacuum |�〉 and referred to as the cluster operator,
whose many-body components,

Tn =
(

1

n!

)2 ∑
i1 ,...,in
a1 ,...,an

t
a1...an

i1...in
a†

a1
· · · a†

an
ain · · · ai1 , (3)

generate the connected wave-function diagrams of |�〉. The
remaining linked, but disconnected contributions to |�〉 are
produced through the various product terms of the Tn operators
resulting from the use of Eqs. (1)–(3). Here and elsewhere in
this article, we use the traditional notation in which i1, i2, . . .
or i, j, . . . denote the single-particle states (orbitals) occupied
in |�〉, a1, a2, . . . or a, b, . . . denote the single-particle states
unoccupied in |�〉, and p, q, . . . , p1, p2, . . . , or q1, q2, . . .
represent generic single-particle states.

Typically, the explicit equations for the ground-state energy
E, which can be written as

E = Eref + �E, (4)

where

Eref = 〈�|H |�〉 (5)

is the independent-particle-model reference energy and �E
its correlation counterpart, and the cluster amplitudes t

a1...an

i1...in
defining the many-body components Tn of T , are obtained by
first inserting the ansatz for the wave function |�〉, Eq. (1),
into the Schrödinger equation, HN |�〉 = �E|�〉, where

HN = H − Eref (6)

is the Hamiltonian in normal-ordered form relative to |�〉.
Then, premultiplying both sides of the resulting equation
on the left by e−T yields the connected cluster form of the
Schrödinger equation [26,27],

HN |�〉 = �E|�〉, (7)

where

HN = e−T HN eT = (HN eT )C (8)

is the similarity-transformed Hamiltonian or, equivalently, the
connected product of HN and eT (designated by the subscript
C). Finally, both sides of Eq. (7) are projected on the reference
determinant |�〉 and the excited determinants∣∣�a1...ak

i1...ik

〉 = a†
a1

· · · a†
ak

aik · · · ai1 |�〉 (9)

that correspond to the particle-hole excitations included in T .
The latter projections result in a nonlinear system of explicitly
connected and energy-independent equations for the cluster
amplitudes t

a1...ak

i1...ik
[26–29] (cf., e.g., Refs. [22,25,30,51,70,73–

77] for review information),〈
�

a1...an

i1...in

∣∣HN |�〉 = 0, i1 < · · · < in, a1 < · · · < an, (10)

where HN is defined by Eq. (8) and n = 1, . . . , A, whereas
the projection of Eq. (7) on |�〉 results in the CC correlation
energy formula

�E = 〈�|HN |�〉. (11)
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If one is further interested in properties other than energy,
which require the knowledge of the ket state |�〉 and its bra
counterpart,

〈�̃| = 〈�|(1 + �)e−T , (12)

which satisfies the biorthonormality condition 〈�̃|�〉 = 1, and
where

� =
A∑

n=1

�n, (13)

with

�n =
(

1

n!

)2 ∑
i1 ,...,in
a1 ,...,an

λi1...in
a1...an

a
†
i1

· · · a†
in
aan

· · · aa1 , (14)

is the hole-particle deexcitation operator generating 〈�̃|, we
also have to solve the linear system of the so-called �
equations [22,70,73,75–81],

〈�|(1 + �) HN

∣∣�a1...an

i1...in

〉 = �E λi1...in
a1...an

,

i1 < · · · < in, a1 < · · · < an, (15)

obtained by substituting Eq. (12) into the adjoint form of the
Schrödinger equation, 〈�̃|HN = �E〈�̃|. System (15) can be
further simplified into the energy-independent form,

〈�|(1 + �) (HN )open

∣∣�a1...an

i1...in

〉 = 0,

i1 < · · · < in, a1 < · · · < an, (16)

where

(HN )open = HN − (HN )closed = HN − �E (17)

is the open part of HN , defined by the diagrams of HN that
have external Fermion lines. Clearly, the only diagrams of HN

that enter the CC system given by Eq. (10) are the diagrams
of (HN )open, whereas the only diagrams that contribute to
�E, Eq. (11), are the vacuum (or closed) diagrams that have
no external lines. We discuss the � or left-eigenstate CC
equations, Eq. (15) or (16), for the deexcitation amplitudes
λi1...in

a1...an
here, because they are one of the key ingredients

of �CCSD(T) and the related CR-CC(2,3) considerations
below. It is worth pointing out, though, that by examining
these equations in the context of the �CCSD(T)/CR-CC(2,3)
considerations for three-body Hamiltonians, we are at the
same time helping future developments in the area of CC
computations of nuclear properties other than binding energy,
extending the relevant formal considerations to the case of 3N
interactions. For example, the � operator obtained by solving
Eq. (16) can be used to determine the CC one-body reduced
density matrices,

γ q
p ≡ 〈�̃|(a†

paq)|�〉 = 〈�|(1 + �)(a†
paq)|�〉, (18)

where we define (a†
paq) as

(a†
paq) = e−T (a†

paq) eT = [(a†
paq) eT ]C, (19)

and determine expectation values of one-body operators in the
usual manner as

〈�̃|�|�〉 =
∑
p,q

θp
q γ q

p ≡ θp
q γ q

p , (20)

where � = ∑
p,q θ

p
q a

†
paq is a one-body property operator

of interest. In writing Eq. (20), the Einstein summation
convention over repeated upper and lower indices in product
expressions of matrix elements was assumed. We will exploit
this convention throughout the rest of this article.

The above is the exact CC theory, which is equivalent to
the exact diagonalization of the Hamiltonian within the full CI
approach and is, for practical reasons, limited to small many-
body problems. Thus, in all practical applications of CC theory,
one truncates the many-body expansion for T , Eq. (2), at some,
preferably low, m-particle–m-hole excitation level Tm. In this
study, we focus on the CCSD approach in which T is truncated
at the doubly excited clusters T2, and the �CCSD(T) and CR-
CC(2,3) methods, which allow one to correct the CCSD energy
for the dominant effects from the triply excited clusters T3 in
a computationally feasible manner, avoiding the prohibitively
expensive steps of full CCSDT, in which one has to solve
for T1, T2, and T3 in an iterative fashion. The final form of
the CC amplitude and energy equations also depends on the
Hamiltonian used in the calculations, because the length of the
many-body expansion of the resulting similarity-transformed
Hamiltonian HN , Eq. (8), which can also be written as

HN = HN +
2kmax∑
n=1

1

n!
[. . . [︸︷︷︸
n times

HN, T ], . . . , T ]︸ ︷︷ ︸
n times

=
2kmax∑
n=0

1

n!
(HNT n)C, (21)

depends on kmax, where kmax is the highest many-body rank
of the interactions in HN or H (kmax = 2 for 2N interactions,
kmax = 3 for 3N interaction terms, etc.). In this article we
focus on the kmax = 3 case, emphasizing the differences
between the more familiar CCSD and �CCSD(T) equations
for two-body Hamiltonians, which can be found, in the
most compact, factorized form using recursively generated
intermediates, in Refs. [31,34,79,82] for CCSD and [57] for
�CCSD(T), and their extensions to the three-body case. The
key ingredients of the CCSD and �CCSD(T)-type approaches
for 3N interactions in the Hamiltonian are discussed in the next
two subsections. We begin with the Hamiltonian.

B. Normal-ordered form of the Hamiltonian with three-body
interactions and the NO2B approximation

As shown in the previous subsection, the single-reference
CC equations for the cluster amplitudes t

a1...an

i1...in
defining T ,

their deexcitation counterparts λi1...in
a1...an

defining �, and the
correlation energy �E can be conveniently expressed in
terms of the Hamiltonian in normal-ordered form relative to
the Fermi vacuum |�〉, transformed with eT , as in Eqs. (8)
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and (21). For Hamiltonians with up to three-body interactions,

H = H1 + H2 + H3, (22)

where

Hn =
(

1

n!

)2 ∑
p1 ,...,pn
q1,...,qn

hp1...pn
q1...qn

a†
p1

· · · a†
pn

aqn
· · · aq1 (23)

is the n-body contribution to H , and the normal-ordered
Hamiltonian HN , Eq. (6), which provides information about
the many-particle correlation effects beyond the mean-field
level represented by |�〉, can be represented in the form

HN = FN + VN + WN. (24)

The one-, two-, and three-body components FN , VN , and WN

in Eq. (24) are defined as

FN =
∑
p,q

f p
q N [a†

paq], (25)

VN = 1

4

∑
p,q,r,s

vpq
rs N [a†

pa†
qasar ], (26)

and

WN = 1

36

∑
p,q,r,s,t,u

w
pqr
stu N [a†

pa†
qa

†
r auatas], (27)

where N [. . .] designates normal ordering relative to |�〉 and
the matrix elements f

p
q , v

pq
rs , and w

pqr
stu are given by

f p
q = hp

q +
∑

i

h
pi
qi + 1

2

∑
i,j

h
pij
qij , (28)

vpq
rs = hpq

rs + 1

4

∑
i

h
pqi
rsi , (29)

and

w
pqr
stu = h

pqr
stu , (30)

respectively. The corresponding reference energy Eref, Eq. (5),
which one needs to add to the correlation energy �E to obtain
the total ground-state energy E, is calculated via

Eref =
∑

i

hi
i + 1

2

∑
i,j

h
ij
ij + 1

6

∑
i,j,k

h
ijk
ijk. (31)

When the Hamiltonian is used in the normal-ordered form,
information about the three-body interaction in H enters in two
fundamentally different ways: effectively, via the reference
energy Eref, Eq. (31), and the normal-ordered one- and two-
body matrix elements f

p
q and v

pq
rs , Eqs. (28) and (29), which

define the FN and VN components of HN , and explicitly, via
the genuinely three-body residual term WN , Eq. (27), which
captures those 3N contributions to the Hamiltonian that cannot
be demoted to the lower-rank FN and VN operators or the
reference energy Eref. Considering the fact that the FN and VN

components of HN combined with the reference energy Eref

contain the complete information about pairwise interactions
and much of the information about the 3N forces, it is
reasonable to consider the NO2B approximation, discussed
in Refs. [11,14,43,44], in which the three-body residual term

WN is neglected in HN . The main goal of this study is to
compare the CCSD and �CCSD(T)-type results obtained
with a full representation of the normal-ordered Hamiltonian
HN in which the residual three-body term WN is retained in
the calculations, with their counterparts obtained using the
truncated form of HN that defines the NO2B approximation,
in which Eq. (24) is replaced by the simplified expression

HN,2B = FN + VN, (32)

containing only the one- and two-body components of HN

defined by Eqs. (25) and (26) and Eqs. (28) and (29).
The NO2B approximation offers several advantages over

the full treatment of 3N forces. First of all, it allows one to
reuse the conventional CC equations derived for two-body
Hamiltonians, which one can find for CCSD in Refs. [31,34,
79,82] and for �CCSD(T) in Ref. [57], by replacing the f

p
q

and v
pq
rs matrix elements in these equations with their values

determined using Eqs. (28) and (29). Clearly, the three-body
interactions are not ignored when the NO2B approximation
is invoked because the reference energy Eref, Eq. (31), the
one-body operator FN , defined by Eqs. (25) and (28), and the
two-body operator VN , defined by Eqs. (26) and (29), contain
information about the 3N forces in the form of the integrated
1
6

∑
i,j,k h

ijk
ijk , 1

2

∑
i,j h

pij
qij , and 1

4

∑
i h

pqi
rsi contributions to Eref,

f
p
q and v

pq
rs . Secondly, the NO2B approximation leads to

major savings in the computational effort because the most
expensive terms in the CC equations that are generated by the
three-body residual interaction WN are disregarded when one
uses Eq. (32) instead of Eq. (24). Our objective is to examine
if neglecting these residual terms, particularly at the more
quantitative �CCSD(T) level, does not result in a substantial
loss of accuracy in the description of the 3N contributions to
the resulting binding energies.

The above discussion implies that in order to compare
the CCSD and �CCSD(T) energies corresponding to the
full treatment of 3N forces with their counterparts obtained
using the NO2B approximation, as defined by Eq. (32), one
has to augment the existing CCSD and �CCSD(T) equations
derived for Hamiltonians with up to two-body components
in HN , reported, for example, in Refs. [31,34,57,79,82],
by terms generated by the residual WN interaction, while
adjusting matrix elements of the FN and VN operators in the
resulting equations through the use of Eqs. (28) and (29).
This was done for the CCSD case in Ref. [43], but none
of the earlier nuclear CC works have dealt with the explicit
and complete incorporation of 3N interactions in modern
post-CCSD considerations. The present study addresses this
concern by extending the considerations reported in Ref. [43]
to the triples energy correction of �CCSD(T) and, also,
the �CCSD equations, which one has to solve prior to the
determination of �CCSD(T)- or CR-CC-type corrections.
Because, as discussed in Sec. II A, the CC amplitude and
energy equations and their left-eigenstate � counterparts rely
on the similarity-transformed form of HN , designated by
HN , Eq. (8), the most convenient way to incorporate the
additional terms resulting from the presence of WN into the
CC considerations is by partitioning HN as

HN = e−T (HN,2B + WN ) eT = HN,2B + WN, (33)
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where

HN,2B = e−T HN,2B eT = (HN,2B eT )C (34)

is the similarity-transformed form of HN,2B and

WN = e−T WN eT = (WN eT )C (35)

is the similarity-transformed form of WN . In this way, we
can split the CC equations, Eqs. (10), (11), and (16), into the
NO2B contributions expressed in terms of HN,2B, which, with
the exception of the f

p
q and v

pq
rs matrix elements that define FN

and VN , have the same algebraic structure as the standard CC
equations derived for two-body Hamiltonians, and the WN -
containing terms that provide the rest of the information about
3N contributions neglected by the NO2B approximation.

The partitioning of HN represented by Eqs. (33)–(35)
reflects the obvious fact that the normal-ordered form of the
Hamiltonian including three-body interactions, Eq. (24), is
a sum of the NO2B component HN,2B, Eq. (32), and the
three-body residual WN term.

As implied by Eq. (21), HN,2B terminates at the quadruply
nested commutators or terms that contain the fourth power of
T , because one can connect up to four vertices representing T
operators to the diagrams of HN,2B. Similarly, WN terminates
at the T 6 terms because the diagram representing WN has six
external lines. As a result, the complete many-body expansions
of HN,2B and WN , i.e.,

HN,2B =
∑

n

Hn,2B, (36)

where

Hn,2B =
(

1

n!

)2 ∑
p1 ,...,pn
q1,...,qn

hp1...pn
q1...qn

(2B)

× a†
p1

· · · a†
pn

aqn
· · · aq1 , (37)

and

WN =
∑

n

Wn, (38)

where

Wn =
(

1

n!

)2 ∑
p1 ,...,pn
q1 ,...,qn

wp1...pn
q1...qn

a†
p1

· · · a†
pn

aqn
· · · aq1 , (39)

respectively, are quite complex, even at the lower levels
of CC theory, such as CCSD, where T is truncated at
T2. Indeed, it is easy to demonstrate that when the cluster
operator T is truncated at the doubly excited T2 component,
the resulting HN,2B operator contains up to six-body terms.
The corresponding operator WN is even more complex,
containing up to nine-body terms. Fortunately, as shown
in the next subsection, by virtue of the projections on the
subsets of determinants that enter the CCSD and �CCSD(T)
considerations, the final amplitude and energy equations used
in the CCSD and �CCSD(T) calculations do not utilize all of
the many-body components of HN,2B and WN . For example,
the highest many-body components of HN,2B and WN that
have to be considered in CCSD and �CCSD(T) calculations
are selected types of three-body (HN,2B) or four-body (WN )

terms, which greatly simplifies these calculations. The CCSD
and �CCSD(T) equations, with emphasis on the additional
terms beyond the NO2B approximation, are discussed next.

C. The CCSD and �CCSD(T) approaches for Hamiltonians
with three-body interactions

As mentioned in the introduction, the residual 3N interac-
tion, represented by the WN component of the normal-ordered
Hamiltonian HN , although generally small [11,43,44], may not
always be negligible, particularly when the basic CC theory
level represented by the CCSD approach is considered [11,44].
Considering the fact that one has to go beyond the CCSD
level within the CC framework to obtain a more quantitative
description of nuclear properties [11,14,22,33,35–38,40,41,
44,46,59,65], it is imperative to investigate how significant
the incorporation of the residual three-body interactions in
the Hamiltonian is when the connected triply excited (T3)
clusters are included in the calculations, in addition to the
singly and doubly excited clusters, T1 and T2, included in
CCSD. Ideally, one would prefer to examine this issue using
the full CCSDT approach, in which one solves the system (10)
of coupled nonlinear equations for the T1, T2, and T3 cluster
components in an iterative manner. Unfortunately, the full
CCSDT treatment is prohibitively expensive and thus limited
to small many-body problems, even at the level of pairwise
interactions. When the residual 3N interactions are included
in the CC considerations, the situation becomes even worse.
For this reason we resort to the approximate treatment of the
T3 clusters via the noniterative energy correction added to
the CCSD energy defining the �CCSD(T) approach, which
is capable of capturing the leading T3 effects at the small
fraction of the cost of the full CCSDT computations. A few
remarks about the closely related CR-CC(2,3) method, which
contains �CCSD(T) as the leading approximation and which
also captures the T3 effects, will be given as well, because
the CR-CC(2,3) expressions provide a transparent and peda-
gogical mechanism for identifying terms in the �CCSD(T)
equations that result from adding the 3N interactions to the
Hamiltonian. Considering the relatively low computational
cost of the �CCSD(T) approach while providing information
about the T3 clusters, we can for medium-mass nuclei compare
the results of the CC calculations describing the T1, T2, and
T3 effects using the complete representation of the three-
body Hamiltonian including the residual WN term with their
counterparts relying on the NO2B truncation of HN .

The determination of the �CCSD(T) [or CR-CC(2,3)]
energy, which has the general form

E = E(CCSD) + δE(T), (40)

where

E(CCSD) = Eref + �E(CCSD) (41)

is the total CCSD energy and δE(T) the energy correction
due to the connected T3 clusters, consists of four steps:
first, as in all many-body computations, we generate the
appropriate single-particle basis, which in our case will be
obtained from Hartree-Fock calculations. In the next two steps,
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which we discuss in Sec. II C1, we solve the CCSD equations
and their left-eigenstate � counterparts, and determine the
CCSD correlation energy �E(CCSD). The δE(T) correction,
discussed in Sec. II C2, is calculated in the fourth step
using the information resulting from the CCSD and �CCSD
calculations.

1. The CCSD and left-eigenstate CCSD equations
for three-body Hamiltonians

We begin our considerations with the key elements of the
CCSD approach, where the cluster operator T defining the
ground-state wave function |�〉 using Eq. (1) is truncated at
the doubly excited clusters, so that [cf. Eqs. (2) and (3)]

T ≈ T (CCSD) = T1 + T2, (42)

with

T1 =
∑
i,a

tai a†
aai =

∑
i,a

tai N [a†
aai] (43)

and

T2 = 1

4

∑
i,j,a,b

tab
ij a†

aa
†
bajai = 1

4

∑
i,j,a,b

tab
ij N [a†

aaia
†
baj ], (44)

and the left-eigenstate counterpart of CCSD, where the
deexcitation operator � defining the bra ground state 〈�̃|,
Eq. (12), is approximated using the expression [cf. Eqs. (13)
and (14)]

� ≈ �(CCSD) = �1 + �2, (45)

with

�1 =
∑
i,a

λi
a a

†
i aa =

∑
i,a

λi
a N [a†

i aa] (46)

and

�2 = 1

4

∑
i,j,a,b

λ
ij
ab a

†
i a

†
j abaa = 1

4

∑
i,j,a,b

λ
ij
ab N [a†

i aaa
†
j ab].

(47)

In addition to being useful in their own right, the CCSD
and left-eigenstate CCSD calculations provide the singly
and doubly excited cluster amplitudes, tai and tab

ij , and their

deexcitation λi
a and λ

ij
ab analogs, which are needed to construct

the noniterative corrections to the CCSD energy via the
�CCSD(T), CR-CC(2,3), and similar techniques. The CCSD
equations for three-body Hamiltonians have been discussed in
Ref. [43], but their left-eigenstate �CCSD analogs have not
been examined so far. Because the regular CCSD and �CCSD
considerations cannot be separated out, we first summarize
the CCSD amplitude and energy equations for the case of 3N
interactions.

The CCSD equations are obtained by replacing T in
Eqs. (10) and (11) by T (CCSD), and by limiting the projections
on the excited determinants |�a1...an

i1...in
〉 in Eq. (10) to those that

correspond to the singly and doubly excited cluster amplitudes
tai and tab

ij we want to determine, so that the number of
equations matches the number of unknowns [22,31–42,46,65,
83,84]. Assuming that the Hamiltonian of interest contains

three-body interactions, we obtain the system of equations for
tai and tab

ij [43]:

〈
�a

i

∣∣HN
(CCSD)|�〉 = �a

i (2B) + �a
i (WN ) = 0, (48)〈

�ab
ij

∣∣HN
(CCSD)|�〉 = �ab

ij (2B) + �ab
ij (WN ) = 0, (49)

where

HN
(CCSD) = e−T1−T2 HN eT1+T2 = (HN eT1+T2 )C (50)

is the similarity-transformed Hamiltonian of CCSD and |�a
i 〉

and |�ab
ij 〉 are the singly and doubly excited determinants

relative to |�〉. The �a
i (2B), �a

i (WN ), �ab
ij (2B), and �ab

ij (WN )
terms entering Eqs. (48) and (49) are defined as

�a
i (2B) = 〈

�a
i

∣∣HN,2B
(CCSD)|�〉, (51)

�a
i (WN ) = 〈

�a
i

∣∣WN
(CCSD)|�〉, (52)

�ab
ij (2B) = 〈

�ab
ij

∣∣HN,2B
(CCSD)|�〉, (53)

and

�ab
ij (WN ) = 〈

�ab
ij

∣∣WN
(CCSD)|�〉. (54)

The operators HN,2B
(CCSD)

and WN
(CCSD)

appearing in
Eqs. (51)–(54) are defined as

HN,2B
(CCSD) = e−T1−T2 HN,2B eT1+T2 = (

HN,2B eT1+T2
)
C

(55)

and

WN
(CCSD) = e−T1−T2 WN eT1+T2 = (WN eT1+T2 )C, (56)

and represent the similarity-transformed forms of the HN,2B

and WN operators, Eqs. (34) and (35), adapted to the CCSD

case, which obviously add up to HN
(CCSD)

,

HN,2B
(CCSD) + WN

(CCSD) = HN
(CCSD)

. (57)

From the above definitions it is apparent that �a
i (WN ) and

�ab
ij (WN ), which originate from WN , contribute only when

the residual 3N interaction is included in the calculations,
whereas the NO2B contributions �a

i (2B) and �ab
ij (2B) are

present in any case. As in the most common case of two-
body Hamiltonians (see, e.g., Refs. [22,31,32,77,83,84]), it
is easy to demonstrate, using Eq. (21) for kmax = 2 and the
above definitions of �a

i (2B) and �ab
ij (2B), that the NO2B

contributions to the CCSD amplitude equations do not contain
higher-than-quartic terms in T , i.e.,

�a
i (2B) = 〈

�a
i

∣∣[HN,2B
(
1 + T1 + T2 + 1

2T 2
1

+ T1T2 + 1
6T 3

1

)]
C
|�〉 (58)

and

�ab
ij (2B) = 〈

�ab
ij

∣∣[HN,2B
(
1 + T1 + T2 + 1

2T 2
1 + T1T2

+ 1
6T 3

1 + 1
2T 2

2 + 1
2T 2

1 T2 + 1
24T 4

1

)]
C
|�〉. (59)

For the �a
i (WN ) and �ab

ij (WN ) contributions to the CCSD
amplitude equations resulting from the residual three-body
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interaction term WN , we can write [43]

�a
i (WN ) = 〈

�a
i

∣∣[WN

(
T2 + 1

2T 2
1 + T1T2 + 1

6T 3
1

+ 1
2T 2

2 + 1
2T 2

1 T2 + 1
24T 4

1

)]
C
|�〉 (60)

and

�ab
ij (WN ) = 〈

�ab
ij

∣∣[WN

(
T1 + T2 + 1

2T 2
1 + T1T2 + 1

6T 3
1

+ 1
2T 2

2 + 1
2T 2

1 T2 + 1
24T 4

1 + 1
2T1T

2
2

+ 1
6T 3

1 T2 + 1
120T 5

1

)]
C
|�〉, (61)

respectively, i.e., the highest power of T that needs to be
considered is 5, not 6, as Eq. (21) for the kmax = 3 case would
imply, because diagrams of the (WNT 6)C type entering WN

have more than four external lines and, as such, cannot produce
nonzero expressions when projected on |�a

i 〉 and |�ab
ij 〉.

The detailed m-scheme-style expressions for the NO2B-
type �a

i (2B) and �ab
ij (2B) contributions to the CCSD ampli-

tude equations, in terms of the one- and two-body matrix ele-
ments of the normal-ordered Hamiltonian f

p
q and v

pq
rs , and the

singly and doubly excited cluster amplitudes tai and tab
ij , which

lead to efficient computer codes through the use of recursively
generated intermediates that allow one to utilize fast matrix
multiplication routines, can be found in Refs. [31,34,79,82].
The analogous m-scheme-type expressions for the �a

i (WN )
and �ab

ij (WN ) contributions to the CCSD equations, in terms
of the w

pqr
stu matrix elements defining WN and the tai and

tab
ij amplitudes can be found in Ref. [43]. In using the

CCSD equations presented in Refs. [31,34,79,82], originally
derived for two-body Hamiltonians, as expressions for �a

i (2B)
and �ab

ij (2B) in the context of the calculations including
3N interactions, one only has to use Eqs. (28) and (29)
for the matrix elements f

p
q and v

pq
rs of the normal-ordered

Hamiltonian, which contain the effective 1
2

∑
i,j h

pij
qij and

1
4

∑
i h

pqi
rsi contributions due to the 3N interactions. All of the

remaining details are, however, the same. Following our earlier
studies [11,14,44], in performing the CCSD calculations for
the closed-shell nuclei reported in this work, we use an angular-
momentum-coupled formulation of CC theory discussed in
Ref. [59], which employs reduced matrix elements for all of
the operators involved, allowing for a drastic reduction in the
number of matrix elements and cluster amplitudes entering the
computations, and in a substantial reduction in the number of
CPU operations, compared to a raw m-scheme description used
in earlier nuclear CCSD work [22,33–38,41,46,65], enabling
us to tackle medium-mass nuclei and larger numbers of
oscillator shells in the single-particle basis set.

Once the cluster amplitudes tai and tab
ij are determined by

solving the nonlinear system represented by Eqs. (48) and (49),
the CCSD correlation energy �E(CCSD), which is subsequently
added to the reference energy Eref, Eq. (31), to obtain the total
energy E(CCSD), as in Eq. (41), is calculated using Eq. (11),

where we replace HN by HN
(CCSD)

. We obtain

�E(CCSD) = �E
(CCSD)
2B + �E

(CCSD)
3B , (62)

where

�E
(CCSD)
2B = 〈�|HN,2B

(CCSD)|�〉 (63)

and

�E
(CCSD)
3B = 〈�|WN

(CCSD)|�〉. (64)

Again, in analogy to the standard two-body Hamiltonians,
it is easy to show that the NO2B contribution to the CCSD
correlation energy, �E

(CCSD)
2B , can be calculated using the

expression

�E
(CCSD)
2B = 〈�|[HN,2B

(
T1 + T2 + 1

2T 2
1

)]
C
|�〉

= f i
a tai + v

ij
ab

(
1
4 tab

ij + 1
2 tai tbj

)
, (65)

where f i
a and v

ij
ab are determined using Eqs. (28) and (29).

For the �E
(CCSD)
3B component of the CCSD correlation energy

resulting from the residual three-body interaction term WN ,
we can write [43]

�E
(CCSD)
3B = 〈�|[WN

(
T1T2 + 1

6T 3
1

)]
C
|�〉

= w
ijk
abc

(
1
4 tai tbc

jk + 1
6 tai tbj t ck

)
. (66)

As in the case of Eq. (20) and other similar expressions shown
in the rest of this section, we have used the Einstein summation
convention over the repeated upper and lower indices in the
above energy formulas.

We now move to the left-eigenstate or �CCSD equations,
which one solves after the determination of the T1 and T2

clusters and the CCSD energy, and which have to be solved
prior to the determination of the �CCSD(T) [or CR-CC(2,3)]
energy correction δE(T) because, as further elaborated on
below, the T1, T2, �1, and �2 operators enter the δE(T)

expressions. We examine the �CCSD equations in full detail
here because the programmable form of these equations for
the case of 3N interactions in the Hamiltonian has never been
considered before.

The left-eigenstate CCSD equations for the λi
a and λ

ij
ab

amplitudes defining �1 and �2 are obtained by replacing
the exact � and HN operators in Eq. (16) by their truncated

CCSD counterparts, �(CCSD) and HN
(CCSD)

, Eqs. (45) and (50),
and by limiting the right-hand projections on the excited
determinants |�a1...an

i1...in
〉 in Eq. (16) to the singly and doubly

excited determinants |�a
i 〉 and |�ab

ij 〉. This leads to the
following linear system for the �1 and �2 amplitudes (cf.,
e.g., Refs. [22,70,73,75–77,80,81]):

〈�|(1 + �1 + �2)
(
HN

(CCSD))
open

∣∣�a
i

〉 = 0, (67)

〈�|(1 + �1 + �2)
(
HN

(CCSD))
open

∣∣�ab
ij

〉 = 0. (68)

If we further split the similarity-transformed Hamiltonian

of CCSD, HN
(CCSD)

, into the NO2B and WN contributions
HN,2B

(CCSD)
and WN

(CCSD)
, we can rewrite the �CCSD

equations [Eqs. (67) and (68)] for Hamiltonians including
three-body interactions as

�i
a(2B) + �i

a(WN ) = 0, (69)

�
ij
ab(2B) + �

ij
ab(WN ) = 0, (70)

where we define the corresponding NO2B and residual 3N
contributions as

�i
a(2B) = 〈�|(1 + �1 + �2)

(
HN,2B

(CCSD))
open

∣∣�a
i

〉
, (71)
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�i
a(WN ) = 〈�|(1 + �1 + �2)

(
WN

(CCSD))
open

∣∣�a
i

〉
, (72)

�
ij
ab(2B) = 〈�|(1 + �1 + �2)

(
HN,2B

(CCSD))
open

∣∣�ab
ij

〉
,

(73)

and

�
ij
ab(WN ) = 〈�|(1 + �1 + �2)

(
WN

(CCSD))
open

∣∣�ab
ij

〉
. (74)

After identifying the nonvanishing terms in the above formulas
and expressing them in terms of the individual n-body compo-

nents of the HN,2B
(CCSD)

and WN
(CCSD)

operators, designated
in analogy to Eqs. (36) and (38) by Hn,2B and Wn, we can
write

�i
a(2B) = 〈�|{[(1 + �1)H 1,2B]C + [(�1 + �2)H 2,2B]C

+ (�2H 3,2B)C}∣∣�a
i

〉
, (75)

�
ij
ab(2B) = 〈�|{[(1 + �1 + �2)H 2,2B]C + (�2H 1,2B)C

+ (�1H 1,2B)DC + (�2H 3,2B)C}∣∣�ab
ij

〉
, (76)

�i
a(WN ) = 〈�|{[(1 + �1)W 1]C + [(�1 + �2)W 2]C

+ (�2W 3)C}∣∣�a
i

〉
, (77)

and

�
ij
ab(WN ) = 〈�|{[(1 + �1 + �2)W 2]C + (�2W 1)C

+ (�1W 1)DC + [(�1 + �2)W 3]C
+ (�2W 4)C}∣∣�ab

ij

〉
, (78)

where C continues to represent the connected operator product
and DC stands for the disconnected product expression. The
detailed m-scheme-style formulas for the �i

a(2B), �
ij
ab(2B),

�i
a(WN ), and �

ij
ab(WN ) contributions to the �CCSD system

represented by Eqs. (69) and (70), in terms of the individual
matrix elements h

p1...pn
q1...qn

(2B) and w
p1...pn
q1...qn

that define the n-body

components of HN,2B
(CCSD)

and WN
(CCSD)

are given by

�i
a(2B) = hi

a(2B) + λi
c hc

a(2B) − λk
a hi

k(2B)

+ λk
c hci

ka(2B) + 1
2λik

cd hcd
ak(2B)

− 1
2λkl

ac hic
kl(2B) + 1

4λkl
cd hcdi

kla (2B), (79)

�
ij
ab(2B) = h

ij
ab(2B) + AabA

ij λ
j
b hi

a(2B)

+A ij λi
c h

cj
ab(2B) − Aabλ

k
a h

ij
kb(2B)

+Aabλ
ij
ac hc

b(2B) − A ij λik
ab h

j
k (2B)

+AabA
ij λik

ac h
cj
kb(2B) + 1

2λ
ij
cd hcd

ab(2B)

+ 1
2λkl

ab h
ij
kl(2B) + 1

2Aabλ
kl
ca h

ijc
kbl(2B)

+ 1
2A ij λki

cd h
cjd
abk(2B), (80)

�i
a(WN ) = wi

a + λi
c wc

a − λk
a wi

k + λk
c wci

ka

+ 1
2λik

cd wcd
ak − 1

2λkl
ac wic

kl + 1
4λkl

cd wcdi
kla , (81)

and

�
ij
ab(WN ) = w

ij
ab + AabA

ij λ
j
b wi

a + A ij λi
c w

cj
ab

−Aabλ
k
a w

ij
kb + λk

c w
ijc
abk + Aabλ

ij
ac wc

b

−A ij λik
ab w

j
k + AabA

ij λik
ac w

cj
kb

+ 1
2λ

ij
cd wcd

ab + 1
2λkl

ab w
ij
kl + 1

2Aabλ
kl
ca w

ijc
kbl

+ 1
2A ij λki

cd w
cjd
abk + 1

4λkl
cdw

ijcd
abkl, (82)

respectively, where

Apq ≡ A pq = 1 − (pq), (83)

with (pq) representing a transposition of p and q, are the usual
index antisymmetrizers.

As one can see, the �CCSD equations for three-body
Hamiltonians, although more complicated than for the case of
pairwise interactions, where one would not consider Eqs. (81)
and (82), have a relatively simple algebraic structure. In
particular, the highest-rank many-body components of the

HN,2B
(CCSD)

and WN
(CCSD)

operators that enter these equations
are given by selected types of three-body H 3,2B terms and se-
lected types of four-body W 4 terms. Although, according to the

remarks below Eqs. (36)–(39), the HN,2B
(CCSD)

and WN
(CCSD)

operators contain various higher-than-four-body terms, the
right-hand projections on the singly and doubly excited
determinants in Eqs. (67) and (68) or (71)–(74) eliminate such
complicated expressions. This greatly simplifies the computer
implementation effort. Again, in performing the left-eigenstate
CCSD calculations for the closed-shell nuclei reported in this
work, following the recipe presented in Ref. [59], we convert
the m-scheme expressions for the �i

a(2B), �
ij
ab(2B), �i

a(WN ),
and �

ij
ab(WN ) contributions into their angular-momentum-

coupled representation. The key quantities for setting up the
underlying Eqs. (79)–(82) are the matrix elements h

q1...qn
p1...pn

(2B)

and w
q1...qn
p1...pn

of the similarity-transformed HN,2B
(CCSD)

and

WN
(CCSD)

operators. Before discussing the sources of informa-

tion about the matrix elements of HN,2B
(CCSD)

and WN
(CCSD)

that enter Eqs. (79)–(82), let us comment on the physical and
mathematical content of these equations, including important
additional simplifications in the NO2B contributions �i

a(2B)
and �

ij
ab(2B) that reduce the usage of higher-than-two-body

objects in the equations for the λi
a and λ

ij
ab amplitudes even

further.
First, we note that the NO2B and residual 3N components

of the �CCSD equations projected on the singly excited |�a
i 〉

determinants, �i
a(2B) and �i

a(WN ), have the identical general
form, i.e., they only differ by the details of the Hamiltonian
matrix elements that enter them, but not by their overall
algebraic structure [cf. Eqs. (75) or (79) and (77) or (81)].
However, in the NO2B case, the contribution,

〈�|(�2H 3,2B)C
∣∣�a

i

〉 = 1
4λkl

cd hcdi
kla (2B), (84)

which contains selected three-body components of

HN,2B
(CCSD)

and which enters Eqs. (75) and (79) for
�i

a(2B), can be refactorized and rewritten in terms of simpler
one- and two-body objects, eliminating the need for the
explicit use of the three-body H 3,2B terms altogether. Indeed,
following the quantum-chemistry literature where interactions
in the Hamiltonian are always two body, we can replace
Eq. (84) by (cf., e.g., Ref. [79])

1
4λkl

cd hcdi
kla (2B) = −hie

ad (2B) χd
e − him

an(2B) χn
m, (85)
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where the additional one-body intermediates χd
e and χn

m are
defined as

χd
e = − 1

2 t
df
mnλ

mn
ef (86)

and

χl
m = 1

2 t
ef
mnλ

ln
ef , (87)

respectively. In other words, all we need to know to
construct the NO2B contribution �i

a(2B) to the �CCSD
equations are the matrix elements h

p
q (2B) and h

pq
rs (2B) of

the similarity-transformed Hamiltonian HN,2B
(CCSD)

, which
appear in Eqs. (79) and (85), and the cluster amplitudes tai
and tab

ij , plus two auxiliary one-body intermediates, obtained

by contracting the tab
ij and λ

ij
ab amplitudes, defined by Eqs. (86)

and (87). The relevant, computationally efficient, expressions
for the one- and two-body matrix elements h

p
q (2B) and

h
pq
rs (2B) can be found in several sources, for example, in

Refs. [63,82,85], remembering to rely on Eqs. (28) and (29)
in the determination of f

p
q and v

pq
rs . Unfortunately, we cannot

provide any additional simplifications in the case of the WN

analog of Eq. (84), entering Eqs. (77) and (81),

〈�|(�2W 3)C
∣∣�a

i

〉 = 1
4λkl

cd wcdi
kla , (88)

where we have to rely on the intrinsically three-body matrix
elements of WN that do not factorize into simpler, lower-rank
objects. In this case, to construct the residual 3N contribution
�i

a(WN ) to the �CCSD equations projected on |�a
i 〉, given by

Eq. (81), we must utilize the explicit formulas for the one-,
two-, and three-body matrix elements of the similarity-

transformed WN
(CCSD)

operator in terms of the appropriate
matrix elements w

pqr
stu of WN and the CCSD amplitudes tai and

tab
ij that are listed in Tables I and II.

Similar, albeit not identical, remarks apply to the �CCSD
equations projected on the doubly excited determinants |�ab

ij 〉.
Once again, we can refactorize the NO2B contribution,

〈�|(�2H 3,2B)C
∣∣�ab

ij

〉 = 1
2Aabλ

kl
ca h

ijc
kbl(2B)

+ 1
2A ij λki

cd h
cjd
abk(2B), (89)

entering Eqs. (76) and (80), which contains selected three-body

components of HN,2B
(CCSD)

, by rewriting it in terms of simpler
one- and two-body objects as

1
2Aabλ

kl
ca h

ijc
kbl(2B) + 1

2A ij λki
cd h

cjd
abk(2B)

= Aabh
ij
ad (2B) χd

b − A ij him
ab (2B) χj

m

= Aabv
ij
ad χd

b − A ij vim
ab χj

m, (90)

using the identity hkl
cd (2B) = vkl

cd and where χd
b and χ

j
m are

again given by Eqs. (86) and (87), but we cannot do anything
similar for the case of the analogous expression

〈�|(�2W 3)C
∣∣�ab

ij

〉 = 1
2Aabλ

kl
ca w

ijc
kbl + 1

2A ij λki
cd w

cjd
abk (91)

that appears in Eqs. (78) and (82), where we have to rely
on the three-body matrix elements of WN . As a result, in
analogy to the previously examined �i

a(2B) term, all we
need to know to construct the NO2B contribution �

ij
ab(2B)

to the �CCSD equations are the matrix elements h
p
q (2B)

TABLE I. Explicit expressions for the one- and two-body matrix
elements of the similarity-transformed form of the the residual

three-body interaction term WN , designated by WN

(CCSD)
and defined

by Eq. (56), which are needed to construct the �i
a(WN ) and

�
ij
ab(WN ) contributions to the �CCSD equations, Eqs. (81) and (82),

respectively.

wi
a = 1

4 wikl
acd t

cd
kl + 1

2 wikl
acd t

c
k t

d
l

wa
b = 1

4 wakl
bcd t

cd
kl − 1

4 wklm
bcd tcd

kl t a
m + 1

2 wklm
bcd tc

k t
ad
lm + 1

2 wakl
bcd t

c
k t

d
l

− 1
2 wklm

bcd tc
k t

d
l t a

m

wi
j = 1

4 wikl
cdj t

cd
kl + 1

4 wikl
cdet

cd
kl t e

j − 1
2 wikl

cdet
cd
kj t e

l + 1
2 wikl

cdj t
c
k t

d
l

+ 1
2 wikl

cdet
c
k t

d
l t e

j

w
ij
ab = w

ijk
abct

c
k

wai
bc = 1

2 wikl
bcd t

ad
kl + wail

bcd t
d
l + wikl

bcd t
a
k td

l

wik
ja = − 1

2 wikl
acd t

cd
j l + wikl

jact
c
l − wikl

acd t
c
j t

d
l

wab
cd = − 1

2 A abwakl
cdet

be
kl + wabk

cde t
e
k + 1

2 wklm
cde t

ab
lm te

k + 1
2 A abwklm

cde t
a
k tbe

lm

− wbkl
cdet

a
k t e

l + wklm
cde t

a
l t b

mte
k

w
ij
kl = − 1

2 Aklw
ijm
kcd t cd

ml + w
ijm
klc t c

m + 1
2 w

ijm
cde t

de
kl t c

m + 1
2 Aklw

ijm
cde t

cd
lmte

k

+ w
ijm
cdl t

c
k t

d
m + w

ijm
cde t

d
k t e

l t
c
m

w
aj
ib = − 1

2 w
ajk
bcd t

cd
ik + 1

2 w
jkl
bci t

ac
kl + w

ajk
bci t

c
k − 1

2 w
jkl
bcd t

cd
il t a

k − 1
2 w

jkl
bcd t

ad
kl t c

i

+ w
jkl
bcd t

ac
ik td

l + w
ajk
bcd t

c
k t

d
i − w

jkl
bci t

c
k t

a
l − w

jkl
bcd t

a
l t c

k t
d
i

wab
ci = −wabk

cdi t
d
k + 1

2 A abwakl
cdet

de
ik tb

l + 1
2 A abwakl

cdet
bd
kl t e

i

+ A abwakl
cdet

be
il t d

k − 1
2 wklm

cdi t
ab
lm td

k − 1
2 A abwklm

cdi t
bd
kl t a

m − wabk
cde t

d
k t e

i

+ A abwbkl
cdi t

d
k ta

l + 1
2 wklm

cde t
ab
imtd

k t e
l − A abwklm

cde t
be
il t d

k ta
m

+ 1
2 wklm

cde t
de
il t b

k ta
m − 1

2 A abwklm
cde t

ae
lmtb

k td
i − 1

2 wklm
cde t

ab
lm td

k t e
i

− A abwakl
cdet

d
k tb

l t e
i + wklm

cdi t
a
mtb

l td
k + wklm

cde t
a
mtb

l td
k t e

i

− 1
4 wklm

cde t
ab
ki tde

lm + 1
4 wklm

cde t
ab
kl t de

im − 1
2 A abwklm

cde t
ad
kl t eb

mi

wia
jk = wial

jkct
c
l + 1

2 Ajkw
ilm
jcd t

ac
lmtd

k + 1
2 Ajkw

ilm
jcd t

cd
kl t a

m + Ajkw
ilm
jcd t

ad
kmtc

l

− 1
2 wail

cdet
de
jk t c

l + 1
2 Ajkw

ail
cdet

cd
lk t e

j − wilm
jck t

c
l t

a
m − Ajkw

ail
cdkt

c
l t

d
j

+ 1
2 wilm

cdet
ae
kj t c

l t
d
m + Ajkw

ilm
cdet

ad
kmtc

l t
e
j − wilm

cdet
ad
lm tc

k t
e
j

− 1
2 Ajkw

ilm
cdet

de
mj t

c
k t

a
l + Ajkw

ilm
cdet

ae
jmtc

l t
d
k − Ajkw

ilm
jcd t

a
mtc

l t
d
k

+ wail
cdet

c
l t

d
k t e

j − wilm
cdet

a
mtc

l t
d
k t e

j + 1
4 wilm

cdet
ca
jk t

de
lm − 1

4 wilm
cdet

cd
jk tae

lm

+ 1
2 Ajkw

ilm
cdet

cd
j l t ea

mk

and h
pq
rs (2B) of HN,2B

(CCSD)
, plus two auxiliary one-body

intermediates defined by Eqs. (86) and (87), but one needs
additional expressions for the various matrix elements of

WN
(CCSD)

to construct �
ij
ab(WN ), Eq. (82). In fact, the situation

with the residual WN contributions to the �CCSD equations
projected on |�ab

ij 〉 is further complicated by the observation
that along with the various terms that are analogous to the
NO2B case, we also end up with the additional

〈�|(�1W 3)C
∣∣�ab

ij

〉 = λk
c w

ijc
abk (92)

and

〈�|(�2W 4)C
∣∣�ab

ij

〉 = 1
4λkl

cdw
ijcd
abkl (93)

contributions to �
ij
ab(WN ), which contain selected three- and

four-body components of WN
(CCSD)

and which do not have
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TABLE II. Explicit expressions for the selected three- and four-
body matrix elements of the similarity-transformed form of the

residual three-body interaction term WN , designated by WN

(CCSD)
and

defined by Eq. (56), which are needed to construct the �i
a(WN ) and

�
ij
ab(WN ) contributions to the �CCSD equations, Eqs. (81) and (82),

respectively.

w
ija
kbl = w

ija
kbl + Aklw

ijm
kbc t

ac
lm + 1

2 w
ija
cbd t

cd
kl − Aklw

ija
bcl t

c
k + w

ijm
bkl t

a
m

− w
ijm
bcd tad

kl t c
m − Aklw

ijm
bcd tad

lm tc
k + 1

2 w
ijm
bcd tcd

kl t a
m

+ Aklw
ijm
bcl t c

k t
a
m + w

ija
cbd t

c
k t

d
l + w

ijm
bcd tc

k t
d
l t a

m

w
ajb
cdi = w

ajb
cdi + A abw

ajk
cde t

be
ik + 1

2 w
kjl
cdi t

ab
kl − A abw

bkj
cdi t

a
k

− w
abj
cde t

e
i + w

jkl
cdet

ab
il t e

k + A abw
jkl
cdet

be
il t a

k − 1
2 w

jkl
cdet

ab
kl t e

i

− A abw
ajk
cde t

b
k t e

i + w
kjl
cdi t

a
k tb

l − w
jkl
cdet

a
k tb

l t e
i

wabk
ijc = wabk

ijc + 1
2 wabk

cde t
de
ij + A abAijw

bkl
jcd t

ad
il + 1

2 wklm
ijc tab

lm

− 1
2 A abwklm

cde t
ad
ij tbe

lm + 1
2 A abAijw

klm
cde t

ad
il t be

jm + 1
4 wklm

cde t
ab
lm tde

ij

− 1
2 Aijw

klm
cde t

ab
il t de

jm + Aijw
abk
cdj td

i − A abwklb
ijc t

a
l

− 1
2 A abwklb

cdet
de
ij ta

l − A abAijw
akl
cdet

be
j l t

d
i + 1

2 Aijw
klm
cdj tab

lm td
i

+ A abAijw
klm
cdi t

bd
jmta

l − A abwakl
cdet

be
ij td

l + Aijw
klm
cdi t

ab
jmtd

l

+ wabk
cde t

d
i t e

j − A abAijw
bkl
cdj t

a
l t d

i + wklm
ijc ta

l t b
m + 1

2 wklm
cde t

de
ij ta

l t b
m

− A abAijw
klm
cde t

be
jmta

l td
i + 1

2 wklm
cde t

ab
lm td

i t e
j − A abwklm

cde t
eb
ij ta

mtd
l

−Aijw
klm
cde t

ab
mj t

d
l t e

i − A abwbkl
cdet

a
l t d

i t e
j + Aijw

klm
cdj ta

l t b
mtd

i

+ wklm
cde t

a
l t b

mtd
i t e

j

w
ijc
abk = w

ijc
abk + w

ijc
abd t

d
k − w

ijl
abkt

c
l − w

ijl
abd t

c
l t

d
k + w

ijl
abd t

cd
kl

w
ijcd
abkl = A cdw

ijc
abet

ed
kl − Aklw

ijm
abk t

cd
ml − A cdw

ijm
abe t

ed
kl t c

m − Aklw
ijm
abe t

cd
ml t

e
k

their NO2B equivalents in �
ij
ab(2B) [cf. Eqs. (76) or (80)

and (78) or (82)] because one cannot form such terms from
two-body Hamiltonians. The former term, Eq. (92), cannot be
further simplified, but the latter contribution can be expressed
in a computationally efficient, factorized form utilizing the
previously defined intermediates given by Eqs. (86) and (87),
obtaining

〈�|(�2W 4)C
∣∣�ab

ij

〉 = −(
w

ijc
abd − w

ijm
abd t

c
m

)
χd

c

−(
w

ijl
abk + w

ijl
abd t

d
k

)
χk

l . (94)

The complete set of expressions for the one-, two-, three-,

and four-body matrix elements of WN
(CCSD)

, in terms of
the pertinent w

pqr
stu matrix elements of WN and the CCSD

amplitudes tai and tab
ij is given in Tables I and II.

2. The �CCSD(T)-type correction for three-body Hamiltonians

We end the present section by deriving the expressions that
are used in this work to determine the noniterative correction
δE(T) to the CCSD energy capable of capturing the dominant
T3 effects in the presence of three-body interactions in the
Hamiltonian. As pointed out above, the triples correction δE(T)

developed in this work is an extension to 3N interactions of the
�CCSD(T) approach, formulated for two-body Hamiltonians
in Refs. [56,57]. We begin, however, with the more general

CR-CC(2,3) methodology, originally introduced in Refs. [60,
61] and examined in the nuclear context in Refs. [22,41],
which contains all kinds of noniterative triples corrections
to CCSD, including �CCSD(T), as approximations. The CR-
CC(2,3) expressions provide us with a transparent mechanism
for identifying the additional terms in the �CCSD(T)-type
equations that originate from the explicit inclusion of the 3N
interactions in the Hamiltonian.

In general, the CR-CC(2,3), CR-CC(2,4), and other ap-
proaches in the so-called CR-CC(m,m′) hierarchy [60–63,
70], and various closely related approximations, includ-
ing CCSD[T] [86,87], CCSD(T) [45], CCSD(TQf) [88],
�CCSD(T) [56,57], �CCSD(TQf) [89], CCSD(2)T [52–
55], CCSD(2) [52–55], CR-CCSD(T) [47–51], CR-
CCSD(TQ) [47–51], CR-CC(2,3) + Q [90], LR-CCSD(T)
[91], and LR-CCSD(TQ) [91], are based on the idea of adding
a posteriori, noniterative corrections due to the higher-order
cluster components, such as T3 or T4, to the energies resulting
from the CCSD (or some other lower-level CC) calculations.
One of the most convenient approaches for deriving these
corrections is by examining the CC energy functional, which is
defined as [see, e.g., Refs. [78,80,92–96] and Eqs. (1) and (12);
cf., also, Refs. [70,73,76,81,97] for reviews]

�E = 〈�̃|HN |�〉 = 〈�|(1 + �)HN |�〉, (95)

or, more precisely, its asymmetric analog, which in the case of
correcting the CCSD energy can be written as [60,61,70]

�E = 〈�|L HN
(CCSD)|�〉, (96)

where HN
(CCSD)

is the similarity-transformed Hamiltonian of
CCSD, Eq. (50). The usefulness of the above expression in the
context of correcting the CCSD results for the effects of higher-
than-doubly excited clusters stems from the fact that Eq. (96)
is equivalent to the exact (i.e., full CI) correlation energy
when 〈�|L represents the lowest-energy left eigenstate of

HN
(CCSD)

obtained by diagonalizing the latter operator in
the entire A-particle Hilbert space. Indeed, when the hole-
particle deexcitation operator L entering Eq. (96) originates
from parametrizing the full CI bra state through the ansatz
〈�| ∼ 〈�|L e−T (CCSD)

, where we assume the normalization
condition 〈�|L |�〉 = 1, the asymmetric energy expression
given by Eq. (96) produces the exact correlation energy. At

the same time, because the matrix elements 〈�a
i |HN

(CCSD)|�〉
and 〈�ab

ij |HN
(CCSD)|�〉 vanish in the CCSD case as required

by Eqs. (48) and (49), it is easy to demonstrate that the

lowest-energy eigenvalue of HN
(CCSD)

in the subspace of the
Hilbert space spanned by the reference determinant |�〉 and
the singly and doubly excited determinants |�a

i 〉 and |�ab
ij 〉 is

the CCSD correlation energy �E(CCSD). Thus, as shown, for
example, in Refs. [52–54,60,61] (cf. Ref. [70] for a review),
we can formally split the exact correlation energy �E into the
CCSD part �E(CCSD) and the noniterative correction δE that
describes all of the remaining correlations missing in CCSD by
inserting the resolution of the identity in the A-particle Hilbert
space, written as

|�〉〈�| + P + Q = 1, (97)
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where

P = P1 + P2, (98)

Q = P3 + · · · + PA, (99)

and

Pn =
∑

i1<···<in
a1<···<an

∣∣�a1...an

i1...in

〉 〈
�

a1...an

i1...in

∣∣, (100)

into Eq. (96), and perform some additional manipulations that
lead to

�E = �E(CCSD) + 〈�|L QHN
(CCSD)|�〉. (101)

The resulting biorthogonal moment expansions of δE,
which result in the aforementioned CR-CC(m,m′) hierarchy
[60–63,70], or the perturbative expansions of δE employing
Löwdin’s partitioning technique [98], as in Refs. [52–57] (cf.,
also, Ref. [99]), which lead to methods such as �CCSD(T),
�CCSD(TQf) or CCSD(2), provide us with the desired
mathematical expressions for the noniterative corrections due
to T3, T4, and other higher-order clusters.

In particular, the leading post-CCSD term in the difference
δE between the exact and CCSD energies, which emerges from
the above considerations and which captures the correlation
effects from the connected T3 clusters can be represented by
the following generic form [60,61,70]:

δE(T) = 〈�|L3 HN
(CCSD)|�〉 = 1

36 

ijk
abc Mabc

ijk , (102)

where

L3 = 1
36

∑
i,j,k,a,b,c



ijk
abc a†

aa
†
ba

†
cakajai (103)

is the three-body component of the exact L operator entering
Eqs. (96) and (101), with 


ijk
abc representing the corresponding

matrix elements, and

Mabc
ijk = 〈

�abc
ijk

∣∣HN
(CCSD)|�〉 = 〈

�abc
ijk

∣∣(HN
(CCSD))

open|�〉
(104)

are the so-called generalized moments of the CCSD equa-
tions [47–51,100] corresponding to projections of these equa-
tions on the triply excited determinants. At this point, the above
expressions are still exact, i.e., one would have to diagonalize

HN
(CCSD)

in the entire A-particle Hilbert space to extract the
L3 component of L that enters Eq. (102). Thus, to apply
Eq. (102) in practice, we have to develop practical recipes for
determining L3 or 


ijk
abc that rely on the information that one

can extract from CCSD-level calculations. The CR-CC(2,3)
approach of Refs. [60,61] and the �CCSD(T) method of
Refs. [56,57], in which some higher-order terms in the CR-
CC(2,3) expressions for the δE(T) correction are neglected,
provide such recipes.

In the CR-CC(2,3) theory of Refs. [60,61], presented here in
the general, orbital-rotation invariant form, where in analogy
to the CCSD energy, the resulting triples correction δE(T) is
invariant with respect to rotations among the occupied and
unoccupied single-particle states, we determine the desired
L3 operator or the corresponding amplitudes 


ijk
abc, which enter

Eq. (102), in a quasiperturbative manner, using the expression
(see [60,61,70])

〈�|L3 = 〈�|(1 + �(CCSD)) HN
(CCSD)

R(CCSD)
3 , (105)

where

R(CCSD)
3 = P3

�E(CCSD) − HN
(CCSD) , (106)

with

P3 =
∑
i<j<k
a<b<c

∣∣�abc
ijk

〉 〈
�abc

ijk

∣∣, (107)

is the appropriate reduced resolvent of HN
(CCSD)

in the
subspace spanned by the triply excited determinants |�abc

ijk 〉
and �(CCSD) is the familiar � operator obtained by solving
the left-eigenstate CCSD equations, Eqs. (67) and (68). As
a result, the CR-CC(2,3) correction δE(T), which offers an
accurate representation of the T3 effects on the correlation
energy without forcing one to solve for T3 using the full
CCSDT approach, assumes the following compact form:

δE(T) = 〈�|(1 + �(CCSD)) HN
(CCSD)

R(CCSD)
3 HN

(CCSD)|�〉.
(108)

Alternatively, to avoid the explicit construction of the reduced
resolvent R(CCSD)

3 , Eq. (106), in the above expression for δE(T),
we can determine the 


ijk
abc amplitudes by solving the linear

system ∑
l<m<n
d<e<f

〈
�

def
lmn

∣∣(�E(CCSD) − HN
(CCSD))∣∣�abc

ijk

〉

lmn

def

= 〈�|(1 + �(CCSD)) HN
(CCSD)∣∣�abc

ijk

〉
, (109)

which can be further simplified to

−
∑
l<m<n
d<e<f

〈
�

def
lmn

∣∣(HN
(CCSD))

open

∣∣�abc
ijk

〉

lmn

def

= 〈�|(1 + �(CCSD))
(
HN

(CCSD))
open

∣∣�abc
ijk

〉
, (110)

and use the resulting values of 

ijk
abc, along with the generalized

moments Mabc
ijk , Eq. (104), to calculate δE(T). As explained

in Refs. [60,61,70], we obtain Eq. (105), or the equivalent
linear system given by Eq. (109), by approximating the exact

L operator in the left eigenvalue problem 〈�|L HN
(CCSD) =

�E 〈�|L , which this operator has to satisfy and which we
right-project on the triply excited determinants |�abc

ijk 〉, by the
sum of (1 + �(CCSD)), obtained by solving the left-eigenstate
CCSD equations, Eqs. (67) and (68), and the unknown L3

component, and by replacing the exact correlation energy �E
in the resulting equations by its CCSD counterpart �E(CCSD).

The above is the most general form of the CR-CC(2,3)
theory, which encompasses other forms of noniterative triples
corrections available in the literature, such as �CCSD(T), and
which satisfies a number of important properties, including
the aforementioned rotational invariance (mischaracterized
in Ref. [57], but correctly described here) and the strict
size extensivity characterizing all of the commonly used CC
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approaches, such as CCSD or CCSDT. If we are willing to lift
the requirement of the strict invariance of the δE(T) correction
with respect to arbitrary rotations among the occupied and
unoccupied orbitals, which can be justified by the fact
that typical calculations of such corrections, including those
presented in this work, utilize the Hartree-Fock (i.e., fixed)
orbitals, we can eliminate the iterative steps associated with
the need for solving the linear system for the 


ijk
abc amplitudes,

Eq. (109) or (110), and replace those steps by noniterative
expressions, such as [60–63,70]



ijk
abc = 〈�|(1 + �(CCSD))

(
HN

(CCSD))
open

∣∣�abc
ijk

〉/
Dabc

ijk , (111)

where

Dabc
ijk = �E(CCSD) − 〈

�abc
ijk

∣∣HN
(CCSD)∣∣�abc

ijk

〉

= −
3∑

n=1

〈
�abc

ijk

∣∣Hn

∣∣�abc
ijk

〉
, (112)

if there are no degeneracies among orbitals i, j , k or a, b,

c, with Hn representing the n-body component of HN
(CCSD)

[we still have to solve small linear subsystems of the type
of Eq. (109) or (110) for the subsets of the 


ijk
abc amplitudes

involving orbital degeneracies to retain the invariance of δE(T)

with respect to the rotations among degenerate orbitals, but this
is much less expensive than dealing with the complete (109)
or (110) system]. We refer the reader to Refs. [60–63,70] for
a thorough discussion of such expressions. Encouraged by
the superb performance of the CR-CC(2,3) approach in the
nuclear applications involving two-body Hamiltonians, which
we reported in Refs. [22,41], one of our future objectives
is to implement the complete CR-CC(2,3) theory, as sum-
marized above, for Hamiltonians including 3N interactions,
but in this study we focus on the simplifications in the
CR-CC(2,3) expressions for the δE(T) corrections offered by
the �CCSD(T) approach of Refs. [56,57], which facilitate the
derivations of the programmable expressions for the triples
correction δE(T). Considering, however, the fact that the
original publications on the �CCSD(T) method [56,57] make
explicit use of the assumption that the underlying interactions
in the Hamiltonian are two-body, we use the more general
CR-CC(2,3) formulas, Eqs. (102)–(112), to identify terms in
the �CCSD(T) equations for δE(T) that result from adding the
3N interactions to the Hamiltonian.

The �CCSD(T) approach is formally obtained by keeping
only the lowest-order terms in the definitions of the moments
Mabc

ijk , Eq. (104), and amplitudes 

ijk
abc, Eq. (109), (110),

or (111), that define the CR-CC(2,3) correction δE(T). Thus,
assuming that the Hamiltonian contains up to three-body inter-
actions, we approximate the moments Mabc

ijk , Eq. (104), by re-

taining terms in (HN
(CCSD)

)open that are at most linear in T , i.e.,

Mabc
ijk ≈ 〈

�abc
ijk

∣∣[HN (1 + T1 + T2)]C |�〉
= Mabc

ijk (2B) + Mabc
ijk (WN ), (113)

where the NO2B contribution to Mabc
ijk is given by

Mabc
ijk (2B) = 〈

�abc
ijk

∣∣[HN,2B(1 + T1 + T2)]C |�〉
= 〈

�abc
ijk

∣∣(VNT2)C |�〉 (114)

and the contribution from the residual 3N interactions has the
form

Mabc
ijk (WN ) = 〈

�abc
ijk

∣∣[WN (1 + T1 + T2)]C |�〉. (115)

To derive the analogous expressions for the amplitudes 

ijk
abc,

which would be consistent with the approximations that lead to
the noniterative �CCSD(T) approach of Refs. [56,57], where
one makes an assumption that the Fock operator is diagonal
in the occupied and unoccupied single-particle spaces, so that
f i

j = εiδij and f a
b = εaδab, where εp represents the diagonal

matrix element f
p
p , which is automatically satisfied by the

calculations reported in this study because they rely on the
canonical Hartree-Fock orbitals, we replace the reduced
resolvent R(CCSD)

3 entering the CR-CC(2,3) correction δE(T),
Eq. (108), by its simplified Møller-Plesset form adopted in
the �CCSD(T) considerations [56,57], i.e.,

R(CCSD)
3 = − P3(

HN
(CCSD))

open

≈ − P3

FN

=
∑
i<j<k
a<b<c

(
εabc
ijk

)−1∣∣�abc
ijk

〉 〈
�abc

ijk

∣∣, (116)

where

εabc
ijk = εi + εj + εk − εa − εb − εc (117)

is the orbital energy difference for triples. The latter

approximation is equivalent to replacing (HN
(CCSD)

)open on the
left-hand side of the linear system given by Eq. (110), which
corresponds to the more elaborate CR-CC(2,3) treatment,

by the FN operator. If we further approximate HN
(CCSD)

on
the right-hand side of Eq. (110) by the leading contribution

to HN
(CCSD)

, which is the normal-ordered Hamiltonian HN

itself, we can replace the linear system given by Eq. (110) by
its simplified form

−
∑
l<m<n
d<e<f

〈
�

def
lmn

∣∣FN

∣∣�abc
ijk

〉

lmn

def

= 〈�|(1 + �(CCSD)) HN

∣∣�abc
ijk

〉
, (118)

which immediately allows us to write



ijk
abc = (

εabc
ijk

)−1〈�|(1 + �(CCSD)) HN

∣∣�abc
ijk

〉
. (119)

After splitting the above expression into the NO2B and
residual 3N contributions and identifying the nonvanishing
terms, we obtain



ijk
abc = 


ijk
abc(2B) + 


ijk
abc(WN ), (120)

where



ijk
abc(2B) = 〈�|[(�1VN )DC + (�2FN )DC

+ (�2VN )C]
∣∣�abc

ijk

〉/
εabc
ijk (121)

and



ijk
abc(WN ) = 〈�|[WN + (�1WN )C

+ (�2WN )C]
∣∣�abc

ijk

〉/
εabc
ijk . (122)
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Equation (102), with moments Mabc
ijk approximated by

Eqs. (113)–(115) and amplitudes 

ijk
abc by Eqs. (120)–(122),

is the desired extension of the �CCSD(T) correction due
to the connected T3 clusters to the 3N interaction case. By
comparing the expressions for the NO2B contributions to
Mabc

ijk and 

ijk
abc given by Eqs. (114) and (121), respectively,

with the analogous formulas for the two-body Hamiltonians
reported in Ref. [57], we can immediately see that the
�CCSD(T) approach presented here, which we derived
by simplifying the CR-CC(2,3) equations, reduces to the
�CCSD(T) theory of Refs. [56,57], when the Hamiltonian of
interest contains pairwise interactions only.

Based on the above considerations, we can give the triples
correction formula for three-body Hamiltonians, within the
�CCSD(T) approximation scheme discussed in this work, the
physically meaningful form

δE(T) = δE
(T)
2B + δE

(T)
3B , (123)

where the pure NO2B contribution δE
(T)
2B is defined as

δE
(T)
2B = 1

36 

ijk
abc(2B) Mabc

ijk (2B), (124)

whereas the δE
(T)
3B component of δE(T), which is present only

when the residual 3N interactions are taken into account, is
given by

δE
(T)
3B = 1

36

[



ijk
abc(2B) Mabc

ijk (WN ) + 

ijk
abc(WN ) Mabc

ijk (2B)

+

ijk
abc(WN ) Mabc

ijk (WN )
]
. (125)

The explicit m-scheme-type expressions for the NO2B con-
tributions to moments Mabc

ijk and amplitudes 

ijk
abc, within the

�CCSD(T) approximation defined by Eqs. (114), (115), (121),
and (122), are

Mabc
ijk (2B) = A ab/cAij/k

(
vab

kd tdc
ij − vcl

ij t
ab
lk

)
(126)

and



ijk
abc(2B) = Aab/cA

ij/k
(
f k

c λ
ij
ab + v

ij
abλ

k
c + vkd

abλ
ij
dc

− v
ij
cl λ

lk
ab

)/
εabc
ijk , (127)

respectively [the analogous equations can also be found in
Ref. [57], although the equation in Ref. [57], which would be
equivalent to our Eq. (127), is applicable to real orbitals only].
For the residual 3N contributions to Mabc

ijk and amplitudes 

ijk
abc,

we can write

Mabc
ijk (WN ) = wabc

ijk − A ab/cwabl
ijk t cl + Aij/kw

abc
ijd tdk

+ 1
2Aij/kw

abc
dek t

de
ij + 1

2A ab/cwlmc
ijk tab

lm

+A ab/cAij/kw
abl
ijd tcdkl (128)

and



ijk
abc(WN ) = (

w
ijk
abc − Aab/cw

ijk
ablλ

l
c + A ij/kw

ijd
abcλ

k
d

+ 1
2A ij/kwdek

abcλ
ij
de + 1

2Aab/cw
ijk
lmcλ

lm
ab

+Aab/cA
ij/kw

ijd
ablλ

kl
cd

)/
εabc
ijk , (129)

respectively. The three-index antisymmetrizers Apq/r =
A pq/r , which enter the above formulas along with the

previously defined two-index antisymmetrizers Apq = A pq ,
Eq. (83), are defined in a usual way, viz.,

Apq/r ≡ A pq/r = 1 − (pr) − (qr), (130)

where we use the (pq) symbol once again to represent a
transposition of two indices. As in the case of the CCSD and
�CCSD equations discussed in Sec. II C1, the m-scheme-style
expressions represented by Eqs. (126)–(129) can again be
converted into an angular-momentum-coupled form which
greatly facilitates the computations.

We finalize our formal presentation of the �CCSD(T)
theory for three-body Hamiltonians by emphasizing the
differences between �CCSD(T) in the NO2B approximation
and the complete �CCSD(T) treatment including the residual
3N interactions WN . According to the above analysis, in the
full treatment of three-body interactions within the �CCSD(T)
description, one determines the total energy E, designated as
E(�CCSD(T)), as follows:

E(�CCSD(T)) = Eref + �E
(CCSD)
2B + δE

(T)
2B

+�E
(CCSD)
3B + δE

(T)
3B , (131)

where we calculate the NO2B-type correlation energy con-
tributions �E

(CCSD)
2B and δE

(T)
2B using Eqs. (65) and (124),

respectively, and the contributions associated with the presence
of the residual 3N interactions, �E

(CCSD)
3B and δE

(T)
3B , using

Eqs. (66) and (125), respectively. The reference energy Eref,
which obviously does not contain any information about
the residual 3N effects represented by the normal-ordered
operator WN , is calculated using Eq. (31). In the case of
�CCSD(T) calculations in the NO2B approximation, we
replace the complete energy expression given by Eq. (131)
by its simplified form, in which the WN -containing terms,
�E

(CCSD)
3B and δE

(T)
3B , are neglected, i.e.,

E
(�CCSD(T))
2B = Eref + �E

(CCSD)
2B + δE

(T)
2B . (132)

We stress, however, that the differences between the complete
and NO2B treatments of the 3N interactions in the �CCSD(T)
calculations are not limited to the final energy expressions.
In the most complete �CCSD(T) calculations, in which the
three-body interactions in the Hamiltonian are treated fully, the
singly and doubly excited cluster amplitudes, tai and tab

ij , and

their singly and doubly deexcited λi
a and λ

ij
ab counterparts are

determined from CCSD and left-eigenstate CCSD calculations
with all terms in the normal-ordered three-body Hamiltonian
HN , Eq. (24), including those that contain WN , properly
accounted for, as in Eqs. (48) and (49) for CCSD and (69)
and (70) for �CCSD. This should be contrasted with the NO2B
approximation to the �CCSD(T) approach, in which the tai ,
tab
ij , λi

a , and λ
ij
ab amplitudes, which are needed to construct

the �E
(CCSD)
2B and δE

(T)
2B energy components in Eq. (132),

are obtained by solving the CCSD and left-eigenstate CCSD
equations, where the WN -containing �a

i (WN ) and �ab
ij (WN )

terms in the CCSD system, Eqs. (48) and (49), and the
�i

a(WN ) and �
ij
ab(WN ) terms in the �CCSD system, Eqs. (69)

and (70), are neglected. Clearly, very similar remarks apply to
a comparison of the complete and NO2B treatments of the 3N
interactions in the underlying CCSD calculations, where the
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corresponding total energies are defined as

E(CCSD) = Eref + �E
(CCSD)
2B + �E

(CCSD)
3B (133)

≡ Eref + �E(CCSD), (134)

in the former case, and

E
(CCSD)
2B = Eref + �E

(CCSD)
2B , (135)

in the latter case. One of the interesting questions that our
calculations discussed in Sec. III try to address is if it is bene-
ficial to consider an intermediate �CCSD(T) approximation,
where the 3N forces are treated fully at the CCSD level, while
using the NO2B approximation in the determination of the
δE(T) triples correction, so that the full �CCSD(T) energy
expression, Eq. (131), is replaced by the somewhat simpler
formula

Ẽ(�CCSD(T)) = Eref + �E(CCSD) + δE
(T)
2B . (136)

Finally, it is worth pointing out that one of the most
interesting differences between the �CCSD(T) calculations
with the NO2B and full treatments of the 3N interactions in
the Hamiltonian is the significance of the T3 contributions
induced by the residual WN component. As in conventional
many-body theory based on pairwise interactions, the NO2B
approximation shifts the T3 contribution to the second and
higher orders of many-body perturbation theory (MBPT) in
the wave function and the fourth and higher MBPT orders in
the energy because, in the absence of the WN component in the
Hamiltonian, the lowest-order approximation to T3 originates
from the formula (cf., e.g., Ref. [87], and references therein)
T

(2)
3 |�〉 = (R3VNR2VN )C |�〉, where Rn = −(FN )−1Pn is

the n-body component of the MBPT reduced resolvent
(assuming, for simplicity, Hartree-Fock orbitals). The fourth-
and higher-order MBPT contributions to the energy from the
T3 clusters originating from the pairwise interaction term VN

in HN are captured by the δE
(T)
2B correction, Eq. (124), which

is present in any form of the �CCSD(T) [or even CCSD(T)
or CCSD[T]] calculations, including those in which the 3N
interactions are completely neglected. The situation changes
when we include the residual 3N interaction term WN in the
calculations. In this case, the T3 cluster component originating
from WN shows up already in the first MBPT order in the wave
function and the second MBPT order in the energy because
one can form the connected wave-function diagram with six
external lines representing T3 using the formula T

(1)
3 |�〉 =

(R3WN )C |�〉. The corresponding second-order MBPT con-
tribution from the T3 cluster component originating from the
presence of WN in the Hamiltonian is captured by the δE

(T)
3B

correction through the last 1
36 


ijk
abc(WN ) Mabc

ijk (WN ) term in
Eq. (125), which, based on Eqs. (128) and (129), contains
the second-order 1

36

∑
i,j,k,a,b,c wabc

ijk w
ijk
abc/ε

abc
ijk expression as

the leading component. It is trivial to show that the latter
expression is equivalent to the vacuum diagram representing
〈�|(WNT

(1)
3 )C |�〉. Clearly, such a term cannot be captured

by CCSD, even when the WN interactions are included in
the calculations because CCSD ignores the T3 contributions
altogether and the CCSD correlation energy can only directly
engage the T1T2 and 1

6T 3
1 clusters, as in �E

(CCSD)
3B [Eq. (66)].

We would have the 〈�|(WNT3)C |�〉 component in the corre-
lation energy if we used the full CCSDT approach with the
residual WN interactions. It is, therefore, very encouraging
to observe that the extension of the �CCSD(T) approach to
three-body Hamiltonians developed in this work captures the
sophisticated T3-cluster physics originating from the residual
3N forces represented by the WN operator, which normally
requires the full CCSDT treatment, via the δE

(T)
3B energy

component defined by Eq. (125). It is useful to point out that
the smallness of the residual 3N interaction represented by
WN relative to the pairwise VN component causes the last
term in Eq. (125), which formally shows up in second order,
to be for all practical purposes negligible. The first and second
terms in Eq. (125) that mix the VN and WN contributions to
δE

(T)
3B are larger, dominating δE

(T)
3B , but they are still quite

small compared to δE
(T)
2B . Numerical examples illustrating

the relative significance of δE
(T)
2B vs δE

(T)
3B contributions are

discussed in the next section.

III. APPLICATION TO MEDIUM-MASS NUCLEI

A. Hamiltonian and basis

We use the chiral NN interaction at N3LO [101] and
a local form of the chiral 3N interaction at N2LO [102].
The initial Hamiltonian is transformed through a similarity
renormalization group (SRG) evolution at the two- and
three-body level to enhance the convergence behavior of the
many-body calculations. The SRG transformation represents
a continuous unitary transformation parametrized by a flow
parameter α, with the initial Hamiltonian corresponding to
α = 0 [10,103,104]. In all calculations we use the 400-MeV
reduced-cutoff version of the chiral 3N interaction as
described in [10,11,13,105]. This cutoff reduction is motivated
by the observation that SRG-induced 4N interactions have
a sizable impact on ground-state energies of medium-mass
nuclei, which can be reduced efficiently by lowering the cutoff.

We will employ two types of SRG-evolved Hamiltoni-
ans. The NN + 3N -full Hamiltonian starts with the initial
chiral NN + 3N Hamiltonian and retains all terms up to
the three-body level in the SRG evolution; the NN + 3N -
induced Hamiltonian omits the chiral 3N interaction from the
initial Hamiltonian, but keeps all induced three-body terms
throughout the evolution. The three-body SRG evolution is
performed in a harmonic-oscillator (HO) model space with
up to 40 oscillator quanta [10,105]. To ensure the sufficiency
of this model space for smaller HO frequencies we apply a
frequency conversion technique [105]. Thus, we evolve the
Hamiltonian at an adequate HO frequency, which is set here at
h̄� = 28 MeV, and convert the Hamiltonian matrix elements
to the HO basis with the desired frequency for the many-body
calculation afterwards. Furthermore, we consider a range of
flow parameters α to observe how the individual contributions
in the CC calculations evolve with the SRG flow. We note that
all calculations are performed with the intrinsic Hamiltonians
and that no correction for spurious center-of-mass effects is
applied because those are expected to be small [106].

For our CC calculations, the underlying single-particle basis
is an HO basis truncated in the principal oscillator quantum
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number 2n + l = e � emax and we go up to emax = 12. We
perform Hartree-Fock calculations explicitly including the
3N interaction for each set of basis parameters to obtain an
optimized single-particle basis and to stabilize the convergence
of the CC iterations. Because of their enormous number, it is
not possible to include all 3N matrix elements that would
appear in the larger bases. Therefore, regarding computing
time, we restrict our calculations to three-body matrix elements
with e1 + e2 + e3 � E3 max = 12. For this particular value of
E3 max we capture a significant part of the 3N interaction,
but, mostly for the harder interactions, we are not yet fully
converged with respect to E3 max [44]. However, this is not
expected to impact the discussion in this article.

For closed-shell nuclei we use an angular-momentum
coupled formulation of CC theory [59] which enables us
to operate with reduced matrix elements for all operators
involved, in particular the Hamiltonian. This leads to a drastic
reduction of the number of matrix elements to be processed
compared to an m-scheme description and hence greatly
extends the range of the method to medium-mass nuclei and
beyond.

B. Results

To assess the overall importance of triply excited clusters
in nuclear-structure calculations, in Fig. 1 we compare the
CCSD and �CCSD(T) ground-state energies E(CCSD) and
E(�CCSD(T)) using the complete 3N information, as a function
of emax for 16O and 24O and for the two 3N Hamiltonians
discussed in the previous subsection. First, we notice that
we are reasonably converged within the model spaces we
operate in and we observe the expected faster convergence
with respect to model space size for the softer, further evolved,
interactions. Furthermore, the triples correction δE(T) provides
about 2%–5% of the binding energy for all nuclei considered,

NN+3N-induced
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FIG. 1. (Color online) CCSD (dashed lines) and �CCSD(T)
(solid lines) ground-state energies for 16O and 24O as a function
of emax for the two types of Hamiltonians (see column headings) with
E3 max = 12 for SRG flow parameter α set at 0.02 fm4 (blue circles),
0.04 fm4 (red diamonds), and 0.08 fm4 (green triangles).

where, as expected, the contribution of the triply excited
clusters decreases with the SRG flow parameter. Therefore, if
one aims at an accuracy in ground-state calculations of about
1%, the truncation in the cluster operator T is identified as
one of the larger sources of error. The CCSD level of theory is
not sufficiently accurate, for the connected triple excitation
effects are not negligible, even for the softest interaction
considered.

Next we address the importance of the residual 3N inter-
action in CCSD and �CCSD(T) calculations. Our discussion
is complicated by the fact that energy values are not only
determined by their expressions in terms of the T (CCSD) and
�(CCSD) amplitudes tai , tab

ij and λi
a , λ

ij
ab, but also by the type of

equations—with or without inclusion of the WN terms—used
to determine the amplitudes. This leads to various possible and
reasonable combinations to consider.

In Fig. 2, we show results for a series of increasingly com-
plete calculations of the energy for 16O, 24O, and 40Ca and for
both the NN + 3N -induced and NN + 3N -full Hamiltoni-
ans. The energy E

(CCSD)
2B is calculated in NO2B approximation,

i.e., the WN terms are neglected in the equations determining
the T (CCSD) amplitudes. For the calculation of all other energies
we use T (CCSD) and �(CCSD) amplitudes determined from
their respective amplitude equations including the WN terms.
By comparing E

(CCSD)
2B with E(CCSD), we obtain a direct

quantification of the combined effect of the additional WN

terms in the CCSD amplitude equations and energy expression.
Note that E(CCSD) − E

(CCSD)
2B 	= �E

(CCSD)
3B here, because of

the use of different amplitudes. The interesting question of
whether the WN terms are more important in the determination
of the amplitudes or in the energy expression will be addressed
further below. Contrary to the previous situation, the same
amplitudes are used in the calculation of δE

(T)
2B and δE

(T)
3B .

Therefore, using these numbers we can only quantify how
important the WN contributions, given simply by δE

(T)
3B , are

in the calculation of the total triples correction δE(T), i.e., we
can compare the approximate energy expression Ẽ(�CCSD(T)),
Eq. (136), with the full form E(�CCSD(T)), Eq. (131), but we
cannot at the same time assess the relevance of WN terms in
the respective equations determining the T (CCSD) and �(CCSD)

amplitudes. Particularly for δE
(T)
2B , other choices of where to

include WN terms in the amplitude equations seem reasonable.
We come back to this issue below but already mention here
that for δE

(T)
2B other choices of amplitude equations lead to

practically the same results.
All data shown in Fig. 2 are compiled in Table III, and

in the following we consider 16O with the NN + 3N -full
Hamiltonian [Fig. 2(b)] at flow parameter values α = 0.02 fm4

and 0.08 fm4 as an example. When α increases, more and
more of the binding energy is shifted to lower orders of the
cluster expansion and the contributions from the higher orders
consequently get smaller with the SRG flow: the magnitude
of the reference energy Eref grows from –56.11 MeV to
–101.67 MeV, while the CCSD correlation energy �E(CCSD)

decreases from –69.03 MeV to –26.52 MeV as we go
from α = 0.02 fm4 to 0.08 fm4and the �CCSD(T) energy
correction δE(T), which we also consider as a measure for
the contributions of the omitted cluster operators beyond
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FIG. 2. (Color online) Anatomy of individual contributions from
CCSD and �CCSD(T) to the total binding energy of 16O, 24O, and
40Ca for the two types of Hamiltonians with E3 max = 12 and SRG
flow parameters α = 0.02, 0.04, and 0.08 fm4. For 16O and 24O, an
emax = 12 model space and oscillator frequency h̄� = 20 MeV was
used, whereas for 40Ca we work in an emax = 10 model space with
h̄� = 24 MeV.

the three-body level [44], decreases from –5.54 MeV to
–2.34 MeV, corresponding to 4.2% and 1.8% of the total
binding energy. In the medium-mass regime considered here,
these uncertainties related to the cluster truncation are typically
the largest, and therefore they determine the overall level of
accuracy we aim at [44].

Examining the contributions from the residual 3N inter-
action to �E(CCSD) we find that, while the absolute value
of �E(CCSD) decreases by about 30 MeV when we evolve
the Hamiltonian from α = 0.02 fm4 further to 0.08 fm4,
�E(CCSD) − �E

(CCSD)
2B is only subject to a slight increase from

0.54 MeV to 0.92 MeV, corresponding to 0.4% and 0.7% of
the total binding energy. Consequently, the relative as well as
the absolute importance of the residual 3N interaction to the
CCSD correlation energy grows with the SRG flow.

Furthermore, while for the harder Hamiltonian at α =
0.02 fm4 the WN contributions to �E(CCSD) are about one order
of magnitude smaller than the accuracy level set by δE(T), for
the softer α = 0.08 fm4 Hamiltonian the WN contributions
have a comparable size of about 39% of the triples correction.
Therefore, to keep different errors at a consistent level, for soft
interactions the residual 3N contributions should be included
in CCSD if the triples correction is considered as well.

For the �CCSD(T) triples correction δE(T) itself, the WN

contributions δE
(T)
3B , despite containing second-order MBPT

contributions, have very small values of about –15 keV. This
effect is about one order of magnitude smaller than the targeted
accuracy given by the size of δE(T) and may, therefore, be
neglected. From another perspective, the WN contributions to
δE(T) constitute about 0.1% of the total binding energy, which
clearly is beyond the level of accuracy of any many-body
method operating in the medium-mass regime today.

As is apparent from Fig. 2, the situation for the NN + 3N -
induced Hamiltonian and the heavier nuclei 24O and 40Ca is
similar. In the case of 40Ca we work in the smaller emax =
10 model space to keep the computational cost reasonable. In
this model space the results are not fully converged with respect
to emax, but because the quality of the NO2B approximation
is largely independent of emax [44] this does not affect the
present discussion. For the NN + 3N -induced Hamiltonian,
for example, the relative contribution of WN to the CCSD
correlation energy grows from 1.3% for α = 0.02 fm4 to 4.2%
for α = 0.08 fm4, in both cases constituting about 0.6% of
the total binding energy. Again, as the SRG flow parameter
increases, the contributions of WN to the CCSD correlation
energy on the one hand, and the triples correction on the other
hand, become comparable; �E(CCSD) − �E

(CCSD)
2B is about

18% of the size of the triples correction at α = 0.02 fm4

and already about 48% at α = 0.08 fm4. The WN effect on
the triples correction is again negligible, about one order of
magnitude smaller than the triples correction itself, namely,
about 2% of δE(T) for α = 0.02 fm4 and about 11% for
α = 0.08 fm4, or 0.1% and 0.2% of the total binding energy
E(�CCSD(T)).

It should be noted that the apparent flow-parameter inde-
pendence of E(�CCSD(T)) for the NN + 3N -full Hamiltonian
is accidental due to the E3 max cut used in our calculations.
Increasing E3 max will move the energies upwards, and for
the harder interactions it will do so to a larger extent than
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TABLE III. Summary of the individual contributions to the �CCSD(T) ground-state energies in MeV for 16O, 24O, and 40Ca and for the
NN + 3N -induced and NN + 3N -full Hamiltonians with E3 max = 12, obtained for 16O and 24O from an emax = 12 model space with oscillator
frequency h̄� = 20 MeV and for 40Ca from an emax = 10 model space with h̄� = 24 MeV. For the calculation of �E

(CCSD)
2B , amplitudes from

the NO2B approximation have been used, while for the calculation of all other quantities the required amplitudes have been determined from
equations including the residual 3N interaction.

NN + 3N- induced α [fm4] E(�CCSD(T)) Eref �E
(CCSD)
2B �E(CCSD) − �E

(CCSD)
2B δE

(T)
2B δE

(T)
3B

16O 0.02 −126.37 −56.47 −66.05 0.67 −4.46 −0.06
0.04 −124.09 −80.09 −41.93 0.86 −2.83 −0.10
0.08 −121.78 −96.59 −24.28 0.90 −1.66 −0.15

24O 0.02 −164.92 −65.41 −93.22 0.89 −7.01 −0.18
0.04 −161.14 −98.32 −59.23 1.15 −4.56 −0.18
0.08 −156.97 −120.64 −34.52 1.19 −2.75 −0.24

40Ca 0.02 −372.25 −186.58 −174.35 2.44 −13.44 −0.31
0.04 −364.87 −252.67 −106.28 2.78 −8.22 −0.49
0.08 −353.00 −291.98 −58.32 2.46 −4.56 −0.59

NN + 3N- full α[fm4] E(�CCSD(T)) Eref �E
(CCSD)
2B �E(CCSD) − �E

(CCSD)
2B δE

(T)
2B δE

(T)
3B

16O 0.02 −130.68 −56.11 −69.57 0.54 −5.39 −0.15
0.04 −130.61 −81.79 −45.87 0.82 −3.61 −0.16
0.08 −130.51 −101.67 −27.44 0.92 −2.17 −0.17

24O 0.02 −171.28 −64.16 −99.53 0.67 −8.01 −0.25
0.04 −171.82 −101.52 −65.81 1.07 −5.28 −0.28
0.08 −171.65 −130.43 −39.01 1.18 −3.05 −0.35

40Ca 0.02 −369.56 −158.28 −194.80 2.12 −17.80 −0.80
0.04 −375.02 −238.62 −126.64 2.96 −11.86 −0.86
0.08 −375.82 −298.75 −72.23 2.85 −6.82 −0.87

for the softer interactions. This leads to a reduction of the
flow-parameter dependence of the NN + 3N -induced results
while the flow-parameter dependence of the NN + 3N -full
results is enhanced [44].

In summary, for hard interactions, the residual 3N effects
to the CCSD correlation energy E(CCSD) are rather small
compared to the triples correction δE(T), but they become
comparable for soft interactions. Therefore, when using soft
interactions, the residual 3N interaction should be included in
CCSD if the desired accuracy level also demands inclusion
of triples excitation effects. For the triples correction, on
the other hand, the residual 3N interaction only plays an
insignificant role, providing contributions that are shadowed
by the considerably larger uncertainties stemming, e.g., from
the cluster truncation. This motivates the use of the truncated
energy expression Ẽ(�CCSD(T)), Eq. (136), instead of the full
form E(�CCSD(T)), Eq. (131), resulting in only negligible losses
in accuracy.

The above considerations indicate that the residual 3N
interaction may be neglected in calculating the �CCSD(T)
energy correction δE(T) without significantly affecting the
overall accuracy, leading to Eq. (136) as an approximate
form for E(�CCSD(T)). From a practitioner’s point of view,
discarding the WN contributions to δE(T), Eqs. (128) and (129),
already leads to significant savings in the implementational
effort and computing time which in our calculations requires
about half a million CPU hours for one δE(T) evaluation in
the 16O calculation at emax = 12 using full WN information
with E3 max = 12, which is about two orders of magni-
tude computationally more expensive than the analogous

calculation using the NO2B approximation. However, one still
has to solve the CCSD equations determining the T (CCSD)

amplitudes tai and tab
ij as well as the �CCSD equations

determining the �(CCSD) amplitudes λi
a and λ

ij
ab with full incor-

poration of WN . Particularly solving the �CCSD equations, for
which the similarity-transformed Hamiltonian contributions
given in Tables I and II have to be evaluated, consumes lots
of the computing time in our calculations. Therefore, it is
also worthwhile to investigate how much of the residual 3N
information has to be included in solving for the amplitudes
of the T (CCSD) and �(CCSD) operators that enter the energy
expressions to obtain accurate results at the lowest possible
computational cost.

To distinguish between different approximation schemes,
we introduce the notation in which for energy quantities that
only depend on T (CCSD) amplitudes the label in brackets
denotes if the T (CCSD) amplitudes were determined from
the amplitude equations with (3B) or without residual 3N
interaction (2B). Similarly, for quantities that depend on both
T (CCSD) and �(CCSD) amplitudes, the first label denotes the
type of equation used to determine the T (CCSD) amplitudes
and the second one identifies the �CCSD equations. For
example, Ẽ(�CCSD(T))(3B, 2B) refers to the energy expres-
sion (136), calculated using T (CCSD) amplitudes determined
from Eqs. (58)–(61) and the �(CCSD) amplitudes determined
from Eqs. (79) and (80) only.

We consider the following approximation schemes, in
which the WN contributions δE

(T)
3B to the triples correction

are always neglected: For the NO2B scheme, all WN terms are
discarded in both the determination of the T (CCSD) and �(CCSD)
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amplitudes and the calculation of the energy E
(�CCSD(T))
2B ,

Eq. (132),

E(NO2B) = E
(�CCSD(T))
2B (2B, 2B). (137)

This of course corresponds to an ordinary �CCSD(T) calcu-
lation in NO2B approximation. For scheme A, we compute
E

(�CCSD(T))
2B as in the NO2B case and also add �E

(CCSD)
3B

using T (CCSD) amplitudes obtained from the NO2B CCSD
calculation,

E(A) = E
(�CCSD(T))
2B (2B, 2B) + �E

(CCSD)
3B (2B). (138)

This represents the simplest and most economic way to
include WN information, where it only enters the expression
for the energy contribution �E

(CCSD)
3B , Eq. (66), but not the

considerably more complex equations that determine the
amplitudes. In scheme B, we include full WN information
in the calculation of the CCSD correlation energy, keeping the
WN terms in the amplitude equations as well as in the energy
expression. The triples correction, however, is calculated
without any WN information,

E(B) = E(CCSD)(3B) + δE
(T)
2B (2B, 2B). (139)

In this way, we keep consistency between the T (CCSD) and
�(CCSD) amplitudes that enter the triples correction, while cap-
turing all residual 3N effects in the CCSD energy �E(CCSD). In
scheme C, we introduce an inconsistency between the T (CCSD)

and �(CCSD) amplitudes by solving for T (CCSD) with the WN

terms present, while neglecting the WN terms in the equations
for �(CCSD), and calculate the energy using Eq. (136),

E(C) = Ẽ(�CCSD(T))(3B, 2B). (140)

This variant is reasonable because one typically has to solve
for the T (CCSD) amplitude equations with WN terms anyway
to obtain the comparatively large �E

(CCSD)
3B contribution to

the energy while one would like to avoid to solve for the
�(CCSD) amplitudes in this manner, if the resulting energies
do not change much. Finally, in scheme D, in which we only
neglect the residual 3N interaction terms in the expression for
δE(T), we use the full, WN -containing equations to solve for
the T (CCSD) and �(CCSD) amplitudes and determine the energy
via Eq. (136),

E(D) = Ẽ(�CCSD(T))(3B, 3B). (141)

As in the discussion of Fig. 2, this variant allows one to estimate
the importance of WN for the �(CCSD) amplitudes.

In Fig. 3, for the case of 16O, 40Ca, and the NN +
3N -full Hamiltonian, we compare the deviations of all the
aforementioned approximation schemes from the complete 3N
calculations. For 24O and the NN + 3N -induced Hamiltonian
we obtain very similar results. As expected, the NO2B scheme
shows the largest deviations because the contributions of
WN to CCSD are completely missing. Including the WN

terms in the energy expression for the CCSD correlation
energy but evaluating it using T (CCSD) amplitudes without WN

information in scheme A virtually does not change the NO2B
results. Therefore, we can conclude that it is the WN effect
on the T (CCSD) amplitudes that is most important for CCSD,
and not the additional terms in �E

(CCSD)
3B . In our calculations,
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FIG. 3. (Color online) Comparison of the deviations introduced
by the different approximation schemes, Eqs. (137)–(141), described
in the text from the full inclusion of the residual 3N interaction in all
steps involving a CCSD and �CCSD(T) calculation.

the best approximation to the complete inclusion of residual
3N interactions is provided by scheme B, where we use full
WN information to determine the CCSD correlation energy,
but otherwise no WN information enters the calculation of the
triples correction. However, approximation schemes B, C, and
D give very similar results, again hinting at the WN effect on the
T (CCSD) amplitudes to be the most important ingredient in the
inclusion of residual 3N interactions in CCSD and �CCSD(T)
calculations.

IV. CONCLUSIONS

In this article we considered the extension of CC theory
with a full treatment of singly and doubly excited clusters
and a noniterative treatment of triply excited clusters to three-
body Hamiltonians. The incorporation of 3N interactions into
CCSD was previously discussed in detail in Ref. [43], so in
this article we focused on the corresponding generalization of
the noniterative treatment of triply excited clusters. Among
various triples corrections, for this first study we chose the
�CCSD(T)-type approach because of its relatively simple
structure.

The �CCSD(T) approach requires one to solve the �CCSD
equations prior to the computation of the actual energy
correction. Thus, in addition to the explicit energy expressions
defining the �CCSD(T) approach for three-body Hamiltoni-
ans, we also provided a detailed discussion of the inclusion
of 3N interactions into the �CCSD equations, listing the
complete set of the relevant programmable expressions. The
similarity-transformed Hamiltonian is a central quantity of
CC theory and in this article we give explicit expressions
for the contributions of the residual 3N interactions to all
one- and two-body components as well as selected three-
and four-body components of this Hamiltonian relevant to
the left CCSD problem. We derived the �CCSD(T) method
as an approximation to the more complete CR-CC(2,3)
approach which allows for an easy identification of new terms
arising from the presence of residual 3N interactions, and
provided complete and explicit expressions required in the
calculation of the �CCSD(T) energy correction for three-body
Hamiltonians.

One of the important outcomes of our analysis is the
realization that through the use of explicit 3N interactions in
�CCSD(T), compared to the approximate NO2B treatment,
contributions of the triply excited clusters are moved from
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second to first order in MBPT for the wave function, and from
fourth to second order for the energy. This is formally easy to
account for at the full CCSDT level, which is, unfortunately
prohibitively expensive, but not trivial at all when one tries to
account for the T3 cluster contributions via corrections to the
CCSD energy. The use of the CR-CC(2,3) formalism, which
contains the �CCSD(T) approach as an approximation, turned
out to be central for properly accounting for the second-order
MBPT corrections resulting from the T3 clusters induced by
residual 3N interactions and other related terms.

The method was applied to the medium-mass closed-shell
nuclei 16O, 24O, and 40Ca using NN + 3N Hamiltonians
obtained from chiral EFT. For the total binding energies, the
effect of the residual three-body interactions at the level of
CCSD can become comparable to the �CCSD(T) correction,
particularly for soft interactions, while for the �CCSD(T)
correction itself, contributions of the residual 3N interactions
were shown to be negligible. Therefore, for the CCSD
and �CCSD(T) calculations, by only including explicit 3N
interactions at the CCSD level, we can practically eliminate the
error introduced by the normal-ordering approximation. We
further discussed various combinations of where to include the
residual 3N interactions in the determination of the amplitudes
from which energies are calculated, and found that the residual

3N interactions have their most significant effect on the cluster
amplitudes, i.e., it is important to solve the CCSD equations
including residual 3N interactions when determining the
CCSD energy, but one can safely neglect these interactions
in post-CCSD corrections from T3 clusters.
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Scientific, Singapore, 2000), Vol. 5, pp. 1–104.

[48] K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18
(2000).

[49] K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 5644
(2000).

[50] P. Piecuch, K. Kowalski, I. S. O. Pimienta, and M. J. McGuire,
Int. Rev. Phys. Chem. 21, 527 (2002).

[51] P. Piecuch, K. Kowalski, I. S. O. Pimienta, P.-D. Fan,
M. Lodriguito, M. J. McGuire, S. A. Kucharski, T. Kuś, and
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